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Abstract
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1 Introduction

The aftermath of the financial crisis saw several regulatory initiatives to curtail banks’ risk-

taking desire, hindering proprietary trading and increasing the cost of market making. In

part, these reflect a wide-spread belief in banking regulatory circles that the pre-crisis price

of immediacy did not adequately incorporate the costs required to ensure that market mak-

ers are supported by sufficient capital and do not become a source of illiquidity contagion

(see, for example, BIS Committee on the Global Financial System (2014, 2016)). While

they were meant to improve market-maker resiliency, the post-crisis changes to the Basel

framework (Basel 2.5 and Basel III) and the Volcker Rule have reduced banks’ willingness

to accommodate corporate bond trades on their balance sheets and in general have made

their market-making operations more costly. Some market observers have portrayed these

regulatory initiatives as introducing a trade-off between resiliency (or lessening contagion)

in times of stress and liquidity during normal times.

Such a perspective, however, overlooks the microstructure aspects of liquidity. In partic-

ular, the over-the-counter corporate bond market features two parallel trading mechanisms

corresponding to the dual capacity of broker-dealers. In the first mechanism, market mak-

ing, a bank intermediary functions as a dealer that provides immediacy to customers by

taking bonds onto his balance sheet. In the second mechanism, matchmaking, a bank in-

termediary functions as a broker that searches for couterparties to affect customer trades.1

While regulations aimed at boosting resiliency have increased the cost of taking a bond onto

a bank’s balance sheet, they did not increase the costs associated with the search process.

In fact, technological innovations over the past several years have bolstered the efficiency

and reduced the costs of matching, stimulating investment in matchmaking technology by

bank dealers and attracting customers to the search process. Our focus in this paper is

therefore not on the trade-off between resiliency in times of stress and liquidity during nor-

mal times. Rather, we investigate whether the regulatory push to increase resiliency could

make investors better off during normal times by changing the market microstructure they

experience when trading over-the-counter securities such as corporate bonds.

A growing body of empirical literature investigates the impact of post-crisis regulation

on liquidity. The US corporate bond market is the most commonly studied in this context

given its importance and dealer-centric nature. On balance, this literature finds improve-

ment or at least no deterioration in the average transaction costs of corporate bond trades

1The matchmaking mechanism therefore encompasses both agency and riskless principal trading. We
elaborate on this issue in Section 3.1.

1



(Mizrach (2015), Adrian, Fleming, Shachar, and Vogt (2017), Anderson and Stulz (2017),

Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), and Trebbi and Xiao (2017)).

Still, some papers document an increase in the cost of immediacy or transacting in times of

stress (Bao, O’Hara, and Zhou (2018), Choi and Huh (2017), and Dick-Nielsen and Rossi

(2018)). These studies also find a reduction in the amount of capital bank dealers commit

to market making and a shift in their activity from market making towards matchmak-

ing (Bao, O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman

(2018), and Choi and Huh (2017)). In contrast, non-bank dealers appear to increase capital

commitments and principal trading.

While the increase in the cost of immediacy is consistent with the regulation-induced

higher cost of taking bonds onto banks’ balance sheets, the decline in the average transac-

tion costs could suggest that a shift from market making to matchmaking is beneficial to

customers. The empirical evidence pertaining to the change in average transaction costs,

however, may be accompanied by two less measurable but potentially very important costs.

First, the average time it takes to execute a transaction in the post-regulation era is likely

longer. These execution delays may be costly to investors. Second, realized transaction costs

capture only trades that were executed. If customers forgo transacting due to the higher

costs of immediacy (and their unwillingness to wait longer for execution), their welfare loss

cannot be ascertained by observing executed trades. To assess these two potential costs,

which are hard to measure empirically, one needs a model in which the trade-off between

the cost of delay (matchmaking) and the cost of immediacy (market making) is explicitly

considered, and customers take into account the various costs associated with trading in

their decision whether to trade. This is the model we set out to investigate.

Our model features infinitesimal customers (buyers and sellers) who arrive at a constant

rate and wish to trade bonds in an over-the-counter market. There are two representative

broker-dealers standing for two groups of dealers: bank-affiliated dealers and non-bank-

affiliated dealers (henceforth bank dealers and non-bank dealers, respectively). Our use of

a representative bank dealer and a representative non-bank dealer is meant to recognize the

market power dealers in the corporate bond market possess, while at the same time enabling

us to explicitly consider the changing nature of competition between the two broker-dealer

groups as a result of bank regulations. Bank dealers offer their customers two mechanisms

for trading bonds. The first, market making, enables customers to trade immediately at a

spread that reflects the bank dealers’ cost of market making. The second, matchmaking,

involves the bank dealers helping customers search for trading counterparties and earning a
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fee to facilitate such trades.

Banks dealers optimally set the market-making spread and the matchmaking fee while

they also decide how much to invest in the search technology that determines the matching

rate. Non-bank dealers offer market-making services to customers at a spread that they set

to reflect their cost of market making and the competitive environment.2 Customers are price

takers and heterogeneous with regard to patience (or the value they attach to immediacy),

which we model with private values. They optimize when deciding whether to trade as well

as how to trade: immediately with the bank dealers, immediately with the non-bank dealers,

or using the matchmaking search process facilitated by the bank dealers. Searching for a

counterparty takes time, though, and the cost of using the matchmaking mechanism consists

of both the cost of waiting for a match and the trading fee.

Our analysis focuses on investigating what happens to customer welfare, dealer behavior,

and market outcomes when the regulatory costs imposed on bank market making rise. We

show that if the market-making costs bank dealers incur are much lower than those that

non-bank dealers incur, a small increase in bank regulatory costs raises the cost of immedi-

acy. While some customers shift to the matchmaking mechanism, bank dealers do not have

sufficiently strong incentives to significantly increase their investment in the matchmaking

technology, and hence these customers incur high waiting costs and the combination of these

effects could worsen overall customer welfare.

The economics of intermediation discussed thus far involve only customers and bank

dealers when the cost of market making is low. An increase in bank dealers’ regulatory costs

beyond a certain point, however, renders market making by non-bank dealers viable, which

injects competition for market-making services into the picture. Initially, the profitability

of bank dealers’ market-making operations is squeezed by the competitive threat even as

they maintain their dominance. They find it optimal to increase their investment in the

matchmaking technology to serve customers who otherwise would be deterred by the high

cost of market making, and some of these customers choose to engage in a time-consuming

search process to transact at a lower cost. Bank dealers may also lower their matchmaking

fee, attracting customers who previously did not trade at all. The overall welfare of the

population of customers therefore goes up as some customers are made better off even as

others are worse off, and average transaction costs in the market can decrease despite the

increase in the cost of immediacy.

2Non-bank dealers are typically smaller and are not subject to bank regulations that increase balance
sheet costs (Bao, O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018)).
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The story does not end here, however. As bank regulatory costs rise even further,

customers who require immediacy switch to non-bank dealers that offer a more attractive

market-making spread. Bank dealers in turn focus on extracting maximum rents from the

matchmaking mechanism. Increasing regulatory costs beyond this point only makes non-

bank dealers more profitable as it reduces the competitive threat posed by bank dealers.

This clearly makes those seeking immediacy worse off, while engendering very little in the

way of benefits to customers who use the matchmaking mechanism. As such, overall cus-

tomer welfare can go down and average transaction costs in the market may increase. Beyond

a certain regulatory cost threshold, non-bank dealers set the market-making spread as un-

constrained monopolists, and further increases in bank regulatory costs have no impact on

customer welfare or the cost of trading.

Our model demonstrates the complex and interesting economic interactions that evolve

as bank regulatory costs increase, pointing to subtleties not fully recognized in the extant

literature. Our contribution lies in characterizing how changes in bank regulatory costs, both

in absolute terms and relative to the market-making costs of non-bank dealers, affect the

nature of equilibrium in the market, with each equilibrium giving rise to a set of implications

for customer welfare, dealer behavior, and market outcomes. These complex interactions

also highlight why empirical work thus far has struggled to articulate the overall impact of

increased bank regulatory costs on customer welfare in the corporate bond market.

