Demographics and Real Interest Rates Across Countries and Over Time

Carlos Carvalho
PUC-Rio

Andrea Ferrero
University of Oxford and CEPR

Felipe Mazin
University of Pennsylvania

Fernanda Nechio
Central Bank of Brazil

AEA Session on The Secular Decline in Real Interest Rates

January 3, 2020

*The views expressed in this paper do not necessarily reflect the position of the Central Bank of Brazil.
Three Observations on Global Real Interest Rates

- At very low levels (negative in many countries): Median in 2016 = -0.5%
- Declining for almost three decades: Median above 6% in 1989
- Decreasing dispersion across countries: IQR from 4.27 in 1991 to 0.54 in 2016
Three Observations on Global Real Interest Rates

1. At very low levels (negative in many countries): Median in 2016 = -0.5%
Three Observations on Global Real Interest Rates

1. At very low levels (negative in many countries): Median in 2016 = -0.5%

2. Declining for almost three decades: Median above 6% in 1989
Three Observations on Global Real Interest Rates

1. At very low levels (negative in many countries): Median in 2016 = -0.5%
2. Declining for almost three decades: Median above 6% in 1989
3. Decreasing dispersion across countries: IQR from 4.27 in 1991 to 0.54 in 2016
Are Low Real Rates Here to Stay?

Nominal Yields in % as of 29 April 2019

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>UK</th>
<th>EMU</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year</td>
<td>2.30</td>
<td>0.74</td>
<td>-0.14</td>
<td>-0.60</td>
</tr>
<tr>
<td>5 year</td>
<td>2.30</td>
<td>0.87</td>
<td>-0.16</td>
<td>-0.43</td>
</tr>
<tr>
<td>10 year</td>
<td>2.52</td>
<td>1.16</td>
<td>-0.04</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Current expected medium/long-term real rates close to zero or negative
 - Assumption: Inflation on target over medium term (2-3 years out)
Are Low Real Rates Here to Stay?

Nominal Yields in % as of 29 April 2019

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>UK</th>
<th>EMU</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year</td>
<td>2.30</td>
<td>0.74</td>
<td>-0.14</td>
<td>-0.60</td>
</tr>
<tr>
<td>5 year</td>
<td>2.30</td>
<td>0.87</td>
<td>-0.16</td>
<td>-0.43</td>
</tr>
<tr>
<td>10 year</td>
<td>2.52</td>
<td>1.16</td>
<td>-0.04</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Current expected medium/long-term real rates close to zero or negative
 - Assumption: Inflation on target over medium term (2-3 years out)

- Low real rates present challenges and possible opportunities for policy
 - To the extent that they reflect low “natural” rates, constraint on monetary policy
 - Implications for fiscal policy and public finance
Why Are Real Interest Rates So Low?

- Various “structural” explanations

 - Demographic trends (Carvalho, Ferrero and Nechio, 2016)
 - Decline in growth rate of labor force and increase in life expectancy
 - Determine consumption-savings patterns and equilibrium real interest rate

 - “Raising the bar”
 - If demographics indeed important factor, should expect patterns across countries and over time to accord with demographics

 Assessment complicated by:
 - Other determinants of real rates
 - With (some) capital mobility, a country’s real rate should depend on own and global demographics
Why Are Real Interest Rates So Low?

- Various “structural” explanations

- Demographic trends (Carvalho, Ferrero and Nechio, 2016)
 - Decline in growth rate of labor force and increase in life expectancy
 - Determine consumption-savings patterns and equilibrium real interest rate
Why Are Real Interest Rates So Low?

