School Bus Diesel Retrofits, Air Quality, and Academic Performance: National Evidence Using Satellite Data

> Wes Austin Georgia State University ASSA Conference San Diego, California

> > January 1, 2020

Introduction

Motivation

Figure: A Major Contributor of Pollution

Figure 1: Conventional buses tested showed significant PM_{2.5}, ultrafine particle, black cabin and PAH self-pollution. (Ambient concentrations have been subtracted.)

Figure: Ultrafine and Fine PM in a Typical Bus Cabin (Zimmerman 2005)

Motivation

Figure 3: Installation of diesel particulate filter on DeKalb bus prior to testing.

Figure: Making Dirty Buses Clean with Engine Retrofits

Figure: Making Dirty Buses Clean with Engine Retrofits

Figure: A Diesel Particulate Filter at the End of its Life

What we know:

- Air pollution affects cognitive performance in the short- and long-term (Lavy, Ebenstein, Roth 2016) (Zhang, Chen, Zhang 2018) (Marcotte 2017) (Heissel, Persico, Simon 2019).
- Reducing school bus emissions decreases clinic visits for lung conditions, improves student lung functioning, and increases test scores. (Beatty & Shimshack 2011) (Adar et al 2015) (Austin, Heutel, Kreisman 2019).

Lingering questions:

- How much do school bus retrofits improve ambient atmospheric air quality?
- Do the academic improvements associated with Georgia retrofits generalize to other states?

Research Methods

17,901 buses were retrofitted in 137 counties nationwide from 2008-2016.

- Average of 73 retrofits per grant, or 21% of the bus fleet.
- Can test for changes to satellite-based estimates of fine particulate matter.
- Can test for achievement effects.
- Can compare benefits to the total cost of the grants (\$170 million).

Figure: Retrofitting Counties (2008-2016)

- 1. Environmental Protection Agency (2008-2016)
 - Retrofit type, number, affected counties, year.
- 2. Atmospheric Composition Analysis Group (2000-2017)
 - Fine particulate matter (PM 2.5) county-month estimates.
 See heat map for December 2016.
- 3. Stanford Education Data Archive (2009-2016)
 - Math/ELA test score estimates, student demographics.

	Non-Re	(1) etrofitting	Retro	(2) ofitting
Retrofits, Air Pollution, and Test Scores				
English Language Arts Z-scores	-0.041	(0.236)	0.021	(0.193)
Math Z-scores	-0.040	(0.267)	0.046	(0.224)
Particulate Matter 2.5 $[\mu g/m^3]$	8.825	(2.300)	9.122	(2.361)
Vehicles Retrofitted in year t	-		73.401	(141.99)
Proportion Fleet Retrofitted	-		0.2087	(0.2725)
County Characteristics				
Total Enrollment, Grades 3-8, thousands	5.890	(15.696)	46.001	(93.738)
% Free or reduced lunch	0.553	(0.160)	0.489	(0.148)
% ELL Students	0.037	(0.059)	0.066	(0.074)
% Special Ed Students	0.137	(0.038)	0.131	(0.035)
% Urban Schools	0.067	(0.201)	0.299	(0.314)
% Rural Schools	0.533	(0.371)	0.220	(0.260)
% Afr. American	0.113	(0.195)	0.154	(0.184)
% Hispanic	0.119	(0.175)	0.153	(0.174)
% White	0.730	(0.250)	0.648	(0.258)

I observe retrofits at the county-year and air pollution at the county-month.

$$PM_{imst} = \beta Buses_{imt} + \tau_{im} + \tau_{st} + \eta_i + \epsilon_{imst}.$$
 (1)

- PM_{imst} is the average concentration of atmospheric PM 2.5 in $\mu g/m^3$ in county *i*, month *m*, state *s*, and year *t*.
- $Buses_{imt}$ is the number of retrofitted buses in county *i* and year *t* or the cumulative number of buses ever retrofitted in county *i* and year *t*.
- Fixed effects for county, η_i , county-month, τ_{im} , and state-year, τ_{st} .

Identification Assumption: No factors are correlated with the number of school buses retrofitted that also lead to county-level improvements in air quality in retrofit completion years.

