1/34

China's Housing Bubble, Infrastructure Investment, and Economic Growth

Shenzhe Jiang¹ Jianjun Miao² Yuzhe Zhang³

¹Beijing University, ²Boston University

²Texas A&M

July 2019

Basic Model

Quantitative Analysis

Counterfactua

イロト 不得 トイヨト イヨト

Conclusion

2/34

Motivation

- China implemented a series of market-oriented housing reforms in the 1990s.
- Since then, the Chinese real estate market has experienced a dramatic and long-lasting boom.
- What is the impact on the Chinese macroeconomy?
- What would happen if housing bubbles burst?
- What would the impact of property tax be?

Stylized Facts

3 / 34

イロト 不得下 イヨト イヨト 二日

4 / 34

Stylized Facts for 2003-2013

- High (10%) and declining GDP growth
- High growth (10%) of housing prices and low growth of rents (0.5%)
- Increasing residential investment to GDP ratio (8.6%)
- Increasing land-sale revenue to GDP ratio (4.9%)
- Increasing infrastructure investment to GDP ratio (7.5%)
- High average (10%) and declining capital return

Basic Model

Quantitative Analysis

Counterfactua

Conclusion

Our Story

- Housing and non-housing sectors
- OLG: workers and entrepreneurs
- Entrepreneurs face borrowing constraints and invest in capital and houses
- Land is an input to produce houses
- Shortage of assets and speculation fuel a housing bubble \rightarrow High land prices

6/34

Our Story: China institution Feature

- Government owns land and collects land-sale revenues to finance infrastructure investment
- Infrastructure raises TFP of non-housing production

7/34

Our Story: Impact of Housing Bubble

- Crowding-in effect: Housing bubble → land-sale revenue ↑ → infrastructure investment ↑ → productivity and output ↑
- Crowding-out effect (Tirole 1985): Capital investment \downarrow
- Reallocation effect: capital and labor flow from non-housing sector to housing sector
- Net effects ambiguous: GDP = Nonhousing ouput + Residential investment + Rents

Supporting Evidence

Table: Estimation Result: Crowding-in and Crowding-out

	(1)	(2)	(3)			
VARIABLES	growth_infr	growth_capital	growth_labor			
growth_hp	0.0645*	-0.1832***	-0.0969**			
	(0.032)	(0.043)	(0.037)			
growth_gdp	0.3278	1.2913***	0.1101			
	(0.288)	(0.183)	(0.195)			
Constant	0.1612***	0.0613**	0.0430			
	(0.040)	(0.026)	(0.025)			
Observations	372	372	217			
Adjusted R-squared	0.284	0.410	0.232			
Province	Yes	Yes Yes				
Year	Yes	Yes	Yes			
Robust standard errors in parentheses *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.						

8 / 34

Basic Model

Quantitative Analysis

Counterfactua

イロン イヨン イヨン イヨン 三日

Conclusion

9/34

Basic Model

- A small open economy two-sector deterministic OLG model
- No long-run growth
- House is a pure bubble asset
- Constant interest rate R^f

Basic Model

Quantitative Analysis

Conclusion

Workers

- Supply one unit of labor inelastically
- Decision problem

 $\begin{array}{ll} \max & \log(c_{1t}^w) + \beta \log(c_{2,t+1}^w) \\ s.t. & c_{1t}^w + b_{t+1} = w_t, \\ & c_{2,t+1}^w = R^f b_{t+1} \end{array}$

・ロン ・四 と ・ ヨ と ・ ヨ と

3

11/34

Entrepreneurs

- A young entrepreneur inherits wealth *m_t* from the old and invests in capital and houses
- He/she cannot borrow

$$\begin{array}{ll} \max & \log(c_{1t}^e) + \beta \log(c_{2,t+1}^e) \\ s.t. & c_{1t}^e + k_{t+1} + Q_t h_{t+1} = m_t, \\ & c_{2,t+1}^e = R_{t+1} k_{t+1} + Q_{t+1} (1-\delta_h) h_{t+1}, \end{array}$$

