The circular relationship between productivity growth and real interest rates

A Bergeaud G Cette R Lecat

American Economic Association Annual Meeting San Diego - 5 Jan 2020

<□ > < □ > < □ > < 壹 > < Ξ > Ξ の Q @ 1/25

Outline

Introduction

Background and Data

Circular Relationship

< □ ▶ < 圖 ▶ < ≣ ▶ < ≣ ▶ ≣ の Q @ 2/25

Simulation

Conclusion

Outline

Introduction

Background and Data

Circular Relationship

Simulation

Conclusion

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/25

Motivation: a general productivity slowdown

Figure: Smoothed growth rate of total factor productivity in the Euro Area, USA, JP and UK. Source: Bergeaud, Cette and Lecat (2016) (www.longtermproductivity.com)

Motivation: a general productivity slowdown

Figure: Evolution of TFP growth rates for the median of our 17 OECD countries (and inter Q range). Source: Bergeaud et al. (2016)

A general productivity slowdown

Possible explanations for the slowdown (among others):

- Productivity growth is mismeasured (Aghion et al., 2018a, Byrne et al., 2016...)
- Ideas harder to get (Bloom et al., 2017)
- The age of great invention is over (Gordon)
- Rising Market power —> reduced competition and increasing concentration (Aghion et al., 2019b; Akcigit and Ates, 2018, Liu et al. 2018...)

A general productivity slowdown

Possible explanations for the slowdown (among others):

- Productivity growth is mismeasured (Aghion et al., 2018a, Byrne et al., 2016...)
- Ideas harder to get (Bloom et al., 2017)
- The age of great invention is over (Gordon)
- \blacktriangleright Rising Market power \longrightarrow reduced competition and increasing concentration (Aghion et al., 2019b; Akcigit and Ates, 2018, Liu et al. 2018...)
- In this paper, we study another mechanism
 - There exists a positive circular relationship between interest rates (r) and productivity growth (g)
 - $g \longrightarrow r$: potential output key driver of return on capital and therefore long term interest rates
 - $r \longrightarrow g$: interest rates are also a determinant of the minimum expected return from investment projects
 - Productivity level required for such an investment
 - Cleansing mechanism as in Aghion et al. (2019a, ABCLM) < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 6/25

Declining interest rates

Figure: Evolution of real interest rates for the median of our 17 OECD countries (and inter Q range). Source: OECD

Aghion et al. (2019a) - ABCLM

- Positive effect of financial development and easing credit access on growth is well known. Shown empirically by e.g. Manaresi and Pierri (2017)
- On the other hand, if credit is too easy, this may create a negative misallocation effect on growth (Gropp et al., 2016).
- We combine these two approaches in a unifying framework.

Aghion et al. (2019a) - ABCLM

- Positive effect of financial development and easing credit access on growth is well known. Shown empirically by e.g. Manaresi and Pierri (2017)
- On the other hand, if credit is too easy, this may create a negative misallocation effect on growth (Gropp et al., 2016).
- We combine these two approaches in a unifying framework.

 Which effect dominates depends on the level of credit constraints. Overall, the cleansing mechanism dominates

What we do

- Country level analysis over the period 1950-2017
- Formal test of the circular relationship
 - Interest rate equation: $r_{i,t} = f(r_{i,t-1}, g_{i,t}, X_{i,t})$
 - TFP equation: $g_{i,t} = h(g_{i,t-1}, r_{i,t-1}, Z_{i,t})$
 - ► X measures financial conditions, Z contains catch-up, technology...
 - We show that $\partial f/\partial g > 0$ and $\partial h/\partial r > 0$
- ► Without any technological shock, the economy converges to a model with low growth and low interest rates → secular stagnation
- From reduced form coefficients, we simulate the effect of a technological shock in the US

Outline

Introduction

Background and Data

Circular Relationship

Simulation

Conclusion

Dataset

- ▶ 17 OECD countries with yearly data from 1950
- Mostly western European countries (France, Germany, Spain, Italy) + USA, UK, Japan etc...
- ▶ TFP growth is taken from Bergeaud et al. (2016) \rightarrow Solow Residual
- Real interest rates taken from Jorda et al. (2018)
- Other covariates taken from various sources: life expectancy, relative investment price, inflation volatility...