Can our theory contribute to evaluating how the post-crisis regulatory initiatives im-

pacted customer welfare in the corporate bond market? We address this question towards

the end of the paper by relating the wealth of empirical implications generated by the model

to findings reported in the empirical papers. As we increase bank regulatory costs in the

model, our predictions for observable market outcomes change as we move from one equi-

librium to another. We believe that the patterns uncovered by the empirical literature map

onto an equilibrium region in our model where an increase in bank regulatory costs improves

overall customer welfare.3 While bank dealers are clearly worse off in the post-crisis regula-

tory environment, our model vividly demonstrates that there is no one-to-one correspondence

between the profitability of bank dealers on the one hand and average transaction costs or

overall customer welfare on the other hand. This wedge reflects bank dealers’ endogenous

switch from using their balance sheets to using search technology in liquidity provision.

Hence, regulation that negatively impacts dealer profitability and capital commitment need

3It is important to stress that the empirical patterns documented in these papers reflect the overall effects
of post-crisis regulations. Hence, our results do not imply that a particular rule (or any specific feature of a
particular rule) is beneficial for customer welfare.
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not translate into lower overall customer welfare.

The regulation of banks’ proprietary trading is still a work in progress. In May 2018, the

five agencies responsible for the administration of the Volcker Rule proposed changes to the

rule. While most of the changes appear to be focused on simplifying reporting as opposed

to significantly changing the operations of bank trading desks, some have the potential to

affect market-making incentives. Therefore, we believe that it is of paramount importance to

understand how bank regulations that change the cost of market making impact the welfare

of customers and the functioning of the corporate bond market.

The rest of the paper proceeds as follows. In Section 2, we provide a brief exposition of

the relevant post-crisis bank regulatory changes, discuss the findings of empirical papers that

examine how liquidity has changed in the corporate bond market, and relate our paper to

several recent theoretical models. In Section 3, we discuss the motivation behind the mod-

eling approach we pursue and provide an exposition of the theoretical model. In Section 4,

we formally solve for the different cases of equilibria that prevail as bank regulatory costs

increase. In Section 5, we discuss the robustness of our implications to alternative specifi-

cations of the model. In Section 6, we use the insights of our model to address the question

whether post-crisis bank regulations harmed investors in the corporate bond market, and

Section 7 presents our conclusions.

2 Background and Literature

2.1 Post-Crisis Bank Regulations and the Corporate Bond Market

The Basel regulatory framework and the Dodd-Frank Act are the cornerstones of post-

crisis bank regulations that heavily impacted market-making activities in the United States,

including in the corporate bond market. Interviews with market participants suggest that

the revision of the Basel II market-risk framework (“Basel 2.5”), finalized in June 2012 in the

United States, increased inventory costs for corporate bonds by boosting regulatory capital

charges through the incremental risk capital (IRC) charge and the trading book stressed

VaR requirement (BIS Committee on the Global Financial System (2014)). Furthermore,

the Basel III framework, finalized in July 2013 in the United States, not only raised the risk-

based capital requirements on banks, but also raised the non-risk-based capital requirement

through the supplementary leverage ratio (SLR). For example, global systemically important

banks (G-SIBs) are required to maintain an SLR of 5% or higher at the bank holding company

level and an SLR of 6% or higher at the depository subsidiary (see Davis Polk (2014) for
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more details). Greenwood, Hanson, Stein, and Sunderam (2017) and Duffie (2018) find that

the leverage ratio requirement is the most tightly binding constraint for most US G-SIBs,

according to data derived from the Federal Reserve’s stress tests in 2017. Besides capital

requirements, another pillar of Basel III is higher liquidity standards, including the liquidity

coverage ratio (LCR) and the net stable funding ratio (NSFR), which require banks to hold

enough high-quality liquid assets or use sufficiently stable financing sources to guard against

adverse conditions in the funding markets.

The most relevant part of the Dodd-Frank Act for trading in the corporate bond market

is the Volcker Rule. While the Act was signed into law in July 2010, implementation of this

rule was delayed until April 2014, with full compliance required by July 2015. The Volcker

Rule aims at discouraging banks with access to FDIC insurance or the Federal Reserve’s

discount window from engaging in proprietary trading of risky securities. While it contains

an exception for market making, the rule mandates the reporting of various measures (e.g.,

inventory turnover, standard deviation of daily trading profits, customer-facing trade ratio)

to aid regulators in distinguishing between market making and other forms of proprietary

trading. The scrutiny that these measures receive from regulatory agencies changes the

incentives of bank dealers and thereby increases market-making costs.4

The suite of post-crisis bank regulations now in place discourages risk taking to strengthen

banks’ resilience to various risks (e.g., market, counterparty, and funding). As such, these

rules have an impact on all trading activities undertaken by banks, including market making.

Some market participants therefore warned that these rules would increase transaction costs

in the corporate bond market, and these claims motivated subsequent empirical research

examining post-crisis changes in corporate bond liquidity.

2.2 Post-Crisis Changes in Corporate Bond Liquidity: Empirical

Evidence

Most empirical papers that examine corporate bond market liquidity following the finan-

cial crisis find no deterioration, indeed even improvement, in liquidity subsequent to the

regulatory interventions. For example, Mizrach (2015) finds that bid-ask spreads and the

price impact of trades dropped after the crisis to below pre-crisis levels. Similarly, Adrian,

4The regulatory costs we model in this paper probably best represent the explicit costs imposed by
the Basel framework rather than the implicit costs associated with the Volcker Rule. Still, most empirical
findings concerning the impact of post-crisis regulations on the corporate bond market reflect the combined
effects brought about by all these rules and therefore we model a single regulatory cost of market making
rather than investigating specific features of these rules.
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Fleming, Shachar, and Vogt (2017) find that spreads and price impact declined. Further-

more, they document that trading volume and issuance are at record levels, although trade

size and turnover have declined. Anderson and Stulz (2017) look at a variety of measures,

including price-based measures (price impact and bid-ask spreads) and trading measures.

They find overall that price-based measures are marginally better following the onset of

regulation (2013-2014) relative to before the crisis. Bessembinder, Jacobsen, Maxwell, and

Venkataraman (2018) also document that average customer trade execution costs have not

increased after these regulations were imposed. Trebbi and Xiao (2017) look for a structural

break in various liquidity measures but find no evidence for deteriorating liquidity during

the period that corresponds to the Dodd-Frank and Basel III regulatory interventions.5

Several papers find worsening in a particular dimension of trade execution: the cost

of immediacy. Bao, O’Hara, and Zhou (2018) use downgrades of bonds to junk status as

stress events to examine the cost of immediacy, and find that it increased following the

implementation of the Volcker Rule. Similarly, Dick-Nielsen and Rossi (2018) use exclusions

from the Barclays Capital investment-grade bond index as events that create demand for

immediacy, and document an increase in the cost of immediacy after the financial crisis.

Choi and Huh (2017) show that trading costs for unmatched (i.e., market-making) trades

increased substantially in the post-regulation period relative to pre-crisis levels, and this

increase is driven by bank dealers.

Our model is able to reconcile these two lines of empirical evidence that seem at odds with

one another, namely that average transaction costs in corporate bonds have declined while

the cost of immediacy has gone up. The driving force behind these results in our theory is the

bank dealers’ endogenous shift from market making to matchmaking. The empirical papers

we have cited indeed provide ample evidence that matchmaking has increased following

the crisis and the implementation of post-crisis regulations (e.g., Bao, O’Hara, and Zhou

(2018), Choi and Huh (2017), Schultz (2017)).6 As a result of the shift to matchmaking,

the execution of large trades now tends to require more time (BIS Committee on the Global

5Two papers find more nuanced effects. Allahrakha, Cetina, Munyan, and Watugala (2019) find higher
markups for a subset of the trades when looking at Volcker Rule exemptions (e.g., trades in newly issued
bonds for which a bank dealer is part of the bond’s underwriting group) to infer cost differentials. Chernenko
and Sunderam (2018) develop an indirect measure of aggregate corporate bond market liquidity by relating
mutual funds’ cash holdings to the volatility of their fund flows. They find that while the liquidity of
investment grade bonds in the post-crisis period essentially recovered to the pre-crisis level, liquidity for
speculative grade bonds has not.

6Ederington, Guan, and Yadav (2014), Randall (2015), and Anand, Jotikasthira, and Venkataraman
(2018) provide additional evidence about matchmaking and provision of liquidity by customers in the cor-
porate bond market.
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Financial System (2014, 2016)).