• No-arbitrage equation for bubble

$$R_{t+1}=\frac{Q_{t+1}(1-\delta_h)}{Q_t}.$$

Nonhousing Sector

• Each old entrepreneur owns a firm

$$y_{t+1} \equiv \hat{A}^{\theta}_{t+1}k^{\alpha}_{t+1}n^{1-\alpha}_{c,t+1},$$

• Productivity \hat{A}_{t+1} depends on infrastructure A_{t+1} :

$$\hat{A}_{t+1} \equiv A_{t+1} / (K_{t+1}^{\rho} N_{c,t+1}^{1-\rho}),$$

where K_{t+1} and $N_{c,t+1}$ are aggregate capital and labor used in non-housing sector

Congestion effect

.

Capital Return and Inheritance

• A fraction of after-tax profits as inheritance

$$m_{t+1} = \psi \left((1-\tau) y_{t+1} - w_{t+1} n_{c,t+1} \right)$$

• The remainder is capital return

$$R_{t+1}k_{t+1} \equiv \max_{n_{c,t+1}} \quad (1-\psi)\left((1-\tau)\hat{A}^{\theta}_{t+1}k^{\alpha}_{t+1}n^{1-\alpha}_{c,t+1} - w_{t+1}n_{c,t+1}\right)$$

Basic Model

Quantitative Analysis

Counterfactua

・ロン ・四 と ・ ヨ と ・ ヨ と

3

14/34

Conclusion

Portfolio Choice

• Fraction of housing asset

$$\phi_t \equiv \frac{Q_t h_{t+1}}{k_{t+1} + Q_t h_{t+1}}$$

Optimal capital investment

$$k_{t+1} = (1-\phi_t)\frac{\beta}{1+\beta}m_t = (1-\phi_t)\frac{\beta}{1+\beta}\psi\alpha(1-\tau)y_t.$$

• Bubble ($Q_t > 0$) crowds out capital $\phi_t \in (0, 1)$

Housing Sector

• Competitive firms buy land from government at price p_{Lt}

$$\max_{l_t, n_{ht}} Q_t l_t^{\alpha_l} n_{ht}^{1-\alpha_l} - p_{Lt} l_t - w_t n_{ht}$$

Exogenous land supply L_t

$$p_{Lt} = Q_t \alpha_I L_t^{\alpha_I - 1} N_{ht}^{1 - \alpha_I}$$

Aggregate housing output

$$Y_{ht} = L_t^{\alpha_l} N_{ht}^{1-\alpha_l},$$

• The total housing stock H_t evolves as

$$H_{t+1} = (1 - \delta_h)H_t + Y_{ht}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic Model

Quantitative Analysis

Counterfactua

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

16/34

Conclusion

- Runs balanced budget
- Use taxes and land-sale revenues to finance infrastructure investment

$$A_{t+1} - (1 - \delta_a)A_t = \tau Y_t + p_{Lt}L_t$$

- Bubbly $Q_t > 0$ for all $t \rightarrow p_{Lt} > 0$
- Bubbleless (fundamental) $Q_t = 0$ for all $t \rightarrow p_{Lt} = 0$, housing and land markets collapse

18/34

Inspecting Mechanism

- Crowd in: Bubbly houses Q_t > 0 for all t → p_{Lt} > 0 → collects land-sale revenues → finance more infrastructure investment in non-housing sector
- Crowd out capital
- Reallocate labor from nonhousing sector to housing sector
- In steady state

$$\frac{K^b}{K^n} < \frac{Y^b}{Y^n} < \frac{A^b}{A^n}.$$

• Whether $Y^b > Y^n$ depends on parameters, θ

Transition

Basic Model

Quantitative Analysis

Counterfactua

Conclusion

Extended Model

- Population growth g_n and technology growth g_e
- Live for T = 50 years, work for 30 years
- Housing delivers rents, grow at gr
- Housing firms also use capital input
- Introduce government debt using land sales as collateral