- Various “structural” explanations

- Demographic trends (Carvalho, Ferrero and Nechio, 2016)
 - Decline in growth rate of labor force and increase in life expectancy
 - Determine consumption-savings patterns and equilibrium real interest rate

- “Raising the bar”
 - If demographics indeed important factor, should expect patterns across countries and over time to accord with demographics

- Assessment complicated by:
 - Other determinants of real rates
 - With (some) capital mobility, a country’s real rate should depend on own and global demographics
Our paper

- Two contributions
 - Structural model: Relevant channels in open-economy life-cycle model with imperfect capital mobility
 - Empirics: Panel error-correction models, with guidance from structural model
Our paper

- Two contributions
 - Structural model: Relevant channels in open-economy life-cycle model with imperfect capital mobility
 - Empirics: Panel error-correction models, with guidance from structural model

- Model
 - Demographics can generate significant decline of real interest rates
 - The more financially integrated a country is and the smaller its size:
 - The higher the sensitivity of its real interest rate to global developments
 - The less its own real rate determinants matter
 - Convergence of real rates as financial integration increases
Our paper

- Two contributions
 - Structural model: Relevant channels in open-economy life-cycle model with imperfect capital mobility
 - Empirics: Panel error-correction models, with guidance from structural model

- Model
 - Demographics can generate significant decline of real interest rates
 - The more financially integrated a country is and the smaller its size:
 - The higher the sensitivity of its real interest rate to global developments
 - The less its own real rate determinants matter
 - Convergence of real rates as financial integration increases

- Empirics:
 - Evidence of importance of demographics – life expectancy, in particular
 - Financial integration correlated with decline of cross-country dispersion
Our paper

- Two contributions
 - Structural model: Relevant channels in open-economy life-cycle model with imperfect capital mobility
 - Empirics: Panel error-correction models, with guidance from structural model

- Model
 - Demographics can generate significant decline of real interest rates
 - The more financially integrated a country is and the smaller its size:
 - The higher the sensitivity of its real interest rate to global developments
 - The less its own real rate determinants matter
 - Convergence of real rates as financial integration increases

- Empirics:
 - Evidence of importance of demographics – life expectancy, in particular
 - Financial integration correlated with decline of cross-country dispersion

- Implication: Low real rates may be here to stay
Related Literature

- Quantitative models of demographics and real interest rates

- Empirical analysis of real interest rates dynamics

- Other determinants of low real interest rates
 - Caballero, Farhi and Gourinchas (2008), Lo and Rogoff (2015), Caballero and Farhi (2017), Del Negro, Giannone, Giannoni and Tambalotti (2017, 2018), ...
Outline

- Introduction

Open economy life-cycle model
- Analytical framework
- Demographics and financial integration
- Other determinants of real interest rates

Empirical analysis
- Data description
- Panel ECM regressions
- Dispersion and projections
Model Overview

- Two countries
 - Large and old: Global economy
 - Small and young economy

- In each country, continuum of workers and retirees
 - Face idiosyncratic risk of retirement (for workers) and death (for retirees)
 - Consume one good and can save via three instruments
 - Capital, government bonds, claims on foreign assets

- Standard supply side (labor-augmenting productivity)

- Government funds spending and transfers with taxes and debt

- Friction: Portfolio holding costs
Demographics

- Simple life-cycle structure (Gertler, 1999)
 - Each period, $1 + n_{it} - \omega$ new workers are born in country i
 - Remain in labor force with probability ω, retire otherwise
 - Once retired, survive with probability γ_{it}
Demographics

- Simple life-cycle structure (Gertler, 1999)
 - Each period, $1 + n_{it} - \omega$ new workers are born in country i
 - Remain in labor force with probability ω, retire otherwise
 - Once retired, survive with probability γ_{it}

- Growth rate of labor force

\[
N_{it}^w = (1 + n_{it}) N_{it-1}^w
\]
Demographics

- Simple life-cycle structure (Gertler, 1999)
 - Each period, $1 + n_{it} - \omega$ new workers are born in country i
 - Remain in labor force with probability ω, retire otherwise
 - Once retired, survive with probability γ_{it}

- Growth rate of labor force

$$N_{it}^w = (1 + n_{it}) N_{it-1}^w$$

- Dependency ratio

$$\psi_{it} \equiv \frac{N_{it}^r}{N_{it}^w} = \frac{(1 - \omega) + \gamma_{it} \psi_{it-1}}{1 + n_{it}}$$
Retirees’ Problem

- Retirees turn their wealth to mutual fund at beginning of each period
 - Mutual fund insures survivors against probability of death (Yaari, 1965)
Retirees’ Problem