I observe retrofits and test scores at the county-year. Effects should be larger when a larger share of buses are retrofitted. For county i in year t:

$$y_{it} = \beta Retrofit_{it} + \tau_{st} + \eta_i + \epsilon_{it}.$$
(2)

- y_{it} is ELA and math test z-scores.
- $Retrofit_{it}$ is either the proportion of the bus fleet retrofitted in year t or the cumulative proportion of buses ever retrofitted in county t.
- Fixed effects for state-year, τ_{st} , and county, η_i .

Identification Assumption: No factors are correlated with the percent of a district bus fleet retrofitted that also lead to test score improvements in retrofit years.

Results

School Bus Retrofits and Fine Particulate Matter (2000-2017)

	(1)	(2)
	Monthly	Monthly
	Average	Average
	$_{\rm PM}$	$_{\rm PM}$
Buses Retrofitted in Year t	-0.00042**	
	(0.0002)	
Cumulative Buses Retrofitted		-0.00036***
		(0.0003)
Δ PM Concentration	0.0356	0.0619
% Change from Mean	0.39%	0.68%
County-Year-Months	636,072	636,072
Counties & County Equivalents	$3,\!118$	$3,\!118$

* p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard errors at the county level. Fixed effects for the county, state-year, and county-month. Δ PM Concentration is the implied change in particulate matter when scaled by the typical buses retrofitted per county per cycle or throughout the sample (73 or 172). Mean PM is 9.12

School Bus Retrofits and Academic Performance (2009-2016)

	(1)	(2)	(3)	(4)
	ELA	Math	ELA	Math
Proportion Retrofitted in Year t	0.0678^{*}	0.0860**		
	(0.0361)	(0.0408)		
Cumulative Proportion of Fleet			0.0549^{**}	0.0603^{**}
Retrofitted			(0.0245)	(0.0246)
County-Year Observations	$19,\!477$	19,266	$23,\!133$	22,961
State-Year Observations	309	305	372	369

* p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard errors at the county level. County and state-year fixed effects in all models.

▶ See results from Austin, Heutel, and Kreisman (2019)

- **Costs:** The EPA disbursed \$170 million to retrofit or replace school buses.
- Air Quality Benefits: According to Deryugina et al. (2019), a 1 $\mu g/m^3$ increase in PM 2.5 over three days leads to a cost of \$320,000 in terms of clinic visits and lost life years \rightarrow decrease in particulate matter concentration of 0.0481 over a year and 219 retrofit cycles \rightarrow \$245 million benefit.
- Test Score Benefits: A one percentile increase in test scores is valued at \$1,041 over a working life after discounting \rightarrow average percentile increases of 0.43 in ELA and Math for 46,000 students over 219 retrofit cycles \rightarrow \$4.5 billion benefit.

Relatively cheap school bus retrofits grants are associated with economically meaningful improvements in ambient air quality and academic performance.

- School bus retrofit cycles reduce one of the most harmful diesel emissions, fine particulate matter, by between 0.4% and 0.7%.
- Retrofitting all buses in a county is associated with gains of 0.055 standard deviations in ELA and 0.06 standard deviations in math.
- Benefits of the retrofits in terms of reduced mortality and clinic costs may be valued at \$245 million; test score improvements may be valued at \$4.5 billion.
- Benefits, together, are over 25 times the cost of the retrofits.

Questions/comments? gaustin4@gsu.edu @WesAustin7

Fine Particulate Matter Heat Map (December 2016)

Fine Particulate Matter and Academic Performance (2009-2016)

	(1)	(2)
	ELA	Math
Average Annual PM	-0.00588***	-0.00558***
Concentration	(0.0010)	(0.0013)
County Fixed Effects	\checkmark	\checkmark
State-year Fixed Effects	\checkmark	\checkmark
County-Year Observations	22,707	22,672
State-Year Observations	364	361

* p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard errors at the county level. County and state-year fixed effects in all models.

	Δ ELA Z-Score	Δ Math Z-Score	Δ Attendance
% Retrofit	0.090***	0.047	0.183
	(0.03)	(0.03)	(0.25)
Bus Chars.	\checkmark	\checkmark	\checkmark
Demog.	\checkmark	\checkmark	\checkmark
R2	0.058	0.023	0.097
Ν	1,800	1,800	1,800
n	180	180	180

* p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard errors at the district level. Year fixed effects included. For reference, the observed difference in elementary student test score gains from a teacher with five years of experience and a rookie teacher is 0.12 z-scores. \bigcirc Go back