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 11/25

Outline

Introduction

Background and Data

Circular Relationship

Simulation

Conclusion

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q ↔ 12/25

Empirical model

We estimate a circular dynamic model

$$\begin{cases} g_{i,t} = ag_{i,t-1} + br_{i,t-1} + C'X_{i,t} + \varepsilon_{i,t} \\ r_{i,t} = \alpha g_{i,t} + \beta r_{i,t-1} + \Gamma'Z_{i,t} + \eta_{i,t} \end{cases}$$
(1)

- We are interested in the values of α and b and their long-term counterparts: α/(1 − β) and b/(1 − a)
- α corresponds to the marginal effect of a change in the growth rate of TFP on the contemporaneous change of interest rates
- b corresponds to the marginal effect of a lagged change in interest rates on the productivity growth rate.
- We expect both α and b to be positive

Choice of covariates X and Z

- In X we want to capture the normal long-run dynamics of productivity growth (i.e. without any change in interest rates).
 - Relative price of investment at the frontier (and to countries close to it) to measure the overall level of technology

- Catch-up for non frontier countries
- Variation of human capital (education, life expectancy...)
- ▶ In Z, we want to capture the dynamics of real-interest rates
 - Volatility of past inflation
 - Uncertainty of economic policy
 - Age structure

Estimations

- We start by estimating the two equations separately
- Problem of endogeneity if errors are serially correlated
- Hence we use GMM
 - Instrument real-interest rates by the past realization of nominal interest rates
 - Instrument TFP using past values of ICT coefficient and electricity consumption per capita

◆□▶ < @ ▶ < E ▶ < E ▶ ○ Q ♀ 15/25</p>

- Consistent estimation results
- Hence we develop simultaneous equations
 - Consistent results

Simultaneous estimations

- Estimation of the full system to account for feedback effects
- ► We consider that the system of equation displays contemporaneous cross-equation error correlation → seemingly unrelated regression system (Zellner, 1962).
- We estimate this system using an iterative GLS method
- ▶ Magnitude: a 1 pp increases in r raises g by 0.065 pp.
 → 5 pp decreases in r since 1985 implies -0.3 pp of TFP growth.

Simultaneous estimation: results

Estimator	SURE	SURE	SURE		
	(1)	(2)	(3)		
	Panel A : dependent variable: $g_{i,t}$				
$g_{i,t-1}$	0.228***	0.223***	0.226***		
	(0.028)	(0.028)	(0.028)		
$r_{i,t-1}$	0.035*	0.051**	0.050**		
	(0.021)	(0.021)	(0.021)		
Catch-up	-5.657***	-5.025***	-4.961***		
	(0.476)	(0.453)	(0.447)		
Variation in Relat. Price	-0.188***	-0.087*	-0.187*		
	(0.041)	(0.046)	(0.103)		
Variation in educ	8.147***	7.430***	7.252***		
	(1.296)	(1.299)	(1.287)		
Variation in Life Exp.	0.184	0.181	0.196		
	(0.181)	(0.183)	(0.183)		

Panel B: dependent variable: r_{i,t}

0.705***	0.704***	0.704***
(0.021)	(0.021)	(0.021)
0.055**	0.064**	0.068**
(0.027)	(0.027)	(0.027)
-0.043***	-0.043***	-0.043***
(0.011)	(0.011)	(0.011)
0.022***	0.022***	0.022***
(0.005)	(0.005)	(0.005)
0.076	0.077	0.077
(0.052)	(0.052)	(0.052)
0.255	0.245	0.245
1105	1105	1105
	0.705*** (0.021) 0.055** (0.027) -0.043*** (0.011) 0.022*** (0.005) 0.076 (0.052) 0.255 1105	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

< □ ▶ < ♬ ▶ < ≧ ▶ < ≧ ▶ Ξ ♪ ○ ♀ ∩ 17/25

Outline

Introduction

Background and Data

Circular Relationship

Simulation

Conclusion

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 18/25

Simulation

- We take the coefficients from the simultaneous estimations (col 2)
- We simulate a technological shock that translates through relative price of investment
 - Same length and magnitude as the ICT shock
- This shock will directly affect the TFP of the economies that are close to the frontier. Other economies then catch-up

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○ 19/25

The shock also indirectly affects real-interest rates

Shock

Figure: Variations in relative IT price with respect to GDP price and projections. Source: BEA and authors' calculation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで、

Results

Figure: Simulation results in the Euro Area and in the US for a shock in the US. Response of the growth rate of TFP g (as difference with baseline without shock) in pp.