It is important to stress that there are differences in the manner in which bank dealers

and non-bank dealers responded to the regulatory changes. Bao, O’Hara, and Zhou (2018)

find that dealers affected by the Volcker Rule increase their matchmaking activity while com-

mitting less capital to market making.7 At the same time, competition in market making

from smaller non-bank dealers appears to intensify: they increase capital commitments and

the amount of principal trading (see also Bessembinder, Jacobsen, Maxwell, and Venkatara-

man (2018)). Non-bank-dealer matchmaking, on the other hand, has decreased after the

implementation of the Volcker Rule. We return to the findings of the empirical literature to

motivate our modeling approach and guide our discussion of how bank regulations following

the financial crisis affected customer welfare.

2.3 Market Making versus Matchmaking: Theory

Several recent theoretical papers recognize the importance of the dual mechanisms for trading

bonds, namely market making and matchmaking, although each of these papers adopts a

different approach to studying the two mechanisms. An, Song, and Zhang (2017) study

intermediation chains by modeling the interaction between one seller, a finite number of

dealers, and an infinite number of buyers. Their model shows how an intermediary rat race

gives rise to an inefficient amount of principal trading. Our paper does not feature an inter-

dealer market or intermediation chains, but rather focuses on what happens to customer

welfare and the market environment if the cost of market making increases for bank dealers.

An and Zheng (2017) look at how the dual capacity of broker-dealers (principal and agency

trading) gives rise to a conflict of interest, which results in dealers holding too much inventory

as a tool for extracting rent from customers. Unlike in our framework, customers in their

model do not optimize and matchmaking is effortless and costless, leading An and Zheng

to focus on inventory as a strategic variable. In contrast, we model a two-way market

with balanced customer order flows and abstract away from inventory management—an

approach that is orthogonal to that of An and Zheng (2017). Furthermore, we investigate

the endogenous evolution of trading mechanisms by (i) having customers optimally choose

whether and how to trade and (ii) having dealers optimize not only the pricing of their

services but also how much to invest in the matchmaking technology.

7Goldstein and Hotchkiss (2017) investigate the trades that dealers seek to offset versus those that they
hold in inventory overnight.
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Li and Li (2017) model a trade-off between inventory costs (in market making) and ver-

ification costs (in matchmaking). Moral hazard in matchmaking arises in their model when

a dealer gains by providing worse executions for a customer. Because dealers have better

information than customers, transparency influences the prevalence of market making over

matchmaking.8 Transparency plays no role in our model because we assume homogeneous

common-value information. Our emphasis, instead, is on competition from non-bank dealers

and the role it plays in determining customer welfare and the extent of matchmaking.

The paper closest to ours in objective is Cimon and Garriott (2019). In their model,

market makers compete for quantity (Cournot) in separate buyer and seller markets, and

issue equity and debt to fund their operations. Market making is modeled as a more efficient

form of trading than matchmaking, and therefore increased agency trading implies a higher

price impact of trades. As a result, regulations that increase the cost of market making must

hurt liquidity. In contrast, we show that investment in technology can make matchmaking

a less expensive form of intermediation than market making, and the market power of deal-

ers provides a role for bank regulations in enhancing competition and improving customer

welfare.

3 Model

3.1 Motivating Our Modeling Framework

Before going into the technical presentation of the model, we motivate our choices regarding

its key modeling features. As our discussion of the theoretical literature in the previous

section suggests, the particular features of the bond trading environment one chooses to

include depend on the objective of the analysis.

Our goal is to investigate how structural changes in the corporate bond market, brought

about by bank regulations that increase the cost of market making, impact customer welfare

and market liquidity. The empirical finding of a shift from market making to matchmaking

for bank dealers tells us that including these two trading mechanisms and allowing both bank

dealers and customers to make optimal choices are necessary components of a model that

seeks to understand the evolution of the bond market in the post-crisis era. Furthermore,

the last several years have witnessed increased broker-dealer investment in fixed-income

electronic trading, giving rise to new trading venues and protocols (BIS Markets Committee

8Li and Li also provide empirical results pertaining to the share of matchmaking around the financial
crisis and how this share relates to transparency and volume.

9



(2016)).9 Enhancing matchmaking in the corporate bond market depends critically on bank

dealers’ prioritizing investment in these technologies, and therefore our model requires bank

dealers to optimally choose their level of investment.

It is important to acknowledge the difficulty involved in empirically measuring the extent

of matchmaking. The empirical papers we cite in Section 2.2 use various forms of the TRACE

database. An in-house cross—a dealer buying from a customer and immediately selling to

another customer—is reported in TRACE as two transactions. Whether TRACE reports

these two transactions as agency or principal depends on the internal accounts of the dealer

involved. If a trade moves through a proprietary trading account, it is considered a principal

trade by the Financial Industry Regulatory Authority (FINRA). Because TRACE does not

currently support riskless principal reporting as a separate category, such trades will be

reported as principal despite the fact that their economics are identical to those of agency

trading. The use of agency or proprietary accounts appears to be idiosyncratic to specific

dealers, and can be influenced by a dealer’s preference over reporting the price inclusive of the

mark-up/mark-down or a separate commission.10 Given that agency and riskless principal

have similar balance-sheet implications, we lump them together under our matchmaking

mechanism. In other words, matchmaking consists of all dealer-facilitated trading that does

not involve taking a trade onto the bank dealer’s balance sheet.

An important aspect of liquidity provision in the corporate bond market that we choose

to model explicitly is competition between bank and non-bank dealers. The significant role

that non-bank dealers can play by stepping into the void left by banks was emphasized even

before post-crisis regulations were implemented (e.g., Duffie (2012)). The empirical findings

cited above, that non-bank dealers have increased their capital commitments and market-

making activity, must be allowed to arise endogenously in our model, and therefore we

include non-bank dealers that offer market-making services and compete with bank dealers.

A related choice we need to make is whether to allow non-bank dealers to operate a

matchmaking mechanism. The model in this paper does not include this feature so that we

can obtain closed-form solutions for clarity of intuition. Still, there are several reasons to

believe that omitting the matchmaking mechanism for non-bank dealers does not detract

from the external validity of the model’s implications. First, Bao, O’Hara, and Zhou (2018)

9In particular, electronic trading that is typically based on permutations of the request-for-quote (RFQ)
protocol grew in the dealer-client segment.

10A recent FINRA rule implemented in May 2018 further changes incentives by requiring dealers to report
mark-ups or mark-downs from the prevailing market price for all trades of retail customers that are offset
within a day.
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and Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) find that most non-bank

dealers are small. Many of these non-bank dealers are regional in focus, and it is reasonable

to assume that most of them do not possess vast networks of customers that would allow

them to operate an efficient matchmaking mechanism. Bank dealers, on the other hand,

have long dominated the OTC markets and have rich information about a large group of

customers. Second, Bao, O’Hara, and Zhou (2018) find that non-bank dealers decrease

their matchmaking activity following the implementation of the Volcker Rule (by about

40% of the pre-crisis level), which could suggest they are being crowded out by the bank

dealers. The main dimension along which they inject competition into the corporate bond

market following the financial crisis appears to be market making (by boosting both capital

commitments and trading). As such, market making is the dimension we choose to model

explicitly for non-bank dealers.

Insofar as our focus is on bank regulation that applies to all bank dealers and, by the

same token, does not apply to any non-bank dealers, we choose to model each type using

a representative dealer that stands for the entire group of dealers. In so doing, we abstract

from the inter-dealer market and competition within each group. While other papers (e.g.,

An, Song, and Zhang (2017)) focus on the inter-dealer market, we believe that the basic

economics of intermediation chains did not materially change with the implementation of

post-crisis bank regulations. Furthermore, while we stress competition from non-bank dealers

as a factor that is important for understanding the impact of bank regulations, we strongly

believe that dealers in the corporate bond market have market power. It has long been

established that per-share transaction costs in corporate bonds decline in trade size (e.g.,

Schultz (2001)), even though fixed costs do not appear to be very high. The usual explanation

for this empirical regularity is dealer market power: large customers have greater bargaining

power and hence obtain better prices or lower fees than small customers can. In the model,

the spread charged by a dealer does not depend on the identity of the customer. While

clearly a simplification, we believe that specifying several types of customers with varying

degrees of bargaining power would not materially change the main implications of our model.

Hence, we choose to simplify the exposition by having only one type of customer and giving

the full market power to the dealer.11 In other words, each representative dealer optimally

sets prices to maximize profits subject to competition from the other representative dealer.

The market power of the bank dealer is important for the implications we derive concerning

11We note that some bank dealers may find it optimal to stop offering market making services as bank
regulatory costs go up, increasing the market power of the remaining bank dealers.
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customer welfare. In Section 5.2 we discuss this issue and solve a variation of the model with

a benevolent bank dealer who makes zero profit.