- Retirees turn their wealth to mutual fund at beginning of each period
 - Mutual fund insures survivors against probability of death (Yaari, 1965)

\[
V_{it}^r = \max_{C_{it}^r, A_{iit}^r, A_{ijt}^r} \left[(C_{it}^r)^{\frac{\sigma-1}{\sigma}} + \beta_i \gamma_{it+1} (V_{it+1}^r)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}
\]

subject to

\[
C_{it}^r + \left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2 \right] A_{it}^r = \frac{1}{\gamma_{it}} \left(R_{it-1} A_{iit-1}^r + R_{jt-1} A_{ijt-1}^r \right) + E_{it}^r
\]

with \(j \neq i \) and where

\[
\eta_{ijt} = \frac{A_{ijt}^r}{A_{iit}^r + A_{ijt}^r} = \frac{A_{ijt}^r}{A_{it}^r}
\]
Workers’ Problem

- Workers start their life with no assets

- No insurance available against probability of retirement (permanent disability)
 - Assume workers are risk-neutral with respect to labor income risk
Workers’ Problem

- Workers start their life with no assets

- No insurance available against probability of retirement (permanent disability)
 - Assume workers are risk-neutral with respect to labor income risk

\[
V_{it}^w = \max_{C_{it}, A_{itt}^w, A_{ijt}^w} \left\{ \left(C_{it}^w \right)^{\frac{\sigma-1}{\sigma}} + \beta_i [\omega V_{it+1}^w + (1 - \omega) V_{it+1}^r]^{\frac{\sigma-1}{\sigma}} \right\}^{\frac{\sigma}{\sigma-1}}
\]

subject to

\[
C_{it}^w + \left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ij}^w - \bar{\eta}_{ij})^2 \right] A_{it}^w = R_{it-1} A_{itt-1}^w + R_{jt-1} A_{ijt-1}^w + W_{it}^w - T_{it}^w
\]
Portfolio Shares

- Cross-country return differentials only depend on portfolio cost parameters
 - Retirees and workers optimally choose same portfolio shares

\[\eta_{ijt}^r = \eta_{ijt}^w = \eta_{ijt} \]
Portfolio Shares

- Cross-country return differentials only depend on portfolio cost parameters
 - Retirees and workers optimally choose same portfolio shares
 \[\eta_{ijt}^r = \eta_{ijt}^w = \eta_{ijt} \]

- Let share of asset holdings accruing to retirees be
 \[\lambda_{it} = \frac{A_{ijt}^r}{A_{ijt}^w + A_{ijt}^r} \]
 - Sufficient statistic to summarize distribution of wealth over life cycle
 - Because of same \(\eta_{ijt} \) between workers and retirees
Aggregate Consumption

- Marginal propensity to consume independent of individual characteristics
 - Can aggregate within each group (retirees and workers)
 - Retirees’ consumption
 \[C_{it}^r = \xi_{it}^r \left(R_{it-1} A_{iit-1}^r + R_{jt-1} A_{ijt-1}^w + S_{it} \right) \]
 - Workers’ consumption
 \[C_{it}^w = \xi_{it}^w \left(R_{it-1} A_{iit-1}^w + R_{jt-1} A_{ijt-1}^w + H_{it} + Z_{it} \right) \]

where

- \(S_{it} = \) PDV of pensions for retirees
- \(Z_{it} = \) PDV of pensions for workers
- \(H_{it} = \) PDV of wages net of taxes
Aggregate Consumption

- Marginal propensity to consume independent of individual characteristics
 - Can aggregate within each group (retirees and workers)
 - Retirees’ consumption
 \[C_{it}^r = \xi_{it}^r \left(R_{it} - 1 A_{iit}^r - 1 + R_{jt} - 1 A_{ijt}^r - 1 + S_{it} \right) \]
 - Workers’ consumption
 \[C_{it}^w = \xi_{it}^w \left(R_{it} - 1 A_{iit}^w - 1 + R_{jt} - 1 A_{ijt}^w - 1 + H_{it} + Z_{it} \right) \]