Basic Model

Quantitative Analysis

Counterfactua

Conclusion

Stochastic Bubbles

- Housing bubble bursts with prob $p_t = p_0 e^{-\eta t}$
- Once it bursts, it will never reemerge
- Can generate high housing price growth during transition period
- Allow housing price to grow faster than capital return

Calibration

Parameter	Description
$R^{f} = 1.003$	Annual interest rate
$g_n = 0.005$	Growth of population
$g_r = 0.005$	Growth of rents
au= 0.13	Tax rate in nonhousing sector
$ au_h=0.16$	Tax rate in housing sector
$\alpha_{I} = 0.56$	Land income share in housing sector
$\alpha_k = 0.24$	Capital income share in housing sector
$\alpha = 0.54$	Capital income share in nonhousing sector
heta= 0.1	Output elasticity of infrastructure
ho= 0.5	Capital congestion elasticity
$\zeta_b = 0.46$	Share of government expenditure in debt
$\kappa = 0.53$	Share of infrastructure investment in land-sale revenue
$\delta_{h}=0.014$	Housing depreciation rate
$\delta_k = 0.1$	Capital depreciation rate
$\delta_{a}=0.095$	Infrastructure depreciation rate

Table: Parameters estimated outside the model $a \rightarrow A = 0$

Calibration

Parameter	Description	Target
$\beta = 0.999$	Discount factor	Average saving rate
$\psi = 0.42$	Wealth transfer share	Capital return in 2003
$ ilde{\xi}=0.17$	Leverage ratio of firm	Average capital investment to GDP ratio
$g_e = 0.036$	Growth of labor efficiency	Average GDP growth rate
$g_{I} = 0.08$	Diminishing speed of land quality	Average residential investment to GDP ratio
$p_0 = 0.24$	Probability of bubble burst in 2003	Average housing price growth during 2003-2008
$\eta=$ 0.095	Decay rate of burst probability	Average housing price growth during 2009-2013
$\zeta_y = 0.1$	${\sf Government}\ {\sf expenditure}/{\sf GDP}\ {\sf ratio}$	Average infrastructure
$\xi_g(t) = 2.37$, if $t < 7$	Leverage ratio of government	Average local government debt to GDP ratio during 2003-2008
$\xi_g(t) = 3$, if $t \ge 7$	Leverage ratio of government	Average local government debt to GDP ratio during 2009-2013
$K_0 = 1$	Initial capital stock	Output to capital ratio in 2003
$A_0 = 0.37$	Initial infrastructure stock	Infrastructure to capital ratio in 2003
$H_0 = 0.15$	Initial housing stock	Housing stock to capital ratio in 2003
$r_0 = 0.01$	Initial rent	Residential investment to GDP ratio in 2003

Table: Parameters calibrated in the model

Results

Government Debt/GDP

25 / 34

Growth Accounting for 2003-2013

• GDP growth

$$\begin{array}{lll} GDP_t &=& Y_t + Q_t Y_{ht} + r_t H_t \\ \frac{\Delta GDP_t}{GDP_t} &\approx& \frac{Y_t}{GDP_t} \frac{\Delta Y_t}{Y_t} + \frac{Q_t Y_{ht}}{GDP_t} \frac{\Delta (Q_t Y_{ht})}{Q_t Y_{ht}} + \frac{r_t H_t}{GDP_t} \frac{\Delta (r_t H_t)}{r_t H_t} \\ 10\% &\approx& 0.9 \times 9.3\% + 0.086 \times 16.2\% + 0.014 \times 17.1\% \\ &\approx& 8.4\% + 1.4\% + 0.2\%. \end{array}$$