Results

Discussion

- Without any positive technology or education shocks, the equation system converges towards a low TFP growth/low real interest rate equilibrium
- A low cleansing intensity leads to the survival of low productivity firms thanks to low real interest rates
 - Real interest rates are maintained low by the population ageing
- A positive impact through an increase in average years of education of the working age population can be foreseen only for a limited number of countries
- Only a technological shock would allow to escape the secular stagnation trap
- The shock we simulate is smaller than other shocks during the 20th century. It could stem from a second IT wave

Outline

Introduction

Background and Data

Circular Relationship

Simulation

Conclusion

Conclusion

- We have emphasized a positive circular relationship between r and g
- A downward pressure on r negatively impacts TFP growth (cleansing) which negatively affects r and so on...
- In our model, only a technological shock, that would shift g exogenously can allow OECD countries to escape secular stagnation trap
 - Such shock can come from the diffusion of new technologies (AI, self-driving cars...)
 - Such shock would affect first frontier economies, and then others by the convergence dynamics
- We illustrate this thanks to a realistic (but conservative) simulation

BACK-UP SLIDES

< □ ▶ < @ ▶ < \ > ▲ \ > \ = りへで 26/25

Comovement

Figure: Coevolution of real interest rates and growth rate of TFP in the USA since 1955 $\,$

Motivation

- ▶ How can we explain this comovement between *r* and *g*?
- Positive effect from g to r is clear:
 - In the long-run, the ratio of capital to output ratio is roughly constant, thus ↓ (expected) growth ⇒ ↓ demand for investment
 - Literature survey from Marx et al. (2017)
- Positive effect from r to g is less known.
 - Relaxation of credit allows low productive firms to survive
 - Negative impact on business dynamism and thus on growth
 - If r is low enough, this effect dominates the positive investment effect of reducing credit constraints
 - To show this \longrightarrow Schumpeterian model (ABCLM)
 - Cleansing effect dominates

Quick glance at the model

 Standard version of Schumpeterian growth a la Klette and Kortum (2004)

$$g = (z_e + z_i) ln(\gamma),$$

z_e and *z_i* depend upon *γ*, the number of scientists *ψ*, the size of the population *L*, the Poisson innovation rate of innovation ¹/_η, a scale parameter *ζ* and the discount rate *ρ*

$$z_{e} = \frac{\gamma - 1}{\gamma} \frac{L}{\psi} - \frac{1}{\eta} \left(\frac{\psi}{\eta\zeta}\right)^{\frac{1}{\eta - 1}} - \frac{\rho}{\gamma}$$
(2)
$$z_{i} = \left(\frac{\psi}{\eta\zeta}\right)^{\frac{1}{\eta - 1}}.$$
(3)

Quick glance at the model

► We introduce credit constraints in a stylized way: firms cannot invest more than µ times their current market value.

- Condition not binding for entrants
- This yields:

$$z_{e} = \frac{\gamma - 1}{\gamma} \frac{L}{\psi} - \mu - \frac{\rho}{\gamma}$$
(4)
$$z_{i} = \left(\frac{\mu\psi}{\zeta}\right)^{\frac{1}{\eta}}$$
(5)

▶ µ captures the inverse of the tightness of credit constraints in the economy (evolve with -r)

Quick glance at the model

If µ is large enough ↑ credit constraints ⇒ ↑ growth by increasing the contribution of entrants (z_e) relatively more than it reduces the contribution of incumbents to growth (z_i)

$$\frac{dg}{d\mu} = -\ln(\gamma_e) + \frac{\psi}{\zeta\eta} \left(\frac{\mu\psi}{\zeta}\right)^{\frac{1}{\eta}-1} \ln(\gamma_i) < 0.$$

if
$$\mu > \left(\frac{\psi}{\zeta}\right)^{\frac{1}{\eta-1}} \left(\frac{\ln(\gamma_i)}{\ln(\gamma_e)\eta}\right)^{\frac{\eta}{\eta-1}}$$