- Aggregate consumption

\[C_{it} = \xi_{it}^w \left\{ \left[1 - \left(1 - \frac{\xi_{it}^r}{\xi_{it}^w} \right) \right] \lambda_{it - 1} \right\} \left(R_{it} - 1 A_{iit} - 1 + R_{jt} - 1 A_{ijt} - 1 \right) + \frac{\xi_{it}^r}{\xi_{it}^w} S_{it} + H_{it} + Z_{it} \]

where \(C_{it} \equiv C_{it}^w + C_{it}^r \)
Distribution of Wealth

- Retirees’ assets

\[
\left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2\right] A_r^{it} = R_{it-1} A_{r iit-1} + R_{jt-1} A_{r ijt-1} + E_{it} - C_r^{it} + (1 - \omega) \left(R_{it-1} A_w^{iit-1} + R_{jt-1} A_w^{ijt-1} + W_{it} N_{itw} - T_{it} - C_w^{it}\right)
\]
Distribution of Wealth

- Retirees’ assets

\[
\left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2\right] A_{it}^r = R_{it-1} A_{iit-1}^r + R_{jt-1} A_{ijt-1}^r + E_{it} - C_{it}^r + (1 - \omega) \left(R_{it-1} A_{iit-1}^w + R_{jt-1} A_{ijt-1}^w + W_{it} N_{it}^w - T_{it} - C_{it}^w\right)
\]

- Workers’ assets

\[
\left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2\right] A_{it}^w = \omega \left(R_{it-1} A_{iit-1}^w + R_{jt-1} A_{ijt-1}^w + W_{it} N_{it}^w - T_{it} - C_{it}^w\right)
\]
Distribution of Wealth

- Retirees’ assets
 \[
 \left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2 \right] A_{it}^r = R_{it-1} A_{iit-1}^r + R_{jt-1} A_{ijt-1}^r + E_{it} - C_{it}^r \\
 + (1 - \omega) \left(R_{it-1} A_{iit-1}^w + R_{jt-1} A_{ijt-1}^w + W_{it} N_{it}^w - T_{it} - C_{it}^w \right)
 \]

- Workers’ assets
 \[
 \left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2 \right] A_{it}^w = \omega \left(R_{it-1} A_{iit-1}^w + R_{jt-1} A_{ijt-1}^w + W_{it} N_{it}^w - T_{it} - C_{it}^w \right)
 \]

- Evolution of wealth distribution
 \[
 [\lambda_{it} - (1 - \omega)] \left\{ \left[1 + \frac{\Lambda_{ij}}{2} (\eta_{ijt} - \bar{\eta}_{ij})^2 \right] A_{it} \right\} = \omega \left[(1 - \xi_{it}^r) \lambda_{it-1} (R_{it-1} A_{iit-1} + R_{jt-1} A_{ijt-1}) + E_{it} - \xi_{it}^r S_{it} \right]
 \]
Production

- Perfectly competitive firms produce homogenous consumption good

- Labor-augmenting Cobb-Douglas technology

\[Y_{it} = (X_{it} N_{it}^w)^\alpha K_{it-1}^{1-\alpha}, \]

where

\[X_{it} = (1 + x_{it}) X_{it-1} \]

- Law of motion of capital

\[K_{it} = (1 - \delta) K_{it-1} + I_{it} \]
Fiscal Policy

- Flow budget constraint

\[G_{it} + E_{it} + R_{it-1}B_{it-1} = B_{it} + T_{it} + \frac{\Lambda_{ji}}{2} (\eta_{jit} - \bar{\eta}_{ji})^2 A_{jt} \]
Fiscal Policy

- Flow budget constraint

$$G_{it} + E_{it} + R_{it-1}B_{it-1} = B_{it} + T_{it} + \frac{\Lambda_{ji}}{2}(\eta_{jit} - \bar{\eta}_{ji})^2A_{jt}$$

- Assume spending, debt, and pensions are exogenous fraction of GDP

$$G_{it} = g_{it}Y_{it} \quad E_{it} = e_{it}Y_{it} \quad B_{it} = b_{it}Y_{it}$$

- Government budget constraint pins down taxes
Balance of Payments

- Domestic assets

\[A_{iit} = K_{it} + B_{it} - A_{jit} \]
Balance of Payments

- Domestic assets
 \[A_{iit} = K_{it} + B_{it} - A_{jit} \]