<ロ > < 部 > < 言 > < 言 > 言 の < で 26 / 34

27 / 34

Growth Accounting for 2003-2013

Nonhousing output

$$Y_{t} = A_{t}^{\theta} K_{ct}^{\alpha-\rho\theta} (e_{t} N_{ct})^{1-\alpha-(1-\rho)\theta}$$

$$\frac{\Delta Y_{t}}{Y_{t}} \approx \theta \frac{\Delta A_{t}}{A_{t}} + (\alpha-\rho\theta) \frac{\Delta K_{ct}}{K_{ct}} + (1-\alpha-(1-\rho)\theta) \frac{\Delta e_{t}}{e_{t}}$$

$$+ (1-\alpha-(1-\rho)\theta) \frac{\Delta N_{ct}}{N_{ct}}$$

 $\begin{array}{rcl} 9.3\% &\approx & 0.1*10.7\% + 0.49*13.8\% + 0.41*3.6\% + 0.41*0.3\% \\ &\approx & 1.1\% + 6.7\% + 1.5\% + 0.1\% \end{array}$

Basic Model

Quantitative Analysis

Counterfactual

Conclusion

Growth Accounting

• Residential investment

$$\begin{aligned} Q_t Y_{ht} &= Q_t L_t^{\alpha_l} K_{ht}^{\alpha_k} \left(e_t N_{ht} \right)^{1 - \alpha_l - \alpha_k} \\ \frac{\Delta(Q_t Y_{ht})}{Q_t Y_{ht}} &\approx \frac{\Delta Q_t}{Q_t} + \alpha_l \left(\frac{\Delta L_t}{L_t} - g_l \right) + \alpha_k \frac{\Delta K_{h,t}}{K_{h,t}} \\ &+ (1 - \alpha_l - \alpha_k) \frac{\Delta e_t}{e_t} + (1 - \alpha_l - \alpha_k) \frac{\Delta N_{ht}}{N_{ht}} \\ 16.2\% &\approx 10.0\% + 0.56 * (-1.7\%) + 0.24 * 21\% \\ &+ 0.2 * 3.6\% + 0.2 * 6.6\% \\ &\approx 10.0\% + (-1\%) + 5\% + 0.7\% + 1.3\% \end{aligned}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 28/34

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

29/34

Why GDP Growth Declined?

- For 2003-2008
 - $\begin{array}{rcl} 11.4\% &\approx & 0.916*10.9\% + 0.072*16.6\% + 0.012*21.2\% \\ &\approx & 10\% + 1.2\% + 0.3\%, \end{array}$
- For 2009-2013
 - $\begin{array}{rcl} 8.6\% &\approx & 0.882*7.7\% + 0.102*15.9\% + 0.016*13.1\% \\ &\approx & 6.8\% + 1.6\% + 0.2\%. \end{array}$

Why GDP Growth Declined?

Variable (%)	$\Delta A/A$	$\Delta K_c / K_c$	$\Delta N_c / N_c$	$\Delta Q/Q$	$\Delta L/L - g_I$	$\Delta K_h / K_h$	$\Delta N_h / N_h$
2003-2008	8.8	17.5	0.3	11.0	-3.4	23.5	5.4
2009-2013	12.6	10.1	0.2	9.0	-0.3	18.4	7.8
2003-2013	10.7	13.8	0.3	10.0	-1.8	21.0	6.6

Table: Comparison between two periods

• Crowding out and reallocation effects of housing bubble

Bubble Burst

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (や 31 / 34 Quantitative Analysis

Counterfactual

Conclusion

Property Tax

32 / 34

33 / 34

Welfare Effects

Consider workers and entrepreneurs alive in 2025

Conclusion

- We provide a two-sector OLG model to explain the Chinese stylized facts during 2003-2013
- Incorporate Chinese institution feature of land policy
- Housing bubble crowds in infrastructure investment, but crowds out capital investment
- Housing bubble and factor (resource) reallocation across the housing and non-housing sectors can explain stylized facts
- Counterfactual experiments show that bubble burst and property tax can reduce short-run GDP growth, but raise long-run GDP level