Two elements of the model that are critical to evaluating the impact of post-crisis bank

regulations on the corporate bond market involve the customers. First, we assume that

customers are heterogeneous with respect to their degree of patience, or the private value

they attach to trading immediately. The customers in our model can be thought of as

institutional investors whose trades are relatively large. These trades, which account for

most of the volume in the corporate bond market, require the active intermediation of OTC

broker-dealers either in a principal (market making) or an agent (matchmaking) capacity.12

Market making allows customers to trade immediately at a cost, while searching via the

matchmaking mechanism takes time. Given the ample empirical evidence that matchmaking

is a viable option for some customers in the corporate bond market, it has to be the case

that customers are heterogeneous with respect to patience or the desire for immediacy. Our

model provides for such heterogeneity.

Second, we let customers optimize over whether to trade and how to trade. Optimizing

customers are an important feature of the model because we seek to contribute insights

that are difficult to observe empirically. As we stress in the introduction, the empirical

finding of lower average transaction costs can be accompanied by other outcomes that are

not easily measured but that negatively impact customer welfare (e.g., delayed execution

of trades or the loss of welfare of customers who choose not to trade because the cost of

immediacy rises). In the model, customers optimally choose between (i) not trading, (ii)

using the matchmaking mechanism and incurring both a delay cost and a trading fee, and

(iii) choosing to trade immediately with the dealer that posts the best spread (either the

bank dealer or the non-bank dealer). This optimization is at the core of the model’s ability to

speak to the manner in which bank regulations affect customer welfare through their impact

on the microstructure of the corporate bond market.

Lastly, we model bank regulatory costs as per-share balance sheet costs imposed on

all trades accommodated by the bank dealer in his capacity as a market maker. This is

a parsimonious way to differentiate market-making activity from trade facilitation via the

matchmaking mechanism that is not subject to such regulatory costs. For symmetry, the

non-bank dealer’s market-making costs are also modeled as per-share costs. Given this

12In contrast, retail-size orders are often traded on MarketAxess, which is a centralized system that
currently executes almost 20% of the volume in the corporate bond market (investment grade and high
yield combined). MarketAxess operates an all-to-all trading platform that gives access to both dealers and
customers.
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specification of balance sheet costs and the risk-neutrality of dealers in the model, the level

of inventory does not play a role in pricing.13 As such, there is no loss of generality in

assuming equal arrival rates of customers who wish to buy and customers who wish to sell,

which simplifies the exposition of the model.

3.2 Model Setup

Time is continuous, t ∈ [0,∞). The traded asset has an expected fundamental value of v. All

customers and dealers are risk neutral and have the same information about the fundamental

value of the asset. The discount rate is r > 0.14

Customers and dealers. Infinitesimal buyers arrive in the market at the rate µ; that

is, the mass of buyers arriving during the time (t, t + dt) is µdt. Each buyer wishes to

buy one unit of the asset, and the private benefit (or “value”) for trading immediately is a

random variable x ∈ [0,∞), with cumulative distribution function G. Heterogeneity in this

private value is the manner in which we model differences across buyers in their degree of

patience. The arrival process of buyers is time invariant in the sense that the types of buyers

arriving during each small time interval (t, t+ dt) are distributed according to G. Likewise,

infinitesimal sellers arrive in the market at the same rate µ, and their private benefit for

selling the asset immediately is also distributed according to G. A customer’s private benefit

for trading is not observable by others, and the customer exits the market upon trading.

There are two representative yet distinct strategic intermediaries, called dealers, who help

customers trade this asset. One of the dealers is a bank affiliate, subject to bank regulations,

whereas the other security dealer is unaffiliated with any bank and hence is not subject to

bank regulations. In practice, all intermediaries face some types of regulatory constraints,

but the specific post-crisis regulations we discuss in Section 2.1 (Basel 2.5, Basel III, and the

Volcker Rule) apply only to banks and their broker-dealer affiliates.

Trading protocols: market making and matchmaking. There are two trading mech-

anisms (or protocols), which we call “market making” and “matchmaking.” Under the

market-making protocol, a dealer immediately fills a customer’s buy or sell order from his

own balance sheet by incurring a balance sheet cost. To fill an order immediately, the bank

13See An and Zheng (2017) for a model of the dual capacity of broker-dealers that focuses on the dealer’s
choice of inventory level.

14In our model, the discount rate r captures two effects: the rate at which customers and dealers discount
future profits as well as the rate at which trading opportunities decay over time.
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(non-bank) dealer charges customers a per-unit spread of SB > 0 (SNB > 0), which is pub-

licly observable. The bank dealer’s balance sheet cost is assumed to be cB per unit of the

asset regardless of whether he is accommodating a buy or a sell order (that is, the cost is in-

curred on the gross amount traded). The corresponding balance sheet cost for the non-bank

dealer is cNB.

The bank dealer’s cost is conceptually comprised of three components:

cB = OperatingCosts − ImplicitSubsidy + PostCrisisRegulatoryCosts .

The first component reflects the direct operating costs involved in running the market-

making business. We assume that the bank dealer operates optimally to minimize this cost.

This component is similar to the cost of the non-bank dealer, cNB, and can be influenced

by the same economic forces. The second component (ImplicitSubsidy) has been discussed

extensively in regulatory circles in the aftermath of the financial crisis. The Committee on

the Global Financial System of the Bank for International Settlements writes in its report

on fixed-income market liquidity that, in the pre-crisis era, “Underpriced liquidity services

were predicated on expectations of an implicit public sector backstop for major financial

institutions” (BIS Committee on the Global Financial System (2016)). This implicit too-

big-to-fail subsidy lowers the capital costs of the bank dealer’s trading book relative to that of

the non-bank dealer and hence could enable the bank dealer to offer cheaper liquidity. Post-

crisis bank regulations, represented by the third component of cB, were aimed at increasing

the market-making costs of bank dealers to counteract this implicit subsidy. Fixing the first

two components, the imposition of post-crisis regulations unequivocally increases the bank

dealer’s cost, but it is unclear whether the sum of the three components is lower than, equal

to, or greater than the cost of the non-bank dealer. We therefore investigate how post-crisis

bank regulations impact dealer actions, investor choices, and market outcomes by looking at

the effects of increasing cB over the entire relevant range (below and above cNB).15

Bank dealers can invest in developing a matchmaking mechanism. Under the matchmak-

ing protocol, a dealer searches for a counterparty for the customer’s order, but the dealer

does not use his balance sheet to accommodate the order. Using the matchmaking mech-

anism, a customer is matched with a counterparty at an exponentially distributed time τ

with intensity H ∈ [0,∞).16 While the dealer conducts the search, the customer incurs a

15Throughout the paper, when we discuss an increase in cB we mean an increase in the third component,
holding the other two components constant.

16Specifically, τ has a cumulative distribution function P (τ < t) = 1 − e−Ht. The matching intensity in
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delay cost by discounting the private benefit of trading. Given the exponential distribution

of matching time τ , we define the benefit customers obtain from matchmaking with intensity

H as

H ≡ E[e−rτ ] =

∫ ∞
τ=0

He−Hue−rudu =
H

r +H
. (1)

Higher H implies a shorter waiting time (with a lower cost of delay) for the searching

customers, and hence we refer to H as the speed of matchmaking.

To achieve matchmaking speed H, the bank dealer invests K(H) at time 0, where K(0) =

0, K ′(0) = 0, K ′(H) > 0 for all H ∈ (0, 1], and K ′′(H) > 0 for all H ∈ [0, 1].17 This

investment represents various aspects involved in operating a matchmaking mechanism such

as the cost of installing trading technology and deploying salespeople. Certain investments

in trading technology have the potential to benefit both matchmaking and market making,

and we assume that these are made optimally by the bank dealer to minimize the operating-

cost component of cB. K(H) is therefore an incremental investment that enhances only the

matchmaking mechanism over and above other investments that benefit the bank dealer’s

entire operation.18

To simplify the exposition, we model the bank dealer’s investment in technology as a

one-time cost at time 0. This enables us to maintain general functional forms for both the

distribution of investor types and the cost of investment while obtaining closed-form solutions

and explicit comparative statics. The main implications of our model do not depend on

specifying a one-time investment in technology. In Section 5.3, we discuss a variation of the

model in which the bank dealer incurs a positive marginal cost for every trader who chooses

the matchmaking service. We solve this variation of the model with a specific distribution

for G and a particular functional form for K, obtaining implications similar to those of our

main model.

our model does not depend on the mass of customers who choose matchmaking. This departure from the
Duffie, Gârleanu, and Pedersen (2005) framework is made for analytical simplicity.