- Net foreign assets
 \[F_{it} \equiv A_{ijt} - A_{jit} \]
Balance of Payments

- Domestic assets
 \[A_{iit} = K_{it} + B_{it} - A_{jit} \]

- Net foreign assets
 \[F_{it} \equiv A_{ijt} - A_{jit} \]

- Evolution of net foreign asset position
 \[
 F_{it} = F_{it-1} + (R_{jt-1} - 1)A_{ijt-1} - (R_{it-1} - 1)A_{jit-1} \\
 + \frac{\Lambda_{ji}}{2}(\eta_{jit} - \bar{\eta}_{ji})^2A_{jt} - \frac{\Lambda_{ij}}{2}(\eta_{ijt} - \bar{\eta}_{ij})^2A_{it} + NX_{it}
 \]
 (1)

where

\[NX_{it} = Y_{it} - (C_{it} + I_{it} + G_{it}) \]

with

\[F_{it} + F_{jt} = 0 \]
Calibration

- Two (fictitious) countries:
 - “Old” (global economy): Relatively low population growth rate and high dependency ratio
 - “Young”: Relatively high population growth rate and low dependency ratio

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.9778</td>
<td>Average employment duration = 45 years</td>
</tr>
<tr>
<td>α</td>
<td>0.67</td>
<td>Labor share = 2/3</td>
</tr>
<tr>
<td>δ</td>
<td>0.1</td>
<td>Depreciation rate = 10%</td>
</tr>
<tr>
<td>σ</td>
<td>0.5</td>
<td>Elasticity of intertemporal substitution</td>
</tr>
<tr>
<td>g</td>
<td>0.2</td>
<td>Government spending / GDP = 20%</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
<td>Government debt / GDP = 40%</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>Productivity growth = 0%</td>
</tr>
</tbody>
</table>
Calibration

- Two (fictitious) countries:
 - “Old” (global economy): Relatively low population growth rate and high dependency ratio
 - “Young”: Relatively high population growth rate and low dependency ratio

- Period is one year, individuals born workers at 20

Parameters and Fixed Exogenous Variables

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega = 0.9778$</td>
<td>Average employment duration = 45 years</td>
</tr>
<tr>
<td>$\alpha = 0.67$</td>
<td>Labor share = 2/3</td>
</tr>
<tr>
<td>$\delta = 0.1$</td>
<td>Depreciation rate = 10%</td>
</tr>
<tr>
<td>$\sigma = 0.5$</td>
<td>Elasticity of intertemporal substitution</td>
</tr>
<tr>
<td>$g = 0.2$</td>
<td>Government spending / GDP = 20%</td>
</tr>
<tr>
<td>$b = 0.4$</td>
<td>Government debt / GDP = 40%</td>
</tr>
<tr>
<td>$x = 0$</td>
<td>Productivity growth = 0%</td>
</tr>
</tbody>
</table>
Initial Steady State

- Associate two countries with 25th and 75th percentiles of empirical distributions of labor force growth dependency ratios and real rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Old Country</th>
<th>Young Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>0.59%</td>
<td>1.13%</td>
</tr>
<tr>
<td>(\psi)</td>
<td>24%</td>
<td>21%</td>
</tr>
<tr>
<td>(R)</td>
<td>3.1%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

- Fit smooth \(n_{it}, n_{jt}\) paths directly to data
- Pick smooth paths for \(\gamma_{it}, \gamma_{jt}\) to fit paths of dependency ratio in the data

\[
\psi_i = \frac{1 - \omega}{1 + n_i - \gamma_i}
\]

- Calibrate \(\Lambda_{ij} = \Lambda_{ji} = \Lambda\) to yield an average current account deficit for small economy that matches time-average of 25th percentile of current account-to-GDP ratios in the data
- Calibrate \(\beta_i, \beta_j\) to match observed real rates in initial steady state (1990)
Experiment

- What happens in response to changes in demographic variables?
 - Transition driven by changes in population growth and life expectancy
Demographic Trends and Real Interest Rates

- Real rates and financial integration

![Interest Rate (%)]

- Old
- Young
Demographic Trends and Real Interest Rates

- Different degrees of financial integration

![Graphs showing Autarky and High Integration scenarios for demographic and real interest rates](image-url)
Demographic Trends and Real Interest Rates

