

Aalto University School of Business

Discount Rates and Cash Flows:

A Local Projection Approach

Matthijs Lof, Aalto University School of Business Henri Nyberg, University of Turku

matthijs.lof@aalto.fi henri.nyberg@utu.fi

Abstract

We develop a **volatility decomposition** derived from flexible and robust **local projections** to quantify the relative contributions of expected discount rates and cash flows to the variation of dividend yields. Local projections enable the incorporation of **large information sets**, the use of **monthly data** along with annual data, and to consider **time variation** in the volatility decomposition. While the variation of expected discount rates remains the dominant contributor to market volatility, we find that the **contribution of expected cash flows is non-negligible** when moving beyond the

standard model with the dividend yield as the single state variable.

Methodology

Campbell-Shiller (1988) **log-linear present value model:**

$$\begin{split} dp_t &= \mathsf{E}_t \sum_{j=1}^k \rho^{j-1} r_{t+j} - \mathsf{E}_t \sum_{j=1}^k \rho^{j-1} \Delta d_{t+j} + \mathsf{E}_t \rho^k dp_{t+k} \\ &\equiv \quad \delta_t^{(r,k)} \quad - \quad \delta_t^{(d,k)} \quad + \quad \delta_t^{(dp,k)} \end{split}$$

Dividend yield dp_t has three components: (i) expected returns $\delta_t^{(r,k)}$, (ii) expected dividend growth $\delta_t^{(d,k)}$, (iii) expected dividend yield $\delta_t^{(dp,k)}$.

Objective: measure relative importance of expected discount rate and cash flow variation, at different horizons k:

Empirical results

Single state variable: $X_t = dp_t$. For k = 15 years, almost all variation is discount rate variation, $\sigma_{(d,r)}^{(k)} = 0.10$:

Three state variables: $X_t = (r_t, \Delta d_t, dp_t)$. Larger role for expected cash flows, $\sigma_{(d,r)}^{(15years)} = 0.27$:

$$\sigma_{(d,r)}^{(k)} \equiv \frac{\operatorname{Std}(\delta_t^{(d,k)})}{\operatorname{Std}(\delta_t^{(r,k)})}$$

Conventional VAR approach: estimate $\delta_t^{(r,k)}$ and $\delta_t^{(d,k)}$ by extrapolating expectations from VAR. E.g. Cochrane (2008): $\sigma_{(d,r)}^{(k)} \approx 0$, for long horizons k.

Is all volatility due to variation of discount rates or is VAR a poor model for dividend expectations?

This paper: Local projections (Jordà, 2005) – Horizon-specific regressions:

 $\sum_{k=1}^{k} \rho^{j-1} r_{t+j} = \alpha^{(r,k)} + X_t^{(r,k)} \beta^{(r,k)} + \varepsilon_{t+k}^{(r,k)}$

LASSO: select X_t from large set of possible state variables, $\sigma_{(d,r)}^{(15years)} = 0.50$.

Time-varying volatility decomposition: Cash flows at times dominate discount rates. $\sigma_{t,(d,r)}^{(180months)}$ from recursively estimated local projections:

Conclusion

Possible to select state variables X_t locally at horizon of interest. Allows for time-varying parameters.

Estimate $\delta_t^{(r,k)}, \delta_t^{(d,k)}$ and $\delta_t^{(dp,k)}$ as the fitted values of local projections, for different state variables X_t .

Static models with a single state variable suggest that discount rates are the only determinant of market volatility. After allowing for time-varying parameters and/or state variables beyond the lagged dividend yield, cash flow expectations emerge as a significant contributor to volatility.

American Economic Association 2020 – San Diego