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Abstract
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as simulations, we show that the Basel gap, estimated by a one-sided HP filter, is nearly
equivalent to a naive 16-quarter change in the credit-to-GDP ratio. We demonstrate that
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one-sided HP filter is applied to an I(1) process.
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1 Introduction

The Basel gap, an early warning signal of financial crises defined as a country’s credit-to-GDP

ratio in deviation of its long-term trend, is the primary measure considered by policy makers

when determining countercyclical regulatory capital buffers under the Basel III framework.1

Due to its role in setting banking capital requirements, the methodology underlying the Basel

gap has important real implications. As with any such actual-minus-trend gap measure, a

crucial step in constructing the Basel gap is defining the long-term trend of the credit-to-GDP

ratio. The Basel gap is calculated following the methodology by Drehman et al. (2010), who

apply a Hodrick-Prescott (1981, 1997) filter recursively to obtain the trend.

We document in this paper that the implementation of the one-sided HP filter causes the

Basel gap to be nearly equivalent to a simple time-series change of the underlying credit-

to-GDP ratio. The one-sided HP filter differs from the conventional two-sided filter in the

sense that the trend is re-estimated using the HP filter at each point in time, using only data

up to that point in time, such that the recursive (one-sided) trend consist of the endpoints of

the real-time trend estimates (Stock and Watson, 1999). We demonstrate that these endpoints

mechanically lag the original credit-to-GDP ratio. De Jong and Sakarya (2016), as well as

Hamilton (2018), also note that the behavior at the endpoints of the HP filtered trend behave

considerably different from trend estimates in the middle of the sample. Corneia-Madeira

(2018) obtains analytical expressions for the endpoints of the trend. Applying the results

of Corneia-Madeira (2018), we find that deviations from these trend endpoints approximate

time-series changes of the original series when applied to an I(1) process. King and Rebelo

(1993) and Cogley and Nason (1995) find that the Hodrick-Prescott is not optimal when ap-

plied to a time series integrated of order less than two. We show indeed that when estimating

the trend of a time-series process that is second-order integrated, or I(2), the near-equivalence

between estimated deviations from trend and simple changes in general does not apply. We

1For example, the European Systemic Risk Board recommends that the benchmark buffer is set at the max-
imum level of 2.5% when the Basel gap is above 10%. The benchmark rate is set at zero when the gap is less
than 2%. For gap values between 2% and 10%, the benchmark buffer rate is interpolated between 0% and 2.5%
in increments of 0.625%. (Official Journal of the European Union, 2.9.2014, C293).
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find empirically that the credit-to-GDP ratio in almost all of the 44 countries we study indeed

resembles an I(1) process, suggesting that the Hodrick-Prescott filter is not the optimal trend

estimator in this context.

The close similarity between the estimated Basel gap (deviation from trend) and the change

in the credit-to-GDP ratio is illustrated below in Figure 1, using 184 quarterly observations of

the credit-to-GDP ratio in the United Kingdom from 1973 to 2018.2 The Basel gap (blue line)

is estimated by applying a one-sided HP filter to the credit-to-GDP ratio. The red line shows

the simple 16-quarter change in the credit-to-GDP ratio. In addition to a high correlation of

90%, the two series have clearly near-identical cyclical properties in the sense that their peaks

and troughs occur simultaneously. This pattern is not specific to the UK: throughout a sam-

ple of 44 countries, we find a striking similarity between the Basel gap and a naive 16-quarter

change in the credit-to-GDP ratio, with an average correlation of 92%. In addition to our an-

alytical an empirical results, we also conduct a Monte Carlo simulation exercise to confirm

the near-equivalence between a recursively estimated deviation from trend and a 16-period

change.

As the objective is the identification of credit cycles, the Basel gap performs as good (or

bad) as a naive 16-quarter change in the credit-to-GDP ratio. In general, time-series changes

and deviations from trend are not equivalent. It is well possible for a variable to be below

(above) trend, even if the variable recently increased (decreased). The Basel gap however

seems to identify changes, rather than actual deviations from trend.

[Figure 1 here]

We are not the first to criticize the use of the HP filter. Most notably, Hamilton (2018)

argues that the HP filter induces spurious variation into the detrended series and therefore

strongly advises against the use of the HP filter. Within the context of identifying credit

cycles, both Repullo and Saurina Salas (2011) and Alessi and Detken (2018) point out that

2The data for the credit-to-GDP ratio is from BIS and available at
https://www.bis.org/statistics/c_gaps.htm.
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Drehman et al. (2010) apply the HP filter with a very high value of the smoothing param-

eter (λ) of 400,000, which causes the estimated trend component to be approximately linear

and the resulting Basel gap to move slowly, in particular following periods of negative GDP

growth. When the objective is identification of business cycle (approximately 2-8 years in

duration) fluctuations, it is common practice with quarterly data to apply the HP filter with

a smoothing parameter (λ) of 1,600. The calibration by Drehman et al. (2010) is motivated by

the observation that credit cycles are much longer in duration than business cycles. We find,

both in actual data and simulations, that the equivalence between credit gaps estimated recur-

sively by the HP filter and by simple changes in the credit-to-GDP ratio holds for both smaller

and larger values of the smoothing parameter, with the difference that a higher smoothing

parameter generates a gap that approximates a longer difference in the credit-to-GDP ratio.

This paper proceeds as follows: in Section 2 we describe the methodology underlying

the Basel gap and provide analytical and simulation results documenting the similarity be-

tween the estimated deviation from trend and simple time-series changes. Section 3 provides

empirical results for the 43 countries in our sample. Section 4 concludes.

2 Analytical background

2.1 Basel gap

The Basel gap is defined as the credit-to-GDP ratio in deviation of its trend, where the trend is

estimated following Hodrick and Prescott (1981, 1997) by minimizing the following objective

function:

min
τ

{
T∑
t=1

(yt − τt)2 + λ
T∑
t=1

[(τt − τt−1)− (τt−1 − τt−2)]2
}

(1)

where yt and τt are the credit-to-GDP ratio and its estimated trend in period t, and λ is the

smoothing parameter. The Basel gap is estimated with a smoothing parameter of λ = 400,000

(Drehman et al.,2010).

Figure 2 illustrates the estimation of the one-sided HP filter using the UK credit-to-GDP
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data as an example. The black line in Panel A shows the credit-to-GDP ratio from 1973 to

2018. The red line shows the trend estimated by applying a two-sided (full-sample) HP filter

with λ equal to 400,000. The estimated full-sample trend runs smoothly through the observed

data and describes accurately long-term non-cyclical development of the credit-to-GDP ratio.