- Role of country size
Demographic Trends and Real Interest Rates

- Increasing financial integration over time
Demographic Trends and Real Interest Rates

- Sensitivity of small economy’s real rate to global labor force growth
Demographic Trends and Real Interest Rates

- Sensitivity of small economy’s real rate to global life expectancy
Outline

- Introduction

- Open economy life-cycle model
 - Analytical framework
 - Demographics and financial integration

- Empirical analysis
 - Data description
 - Panel ECM regressions
 - Dispersion and projections
Approach

- Empirical analysis informed by lessons from structural model

Demographic variables:
- Labor force growth rate
- Life expectancy

Controls:
- TFP growth
- Fiscal variables (debt, government spending, pensions) % of GDP
- Retirement age
- Others

Complementary role of model and empirics

⇒ Potential missing variables
- Safe assets, private debt, relative price of investment, convenience yield

Introduce as additional controls (although with some data limitations)
Approach

- Empirical analysis informed by lessons from structural model

- Regress real interest rates on demographic variables and controls, interacted with measures of openness and/or size as suggested by model
 - Demographic variables: labor force growth rate and life expectancy
 - Controls:
 - TFP growth
 - Fiscal variables (debt, government spending, pensions) % of GDP
 - Retirement age
 - Others
Approach

- Empirical analysis informed by lessons from structural model

- Regress real interest rates on demographic variables and controls, interacted with measures of openness and/or size as suggested by model
 - Demographic variables: labor force growth rate and life expectancy
 - Controls:
 - TFP growth
 - Fiscal variables (debt, government spending, pensions) % of GDP
 - Retirement age
 - Others

- Complementary role of model and empirics ⇒ Potential missing variables
 - Safe assets, private debt, relative price of investment, convenience yield
 - Introduce as additional controls (although with some data limitations)
Data

- Annual frequency, various sources
 - OECD, IFS, WB, UN WPP, PWT, Ameco, National agencies
Data

- Annual frequency, various sources
 - OECD, IFS, WB, UN WPP, PWT, Ameco, National agencies

- Real interest rate = Nominal interest rate - Expected inflation
 - Nominal interest rate: Short-term yields (O/N to 3m CB/market rates)
 - Inflation: CPI
Data

- **Annual frequency, various sources**
 - OECD, IFS, WB, UN WPP, PWT, Ameco, National agencies

- **Real interest rate = Nominal interest rate - Expected inflation**
 - Nominal interest rate: Short-term yields (O/N to 3m CB/market rates)
 - Inflation: CPI

- **Demographic variables:**
 - Growth rate of working age population (20-64)
 - Life expectancy at 20, converted to an “interest rate equivalent” according to model
Data

- Annual frequency, various sources
 - OECD, IFS, WB, UN WPP, PWT, Ameco, National agencies

- Real interest rate = Nominal interest rate - Expected inflation
 - Nominal interest rate: Short-term yields (O/N to 3m CB/market rates)
 - Inflation: CPI

- Demographic variables:
 - Growth rate of working age population (20-64)
 - Life expectancy at 20, converted to an “interest rate equivalent” according to model

- Controls:
 - Direct measures for TFP growth and fiscal variables
 - Debt/GDP: From WB or Ameco
 - Financial integration: (Foreign Assets + Foreign Liabilities) / GDP
 - Other controls following existing literature
Ex-Ante Real Interest Rates

- Construct following Hamilton et al. (2016)
 - Using rolling windows of 20 years, estimate
 \[\pi_{it} = \alpha_i + \beta_i \pi_{it-1} + \varepsilon_{it} \]
 - Ex-ante real rate is \[r_{it} = i_{it} - E_t \pi_{it+1} \], where
 \[E_t \pi_{it+1} = \hat{\alpha}_i + \hat{\beta}_i \pi_{it} \]
Ex-Ante Real Interest Rates

- Construct following Hamilton et al. (2016)
 - Using rolling windows of 20 years, estimate
 \[\pi_{it} = \alpha_i + \beta_i \pi_{it-1} + \varepsilon_{it} \]
 - Ex-ante real rate is \(r_{it} = i_{it} - E_t \pi_{it+1} \), where
 \[E_t \pi_{it+1} = \hat{\alpha}_i + \hat{\beta}_i \pi_{it} \]

