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In tandem with a broader trend across 

disciplines, many economics journals have 

recently adopted policies requiring authors to 

archive and curate research data, in an effort to 

promote reproducible research. For example, 

the American Economic Association (AEA)’s 

data and code posting policy is intended to 

create a minimal framework from which to 

replicate empirical findings by requiring the 

data and code to be available to others.1  The 

importance of such efforts should not be 

understated.  However, we are concerned that 

the economics profession has – relative to 

many other scientific disciplines – focused too 

little attention on the related question of what 

types of institutions and incentives might 

encourage and subsidize the creation and 

sharing of datasets that are likely to facilitate 

novel follow-on research of high social value.  

 

1 See also Vilhuber (2019) on the recently created AEA Data Editor 

position.   

We argue in this paper that this question 

deserves more attention.   

As a preliminary step in that direction, we 

briefly describe some examples from other 

scientific fields of institutions and incentives 

designed to promote subsequent research, and 

we speculate on some potential reforms that 

could be undertaken within the field of 

economics to encourage the type of data 

collection, curation, and sharing that is most 

likely to encourage socially valuable follow-on 

research.  

I. What is the problem? 

The current status quo in economics can be 

characterized in simple terms as follows: new 

data is collected or constructed when it is in the 

interests of a particular researcher to do so, and 

such researchers – naturally, given the 

incentives they face – focus attention on 

collecting whatever data they need for their 

particular research project.   

As an example, consider a recent research 

project one of us (Williams) published with 

Bhaven Sampat (Sampat and Williams 2019).  

mailto:ryanhill@mit.edu
mailto:cstein@mit.edu
mailto:hlwill@stanford.edu


 

We spent nearly ten years working on this 

paper, and much of that time was focused on 

wrangling the publicly available data from the 

US Patent and Trademark Office (USPTO) into 

a format that would let us analyze around 1,500 

patent applications claiming human genes.  

One of the empirical approaches in that paper 

leveraged the fact that patent applications are 

quasi-randomly assigned to patent examiners at 

the USPTO. We developed an instrumental 

variables approach to investigate how (quasi-

randomly assigned) patents on human genes 

affected subsequent medical innovation.  That 

empirical approach is potentially applicable 

across many contexts, and we frequently 

receive requests for our “examiner fixed effect” 

estimates from other researchers who would 

like to re-use these estimates in other contexts.   

For the purposes of our research project, we 

only needed to build a dataset of the 1,500 

patent applications claiming human genes, and 

estimate variation in examiner grant 

propensities for the relatively small sample of 

patent examiners who reviewed those 

applications.  But from a social perspective, a 

relatively small increment of additional work 

during the course of our project would have 

created a dataset covering all patent 

applications (of which human gene 

applications are of course a subset) that would 

enable other researchers to easily re-use and 

apply our empirical approach in other contexts.   

What is the problem?  Many datasets are 

expensive to curate but cheap to share, and – 

given the current set of incentives facing 

economists – most researchers optimize their 

data curation to maximize individual utility 

rather than social benefit.  A passive version of 

this distortion is that with only slightly more 

work, many researchers could produce a more 

general version of their data that would be 

much more useful to a much broader set of 

follow-on researchers.  More active (and self-

serving) versions of this distortion sometimes 

also arise: some scientific researchers, seeking 

to maintain a competitive advantage over their 

peers, may strategically choose not to disclose 

their data in the form that would be most useful 

for follow-on research.   

This problem is in many ways a classic 

public good provision problem.  But given that 

many public good problems exist, why should 

we focus attention on trying to fix this one?  We 

feel frustrated by and concerned about the 

potential inefficiencies this problem generates.  

Researchers in economics are constantly forced 

to re-do work that has been done by other 

research teams in order to build on those 

discoveries.  While an optimally designed 

system could purposefully choose to allocate 

researchers with a proprietary window of 



access to data they invest in curating, it seems 

clear to us that the status quo in economics was 

not purposefully designed to optimize over the 

relevant trade-offs.  From a practical 

perspective, there is reason to think these 

policy choices really matter, as there is a 

growing body of evidence suggesting that less 

science happens – and fewer products are 

commercialized – when access to data and 

basic research materials are limited (Furman 

and Stern 2011; Williams 2013).      

If you are willing to grant that this is a 

problem worth trying to solve, what should we 

do about it?  Relying on goodwill seems likely 

to be insufficient: researchers have scarce time 

and resources, and expecting public goods to be 

provided in the absence of providing incentives 

or institutions to support their creation seems 

unlikely to be the best path forward.   

II. Have other fields “solved” this problem? 

Drawing on our past work analyzing the 

fields of observational astronomy (Hill 2019), 

structural biology (Hill and Stein 2019), and 

genetics (Williams 2013; Sampat and Williams 

2019), here are three examples from other 

scientific fields of institutions and incentives 

which address, in various ways, this problem. 