[Figure 2 here]

The red line, however, is not the trend used for the calculation of the Basel gap. Rather, the

trend required for obtaining the Basel gap is estimated by the so-called one-sided HP filter,

which is implemented recursively. To illustrate, the red line in Panel B of Figure 2 shows the

trend component estimated using only data available up to 1988, with the blue dot marking

the endpoint. Panel C displays the endpoints of trends estimated using data up to 1988, 1998,

2008, and 2018. The thin red lines in Panel D show trends estimated using subsamples of

data up to each quarterly observation, while the blue line connects the endpoints of these

estimated real-time trend components. This blue line, the recursively-estimated trend, is

used for the calculation of the Basel gap. It is clearly visible from the figure that, unlike the

full-sample or two-sided trend (Panel A), the recursive or one-sided trend (Panel D) strongly

resembles a smoothed lagged value of the observed data. This is in particular noticeable

from Panel C, which shows clearly that each of the subsample trends crosses the original

series close towards the end of the subsample, such that the endpoint of the trend lags the

original series.

2.2 Analytical expressions

Several studies (e.g. Mise et al., 2005; De Jong and Sakarya, 2016; Hamilton, 2016) point

out that the HP filter behaves differently at the endpoints of sample. Cornea-Madeira (2017)

finds an analytical expression for the endpoints of the trend. The endpoint of the trend τT is

defined as a weighted average of the T observations of y:
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τT =
T∑
t=1

ptyt (2)

where
∑T

t=1 pt = 1. Cornea-Madeira (2017) derives analytical expressions for pt as a function

of λ, t, and T . The weights pt do not depend on the distributional properties of yt. We apply

the results Cornea-Madeira (2017) to demonstrate that the last observation of an I(1) time-

series in deviation of its estimated trend is highly correlated to the last observation of the

time-series in deviation of its own higher-order lag.3 Let yt be an I(1) process, such that

yt = yt−1 + ξt =
t∑
i=1

ξi, (3)

where ξt is a stationary process. (Note that we assume y0 = 0, without loss of generality). The

endpoint of the HP trend (2) can be expressed as:

τT =
∑T

t=1 pt
∑t

j=1 ξt

= ξ1 (p1 + p2 + · · ·+ pT ) + ξ2 (p2 + · · ·+ pT ) + · · ·+ ξTpT

=
∑T

t=1 ξt
∑T

j=t pj

=
∑T

t=1 ϕtξt,

(4)

where ϕt =
∑T

j=t pj . Given the estimated trend, the endpoint of the cycle (deviation from

trend) is expressed as:

xT = yT − τT

=
∑T

t=1 ξt −
∑T

t=1 ϕtξt

=
∑T

t=1 (1− ϕt) ξt.

(5)

3Below we show empirically that the credit-to-GDP ratio of most countries resembles an I(1) process.
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The k-period change, yT is deviation of its k-order lag, is defined as:

∆kyT = yT − yT−k

=
∑T

t=1 ξt −
∑T−k

t=1 ξt

=
∑T

t=T−k+1 ξt

(6)

Given the weights pt (as a function of λ, t, and T , Cornea-Madeira, 2017) and the distribution

of ξt, we can derive cor(xT ,∆kyT ), for any lag k. For example, if yt follows a random walk,

ξt ∼ i.i.d.(0, σ2), it can be show that:

cor (xT ,∆kyT ) =

∑T
t=T−k+1 (1− ϕt)√
k
∑T

t=1 (1− ϕt)2
(7)

See Appendix A for details. The red dots in Panel A of Figure 3 plot cor(xT ,∆kyT ) for a

random walk yt, with T=200 and λ = 400,000, for k = 1 . . . 40. The correlation is maximized

at 0.83, for k = 16.

[Figure 3 here]

The blue dots in the figure are based on UK data, indicating the correlation coefficients

between the Basel gap and changes in the credit-to-GDP ratio, for different lag lengths over

which the change is computed.4 The theoretical correlations in red and the empirical corre-

lations in blue show a very similar pattern, with the correlation between the Basel gap and

an k-quarter change in the credit-to-GDP ratio being maximized at 0.9 with k=16. In gen-

eral, the empirical correlations are higher than the theoretical correlations. As we show in

Appendix A, it is possible to generate higher theoretical correlations when moving beyond

a simple random walk, for example by allowing for time-varying volatility. The correlation

being maximized around k=16 holds nevertheless across different data generating processes

and sample sizes T , as demonstrated in Appendix A.
4Note that the red dots of Figure 3 shows the theoretical correlation for a fixed sample size of T=200. The

empirical plot is based on a sample of 182 observations, where the endpoints of the trends and the time-series
differences are obtained at every observation t = 1, . . . , 182.
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The theoretical correlations between changes and trend endpoints cor(xT ,∆syT ) can be

derived only when ξt (the first-order change in yt) is stationary. When yt is of order of in-

tegration of I(2) or higher, ξt is no longer stationary meaning that its population covariance

with the trend endpoints is not defined. We demonstrate in the next section by simulation

that the sample correlations between xT and ∆syT are indeed not converging when yt is an

I(2) process.

2.3 The role of λ

Repullo and Saurina Salas (2011) and Alessi and Detken (2018) criticize the Basel gap method-

ology for the large calibrated value of the smoothing parameter λ. Typically, the HP filter is

applied to identify business cycles, with the smoothing parameter calibrated at λ=1,600 (Ho-

drick and Prescott, 1981). Drehman et al. (2010) find that a smoothing parameter of λ=400,000

is optimal to identify credit cycles, which are generally longer in duration than business cy-

cles. Repullo and Saurina Salas (2011) and Alessi and Detken (2018) argue that the estimated

trend component is approximately linear and the resulting Basel gap moves too slowly, in

particular following periods of negative GDP growth.

Our observation that the one-sided trend mechanically lags the credit-to-GDP ratio is a

distinct concern from the calibration of λ. In fact, we find that the similarity between credit

gaps estimated recursively by the one-sided HP filter and by simple changes in the credit-

to-GDP ratio holds for different values of the smoothing parameter. For lower values of

the smoothing parameter, the gap approximates a shorter difference in the credit-to-GDP

ratio. We show in Panels B and C of Figure 3 that the correlation between the endpoint

of the trend and the k-period change in a random walk process, are also highly correlated

when the trend is estimated with a smoothing parameter of λ=1,600 or λ=25,000. However, a

lower smoothing parameter implies a lower lag k at which the correlation is maximized. The

correlation is maximized at k=4 for λ=1,600 and at k=8 for λ=25,000.

The blue dots show the correlation between changes in the UK credit-to-GDP ratio and

deviations from trend estimated by an HP filter with λ=1,600 λ=25,000. Similar to the analyt-
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ical result, the correlation is maximized at k=3 or k=8, respectively. In section 3, we conduct a

Monte Carlo simulation exercise to further inspect the relation between a gap measure based

on one-sided cycles and simple time-series changes, for different values of λ.

