# **Birth Weight and Cognitive Development during Childhood: Evidence from India**

Santosh Kumar, PhD<sup>1</sup>; Kaushalendra Kumar, PhD<sup>2</sup>; Arindam Nandi, PhD<sup>3</sup>; Ramanan Laxminarayan<sup>3,4</sup> <sup>1</sup>Sam Houston State University, TX, USA; <sup>2</sup>International Institute for Population Sciences, Mumbai, India; <sup>3</sup>Center for Disease Dynamics, Economics & Policy, Washington DC, USA; <sup>4</sup>Public Health Foundation of India, New Delhi

## Abstract

Health at birth is an important indicator of human capital development over the life course. This paper uses longitudinal data from the Young Lives survey and employs instrumental variable regression models to estimate the effect of birth weight on cognitive development during childhood in India. We find that a 10 percent increase in birth weight increases cognitive test score by 8.1 percent or 0.11 standard deviations at ages 5-8 years. Low birth weight infants experienced a lower test score compared with normal birth weight infants. The positive effect of birth weight on a cognitive test score is larger for boys, children from rural or poor households, and those with less-educated mothers. Our findings suggest that health policies designed to improve birth weight could improve human capital

|                                    |                    | Res                  | ults                                |                       |           |                      |
|------------------------------------|--------------------|----------------------|-------------------------------------|-----------------------|-----------|----------------------|
| Table 1: Summary statist           | tics, N=1          | 611                  |                                     |                       |           |                      |
|                                    | Mean               | S.D.                 |                                     |                       |           |                      |
| PPVT score (2006)                  | 27.44              | 21.12                | Hindu                               |                       | 86%       | -                    |
| PPVT score (2009)                  | 58.48              | 30.45                | Rich                                |                       | 33%       | _                    |
| PPVT score (Pooled)                | 43.17              | 30.51                | SCST                                |                       | 33%       | -                    |
| Low birth weight                   | 17%                | _                    | Mother is primary so                | chooled               | 38%       | _                    |
| Birth weight (grams)               | 2763.65            | 547.34               | ather is primary schooled           |                       | 55%       | -                    |
| Age of the child (months)          | 95.41              | 3.83                 | Exclusive breastfeed                | clusive breastfeeding |           | -                    |
| Female                             | 46%                | -                    | Birth order                         |                       | 2.03      | 1.17                 |
| Rural                              | 74%                | _                    | Sentinals (#)                       |                       | 20        |                      |
| Table 2: First stage results-      | correlatio         | n between t          | the instruments and                 | the endoge            | enous var | riable               |
|                                    | Ins                | strument:            | Instrument:                         | Instruments: Mother'  |           | other's              |
|                                    | Moth               | ner's height         | Preterm birth                       | height -              | + Preterm | n birth              |
| Mother's height                    | 0.002              | ** (0.0008)          |                                     | 0.002** (             | 0.0009)   |                      |
| Preterm birth                      | irth               |                      | -0.123*** (0.029)                   | -0.122*** (0.029)     |           |                      |
| Weak identification test           |                    |                      |                                     |                       |           |                      |
| Kleibergen-Paap Wald rk F          | 5.71               |                      | 17.69                               | 12.75                 |           |                      |
| statistic                          |                    |                      |                                     |                       |           |                      |
| <b>Cragg-Donald Wald F statist</b> | ic 7.52            |                      | 61.86                               | 32.98                 |           |                      |
| Tests of overidentifying rest      | trictions          |                      |                                     |                       |           |                      |
| Sargan test p-value                |                    |                      |                                     |                       | 0.85      | 59                   |
| Basmann p-value                    |                    |                      |                                     |                       | 0.86      | 51                   |
| p-value for endogeneity tes        | t<br>community lev | el are in narenthese | os. Controls: Gender hirth order an | d age of the child    | 0.01      | .0<br>Ite father and |

in resource-poor settings.