A. Observational Astronomy 

The field of observational astronomy records 

and analyzes data about the observable 

universe.  The traditional research model in 

observational astronomy is that a central 

organization supplies a large upfront capital 

investment to build a telescope, and then 

allocates short periods of observing time to 

individual astronomers through some type of 

peer review process.  For private organizations 

(such as the Keck Institute for Space Studies 

owned by CalTech), they can restrict access to 

appropriate as much value out of their 

investment as possible for their own scientists.  

For public organizations (such as the Hubble 

Telescope), conditional on passing a peer-

review bar any researcher can collect 

observations.  At all public and most private 

observatories, all data is publicly shared after a 

6-18 month proprietary window; this is 

intended to give a priority advantage to the 

researcher who generated the data, but also 

foster follow-on research through public 

release. 

A new research model was pioneered by the 

Sloan Digital Sky Survey (SDSS) in the year 

2000.  The SDSS was motivated by the idea 

that the traditional model created a patchwork 

of short and disparate observations which was 

likely not the most efficient way of creating 

publicly useful data: because each astronomer 



 

has her own agenda, a year’s worth of 

observations on the Hubble Telescope might 

create data for hundreds of papers on hundreds 

of different topics, yet the resulting archive 

may be too disconnected to enable meaningful 

follow-on research.  In response to this 

perceived problem, SDSS embarked on a very 

broad mission, spending multiple years with a 

dedicated telescope mapping the sky while 

focusing on a few specific but broadly useful 

scientific goals.  The Sloan Foundation staked 

the first 30% of funding, and then solicited 

proposals from universities around the world to 

invest.  Each university that paid the entrance 

cost was able to help design the mission, 

participate in the implementation, and have 

first access to the data to write the papers they 

had proposed.  Each wave of data was publicly 

released, and each wave of data had a 

companion working paper (co-authored by 

participants) that should be cited each time the 

public data is used.  Over the past two decades, 

the SDSS has become the most cited data 

source in astronomy. 

B. Structural Biology 

The field of structural biology analyzes the 

three-dimensional structure of biological 

macromolecules such as proteins. 

Understanding the structure of proteins is 

essential for understanding their function and 

role in health and disease.  Protein folding and 

macromolecule structure has had a series of 

important applications in medicine, and around 

fifteen Nobel Prizes have been awarded for 

advances in structural biology. 

As of the early 1970s, very few protein 

structures had been solved, and the community 

of researchers using x-ray crystallography – the 

technique most frequently used to solve protein 

structures – was small.  However, scientists 

understood the importance of providing unified 

access to these growing data for follow-on 

basic research and applied use. The Protein 

Data Bank (PDB) was established in 1971 as a 

uniform repository for data on protein 

structures.  At the time it was founded, the PDB 

contained only seven structures, but the PDB is 

now one of the most widely used data resources 

in biology, containing over 150,000 entries.  

Depositors today submit data to the PDB 

through a deposition portal, and each entry is 

checked, validated, and annotated by PDB 

staff, with no charge to depositors.  At the time 

of deposit, 4-character PDB IDs are assigned to 

each structure, which serve as unique, 

immutable identifiers of each entry in the PDB. 

The resulting database is organized, 

searchable, and easily accessible to the broad 

scientific community.  

Observers of this field have argued that 

deposits to the PDB accelerated after an ad hoc 



committee of scientists published a formal set 

of guidelines for data deposition in 1989.  The 

original guidelines stated that structures should 

be deposited at the time of publication, and 

should be publicly released within a year.  Most 

major journals subsequently adopted these 

guidelines, and the National Institute of 

General Medical Sciences (NIGMS) at the US 

National Institutes of Health (NIH) made 

federal funding contingent on depositing to the 

PDB.  In the late 1990s, Nature, Science, and 

other leading journals revised their policies to 

require verification that the structure had been 

deposited in the PDB prior to paper acceptance, 

and that the data be released prior to or at the 

time of publication.  Virtually all journals in the 

field now follow some version of this policy.  

C. Genetics 

The field of genetics analyzes genes, genetic 

variation, and heredity.  Traditionally, 

individual teams of genetics researchers 

pursued a “targeted” effort to map and 

sequence genes based on research that 

systematically traced the roots of specific 

diseases thought to have a genetic basis, such 

as Huntington’s disease.  That traditional 

model was upended in 1990, when a large 

 

2 These rules replaced a previous US policy which required that 

data be made available within 6 months.  The largest labs involved in 

the Human Genome Project were the US DOE Joint Genome Institute 

(Walnut Creek, CA), Baylor College of Medicine Human Genome 

publicly-funded effort called the Human 

Genome Project was launched with the goal of 

sequencing the entire human genome by 2005.   