3 Simulation results

We next confirm the above analytical results with simple Monte Carlo simulations. The re-

sults of the simulations are presented in Figure 4. As a benchmark case, we simulate random

credit-to-GDP ratios that follow a random walk, calculate the Basel gaps, and correlate the

gap measure with simple time series change of the credit-to-GDP ratio. We repeat this 1,000

times. Panel A of the figure plots the median as well as the 10th, 25th, 75th, and 90th per-

centiles of the correlation coefficients between the Basel gaps and time series changes, for

different change periods (k). As the analytical correlations presented in Panel A of Figure 3,

the simulation-based correlations reaches its highest value, 0.86, at k=16. Notably, the range

of correlations is narrow: The 10th percentile of the correlation at k=16 is 0.77 and the 90th

percentile is 0.90. This narrow range of the correlations indicates that when the credit-to-GDP

ratio follows and I(1) process, one should expect the correlation between the Basel gap and

the changes in credit ratio to always follow the same pattern.

[Figure 4 here]

The remaining panels of Figure 4 provide variations of the benchmark case. First, in Panel

B we simulate T=1,000 observations of the credit ratio, rather than T=200 in Panel A. As the

results in Panel B are practically identical to Panel A, we conclude that the sample size does

not affect the correlation between the Basel gap and the change in credit-to-GDP ratio. In

Panels C and D we study the effects of changing the HP filter smoothing parameter. In Panel

C we use λ=25,000 and in Panel D λ=1,600. As in the analytical results above, a lower λ

results in the Basel gap correlating more strongly with a shorter change in the credit-to-GDP
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ratio. The correlation is maximized at k=8 for λ=25,000 and at k=4 for λ=1,600. For the lower

smoothing parameters, the range of simulated correlations is very narrow.

Finally, Panels E and F show that the close systematic relation between the Basel gap and

changes in the credit ratio breaks down when the credit-to-GDP ratio has order of integration

higher than one. In Panel E, we let the simulated credit-to-GDP ratio follow an I(2) process.

While the correlations between the Basel gap and changes in credit ratio are still relatively

high, the range of correlations is very wide compared to Panel A. The median correlation

reaches its maximum, 0.80, at k = 10. With k = 10, the 10th percentile is 0.35 and the 90th

percentile 0.94. This implies that in some simulation runs based on an I(2) process, the Basel

gap is highly correlated with 10-quarter changes in the credit-to-GDP ratio and in other runs

the correlation is rather low. Panel F shows that similar results are obtained when the credit-

to-GDP follows an I(3) process.

Overall, the Monte Carlo simulations confirm our analytical results. When the underlying

data follows an I(1) process, an actual-minus-trend gap measure based on a one-sided HP

filter is mechanically highly correlated with a simple change in the underlying data. This

result is independent on the sample size, and the smoothing parameter merely affects how

long change in the underlying data the gap measure emulates. This relation breaks down

when the order of integration in the underlying data is higher than one.

4 Empirical results

In this section, we show that the striking similarity between the Basel gap and the 16-quarter

difference in the credit ratio holds not only for the United Kingdom, which we use above

as an illustrating example, but for a large sample of countries. For the empirical analyses

we use quarterly credit-to-GDP data for 43 countries and the Euro area from the Bank for

International Settlements.5 The data starts at different points in time for different countries

with earliest time series the extending back to the early 1950’s. Data for all countries ends in

5The data is available for download at https://www.bis.org/statistics/c_gaps.htm.
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2018-Q2. Table 1 lists the countries in our sample and the periods for which we observe the

quarterly credit-to-GDP ratios.

[Table 1 here]

We begin by analyzing the order of integration of the data. As we show analytically and

through simulations above, the close mechanical similarity between the Basel gap and the 16-

quarter change in the credit-to-GDP ratio relies on the credit ratio following an I(1) process.

Hence, we first establish that the real world credit-to-GDP ratios are indeed integrated of

the first order. In Table 2, we report for each country the test statistic and p-value of an

Augmented Dickey-Fuller (ADF) test applied to the level of the credit-to-GDP ratio (yt). For

each country, we consider one test where we set the number of lags equal to 4, and one test

were the number of lags is selected by maximizing Akaike’s information criterion (AIC). In

both cases, we are not able to reject the null hypothesis of a unit root, at any conventional

level of statistical significance.

[Tables 2 and 3 here]

To rule out higher order of integration, Table 3 presents the results of ADF tests applied to

the first difference of the credit-to-GDP ratio (∆yt). With the exception of Spain and Greece,

we are able to reject a unit root in ∆yt at the 10% significance level, and for most countries

even at the 1% level.6 Taken together, the results in Table 2 and 3 suggest that the credit-

to-GDP ratio is first-order integrated, or I(1), such that these variables are subject to the

mechanical correlations between a gap measure based on trend endpoints and changes, as

documented in Sections 2 and 3 above.

In Table 4, we report the correlation coefficients between the Basel gaps and k-quarter

changes in the credit-to-GDP ratio (∆kyt = yt − yt−k) for each country. The first column

6Table B1 in Appendix B shows that even though the ADF test is not able to reject unit root of ∆yt for Spain
and Greece, the autocorrelation of ∆yt is rather low also for these countries.
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reports the lag k at which the correlation is maximized, while the second column shows the

maximum correlation. This correlation is remarkably high across all countries, ranging from

82% (Belgium) to 96% (Denmark, Spain, and Greece). On average across all countries, the

correlation is 92%. The optimal lag k is in general close to 16 and ranges between 10 and 19,

with a median of k=16. Table 4 further also reports the correlation for other selected values

of k, showing in general a hump-shaped pattern very similar to Figures 3 and 4.

[Tables 4 and 5 here]

Table 5 presents the correlation maximizing lags k and the corresponding maximum corre-

lations the HP filter smoothing parameter λ is set to either 1,600 or 25,000, instead of 400,000,

when calculating the credit gap. Consistent with the analytical and simulation results above,

lowering the smoothing parameter simply results in the credit gap measure being correlated

with shorter changes in the credit ratio. The median correlation maximizing lag is k=4 when

λ=1,600, and k=8 when λ=25,000. On average, the maximum correlations are high: 0.83 for

λ=1,600 and 0.88 for λ=25,000. These values are very similar to the analytical and simulation

results presented in Figures 3 and 4.

[Figure 5 here]

While the patterns of correlations between the Basel gap and changes in the credit-to-

GDP ratio are similar across countries, the historical developments of the credit ratio itself

differs widely. Figure 5 visually illustrates how the high correlations arise for three selected

countries with very different patterns of the credit ratio: Italy, Japan, and Finland. The left

panels of the figure show the credit-to-GDP ratio (black line) and the one-sided HP filter

trend estimates (blue line), similar to Panel D of Figure 2 for the UK. The right panels show

the resulting Basel gap (blue line) and the simple 16-quarter change in the credit-to-GDP ratio

(red line). Similar to the case of the UK, the one-sided trend estimates are clearly lagging the
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original credit-to-GDP ratio for each country. This is particularly visible for Italy and Japan,

that both experience prolonged periods of growth and decline in the credit ratio. The left

panels show, similar to Figure 1, that the Basel gaps and naive changes are not only highly

correlated, but experience peaks and troughs simultaneously. This continues to be the case

during more extreme cyclical movements, such as in Finland during the early 19990s. The

credit cycles identified by the simple 16-quarter changes are thus nearly identical to the Basel

gaps estimated by the one-sided HP filter.