# Introduction

- 836 million people still live in extreme poverty (less than \$1.25 per day).
- Low human capital accumulation such as Education & Health are also causes of poverty and low economic development.
- Only 42.5% of grade III children were able to read grade I text in 2016.
- Low human capital can be due to "poor health at birth" or "fetal origins hypothesis" or Barker's hypothesis.
- 18% of Indian infants born during 2010-2015 were low birth weight (LBW).
- LBW results in worse postnatal outcomes, educational outcomes, labor outcomes, and childhood and adult health outcomes.
- **Missing link between LBW and adult outcomes -** Adult outcomes manifest through development in mid-childhood years (5-8 years) Adult outcomes take many years to manifest.
- **Research Questions -** What is the impact of poor neonatal health (birth weight) on human capital accumulation in India in mid-childhood years?
- And does this relationship vary by socioeconomic conditions?
- Whether early neonatal health and parents inputs are complements are substitutes?

**Fetal Origins Hypothesis -** The origin of later-life health problems originates

during in-utero or fetal stage.

**Conceptual Framework -**

mother's education, religion, household wealth, rural residence, exclusive breastfeeding, cluster dummies, and inverse mills term. \*p< 0.10, \*\*p<0.05, \*\*\*p<0.01

| Table 3: 2SLS effe      | ct of birth weight | on                         | Table 4: 2SLS effe | ct of low birth we           | ight (LBW)   |  |
|-------------------------|--------------------|----------------------------|--------------------|------------------------------|--------------|--|
| <b>Cognitive outcom</b> | ne                 |                            | on Cognitive outc  | ome                          |              |  |
|                         | Instruments: Mo    | struments: Mother's height |                    | Instruments: Mother's height |              |  |
|                         | + Preterm birth    |                            |                    | + Preterm birth              |              |  |
|                         | PPVT score (log)   | PPVT z-score               |                    | PPVT score (log)             | PPVT z-score |  |
| Birth weight            | 0.806**            | 1.09**                     | Low birth weight   | -0.659*                      | -0.906*      |  |
| (log)                   | (0.393)            | (0.522)                    | (dummy)            | (0.398)                      | (0.502)      |  |
| <b>Cluster fixed</b>    | Yes                | Yes                        | Cluster fixed      | Yes                          | Yes          |  |
| effects                 |                    |                            | effects            |                              |              |  |
| Inverse mills           | Yes                | Yes                        | Inverse mills      | Yes                          | Yes          |  |
| ratio                   |                    |                            | ratio              |                              |              |  |
| <b>R-squared</b>        | 0.47               | 0.41                       | R-squared          | 0.42                         | 0.38         |  |
| Observations            | 1521               | 1521                       | Observations       | 1521                         | 1521         |  |

 $Y_t = f(K_t, L_t, HK_t)$ where, Y is output/poverty, K is physical capital, L is labor, and HK is "human capital".  $HK_{t} = f(Education_{t}, Health_{t})$  $H_t \text{ or } E_t = (H_{t-1}, H_{t-2}, H_{t-3} \dots H_0, H_{-1})$ where  $H_0$  is health at the time of birth such as " birth weight or birth size"  $Y_{t} = f(K_{t}, L_{t}, (H_{t-1}, H_{t-2}, H_{t-3} \dots H_{0}, H_{-1}))$ 

# Methods and Materials

**Data** – <u>The Young Lives Survey (YL)</u>: A longitudinal study on childhood poverty, following 12,000 children in low-income countries: Ethiopia, India (Andhra Pradesh), Peru, and Vietnam since 2002; four rounds of 2002, 2007, 2009-10 & 2015 completed over 15 years. *Indian sample*: one state, six districts, 20 sites.

Analytical sample: 2,000 one-year old (younger cohort).

<u>Dependent variables</u>: Peabody picture vocabulary test (PPVT score), log(PPVT score), PPVT zscore

Independent variables: BW, log(BW)

*Confounding variables*: Household caste, religion, birth order, age in months, father's education, mother's education, gender, age, education, poverty indicator, rural, breastfeeding.

**Empirical Specification –** 

$$Y_{i,j,s} = \alpha + \beta_1 birthweight_{i,j,s} + \beta_2 X_{i,j,s} + \theta_s + \varepsilon_{i,j,s}$$

Notes: Robust standard errors, clustered at the community level, are in parentheses. Notes: Robust standard errors, clustered at the community level, are in parentheses. Controls: Gender, birth order, and age of the child, household caste, father and Controls: Gender, birth order, and age of the child, household caste, father and mother's education, religion, household wealth, rural residence, and exclusive mother's education, religion, household wealth, rural residence, and exclusive breastfeeding. \*p< 0.10, \*\*p<0.05, \*\*\*p<0.01 breastfeeding. \*p< 0.10, \*\*p<0.05, \*\*\*p<0.01