The Human Genome Project leveraged its 

position to enforce a regime of open science (in 

part motivated by a desire to limit researchers’ 

ability to patent genes sequenced under the 

project).  In 1996, the heads of the largest labs 

involved in the Human Genome Project agreed 

at a Bermuda-based meeting to the so-called 

“Bermuda rules,” which required that data 

sequenced under the Human Genome Project 

be posted on an open-access website within 24 

hours of sequencing.2  The stated goal of the 

Bermuda rules was “to encourage research and 

development and to maximize [the data’s] 

benefit to society.” 

Under the Bermuda rules, genes sequenced 

by the Human Genome Project were required 

to be deposited in GenBank – an open-access 

archival sequence database.  By nature of being 

archival, GenBank entries can be very 

redundant and are not catalogued in any 

systematic way (GenBank records are “owned” 

by the original submitter and cannot be altered 

by third parties).  The National Center for 

Biotechnology Information (NCBI) at the US 

National Library of Medicine uses data derived 

Sequencing Center (Houston, TX), the Wellcome Trust Sanger 

Institute (UK), Washington University School of Medicine Genome 

Sequencing Center (St. Louis, MO), and the Whitehead Institute/MIT 

Center for Genome Research (Cambridge, MA).   



 

from GenBank and similar data sources to 

create a separate open-access sequence 

database called RefSeq.  In contrast with 

GenBank, RefSeq aims to provide a validated, 

non-redundant, well-annotated set of 

sequences that can provide a stable reference 

for gene identification and characterization 

(including a unique ID number), and to 

summarize the current state of scientific 

knowledge of known genes.  For example, the 

only known mRNA for the RAX2 gene has 

RefSeq ID number NM_032753, and that 

RefSeq entry is curated with information about 

four scientific publications studying that gene.3  

RefSeq records are owned by NCBI and can be 

updated as needed to remain current.    

III. Lessons for the field of economics 

Against the background of these three 

examples, let us speculate on some potential 

lessons for the field of economics.  We focus 

our discussion here on three broad classes of 

policies: (1) changing the reporting 

requirements of institutions such as journals or 

funding agencies; (2) changing the incentives 

facing researchers; and (3) having public, non-

profit, or philanthropically-oriented for-profit 

firms provide public goods. 

 

3 See https://www.ncbi.nlm.nih.gov/nuccore/NM_032753.4.  

In many ways, changing reporting 

requirements is the “easiest” type of reform.  

For example, rather than requiring economists 

to post the code and data required to replicate 

just the tables and figures of their paper, one 

could instead require researchers to disclose all 

components of the data and code used in their 

analysis – including the full raw data files, 

access to which would presumably go some 

distance towards encouraging follow-on 

research.  However, this path is often quite 

costly (e.g. to host very large raw data files), 

and by nature of not directly addressing the 

underlying incentive problem would require 

monitoring and enforcement.  For example, in 

the case of structural biology, scientists are 

supposed to report experimental details (exact 

methods, environmental conditions) to the 

PDB to allow other scientists to replicate their 

experiments. However, anecdotal evidence 

suggests that some researchers provide 

minimal (or even insufficient) details in an 

effort to maintain trade secrecy.   

Changing the incentives facing researchers – 

by, for example, granting researchers more 

credit or recognition for creating public goods 

– seems, a priori, to be a more promising way 

to align private incentives with social 

contributions.  For example, a very well-cited 

https://www.ncbi.nlm.nih.gov/nuccore/NM_032753.4


“paper” in economics is Bronwyn Hall, Adam 

Jaffe, and Manuel Trajtenberg’s (unpublished) 

documentation file describing their linkage of 

the Compustat data with the US patent grants 

data.  However, the field of economics 

currently has very poor norms around citing 

datasets – even though this Hall-Jaffe-

Trajtenberg Compustat-patent linkage 

documentation has nearly 4,000 citations (as of 

November 2019), we would conjecture that the 

underlying data has in fact been used much 

more broadly than those citations would 

suggest.  The example of the Sloan Digital Sky 

Survey, which formally instituted norms that 

researchers using the Sloan Digital Sky Survey 

data cite the companion working paper (co-

authored by participants), is one example of 

how data citations could be encouraged.  

Journals could also require that as part of the 

publication process, datasets used in the 

analysis are cited appropriately.   

The final class of policies we consider – 

having public, non-profit, or philanthropically-

oriented for-profit firms provide public goods 

– is more expensive, but also provides much 

more scope to address the underlying incentive 

problems.  While fixed costs are frequently 

lamented as a barrier to data creation, in several 

ways the existence of fixed costs can be 

leveraged in a way that enforces open science 

and maximizes the potential for follow-on 

research.  In the case of observational 

astronomy, one benefit of expensive telescopes 

is that only the government or large 

collaboratives can afford to purchase them, and 

once they are built the founding organizations 

control access to the data.  If these 

organizations have a pro-social objective 

function – as did the Sloan Digital Sky Survey, 

the Protein Data Bank, and the Human Genome 

Project – they can set policies in a way that 

meaningfully encourages follow-on research.   