5 Conclusion

We document that the Basel gap is nearly equivalent to a simple 16-quarter change in the

credit-to-GDP ratio. This similarity is the result of the recursive trend-estimation underly-

ing the Basel gap, using the one-sided HP filter, which results in a trend component that is

mechanically lagging the original credit-to-GDP ratio. We illustrate this finding using data

from the UK and document similar results using data from other countries. For each of the

43 countries we investigate, the correlation between the Basel gap and the 16-quarter change

in the credit-to-GDP ratio is between 0.82 and 0.96. We also conduct a Monte Carlo exercise

and find similar results when applying one-sided HP filtration to simulated time-series.

We also find similar results for different values of the smoothing parameter (λ). When

the smoothing parameter is decreased, the credit-gap approximates a shorter change in the

credit-to-GDP ratio. Calibrating the smoothing parameter (λ) is thus effectively equivalent to

calibrating the lag length over which changes are calculated.

Our results have broader implications for the application of the one-sided HP filter. We

find analytically that the strong similarity between changes and deviations from trend occurs

when the one-sided HP filter is applied to an I(1) process. Following earlier results in the

literature (King and Rebelo, 1993; Cogley and Nason, 1995), we conclude that the the HP

filter does not succeed in identifying cycles from a process that has order of integration less

than two.
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Whether the Basel gap is the optimal indicator for identifying credit cycles and setting

countercyclical regulatory capital buffers remains an open question that we do not aim to

answer in this paper. What we do show is that the estimation procedure underlying the

Basel gap is unnecessarily complicated and obscure. There is ultimately no need to apply

complicated methods when simple changes suffice. Compared to a simple change, the one-

sided HP filter is undoubtedly more difficult to understand, both to policy makers and to the

broader public. We therefore recommend estimating the Basel gap more transparently by a

simple change in the credit-to-GDP ratio.
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Figures and tables

Figure 1: Basel gap and 16-quarter changes. This figure plots the Basel gap (blue line) and
the 16-quarter change in the credit-to-GDP ratio (red line) using data for the United Kingdom.
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Figure 2: Two-sided and one-sided trend estimates. Panel A shows the credit-to-GDP ratio
(black line) of the United Kingdom and its long-term trend estimated by the two-sided HP
filter (red line). Panel B shows the credit-to-GDP ratio and trend estimated using only data
up to 1988. Panel C shows trends estimated using data up to 1988, 1998, 2008, and 2018. In
Panel D, the red lines depict all Hodrick-Prescott trends estimated at different points in time.
The blue line connects the endpoints of the subsample trends, resulting in the recursive or
one-sided Hodrick-Prescott trend.
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Figure 3: Correlation between Basel gap and simple changes. This figure plots the correla-
tion coefficients between the Basel gap (xt = yt − τt) and changes in the credit-to-GDP ratio
(∆kyt = yt − yt−k). The horizontal axis depicts the number of quarters (k = 1, . . . , 40) over
which the change in the credit-to-GDP ratio is calculated. The blue dots represent correlations
estimated based on credit-to-GDP data for the UK. The red dots represent correlations based
on analytical solutions for random walk credit-to-GDP ratio. The three panels are based on
different values of the HP filter smoothing parameter (λ). The smoothing parameter is equal
to λ=400,000 in Panel A, 25,000 in Panel B, and 1,600 in Panel C.
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Figure 4: Simulation results. This figure plots percentiles of the correlation coefficients be-
tween the Basel gap (xt = yt − τt) and changes in the credit-to-GDP ratio (∆kyt = yt − yt−k)
based on Monte Carlo simulations with 1,000 replications. The horizontal axis depicts the
number of quarters (k = 1, . . . , 40) over which the change in the credit-to-GDP ratio is calcu-
lated. The red dots represent the 10th and the 90th percentile of the correlation coefficients,
the blue dots represent the 25th and the 75th percentiles, and the black dots represent the
median. Panel A represents a benchmark where yt follows an I(1) process (∆yt ∼ N(0, 1)),
λ=400,000 and sample size equals n=200. The other panels change one of these parameters.
Panel B is based on a longer time series (n=1,000) and Panels C and D are based on smaller
smoothing parameters (λ=25,000 and λ=1,600, respectively). In Panel E yt follows an I(2)
process (∆2yt ∼ N(0, 1)) and in Panel F an I(3) process (∆3yt ∼ N(0, 1)).
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Figure 5: Other countries. This figure presents the empirical results for Italy, Japan, and
Finland. The left panels show the credit-to-GDP ratios (yt, black line) and the one-sided HP
filter trends (τt, blue line). The right panels show the resulting Basel gaps (xt = yt − τt, blue
line) and the simple 16-quarter changes in the credit–to-GDP ratio (∆16yt = yt − yt−16, red
line).
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Table 1: Data. This table presents the quarterly credit-to-GDP ratio data used in the empirical
analyses of this paper for 43 countries and the Euro area. Start gives the date of the first
observation, data for all countries ends in 2018-Q2. Obs gives the total number of quarterly
observations per country. The data are from the Bank for International Settlements.

Country Start Obs Country Start Obs

AR Argentina 1984-Q4 135 IL Israel 1990-Q4 111
AT Austria 1960-Q4 231 IN India 1951-Q2 269
AU Australia 1960-Q2 233 IT Italy 1960-Q4 231
BE Belgium 1970-Q4 191 JP Japan 1964-Q4 215
BR Brazil 1996-Q1 90 KR Korea 1962-Q4 223
CA Canada 1955-Q4 251 LU Luxembourg 1999-Q1 78
CH Switzerland 1960-Q4 231 MX Mexico 1980-Q4 151
CL Chile 1983-Q1 142 MY Malaysia 1964-Q2 217
CN China 1985-Q4 131 NL Netherlands 1961-Q1 230
CO Colombia 1996-Q4 87 NO Norway 1960-Q4 231
CZ Czech Republic 1993-Q1 102 NZ New Zealand 1960-Q4 231
DE Germany 1960-Q4 231 PL Poland 1992-Q1 106
DK Denmark 1966-Q4 207 PT Portugal 1960-Q4 231
ES Spain 1970-Q1 194 RU Russia 1995-Q2 93
FI Finland 1970-Q4 191 SA Saudi Arabia 1993-Q1 102
FR France 1969-Q4 195 SE Sweden 1961-Q1 230
GB United Kingdom 1963-Q1 222 SG Singapore 1970-Q4 191
GR Greece 1970-Q4 191 TH Thailand 1970-Q4 191
HK Hong Kong SAR 1978-Q4 159 TR Turkey 1986-Q1 130
HU Hungary 1970-Q4 191 US United States 1952-Q1 266
ID Indonesia 1976-Q1 170 XM Euro area 1999-Q1 78
IE Ireland 1971-Q2 189 ZA South Africa 1965-Q1 214
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Table 2: Level stationarity tests. This table present the results of testing for stationarity of
the levels of the credit-to-GDP ratios. Columns marked k = 4 present the test statistic (ADF )
and p-values (p) of the Augmented Dickey-Fuller test using four lags. The columns marked
AIC present the test statistic and p-values for the Augmented Dickey-Fuller test where the
lag length is chosen to optimize the Akaike Information Criterion. The data is on a quarterly
frequency, sample periods and sizes are given in Table 1.