17The assumptions regarding K(H) are meant to ensure that the equilibrium investment in matchmaking
technology is positive and finite.

18The search technology we describe increases the matching speed for the bank dealer’s customers. The
report on electronic trading in fixed income markets issued by the Markets Committee of the Bank for
International Settlements notes that growth in electronic trading has occurred primarily in the dealer-client
segment. Many of the systems in this segment are single-dealer platforms. Investment in such technology
by one bank dealer does not increase the matching speed of another dealer. In practice, the search for a
counterparty for a customer’s trade may take several forms. For example, a bank dealer may tap liquidity
on MarketAxess, which is an all-to-all trading platform primarily for smaller trades. We view MarketAxess
simply as one of the tools that bank dealers can use to search, although it often not the tool of choice for
large institutional trades that are our primary focus, and we do not model each such tool separately in this
paper.
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When a match is made, the bank dealer receives a publicly observable fee of f from

both the buyer and the seller. As Choi and Huh (2017) note, a dealer searching for a

counterparty may need to offer better terms of trade to the counterparty in order to execute

the trade. Hence, the two sides of the trade need not be symmetric in the amount they pay

for participating in the transaction, and one side may even buy (sell) at a lower (higher)

price than the fundamental value. We view 2f as the net compensation earned by a dealer

that executes both legs of such an agency (or riskless principal) cross.

Equilibrium. An equilibrium consists of:

1. The bank dealer’s choices of market-making spread SB, matching speed H, and match-

ing fee f ,

2. The non-bank dealer’s choice of market-making spread SNB, and

3. Each arriving customer’s choice between market making (with one of the dealers),

matchmaking, and refraining from trading altogether,

such that dealers and customers maximize expected profits.19

3.3 Customer and Dealer Objectives

The customer’s optimization problem is simple: she needs to choose between trading im-

mediately with the bank dealer, trading immediately with the non-bank dealer, searching

for a counterparty using the matchmaking service, or not trading. The bank and non-bank

dealers’ market-making services are identical from the customer perspective. Therefore, a

customer who opts to trade immediately will choose the market-making service that charges

the lower spread, which we denote by

S = min(SB, SNB) (2)

Recall that x denotes the private benefit a customer obtains from trading immediately.

The customer’s profit from using a market-making service is x−S. Her expected profit from

19Note that in our definition of equilibrium, all price decisions of the two dealers, {SB , f, SNB}, are made at
time 0. That is, we assume that they can commit to the prices determined at time 0 and do not dynamically
adjust them. In a stationary environment like ours, an equilibrium obtained under committed prices is also
an equilibrium if we allow dealers to change their prices {SB , f, SNB} dynamically, under off-equilibrium
beliefs that deviations are “punished” sufficiently severely. We do not, however, claim that the equilibrium
obtained under committed prices is the unique equilibrium if dealers can adjust prices over time.
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using the matchmaking mechanism offered by the bank dealer, which takes into account the

expected waiting cost, is (x− f)H. Her profit from leaving the market without trading is 0.

Obviously, a customer prefers matchmaking to not trading if and only if x ≥ f .

Let b be the value of the marginal customer who is indifferent between matchmaking and

market making. The indifference condition is

(b− f)H = b− S, (3)

and for H < 1 we obtain

b =
S − fH
1−H

. (4)

The customer’s optimization problem therefore results in a very simple behavior: do not

trade if x ∈ [0, f), choose matchmaking if x ∈ [f, b], or choose market making with the

dealer offering the lower spread if x > b.20

Given the two thresholds f and b, the overall welfare of customers aggregated across the

three ranges of x is:

πc =
2µ

r


∫ f

x=0

0 · dG(x)︸ ︷︷ ︸
no trade

+

∫ b

x=f

(x− f)HdG(x)︸ ︷︷ ︸
matchmaking

+

∫ ∞
x=b

(x− S)dG(x)︸ ︷︷ ︸
market making

 . (5)

The bank dealer’s profit is comprised of three components: the discounted matchmaking

profit (that depends on the fee and the matching speed), the discounted market-making

profit (if the bank offers the lower spread), and the up-front cost K(H), such that

πB =
2µ

r
[Hf(G(b)−G(f)) + (S − cB)(1−G(b))IS=SB ]−K(H), (6)

where IS=SB is an indicator function that takes the value 1 if S = SB (equivalently, SB ≤ SNB)

and 0 otherwise.

The non-bank dealer’s market-making profit can be expressed as:

πNB =
2µ

r
[(S − cNB)(1−G(b))IS=SNB ] , (7)

where IS=SNB is an indicator function that takes the value 1 if SNB < SB and 0 otherwise.

20In Section 4 we show that any equilibrium in which the bank dealer invests in matchmaking (H > 0)
must satisfy f < S (i.e., the matchmaking fee is lower than the market-making spread).
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4 Equilibrium

Before delving into the full equilibrium analysis, we provide an intuitive description of the

equilibrium structure and how it evolves as bank regulatory costs increase. Readers wishing

to see the formal statements first are invited to jump to Section 4.2 and then come back to

Section 4.1.

4.1 Properties of the Equilibrium: An Intuitive Exposition

A key qualitative insight of our model is that increasing the regulatory balance sheet cost of

the bank dealer encourages investment in a matchmaking technology that the bank dealer,

seeking to preserve market-making profits, otherwise shuns. Figure 1 illustrates this idea by

plotting the customers’ transaction costs (Panel A), choice of trading mechanism (Panel B),

and overall welfare (Panel C) as functions of the bank dealer’s balance sheet cost, cB, holding

all other model parameters constant. For this example, we use an exponential distribution

for x (the gains from trade) with a mean of 10 basis points and a quadratic function for the

cost of the matchmaking technology K(H) = kH2, where k = 0.1.21

We observe that the equilibrium changes its properties as bank regulatory costs increase,

and we distinguish between four regions (separated by the vertical dashed lines). In re-

gion 1, the bank dealer’s cost is low enough that the optimal spread, SB (depicted by the

blue line in Panel A), is lower than the non-bank dealer’s balance sheet cost, cNB. In this

region, the bank dealer has an unconstrained monopoly on the provision of immediacy. As

the bank dealer’s balance sheet cost increases, the spread rises as well. Certain customers

stop paying the spread and opt instead to use the matchmaking mechanism (the blue area

shrinks and the green area expands in Panel B). Due to this endogenous shift, the rate of

increase in customers’ average transaction costs is lower than the rate of increase in the

bank dealer’s spread (dotted line in Panel A) and overall customer welfare decreases (dotted

line in Panel C). Region 1 corresponds to the common intuition that a higher bank dealer

balance sheet cost has negative consequences for market liquidity and customer welfare.

As the bank dealer’s balance sheet cost continues to rise and approaches (but is still

lower than) the non-bank dealer’s balance sheet cost, the bank dealer would have liked to

set SB > cNB. However, the non-bank dealer now exerts competitive pressure on the bank

dealer and therefore the market-making spread, SB, needs to equal the non-bank dealer’s

balance sheet cost, cNB (Panel A). This is region 2 of the equilibrium. Because the bank

21Other parameters we use for this numerical example are µ = 1, r = 0.01, and cNB = 20 bps.
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dealer is now unable to increase his spread without losing the market-making business, he

seeks to extract higher profits from the matchmaking business by making it more attractive

to customers. Therefore, the bank dealer increases his investment in matching speed and

lowers the matching fee. Certain customers who were previously excluded from this market

start to trade, which can be observed as the shrinking “no trade” (red) area in Panel B.

As a result, customers’ average transaction costs are now lower (Panel A) and their overall

welfare is higher (Panel C). This region is the most interesting case in our model, where an

increase in the bank dealer’s balance sheet cost encourages the bank to invest in matchmaking

technology and shift his business model towards one that involves matching buyers and sellers

as an agent.

We emphasize that customer welfare increases in region 2 when the balance sheet cost

rises because the bank dealer possesses market power and extracts rents from customers.

The bank dealer’s optimal response to the increase in the regulatory costs of market making

is to attract customers to the matchmaking mechanism, resulting in a decline in the rents he

collects and a concomitant increase in overall customer welfare. The results would be quite

different if the bank dealer were benevolent. In Section 5.2, we discuss a variation of the

model in which a benevolent bank dealer maximizes customer welfare subject to breaking

even on his liquidity-provision service. In that setting, an increase in the bank dealer’s

balance sheet cost always reduces overall customer welfare.