**Discussion of the magnitudes-** Effect size: Birth weight effect ranges between 0.03-0.12 SD; Large scale education interventions in developing countries (Banerjee et al., 2007; Duflo and Hanna 2005; Muralidharanand Sundaraman 2009): Eect size range was 0.17-0.47 SD.

|                                | PPVT score(log) | PPVT z-score | F-stat | Ν    |
|--------------------------------|-----------------|--------------|--------|------|
| Urban                          | 0.933           | 0.744        | 15.24  | 625  |
| Rural                          | 0.622**         | 1.149***     | 8.29   | 896  |
| Boys                           | 0.712*          | 1.083*       | 7.72   | 809  |
| Girls                          | 1.344*          | 1.617        | 5.99   | 712  |
| Mother is primary schooled     | 0.427           | 0.328        | 7.95   | 877  |
| Mother is not primary schooled | 1.157**         | 1.90**       | 8.11   | 644  |
| SCST                           | 1.051           | 1.676        | 0.33   | 339  |
| Other caste                    | 0.576           | 0.857        | 17.84  | 1182 |
| Poor                           | 0.812*          | 1.161**      | 4.22   | 754  |
| Rich                           | 0.848           | 1.067        | 13.74  | 767  |

Notes: Robust standard errors, clustered at the community level, are in parentheses. Controls: Gender, birth order, and age of the child, household caste, father and mother's education, religion, household wealth, rural residence, probability of exclusive breastfeeding, inverse mills ratio, and cluster dummies. \*p< 0.10, \*\*p<0.05, \*\*\*p<0.01

#### \_imitation

- Unable to use twin fixed effect
- for comparison
- YL representativeness
- Measurement error in birth weight and PPVT score
- Can't control for gestational weeks
- Unable to link birth weight and test score to labor market
  - outcomes
- Evidence on parental investment is lacking (educational

 $\beta_1$ , is biased estimate of BW effect due to unobserved genetic or environmental factors.

Solutions- Twins or Siblings fixed effect models; Natural shocks; Instrumental variable (public health budget, number of doctors, genetic variable (nucleotide polymorphisms).

### *Instrumental variable method:*

 $BW_{i,i,s} = \beta_0 + \beta_1 Z_{i,j,s} + \beta_2 X_{i,j,s} + \theta_s + \varepsilon_{i,j,s}$ First stage - $Y_{i,i,s} = \eta_0 + \eta_1 B W_{i,i,s} + \eta_2 X_{i,i,s} + \theta_s + \varepsilon_{i,i,s}$ Second stage where

- *i* indexes children, *j* indexes households, and *s* indexes sites *Y<sub>i.i.s</sub>* is the "PPVT scores"
- X is child and HH specific covariates (age, gender, birth order)
- $\theta_{s}$ : site fixed effects

Standard errors are clustered at the child level.

**Instruments** – Mother's height and probability of pre-term birth: both instruments are likely to affect the intrauterine environment of mothers and fetus growth and in turn birth outcomes.

-If PTB independently affects cognition through brain development, then bias downward.

expenditure, postnatal investment (immunization))



- First causal study on BW effects in India
- Birth weight is strongly associated with test scores of children and has positive impacts on PPVT score
- Main findings are robust to inclusion of several confounding variables; evidence of heterogeneity in the effects of birth weight on test scores
- □ Nature Vs Nurture: nurture can remediate child's initial health disadvantage

### **Policy implications**

Food and nutritional supplementation program for the pregnant women could turn be an e effective strategy to improve human capital

Health at birth does matter for mid-childhood outcomes

### References

4.

- Banerjee, A., Cole, S., Duflo, E., Linden, L., 2007. Remedying Education: Evidence from Two Randomized Experiments in India. The Quarterly Journal of Economics, Muralidharan, K., Sundararaman, V., 2011. Teacher Performance Pay: Experimental Evidence from India. Journal of Political Economy. 119(1), 39–77.122(3), 1235-1264.
- Duflo, E., Hanna, R., Ryan, S.P., 2012. Incentives work: Getting teachers to come to school. American Economic Review. 102(4), 1241-78.
- Bharadwaj, P., Eberhard, J., Neilson, C. 2018. Health at Birth, Parental Investments and Academic Outcomes. Journal of labor Economics. 36(2), 349-394.