k = 4 AIC k = 4 AIC

ADF p ADF p ADF p ADF p

AR -2.475 0.124 -2.191 0.211 IL -2.341 0.161 -2.489 0.121
AT -1.480 0.542 -1.547 0.508 IN 0.084 0.964 -0.255 0.928
AU -0.274 0.925 -0.320 0.919 IT -1.270 0.644 -1.672 0.444
BE 0.730 0.993 0.772 0.993 JP -1.553 0.505 -1.861 0.351
BR -0.950 0.767 -0.487 0.887 KR -0.894 0.789 -1.107 0.713
CA 1.016 0.997 1.335 0.999 LU -1.487 0.535 -1.596 0.479
CH 0.289 0.977 0.181 0.971 MX -2.788 0.062 -2.509 0.115
CL -0.811 0.813 -0.588 0.868 MY -1.320 0.620 -1.438 0.563
CN 0.959 0.996 1.429 0.999 NL -0.528 0.882 -0.568 0.874
CO -1.399 0.579 -1.330 0.612 NO -0.435 0.900 -0.526 0.882
CZ -1.245 0.652 -0.917 0.779 NZ -0.565 0.874 -0.705 0.842
DE -2.092 0.248 -2.276 0.181 PL -0.519 0.882 -1.107 0.711
DK -0.698 0.844 -1.163 0.690 PT -1.752 0.404 -1.589 0.487
ES -1.648 0.456 -2.057 0.262 RU -1.113 0.708 -1.154 0.691
FI -0.518 0.884 -0.385 0.908 SA -1.297 0.629 -1.394 0.582
FR 1.252 0.998 1.541 0.999 SE 0.026 0.959 0.682 0.992
GB -0.405 0.905 -0.411 0.904 SG -0.888 0.791 -0.530 0.881
GR -1.177 0.684 -1.858 0.352 TH -1.842 0.359 -1.903 0.330
HK 0.093 0.964 0.933 0.996 TR 2.057 1.000 2.128 1.000
HU -1.174 0.686 -2.178 0.215 US -1.396 0.584 -1.368 0.598
ID -2.010 0.282 -2.270 0.183 XM -2.013 0.281 -2.512 0.117
IE -0.710 0.840 -0.539 0.879 ZA -1.295 0.632 -1.429 0.568
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Table 3: Difference stationarity tests. This table present the results of testing for stationarity
of the changes of the credit-to-GDP ratios. Columns marked AR(4) present the estimates of
the autoregressive terms of AR(4) models of the changes in credit-to-DGP ratios. Columns
marked k=4 presents the test statistic (ADF ) and p-values (p) of the Augmented Dickey-
Fuller test using four lags. The columns marked AIC present the test statistic and p-values
for the Augmented Dickey-Fuller test where the lag length is chosen to optimize the Akaike
Information Criterion. The data is on a quarterly frequency, sample periods and sizes are
given in Table 1.

k = 4 AIC k = 4 AIC

ADF p ADF p ADF p ADF p

AR -7.190 0.000 -6.931 0.000 IL -4.017 0.002 -5.736 0.000
AT -5.284 0.000 -3.739 0.004 IN -4.465 0.000 -3.028 0.034
AU -4.043 0.001 -3.978 0.002 IT -3.492 0.009 -2.603 0.094
BE -5.056 0.000 -6.720 0.000 JP -4.032 0.002 -2.676 0.080
BR -3.627 0.007 -4.954 0.000 KR -4.992 0.000 -6.381 0.000
CA -6.873 0.000 -6.835 0.000 LU -3.619 0.008 -4.161 0.002
CH -5.621 0.000 -5.543 0.000 MX -3.975 0.002 -3.740 0.004
CL -4.041 0.002 -3.605 0.007 MY -4.808 0.000 -5.947 0.000
CN -4.634 0.000 -3.715 0.005 NL -5.189 0.000 -5.279 0.000
CO -2.998 0.039 -3.132 0.028 NO -4.461 0.000 -4.750 0.000
CZ -3.960 0.002 -7.414 0.000 NZ -4.797 0.000 -3.662 0.005
DE -5.007 0.000 -5.021 0.000 PL -2.839 0.056 -2.867 0.053
DK -4.381 0.000 -2.569 0.101 PT -3.372 0.013 -3.398 0.012
ES -2.045 0.268 -1.797 0.381 RU -4.085 0.002 -6.927 0.000
FI -4.624 0.000 -7.715 0.000 SA -4.357 0.001 -5.917 0.000
FR -4.520 0.000 -3.458 0.010 SE -5.299 0.000 -5.227 0.000
GB -3.706 0.005 -4.184 0.001 SG -4.884 0.000 -7.605 0.000
GR -2.402 0.143 -1.312 0.624 TH -3.154 0.024 -3.258 0.018
HK -4.961 0.000 -5.260 0.000 TR -4.446 0.000 -6.384 0.000
HU -3.170 0.023 -2.499 0.117 US -3.701 0.005 -3.675 0.005
ID -6.049 0.000 -6.025 0.000 XM -2.802 0.063 -4.088 0.002
IE -4.351 0.000 -12.493 0.000 ZA -5.146 0.000 -5.912 0.000
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Table 4: Empirical results. This table reports correlations between Basel gaps (yt − τt) and
simple changes in the credit-to-GDP ratio (yt−yt−i). k is the optimal lag length (i) at which the
correlation is maximized. Cor(i) is the correlation between the Basel gap and the i-quarter
change. In addition to the optimal lag length, the correlations are reported also for 4, 8, 16,
24, 32, and 40 quarters.

k Cor(k) Cor(4) Cor(8) Cor(16) Cor(24) Cor(32) Cor(40)