Region 3 and region 4 of the equilibrium are obtained when the bank dealer’s balance

sheet cost, cB, exceeds the non-bank dealer’s balance sheet cost, cNB. In these regions, the

non-bank dealer takes over market making and the bank dealer operates only the matchmak-

ing mechanism. In region 3, the non-bank dealer’s spread, SNB (red line in Panel A), is equal

to the bank dealer’s balance sheet cost, cB. As cB rises, the non-bank dealer increases his

market-making spread to extract more rents, creating an opportunity for the bank dealer to

increase his matchmaking fee as well. As a result, average transaction costs increase (dotted

line in Panel A) and overall customer welfare declines (dotted line in Panel C). In region 4,

the bank dealer no longer exerts any competitive pressure on the non-bank dealer. There-

fore, the non-bank dealer charges his unconstrained monopoly spread, and further increases

in the bank dealer’s balance sheet cost no longer affect the equilibrium outcomes.

4.2 Equilibrium: Formal Statements

We begin by making the following assumption about the distribution of the private values

customers attach to trading immediately:
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Assumption 1. For all x, the distribution G of customers’ values satisfies

Φ (x) ≥ 0, Φ′ (x) ≤ 0, G′′ (x) ≤ 0, (8)

where

Φ (x) ≡ G′ (x) +
(1−G (x))G′′ (x)

G′ (x)
. (9)

The first of these three conditions, Φ (x) ≥ 0, implies that the hazard rate G′(x)/(1 −
G(x)) is weakly increasing in x.22 The hazard rate plays a role when we consider the bank

dealer’s incentive to marginally increase the threshold b between matchmaking and market

making (through changes in SB, H, and f) and it has a natural economic interpretation:

the bank dealer collects market-making revenues from a population of customers equal to

1 − G (b) but loses the market-making revenues from the marginal customer who switches

to matchmaking at rate G′ (b). The technical conditions Φ′ (x) ≤ 0 and G′′ (x) ≤ 0 are

useful for proving the existence of an equilibrium. Assumption 1 is not overly restrictive and

can be shown to hold for many distributions. For example, with the uniform distribution,

G(x) = x/B for B > 0, and this satisfies the conditions in Assumption 1 because Φ(x) =

1/B, Φ′ (x) = 0, and G′′(x) = 0. The exponential distribution also satisfies this assumption

with G(x) = 1− e−x/β, and therefore Φ(x) ≡ 0 and G′′(x) = −e−x/β/β2 < 0.

As we discuss in Section 4.1, the equilibrium structure is comprised of several distinct

cases depending on the degree of competition between the bank and non-bank dealers (or

the relative magnitudes of cB and cNB). Case 1 occurs when the bank dealer’s unconstrained

monopoly spread is lower than the market-making cost of the non-bank dealer (and hence

there is no competitive pressure from the non-bank dealer). In Case 2, the bank dealer still

provides market-making services but his spread is constrained to equal the non-bank dealer’s

cost of market making. Case 3 is where the cB exceeds cNB, and as a result market-making

services are supplied by the non-bank dealer. We consider these cases one by one. As we

will see, most of our economic insights are borne out in Case 1 and Case 2. For this reason,

the proofs for Cases 1 and 2 are provided in the internal Appendix, whereas the proofs for

Case 3 are provided in the Internet Appendix.

22We have d
dx

1−G(x)
G′(x) = −G′(x)2−(1−G(x))G′′(x)

G′(x)2 = − Φ(x)
G′(x) .
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4.2.1 Case 1: Unconstrained Bank Dealer (S?1 < cNB)

We define the bank dealer’s unconstrained optimization problem as Problem 1:

max
S≥f≥0,H∈[0,1]

Π1 ≡
2µ

r
[Hf (G (b)−G (f)) + (S − cB) (1−G (b))]−K (H) . (10)

The following proposition establishes the existence and uniqueness of the solution to Prob-

lem 1.

Proposition 1. Suppose K ′′ (H) ≥ β1 for all H ∈ (0, 1), where β1 is a constant.23 Then,

Problem 1 has a unique interior solution (S?1 ,H?
1, f

?
1 ), where H?

1 ∈ (0, 1) and S?1 > f ?1 > 0.

This solution satisfies the following first-order conditions:

S?1 − cB −H?
1f

?
1 =

1−G (b?1)

G′ (b?1)
(1−H?

1), (11)

f ?1 =
1−G (f ?1 )

G′ (f ?1 )
, (12)

r

2µ
K ′ (H?

1) = f ?1 (1−G (f ?1 ))− b?1 (1−G (b?1)) , (13)

where b?1 =
S?1−H?1f?1

1−H?1
is the private value of the marginal customer who is indifferent between

matchmaking and market making.

The three equations that characterize the equilibrium are the (rearranged) first-order

conditions with respect to S, f , and H. The condition K ′′ (H) ≥ β1 plays two roles. First,

it guarantees an interior solution for matchmaking (i.e., H < 1), which we believe is the

more empirically plausible case. Second, it is a sufficient condition for the equilibrium to be

unique. Note that our equilibrium definition from Section 3.2 reduces in Case 1 to merely

solving the bank dealer’s optimization problem (given the simple discrete choice customers

face). As such, uniqueness means that the bank dealer’s objective function is single-peaked.

To determine how bank regulatory costs impact dealer behavior, market outcomes, and

customer welfare over the entire range of cB, we need to investigate how these attributes

change within each of the cases. Proposition 2 provides the comparative statics for Case 1.

23β1 ∈
(

8µc̄
r ,∞

)
is the solution of

r

2µ
β =

1(
1−

√
2µ
r

√
4c̄
β

)2 cB max
b
{bG′ (b)} .
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Specifically, we look at how an increase in cB impacts the bank dealer’s optimal choices

(spread, fee, and speed), the customers’ choice of trading outcome and venue (i.e., match-

making, market making, or refraining from trading altogether), the average transaction costs

of customers, bank dealer profits, and overall customer welfare.24

Proposition 2. In the equilibrium characterized by Proposition 1, if the bank dealer’s balance

sheet cost cB increases and holding all else equal, then:

1. The bank dealer’s spread (S?1) increases, the matching speed (H?
1) increases, and the

matchmaking fee (f ?1 ) is unchanged.

2. The fraction of customers using the market-making service, 1 − G (b?1), decreases; the

fraction of customers choosing the matchmaking mechanism, G (b?1)−G (f ?1 ), increases;

and the fraction of customers who refrain from trading, G (f ?1 ), is unchanged.

3. Customers’ average transaction costs, 1

1−G(f?1 )
[(G (b?1)−G (f ?1 )) f ?1 + (1−G (b?1))S?1 ],

increase if and only if the following condition holds at the equilibrium (S?1 ,H?
1, f

?
1 ):

cBG
′ (b?1)

r
2µ
K ′′ (H?

1) (1−H?
1)2 ≤

1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)
. (14)

Moreover, if K ′′ (H) (1−H)2 is non-increasing in H, then customers’ average trans-

action costs is a hump-shaped function of cB, and the decreasing region may not exist

(depending on the parameters of the economy).

4. The Bank dealer’s profit, πB, decreases.

5. Overall customer welfare, πc (defined in (5)), decreases if and only if the following

condition holds at the equilibrium (S?1 ,H?
1, f

?
1 ):

r

2µ
K ′′ (H?

1) (1−H?
1)2 ≥ cB

G′ (b?1)

1−G (b?1)

∫ b?1

f?1

(1−G (x)) dx. (15)

Moreover, if K ′′ (H) (1−H)2 is non-increasing in H, then πc is a U-shaped function

of cB, and the increasing region may not exist (depending on the parameters of the

economy).

24The non-bank dealer has zero market share and makes zero profit in Case 1.
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The bank dealer sets the matchmaking fee and speed in this case to maximize his uncon-

strained monopolist profit. Given a particular distribution of customers’ private value (or

patience), a lower fee increases the number of customers who choose to trade while decreas-

ing the compensation from each trade. This tradeoff results in a unique fee that maximizes

the bank dealer’s expected profit from matchmaking that depends only on the distribution

of private values customers attach to trading immediately (and hence does not change as

bank regulatory costs increase). The bank passes any increase in regulatory costs to market-

making customers by increasing the spread, leaving the bank dealer’s profit per trade in the

market-making mechanism unchanged. This means that increasing cB shifts some customers

from market making to matchmaking (as the spread increases), but the population of cus-

tomers who refrain from trading (which depends only on the magnitude of the matchmaking

fee) does not change.