- Alternative: Use inflation expectations from Consensus Forecast
 - Limitation: Much shorter sample (early-mid 1990s)
Ex-Ante Real Interest Rates

- Construct following Hamilton et al. (2016)
 - Using rolling windows of 20 years, estimate
 \[\pi_{it} = \alpha_i + \beta_i \pi_{it-1} + \epsilon_{it} \]
 - Ex-ante real rate is
 \[r_{it} = i_{it} - \mathbb{E}_t \pi_{it+1}, \text{ where} \]
 \[\mathbb{E}_t \pi_{it+1} = \hat{\alpha}_i + \hat{\beta}_i \pi_{it} \]

- Alternative: Use inflation expectations from Consensus Forecast
 - Limitation: Much shorter sample (early-mid 1990s)

- Unbalanced panel of 20 OECD countries between 1980 and 2016
 - Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, United Kingdom, and United States
 - Exclude countries with inflation above 25% between 1970 and 2016
Ex-Ante vs. Ex-Post Real Rates

Real Interest Rate

Percentage points

Median Ex-Post Interquartile Range (Ex-Ante)

-4 -2 0 2 4 6 8

Carvalho, Ferrero, Mazin & Nechio
Demographics and RIRs Across Countries and Time
January 3, 2020
Empirical Specification

- Panel error-correction model

\[\Delta r_{m,t} = \alpha_m + \gamma r_{m,t-1} + \theta \Theta_{m,t-1} r^*_{m,t-1} + \sum_j \psi_j (1 - \Theta_{m,t-1}) Dmg_{m,j,t-1} \]
\[+ \sum_k \Psi_k (1 - \Theta_{m,t-1}) X_{m,k,t-1} \]
\[+ \lambda \Delta (\Theta_{m,t} r^*_m, t) \]
\[+ \sum_j \phi_j \Delta ((1 - \Theta_{m,t}) Dmg_{m,j,t}) + \sum_k \chi_k \Delta ((1 - \Theta_{m,t}) X_{m,k,t}) + \epsilon_{m,t}, \quad (2) \]

where \(\alpha_m \) is country fixed effect, \(r_{m,t} \) is ex-ante real interest rate of country \(m \), \(\Theta_{m,t} \) is financial openness, \(Dmg_{m,\bullet,t} \) are demographic variables, \(r^*_{m,t-1} \) is foreign real interest rate faced by country \(m \), and \(X_{m,\bullet,t} \) are control variables and other potential determinants of real rates. Regressions weighted regressions by working age population, robust standard errors (cluster at country level)
Table 3: Panel Error-Correction regressions. Global Rates weighted by population size and openness. Lane and Milesi-Ferretti (2017) measure