AR 18 0.871 0.657 0.780 0.866 0.752 0.655 0.546
AT 17 0.942 0.696 0.845 0.937 0.887 0.778 0.747
AU 16 0.892 0.645 0.792 0.892 0.828 0.694 0.539
BE 11 0.821 0.680 0.802 0.817 0.709 0.550 0.455
BR 11 0.948 0.743 0.902 0.897 0.690 0.589 0.334
CA 17 0.928 0.651 0.826 0.928 0.861 0.757 0.655
CH 17 0.899 0.661 0.809 0.898 0.843 0.734 0.653
CL 17 0.891 0.620 0.787 0.890 0.839 0.682 0.441
CN 17 0.914 0.661 0.853 0.911 0.830 0.793 0.625
CO 11 0.953 0.704 0.882 0.850 0.801 0.700 0.684
CZ 13 0.973 0.754 0.903 0.962 0.841 0.650 0.433
DE 19 0.947 0.724 0.865 0.940 0.920 0.826 0.727
DK 17 0.957 0.785 0.901 0.957 0.902 0.775 0.585
ES 13 0.964 0.896 0.946 0.956 0.892 0.780 0.632
FI 17 0.934 0.647 0.819 0.933 0.895 0.781 0.640
FR 17 0.939 0.695 0.849 0.938 0.880 0.754 0.655
GB 16 0.896 0.711 0.820 0.896 0.836 0.712 0.557
GR 10 0.973 0.919 0.969 0.955 0.875 0.744 0.607
HK 18 0.949 0.701 0.850 0.942 0.903 0.874 0.859
HU 17 0.975 0.793 0.909 0.974 0.940 0.836 0.692
ID 17 0.855 0.632 0.774 0.855 0.811 0.747 0.655
IE 12 0.915 0.775 0.894 0.909 0.840 0.690 0.488

Table continues on the next page
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Table 4 continues

k Cor(k) Cor(4) Cor(8) Cor(16) Cor(24) Cor(32) Cor(40)

IL 16 0.961 0.729 0.897 0.961 0.922 0.872 0.851
IN 14 0.937 0.771 0.896 0.933 0.870 0.768 0.612
IT 13 0.925 0.813 0.896 0.919 0.852 0.726 0.570
JP 14 0.895 0.769 0.859 0.893 0.855 0.775 0.666
KR 15 0.909 0.631 0.811 0.909 0.854 0.697 0.461
LU 12 0.911 0.701 0.831 0.811 0.483 0.739 0.808
MX 14 0.934 0.731 0.859 0.929 0.839 0.693 0.553
MY 15 0.909 0.656 0.814 0.908 0.862 0.784 0.629
NL 12 0.877 0.682 0.819 0.855 0.736 0.527 0.320
NO 17 0.897 0.645 0.811 0.896 0.854 0.742 0.566
NZ 16 0.861 0.639 0.778 0.861 0.781 0.639 0.494
PL 12 0.910 0.731 0.873 0.877 0.713 0.593 0.313
PT 15 0.949 0.801 0.898 0.949 0.899 0.796 0.682
RU 11 0.926 0.733 0.902 0.839 0.652 0.646 0.487
SA 12 0.954 0.679 0.877 0.898 0.666 0.755 0.802
SE 16 0.920 0.668 0.831 0.920 0.858 0.704 0.540
SG 16 0.928 0.655 0.827 0.928 0.876 0.797 0.613
TH 18 0.947 0.711 0.837 0.944 0.915 0.815 0.671
TR 16 0.948 0.705 0.873 0.948 0.907 0.800 0.718
US 18 0.958 0.714 0.842 0.955 0.923 0.809 0.687
XM 18 0.963 0.799 0.913 0.961 0.923 0.898 0.946
ZA 15 0.911 0.632 0.818 0.907 0.749 0.592 0.529

Median 16 0.928 0.702 0.850 0.915 0.854 0.745 0.619
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Table 5: Different smoothing parameters. This table reports correlations between credit
gaps (yt − τt) and simple changes in the credit-to-GDP ratio (yt − yt−i), for different values
of the smoothing parameter, λ, used in the HP filter. k is the optimal lag length (i) at which
the correlation between the credit gap and the simple change is maximized. Cor(k) is the
correlation between the credit gap and the k-quarter change.

λ = 1,600 λ = 25,000 λ = 400,000

k Cor(k) k Cor(k) k Cor(k)

AR 4 0.866 8 0.832 18 0.871
AT 5 0.824 9 0.926 17 0.942
AU 4 0.838 9 0.907 16 0.892
BE 4 0.847 7 0.814 11 0.821
BR 4 0.860 7 0.926 11 0.948
CA 4 0.863 8 0.902 17 0.928
CH 4 0.839 9 0.880 17 0.899
CL 4 0.848 8 0.913 17 0.891
CN 4 0.845 7 0.903 17 0.914
CO 4 0.799 6 0.872 11 0.953
CZ 3 0.666 6 0.843 13 0.973
DE 3 0.729 7 0.814 19 0.947
DK 3 0.752 7 0.887 17 0.957
ES 2 0.682 5 0.873 13 0.964
FI 4 0.843 8 0.905 17 0.934
FR 3 0.773 7 0.826 17 0.939
GB 3 0.713 8 0.881 16 0.896
GR 3 0.655 4 0.798 10 0.973
HK 5 0.812 7 0.883 18 0.949
HU 3 0.736 7 0.890 17 0.975
ID 4 0.886 7 0.845 17 0.855
IE 4 0.833 7 0.854 12 0.915

Table continues on the next page
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Table 5 continues

λ = 1,600 λ = 25,000 λ = 400,000

k Cor(k) k Cor(k) k Cor(k)

IL 3 0.747 5 0.815 16 0.961
IN 3 0.726 6 0.804 14 0.937
IT 3 0.701 7 0.823 13 0.925
JP 3 0.618 6 0.720 14 0.895
KR 4 0.869 9 0.929 15 0.909
LU 4 0.890 11 0.923 12 0.911
MX 3 0.833 9 0.948 14 0.934
MY 4 0.835 8 0.857 15 0.909
NL 4 0.889 9 0.921 12 0.877
NO 4 0.866 8 0.882 17 0.897
NZ 4 0.807 9 0.893 16 0.861
PL 4 0.909 9 0.925 12 0.910
PT 3 0.780 7 0.862 15 0.949
RU 5 0.925 9 0.937 11 0.926
SA 4 0.940 9 0.945 12 0.954
SE 4 0.809 8 0.863 16 0.920
SG 4 0.832 9 0.934 16 0.928
TH 3 0.759 8 0.870 18 0.947
TR 3 0.786 6 0.800 16 0.948
US 3 0.769 8 0.938 18 0.958
XM 4 0.829 9 0.936 18 0.963
ZA 4 0.895 9 0.922 15 0.911

Median 4 0.830 8 0.883 16 0.928
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Appendix A Supplementary analytical results

Cornea-Madeira (2017; Theorem 1, p. 315) finds analytical solutions of the HP filter that are

valid for an entire sample, including the endpoints. Specifically, the ith observation of the

trend of a time series of length T is specified as: τi =
∑T

t=1 pi,tyt, where the weights pi,t are a

function of the smoothing parameter λ, t, i and T , but do not depend on the distribution of yt

(See Corollary 1, Cornea-Madeira , 2017). As we are solely interested in the last observation

of the trend, we can simplify notation to

τT =
T∑
t=1

ptyt,

as in Eq. (2).