First, centralized institutions can set policies 

for priority protection.  For public and most 

private observatories for observational 

astronomy, data is publicly shared after a 6-18 

month proprietary window.  In the case of the 

Protein Data Bank, data is kept secret until the 

paired paper is published.   In general, we 

would expect longer priority windows to 

encourage data creation, and shorter 

proprietary windows to hasten follow-on 

innovation by outside researchers.  A 

centralized collaborative can weigh these 

trade-offs in a way that seems appropriate 

given the specifics of the context at hand.  A 

natural example for the field of economics 

would be an effort to systematically link and 

provide streamlined access to public 

administrative datasets such as those available 

in Scandinavian countries which link 

information on births, deaths, demographics, 



 

education, employment, social benefits, and 

other records. 

Second, centralized institutions provide a 

natural mechanism through which scientific 

goals can be coordinated.  In observational 

astronomy, individual telescope observers 

typically try to maximize their limited 

observing time for the improvement of the one 

or handful of papers they plan to write.  In 

medical genetics, researchers typically focus 

on understanding their hereditary disease of 

interest largely in isolation.  As with the 

Sampat and Williams example above, 

economists similarly typically focus their 

attention on curating the data they need for 

their particular papers.  In each case, individual 

goals are set based on private costs and benefits 

without much, if any, effort to account for what 

additional social benefits could be realized for 

a given change in private costs.  In contrast, an 

effort like the Sloan Digital Sky Survey aims to 

maximize the social value of data by soliciting 

input from a broad set of researchers on what 

data should be systematically collected and 

curated.  The required monetary stake produces 

revealed preferences for worthwhile scientific 

goals, but these goals have to be coordinated 

with other stake-holders, thus maximizing the 

social value of the data.  In the field of 

economics, one example of where such 

coordination could be valuable is in the field of 

health economics.  Teams of researchers often 

access administrative records on Medicaid 

beneficiaries for individual states, because 

Medicaid is a state-run program and the 

structure of the Medicaid claims data differs 

across states in a way that is difficult to 

harmonize.  However, precisely because 

Medicaid is a state-run program, it seems ideal 

to combine Medicaid data from all states, so 

that state-by-year variation in Medicaid 

policies, and linked data allowing researchers 

to follow Medicaid beneficiaries as they move 

across states, could be used to assess Medicaid 

policies.  Having a centralized institution 

undertake the – admittedly heroic – task of 

harmonizing the Medicaid claims data from all 

states in a way that linked individuals and 

created a centralized data resource which could 

be reused by others seems likely to be an 

incredibly valuable endeavor. 

Third, centralized institutions provide a 

natural mechanism through which to 

standardize the format in which data is 

collected and curated.  In the field of structural 

biology, the Protein Data Bank (PDB) invests 

time and resources into standardizing new 

protein deposits, and ensuring that the data 

remain consistent over time.  In the field of 

medical genetics, RefSeq – which verifies, 

annotates, and curates genetic data in a 

standardized format with unique records for 



each gene – has likely been immensely more 

valuable than GenBank, which archives 

sequenced genes in an open-access database 

riddled with redundancies.  In contrast with 

RefSeq, individual human genomes are 

typically sequenced with little attention to 

standardization, and researchers frequently 

need to essentially start from scratch when 

creating a useable dataset.  The current norms 

in economics are similar to those for individual 

genomes and for GenBank – researchers do 

sometimes choose to archive their data in 

repositories such as ICPSR or Harvard’s 

Dataverse, but there are few centralized efforts 

such as PDB or RefSeq which aim to curate 

such data in a way that enhances opportunities 

for re-use.  Going forward, one potential 

opportunity in the field of economics would be 

to advocate for the inclusion of unique 

identifiers for individuals and institutions to be 

added to administrative datasets.  For example,  

PubMed – which catalogues biomedical 

research – began recording ORCID IDs for 

researchers in 2015, which are meant to 

provide stable unique identifiers of researchers.  

One can imagine encouraging other institutions 

like the US Patent and Trademark Office 

(USPTO) to adopt ORCID IDs as well.  

Of course, real barriers would arise in 

pursuing any of these types of efforts.  As one 

example, astronomers often express concern 

that long author lists make it hard for 

publications to signal potential in scientific 

careers.  More unique to the social sciences are 

thorny barriers related to data security and 

privacy.  But it seems well worth the effort for 

an organization like the AEA to invest in 

assessing potential investments in this space. 
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