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country LE-equiv. Rate</td>
<td>0.502**</td>
<td>-0.133</td>
<td>-0.087</td>
<td>1.307*</td>
<td>3.421***</td>
<td>1.961</td>
<td>2.344***</td>
<td>2.769*</td>
<td>1.188***</td>
<td>2.916</td>
</tr>
<tr>
<td></td>
<td>0.252</td>
<td>0.405</td>
<td>0.417</td>
<td>0.717</td>
<td>1.104</td>
<td>0.699</td>
<td>0.699</td>
<td>1.607</td>
<td>0.381</td>
<td>1.921</td>
</tr>
<tr>
<td>Global Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.054***</td>
<td>0.961***</td>
<td>0.941**</td>
<td>1.113***</td>
<td>1.029***</td>
<td>1.029***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.310</td>
<td>0.371</td>
<td>0.376</td>
<td>0.173</td>
<td>1.113***</td>
<td>4.31</td>
</tr>
<tr>
<td>Population Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.949</td>
<td>4.605</td>
<td>7.624**</td>
<td>-0.689</td>
<td>0.037</td>
<td>0.492</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.331</td>
<td>3.444</td>
<td>3.040</td>
<td>3.810</td>
<td>3.777</td>
<td>6.583</td>
</tr>
<tr>
<td>TFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.390</td>
<td>0.159</td>
<td>0.829</td>
<td>1.288</td>
<td>0.673</td>
<td>0.489</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.375</td>
<td>0.357</td>
<td>1.235</td>
<td>1.286</td>
<td>0.989</td>
<td>1.809</td>
</tr>
<tr>
<td>Govt. Debt</td>
<td>0.045**</td>
<td>0.151***</td>
<td>0.152**</td>
<td>0.156</td>
<td>0.178</td>
<td>0.078*</td>
<td>0.078*</td>
<td>0.174</td>
<td>0.174</td>
<td>1.054</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>0.058</td>
<td>0.074</td>
<td>0.120</td>
<td>0.119</td>
<td>0.047</td>
<td>0.047</td>
<td>0.129</td>
<td>0.129</td>
<td>0.310</td>
</tr>
<tr>
<td>Government Spending</td>
<td>-0.022</td>
<td>0.052</td>
<td>0.052</td>
<td>0.553**</td>
<td>0.592</td>
<td>-0.095</td>
<td>-0.095</td>
<td>0.583</td>
<td>0.583</td>
<td>4.949</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>0.300</td>
<td>0.288</td>
<td>0.239</td>
<td>0.424</td>
<td>0.135</td>
<td>0.135</td>
<td>0.519</td>
<td>0.519</td>
<td>4.605</td>
</tr>
<tr>
<td>Pension Spending</td>
<td>3.269***</td>
<td>-0.448</td>
<td>-1.409</td>
<td>-1.647</td>
<td>-1.725</td>
<td>2.654***</td>
<td>-1.561</td>
<td>3.331</td>
<td>3.331</td>
<td>7.624**</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>1.671</td>
<td>2.345</td>
<td>1.844</td>
<td>2.154</td>
<td>0.636</td>
<td>3.388</td>
<td>3.040</td>
<td>3.040</td>
<td>7.624**</td>
</tr>
<tr>
<td>Retirement Age</td>
<td>-0.601***</td>
<td>-0.471*</td>
<td>-0.483</td>
<td>-0.556</td>
<td>-0.792*</td>
<td>-0.609***</td>
<td>-0.779</td>
<td>0.95</td>
<td>0.95</td>
<td>3.269***</td>
</tr>
<tr>
<td></td>
<td>0.098</td>
<td>0.250</td>
<td>0.449</td>
<td>0.589</td>
<td>0.448</td>
<td>0.113</td>
<td>0.113</td>
<td>0.716</td>
<td>0.716</td>
<td>0.098</td>
</tr>
<tr>
<td>Rel. Price of Invest. (PWT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.191</td>
<td>0.299</td>
<td>0.424</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td>Private Debt</td>
<td>-0.011</td>
<td>-0.008</td>
<td>0.067</td>
<td>0.099</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>0.034</td>
<td>0.042</td>
<td>0.092</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Long Term Bonds over GDP</td>
<td>0.101</td>
<td>0.060</td>
<td>0.340</td>
<td>-0.049</td>
<td>0.341</td>
<td>0.206</td>
<td>0.225</td>
<td>0.345</td>
<td>0.063</td>
<td>0.358</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
<td>0.225</td>
<td>0.345</td>
<td>0.063</td>
<td>0.358</td>
<td>0.206</td>
<td>0.225</td>
<td>0.345</td>
<td>0.063</td>
<td>0.358</td>
</tr>
</tbody>
</table>

R2	0.333	0.350	0.361	0.589	0.618	0.627	0.728	0.765	0.691	0.765
Observations	683	683	663	430	219	217	126	103	142	103
Clusters	20	20	20	20	17	17	7	7	7	7
RMSE	1.215	1.201	1.210	0.915	0.792	0.784	0.598	0.618	0.863	0.618
Demographic Projections and Real Rates

How do real interest rate will look based on demographic projections?

- Population growth projected to remain relatively stable
- But life expectancy projected to continue to increase
Demographic Projections and Real Rates

- How do real interest rate will look based on demographic projections?
 - Population growth projected to remain relatively stable
 - But life expectancy projected to continue to increase

- Further downward pressure on real interest rates