Table A1 tabulates selected weights pt, calculated using the expressions provided by Cornea-

Madeira (2017), for different values of T and λ. The table shows that the endpoint of the

trend is a weighted average of past observations, with most weight given to the most recent

observations. A lower smoothing parameter λ implies relatively higher weights for the most

recent observations. It is also clear that the weights of the observations towards the end of

the sample do not strongly depend on the sample size T .

Given the weights of each observation, we can derive the correlation between yT in de-

viation from trend, and yT in deviation from its k-order lag, for any I(1) time-series pro-

cess yt, such that ∆yt = ξt is a stationary process. For example, when yt is a random walk:

ξt ∼ i.i.d.(0, σ2), it follows that:

27



var (xT ) = var
(∑T

t=1 (1− ϕt) ξt
)

=
∑T

t=1 (1− ϕt)2 σ2

var (∆kyT ) = var
(∑T

t=T−k+1 ξt

)
= kσ2

cov (xT ,∆kyT ) = cov
(∑T

t=1 (1− ϕt) ξt,
∑T

t=T−k+1 ξt

)
= cov

(∑T
t=T−k+1 (1− ϕt) ξt,

∑T
t=T−k+1 ξt

)
=

∑T
t=T−k+1 (1− ϕt)σ2

cor (xT ,∆kyT ) =

∑T
t=T−k+1 (1− ϕt)√
k
∑T

t=1 (1− ϕt)2
,

where ϕt =
∑T

j=t pj . In general, for any I(1) process y of length T , such that ∆y = ξ =
ξ1
...

ξT

 ∼ (0,Σ); we can define xT = (1− ϕ)′ξ, where ϕ =


ϕ1

...

ϕT

 and ∆kyT = δ(k)
′
ξ, where

δ(k) =



δ
(k)
1

...

δ
(k)
T−k

δ
(k)
T−k+1

...

δ
(k)
T


=



0

...

0

1

...

1


. The second-order moments of xT and ∆kyT are:

var (xT ) = var
(
(1− ϕ)′ ξ

)
= (1− ϕ)′Σ(1− ϕ)

var (∆kyT ) = var
(
δ(k)

′
ξ
)

= δ(k)′Σδ(k)

cov (xT ,∆kyT ) = cov
(
ϕ′ξ, δ(k)

′
ξ
)

= (1− ϕ)′Σδ(k)

Table A2 reports the correlations between xT and ∆kyT for k=1,. . . ,20, for different specifica-

tion of yt and different values of λ and T . In the first three columns, yt is a random walk and
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T=200, as in Figure 3. The next three columns show that the correlations are nearly identical

when the sample size is increased to T=1,000. This result is expected, since the weights as

reported in A1 are not sensitive to T . The final columns of Table A2 show the correlations

for a random walk process yt with time-varying variance: var(ξt) = 1 + cos
(
t
2π

)
, generat-

ing cycles of approximately 20 periods (7 years with quarterly data) in the level of volatility.

These correlations peak at the same lag k as for the random walks. Introducing time-varying

volatility increases the correlations, which get closer to the empirically observed correlations

(Table 4).
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Table A1: Weights. This table reports the weights pt in τT =
∑T

t=1 ptyt (Eq. 2), calculated
using the expressions provided by Cornea-Madeira (2017), for selected t and for different
values of the smoothing parameter λ and sample size T .

λ= 400,000 λ= 25,000 λ= 1,600
t T=100 T=200 T=1000 T=100 T=200 T=1000 T=100 T=200 T=1000

T 0.0554 0.0547 0.0547 0.1064 0.1064 0.1064 0.2006 0.2006 0.2006
T -1 0.0539 0.0532 0.0531 0.1004 0.1004 0.1004 0.1782 0.1782 0.1782
T -2 0.0523 0.0516 0.0516 0.0945 0.0945 0.0945 0.1564 0.1564 0.1564
T -3 0.0508 0.0501 0.0501 0.0886 0.0886 0.0886 0.1354 0.1354 0.1354
T -4 0.0493 0.0486 0.0486 0.0828 0.0828 0.0828 0.1156 0.1156 0.1156
T -5 0.0478 0.0470 0.0470 0.0772 0.0772 0.0772 0.0972 0.0972 0.0972
T -6 0.0463 0.0455 0.0455 0.0717 0.0716 0.0716 0.0803 0.0803 0.0803
T -7 0.0448 0.0441 0.0440 0.0663 0.0663 0.0663 0.0650 0.0650 0.0650
T -8 0.0433 0.0426 0.0426 0.0611 0.0611 0.0611 0.0513 0.0513 0.0513
T -9 0.0418 0.0411 0.0411 0.0561 0.0561 0.0561 0.0393 0.0393 0.0393
T -10 0.0404 0.0397 0.0397 0.0513 0.0513 0.0513 0.0287 0.0287 0.0287
T -20 0.0270 0.0264 0.0264 0.0149 0.0149 0.0149 -0.0132 -0.0132 -0.0132
T -50 0.0022 0.0022 0.0022 -0.0061 -0.0060 -0.0060 0.0006 0.0006 0.0006
T -99 -0.0085 -0.0032 -0.0032 0.0011 0.0003 0.0003 0.0000 0.0000 0.0000
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Table A2: Correlations. This table reports cor (xT ,∆kyT ), the correlation between the end-
point of a time-series yT in deviation from trend and in deviation from its k-order lag, for
k=1,. . . ,20. The correlation is derived using the weights cacluated following Cornea-Madeira
(2017), for different values of the smoothing parameter λ and sample size T , see Table A1.
The first 6 columns consider a random walk process (∆yt = ξt ∼ i.i.d.(0, σ2)). In the last three
columns, yt is a random walk with time-varying variance: var(ξt) = 1 + cos

(
t
2π

)
.