Average transaction costs can be computed as the weighted average of the market-making

spread and the matchmaking fee weighed by the respective populations of customers who

choose each of these mechanisms. When regulatory costs increase, the spread increases but

the fraction of customers choosing the market making mechanism decreases, and hence the

direction of the change in average transaction costs can go either way. For cB approaching

zero, the right-hand-side of expression (14) approaches infinity while the left-hand-side is

close to zero, ensuring that average transaction costs increase. As cB goes up, either the

condition in (14) holds until the equilibrium reaches Case 2 or the condition is violated for

all cB greater than a certain threshold, resulting in an inverse U-shape.

The last two comparative statics involve bank dealer profits and overall customer welfare.

Bank dealer profits are unequivocally lower as regulatory costs increase (or, put differently,

as the bank dealer’s implicit “too-big-to-fail” subsidy is reduced). The rationale is clear:

market making is more profitable for the bank dealer than matchmaking, and customers are

shifting from the former to the latter. It is clear that some customers who wish to trade

immediately are worse off when cB increases. Whether the overall population of customers

is benefitting or not depends on the extent of bank dealer investment in the matchmaking

technology. Both H?
1 and b?1 increase when cB goes up in Case 1, and the right-hand side

(left-hand side) of the condition in (15) is increasing (non-increasing) in cB. When balance

sheet costs are close to zero, this condition is satisfied. As regulatory costs increase, either

the condition is satisfied until the equilibrium reaches Case 2 (and welfare decreases over

the entire range of Case 1) or the condition is violated at some threshold and is violated for

all cB greater than the threshold (resulting in welfare starting to increase in the interior of
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Case 1).

Case 1 corresponds to region 1 in the example depicted in Figure 1. For this partic-

ular choice of parameters, average transaction costs increase and overall customer welfare

decreases over the entire region rather than having an interior maximum and minimum,

respectively. The comparative statics with respect to transaction costs, the fractions of cus-

tomers choosing each trading mechanism, and customer welfare are clearly visible in the

three panels of the figure. The lack of competition from the non-bank dealer in Case 1 al-

lows the bank dealer to push the increase in regulatory costs to customers who trade via the

market-making mechanism, making them worse off. In addition, the bank dealer does not

have sufficient incentives in Case 1 to lower the matching fee to attract more cost-conscious

customers to the market. These outcomes change dramatically when competition starts

constraining the bank dealer’s profit maximizing strategies.

4.2.2 Case 2: Constrained Bank Dealer (S?2 = cNB)

Case 2 arises when the bank dealer’s balance sheet cost is high enough that his unconstrained

optimal spread (from Case 1) would be higher than the non-bank dealer’s balance sheet cost

cNB. Given that for Problem 1 we would obtain ∂πB
∂S

> 0 at S = cNB < S?1 , the constraint

binds. As a result, the bank dealer sets S?2 = cNB.

We define the bank dealer’s constrained optimization problem as Problem 2:

max
S≥f≥0,H∈[0,1]

Π2 =
2µ

r
[Hf (G (b)−G (f)) + (S − cB) (1−G (b))]−K (H) , (16)

such that S = cNB.

The following proposition establishes the existence of equilibrium in Case 2:

Proposition 3. If K ′′ (H) ≥ β1 for all H ∈ (0, 1), then the solution for Problem 2 exists.

Denote the solution as (S?2 ,H?
2, f

?
2 ). It satisfies H?

2 ∈ (0, 1), S?2 = cNB, and the following

first-order conditions:

G (b?2)−G (f ?2 ) = − (cNB − cB −H?
2f

?
2 )G′ (b?2)

1

1−H?
2

+ f ?2G
′ (f ?2 ) , (17)

r

2µ
K ′ (H?

2) = f ?2 (G (b?2)−G (f ?2 ))− (cNB − cB −H?
2f

?
2 )G′ (b?2)

cNB − f ?2
(1−H?

2)2 , (18)

where b?2 =
cNB−f?2H?2

1−H?2
is the private value of the marginal customer who is indifferent between

matchmaking and market making.
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While we do not require additional conditions (beyond K ′′ (H) ≥ β1 from Case 1) to es-

tablish the existence of the equilibrium in Case 2, the constrained nature of the optimization

problem prevents us from demonstrating uniqueness. Still, the lack of uniqueness does not

preclude characterizing the comparative statics, and the following proposition provides very

sharp predictions regarding the impact of an increase in cB on the economic environment in

Case 2.

Proposition 4. In the equilibrium characterized by Proposition 3, if the bank dealer’s balance

sheet cost cB increases and holding all else equal, then:

1. The bank dealer’s spread (S?2) does not change, the matching speed (H?
2) increases, and

the matchmaking fee (f ?2 ) decreases.

2. The fraction of customers using the market-making service, 1 − G (b?2), decreases; the

fraction of customers choosing the matchmaking mechanism, G (b?2)−G (f ?2 ), increases;

and the fraction of customers who refrain from trading, G (f ?2 ), decreases.

3. Customers’ average transaction costs, 1

1−G(f?2 )
[(G (b?2)−G (f ?2 )) f ?2 + (1−G (b?2))S?2 ],

decrease.

4. The bank dealer’s profit, πB, decreases.

5. Overall customer welfare, πc (defined in (5)), increases.

The comparative statics in Case 2 are all unambiguously signed. As competition from

the non-bank dealer constrains the bank dealer’s ability to pass the rising regulatory costs

onto market-making customers, the bank dealer seeks to extract higher profits from the

matchmaking business. For that purpose, he increases overall trading volume (which is

equivalent in our setting to the fraction of customer types who trade, G (f ?2 )) by lowering

the matching fee to attract customers who refrain from trading in Case 1. At the same time,

he increases investment to achieve a higher matching speed and thereby to shorten the time

it takes to collect the fee from each searching customer.

Shifting more customers to the less expensive matchmaking service lowers average trans-

action costs in the market, but even more notable is that overall customer welfare increases.

The welfare loss of customers with a high need for immediacy who pay a higher spread is

being offset by the welfare gains of two groups of customers: the first group contributed zero

welfare in Case 1 (because these customers did not trade) but contributes a positive amount

to welfare in Case 2 (by trading via the matchmaking mechanism), and the second group
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includes some of the switching customers who are better off in Case 2 with a lower fee and

a higher matching speed than in Case 1 where they paid the spread. Case 2 corresponds

to region 2 in the example depicted in Figure 1, and the patterns described by the compar-

ative statics are very prominent in the figure. Here customers derive the greatest benefit

from increased bank regulatory costs because the industrial organization angle (increased

competition from the non-bank dealer) interacts with the market microstructure angle (im-

provements in the matchmaking mechanism that attract more customers to using it), leading

to reduced bank dealer rents and increased overall customer welfare. In Section 6, we return

to discuss these comparative statics and how they map onto the empirical evidence.

4.2.3 Case 3: cB ≥ cNB

When cB > cNB, the bank dealer does not provide market making services because the non-

bank dealer can always charge SNB = cB − ε and attract all customers who are willing to

pay the spread to trade immediately.25 Given the non-bank dealer’s choice of spread S, the

optimization problem of the bank dealer is

max
H∈[0,1],f≥0

ΠB,3 =


2µ
r
Hf (G (b)−G (f))−K (H) if S ≥ f

0 if S < f
. (19)

Given the bank dealer’s choice of matchmaking speed and fee, (H, f), the optimization

problem of the non-bank dealer is

max
cB≥SNB

ΠNB,3 =


2µ
r

[(SNB − cNB) (1−G (b))] if SNB ≥ f

2µ
r

[(SNB − cNB) (1−G (SNB))] if cNB < SNB < f
. (20)

The strategy space for the two dealers is Λ0 = {(S,H, f) |S ∈ [0, cB] ,H ∈ [0, 1] , f ≥ 0},
where S is set by the non-bank dealer and H and f are set by the bank dealer. The following

lemma shows useful restrictions on the optimal strategies of the bank and non-bank dealers.

Lemma 1. In equilibrium, the optimal fee (f) of the bank dealer and the optimal spread (S)

of the non-bank dealer satisfy f < min{f̃ , S}, where f̃ is the unique solution to 1−G(f̃)

G′(f̃)
−f̃ = 0.