- This relationship shows how decreasing real interest rates can negatively impact growth through a reallocation effect if the level of credit constraints is already low enough
- On the contrary, if µ is close to 0, a fall in real interest rates reduces the cost of capital and spurs corporate investment

Separate estimations: TFP equation

Dependent variable: $g_{i,t}$						
Estimator	OLS	GMM	OLS	GMM	OLS	GMM
	(1)	(2)	(3)	(4)	(5)	(6)
$g_{i,t-1}$	0.214***	0.204***	0.210***	0.202***	0.214***	0.206***
,	(0.036)	(0.036)	(0.035)	(0.036)	(0.036)	(0.037)
$r_{i,t-1}$	0.042*	0.123**	0.056**	0.118*	0.054**	0.113*
	(0.023)	(0.061)	(0.024)	(0.062)	(0.025)	(0.066)
Catch-up	-6.026***	-5.945***	-5.428***	-5.446***	-5.366***	-5.395***
	(0.595)	(0.601)	(0.559)	(0.578)	(0.543)	(0.563)
Variation in Relat. Price	-0.174***	-0.134**	-0.088**	-0.059	-0.197**	-0.128
	(0.049)	(0.056)	(0.036)	(0.044)	(0.092)	(0.118)
Variation in educ.	7.953***	8.013***	7.335***	7.432***	7.163***	7.292***
	(1.339)	(1.364)	(1.296)	(1.300)	(1.270)	(1.276)
Variation in Life Exp.	0.308	0.337	0.291	0.321	0.304	0.328
	(0.289)	(0.291)	(0.292)	(0.292)	(0.291)	(0.291)
R ²	0.273	0.263	0.264	0.258	0.264	0.259
Observations	1122	1122	1122	1122	1122	1122
KP LM stat. p-val.		0.000		0.000		0.000
KP Wald F-stat.		50.191		45.114		39.999

 $^{***}p < 0.01,^{**}p < 0.05,^{*}p < 0.1$

Magnitude

- ► The median real interest rate in our sample declined from 5.2% in 1985 to 0.5% at the end of the period.
- Over the same period, median TFP growth declined from 2.5% to 0.5%
- 0.7 percentage point of the decline in TFP growth or 35% of the slowdown could be attributed to the decrease in interest rates
- Education has the expected magnitude (7-10% increases in TFP when the average education duration in the working age population increases by 1 year)
- Catch-up coefficient involves a convergence speed of around 5% per year

Separate estimations: interest rate equation

Dependent variable: r _{i.t}						
Estimator	OLS	GMM	GMM	GMM	GMM	
	(1)	(2)	(3)	(4)	(5)	
$r_{i,t-1}$	0.705***	0.692***	0.691***	0.690***	0.697***	
	(0.040)	(0.040)	(0.039)	(0.041)	(0.040)	
gi,t	0.103***	0.112	0.121*	0.218***	0.208***	
	(0.032)	(0.088)	(0.073)	(0.070)	(0.068)	
Age Dep Ratio	-0.048***	-0.048***	-0.050***	-0.064***	-0.060***	
	(0.014)	(0.017)	(0.014)	(0.016)	(0.015)	
Inflation Volat.	0.125*	0.106	0.105	0.109	0.120	
	(0.074)	(0.076)	(0.076)	(0.076)	(0.074)	
Policy Instability	0.071	0.084	0.083	0.089	0.095	
	(0.065)	(0.067)	(0.067)	(0.068)	(0.067)	
R ²	0.540	0.527	0.527	0.530	0.531	
Observations	1122	1088	1088	1056	1056	
KP LM stat. p-val.		0.000	0.000	0.000	0.000	
KP Wald F-stat.		46.588	47.917	125.583	63.217	
Hansen-J p-val.			0.842		0.478	

Magnitude

- Given a 0.7 autoregressive coefficient and a 0.1 TFP coefficient, the long run impact of a 1 pp increase in TFP on the level of interest rates is about 0.3 pp.
- A higher age dependency ratio, which could lead to an increased supply of savings, weighs on interest rates: a 1pp increase in the age dependency decreases TFP by about 0.07pp in the long run.
 - demography exerts a continuous downward pressure on long-term real interest rates as this ratio is expected to increase in the next decades