Random walk Random walk Time-varying variance
T=200 T=1000 T=200

λ 400,000 25,000 1,600 400,000 25,000 1,600 400,000 25,000 1,600

k=1 0.3261 0.4485 0.5989 0.3261 0.4485 0.5989 0.3602 0.4761 0.6389
2 0.4483 0.5987 0.7525 0.4482 0.5987 0.7525 0.4982 0.6393 0.8069
3 0.5334 0.6913 0.8155 0.5334 0.6913 0.8155 0.5954 0.741 0.8767
4 0.5983 0.7518 0.8297 0.5982 0.7518 0.8297 0.6693 0.8074 0.8929
5 0.6496 0.7907 0.8137 0.6495 0.7907 0.8137 0.727 0.8497 0.8761
6 0.6909 0.8141 0.7785 0.6908 0.8141 0.7785 0.7723 0.8744 0.839
7 0.7243 0.8255 0.7311 0.7242 0.8255 0.7311 0.8077 0.8859 0.7904
8 0.7514 0.8276 0.6763 0.7513 0.8276 0.6763 0.835 0.8877 0.7363
9 0.7731 0.8222 0.6176 0.773 0.8222 0.6176 0.8555 0.8823 0.6812
10 0.7903 0.811 0.5577 0.7902 0.811 0.5577 0.8704 0.8718 0.6283
11 0.8037 0.795 0.4983 0.8036 0.795 0.4983 0.8808 0.8582 0.5796
12 0.8136 0.7752 0.4409 0.8136 0.7752 0.4409 0.8875 0.8429 0.5366
13 0.8207 0.7524 0.3863 0.8206 0.7524 0.3863 0.8914 0.8271 0.4998
14 0.825 0.7273 0.3352 0.825 0.7273 0.3352 0.893 0.8118 0.4695
15 0.8271 0.7003 0.288 0.827 0.7003 0.288 0.8932 0.7977 0.4454
16 0.8271 0.672 0.2448 0.8271 0.672 0.2448 0.8923 0.7855 0.4269
17 0.8253 0.6429 0.2058 0.8252 0.6429 0.2058 0.891 0.7754 0.4135
18 0.8218 0.6131 0.171 0.8217 0.6131 0.171 0.8895 0.7676 0.4043
19 0.8168 0.583 0.1401 0.8168 0.583 0.1401 0.8882 0.7621 0.3984
20 0.8106 0.5529 0.1129 0.8105 0.5529 0.1129 0.8872 0.7586 0.3951
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Appendix B Supplementary empirical results

Table B1: AR(4) coefficients. This table presents the coefficient estimates of an AR(4) model
estimated on the differences of the credit-to-GDP ratios. Coefficient standard errors are re-
ported in parenthesis.

∆y1 ∆y2 ∆y3 ∆y4 ∆y1 ∆y2 ∆y3 ∆y4

AR -0.176 -0.230 -0.383 0.056 DE 0.098 0.190 -0.083 0.394
(0.086) (0.082) (0.082) (0.087) (0.060) (0.060) (0.061) (0.060)

AT -0.061 0.063 -0.079 0.374 DK 0.232 0.321 -0.088 0.173
(0.061) (0.061) (0.061) (0.061) (0.068) (0.070) (0.070) (0.068)

AU 0.299 0.196 0.002 0.191 ES 0.219 0.334 -0.048 0.360
(0.064) (0.067) (0.067) (0.065) (0.067) (0.069) (0.069) (0.068)

BE 0.114 0.336 -0.164 0.029 FI 0.489 0.041 -0.011 0.032
(0.072) (0.072) (0.072) (0.073) (0.073) (0.081) (0.081) (0.073)

BR 0.113 0.196 -0.061 0.006 FR 0.095 0.172 -0.115 0.352
(0.105) (0.108) (0.110) (0.110) (0.067) (0.068) (0.067) (0.070)

CA 0.219 0.236 -0.114 0.071 GB 0.062 0.049 0.145 0.298
(0.063) (0.064) (0.065) (0.063) (0.064) (0.063) (0.064) (0.066)

CH 0.144 0.204 -0.141 0.199 GR 0.097 0.286 0.158 0.250
(0.064) (0.064) (0.064) (0.065) (0.070) (0.069) (0.070) (0.071)

CL 0.293 -0.015 0.031 0.184 HK 0.155 -0.010 0.119 0.122
(0.083) (0.087) (0.087) (0.083) (0.079) (0.079) (0.079) (0.078)

CN 0.168 0.014 0.060 0.117 HU 0.072 0.084 -0.072 0.157
(0.088) (0.093) (0.095) (0.094) (0.072) (0.071) (0.072) (0.071)

CO 0.470 0.257 -0.118 0.119 ID 0.272 -0.092 0.113 -0.295
(0.106) (0.116) (0.117) (0.108) (0.073) (0.076) (0.075) (0.072)

CZ 0.228 0.021 0.162 -0.038 IE 0.063 -0.047 0.066 0.082
(0.099) (0.100) (0.100) (0.098) (0.073) (0.073) (0.073) (0.073)

Table continues on the next page
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Table B1 continues

∆y1 ∆y2 ∆y3 ∆y4 ∆y1 ∆y2 ∆y3 ∆y4

IL 0.183 0.141 -0.166 0.028 PL 0.457 -0.025 0.045 -0.006
(0.095) (0.096) (0.096) (0.095) (0.097) (0.107) (0.108) (0.099)

IN -0.108 0.019 -0.051 0.560 PT 0.167 0.190 -0.014 0.360
(0.051) (0.051) (0.051) (0.051) (0.061) (0.062) (0.062) (0.061)

IT 0.095 0.157 -0.137 0.625 RU 0.160 -0.117 0.052 0.137
(0.051) (0.050) (0.050) (0.050) (0.104) (0.104) (0.104) (0.103)

JP 0.342 -0.121 0.124 0.371 SA 0.451 -0.024 -0.057 0.015
(0.063) (0.067) (0.067) (0.063) (0.099) (0.108) (0.108) (0.099)

KR 0.240 0.272 -0.044 0.065 SE 0.217 0.193 0.078 0.160
(0.067) (0.069) (0.069) (0.067) (0.065) (0.068) (0.068) (0.067)

LU 0.547 0.076 -0.019 -0.237 SG 0.206 0.136 0.049 -0.051
(0.110) (0.129) (0.129) (0.111) (0.073) (0.075) (0.075) (0.073)

MX 0.186 0.255 -0.017 0.160 TH 0.162 0.169 0.188 0.181
(0.080) (0.082) (0.082) (0.080) (0.071) (0.070) (0.070) (0.071)

MY 0.435 0.108 0.113 -0.035 TR 0.233 0.193 -0.236 0.075
(0.068) (0.074) (0.074) (0.068) (0.088) (0.088) (0.088) (0.088)

NL 0.195 0.147 -0.146 0.202 US 0.204 0.346 -0.103 0.354
(0.066) (0.066) (0.067) (0.066) (0.057) (0.059) (0.059) (0.058)

NO 0.314 0.031 0.284 -0.028 XM 0.110 0.218 -0.075 0.226
(0.066) (0.066) (0.066) (0.066) (0.110) (0.109) (0.112) (0.112)

NZ -0.057 0.115 0.144 0.247 ZA 0.230 0.129 0.120 -0.089
(0.064) (0.063) (0.064) (0.064) (0.068) (0.069) (0.070) (0.068)
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