25When cB = cNB , the only equilibrium spread possible is S = cB = cNB and both bank and non-bank
dealers make zero profits from market making. This boundary point can be included in either Case 2 or
Case 3, and we could also assume that customers who would like to use the market-making mechanism
randomize between the bank and non-bank dealers.
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Given Lemma 1, the new strategy space can be written as

Λ1 =
{

(S,H, f) |S ∈ [f, cB] ,H ∈ [0, 1] , f ∈
(

0,min
{
f̃ , S

})}
. (21)

The bank dealer’s optimization problem can be rewritten as

max
H∈[0,1];f∈(0,min{f̃ ,S})

ΠB,3 =
2µ

r
Hf (G (b)−G (f))−K (H) (22)

and the optimization problem of the non-bank dealer can be rewritten as

max
cB≥SNB≥f

ΠNB,3 =
2µ

r
[(SNB − cNB) (1−G (b))] . (23)

The equilibrium definition from Section 3.2 can be formally restated in Case 3 as follows:

Equilibrium in Case 3. A triple (S?3 ,H?
3, f

?
3 ) is called an equilibrium if

1. S?3 ∈ arg maxcB≥S≥f?3 ΠNB,3(S,H?
3, f

?
3 );

2. (H?
3, f

?
3 ) ∈ arg maxH∈[0,1],S?3≥f≥0 ΠB,3 (S?3 ,H, f) and

3. Arriving customers maximize their expected profits by choosing between the non-bank

dealer’s market-making service, the bank dealer’s matchmaking service, or refraining

from trading altogether.

The bank dealer’s strategy space in the equilibrium definition is specified as S?3 ≥ f ≥ 0

because it is implied by min
{
f̃ , S?3

}
≥ f ≥ 0. We call an equilibrium with S?3 = cB a

constrained equilibrium and an equilibrium with S?3 < cB an unconstrained equilibrium. The

following proposition characterizes the equilibrium.

Proposition 5. Suppose that K ′′ (H) > β2 for all H ∈ (0, 1), where β2 is a constant.26

Then, for cB ≥ cNB, the following results are true.

1. (Existence) There always exists at least one equilibrium (S?3 ,H?
3, f

?
3 ).

26β2 ∈
(

8µc̄
r ,∞

)
is the solution to

r

2µ
β =

1(
1−

√
2µ
r

√
4c̄
β

)3

5

2
cB max

b
{bG′ (b)} . (24)
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2. (Structure) There exist c̄1 and c̄2 satisfying cNB < c̄1 < c̄2 such that

(a) If cB ∈ [cNB, c̄1), there exists a unique equilibrium, and the equilibrium is a con-

strained equilibrium.

(b) If cB ∈ [c̄2,∞), all equilibria are unconstrained.

3. (Optimality) (S?3 ,H?
3, f

?
3 ) satisfy the conditions below.

(a) (H?
3, f

?
3 ) satisfy the following first-order conditions for all possible equilibria:

G (b?3)−G (f ?3 ) = f ?3G
′ (f ?3 ) + f ?3

H?
3

1−H?
3

G′ (b?3) , (25)

r

2µ
K ′ (H?

3) = f ?3 (G (b?3)−G (f ?3 )) +
S?3 − f ?3

(1−H?
3)2f

?
3H?

3G
′ (b?3) , (26)

where b?3 =
S?3−H?3f?3

1−H?3
.

(b) In a constrained equilibrium, S?3 = cB; in an unconstrained equilibrium, S?3 satis-

fies the following first-order condition:

1−G (b?3)− (S?3 − cNB)
G′ (b?3)

1−H?
3

= 0. (27)

Case 3 is more complex because the equilibrium definition does not reduce to the bank

dealer’s optimization problem (as in the two other cases). Rather, when cB exceeds cNB

the bank and non-bank dealers need to take each other’s best responses into account when

choosing their strategies. We can show uniqueness of the constrained equilibrium as long as

the bank regulatory costs are not too high. If cB ∈ [c̄1, c̄2), however, a constrained equilibrium

may exist but multiple equilibria are possible. In the unconstrained equilibrium, the bank

regulatory costs are greater than the non-bank dealer’s optimal spread, and therefore nothing

changes in the equilibrium if cB increases. In other words, since the non-bank dealer does

not increase his spread, the bank dealer does not have an incentive to change his choices

of matchmaking fee or speed. As such, customers do not alter their behavior and overall

welfare is unchanged. While the unconstrained equilibrium appears somewhat extreme, the

constrained equilibrium is more nuanced and we now turn to characterizing its comparative

statics.
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Proposition 6. In the case characterized by Proposition 5, when cB increases, if (S?3 ,H?
3, f

?
3 )

is an unconstrained equilibrium, then nothing will be changed in the equilibrium; if (S?3 ,H?
3, f

?
3 )

is a constrained equilibrium, then

1. The non-bank dealer’s optimal spread, S?3 , increases and the bank dealer’s optimal fee,

f ?3 , increases. The matching speed, H?
3, increases if and only if the following condition

holds at the equilibrium (S?3 ,H?
3, f

?
3 ):

H
1−H

SG′2 (b) > f [G′ (b) +H (b− f)G′′ (b)] [−fG′′ (f)− 2G′ (f)] . (28)

If, in addition, K ′′ (H) > β3 for all H ∈ (0, 1), where β3 is a constant,27 then the bank

dealer’s optimal speed H?
3 increases in cB.

2. The fraction of customers paying the spread, 1−G (b?3), decreases. The fraction of cus-

tomers who refrain from trading, G (f ?3 ), increases. The fraction of customers choosing

matchmaking, G (b?3)−G (f ?3 ), increases if and only if the following condition holds at

the equilibrium (S?3 ,H?
3, f

?
3 ):(

1− Γ cB
1−H

)
G′ (b)− Hf

1−HG
′′ (b)

(1− Γ (b− f)) (2G′ (f) + fG′′ (f)) + H
1−HG

′ (b)
<
G′ (b)

G′ (f)
, (29)

where Γ = fG′(b)
r

2µ
K′′(H)(1−H)2 . In particular, (G (b?3)−G (f ?3 )) increases if cNB is sufficiently

small and cB is greater than but sufficiently close to cNB.

3. Customers’ average transaction costs 1

1−G(f?3 )
[(G (b?3)−G (f ?3 )) f ?3 + (1−G (b?3))S?3 ] in-

crease if cNB is sufficiently small and cB is greater than but sufficiently close to cNB.

4. The bank dealer’s profit πB increases. The non-bank dealer’s profit, πNB, increases if

cNB is sufficiently small and cB is greater than but sufficiently close to cNB. On the

other hand, if cB is sufficiently larger than cNB (yet the equilibrium is still constrained)

and K ′′ is sufficiently large, the non-bank dealer’s profit, πNB, decreases.

27β3 ∈
(

8µc̄
r ,∞

)
is the solution to √

2µ

r

√
4c̄

β
=

1

1 + c̄
(
−G

′′(0)
G′(0)

)

29



5. Overall customer welfare, πc (defined in (5)), decreases if K ′′ is sufficiently large. πc

also decreases if cNB is sufficiently small and cB is greater than but sufficiently close

to cNB.

It is clear that raising regulatory costs in this case works to weaken competition rather

than strengthening it. As such, the non-bank dealer becomes less constrained as cB rises and

can increase his spread. The bank dealer focuses on maximizing his profits from matchmaking

and can do so by raising his fee. The higher fee means that more customers choose to

refrain from trading, which decreases volume and negatively affects welfare. The impact on

average transaction costs and overall customer welfare in the constrained equilibrium hinges

on the investment in matching speed and the fraction of customers who choose to utilize

the matchmaking service, both of which can rise or fall depending on the parameters of the

economy. Overall customer welfare declines if the rate at which the cost of speed goes up is

sufficiently high. Also, if the market-making cost of the non-bank dealer is sufficiently small

and the bank dealer’s cost is greater than but not too far from that of the non-bank dealer,

then the investment in speed cannot offset the negative impact of the increases in the spread

and fee, resulting in lower overall customer welfare. Both dealers benefit (at least when cNB

is sufficiently small and cB is greater than but sufficiently close to cNB) when each dealer

specializes in a different business (the non-bank dealer in market making and the bank dealer

in matchmaking) and is able to use his market power to extract higher rents.28

Case 3 corresponds to region 3 and region 4 in the example depicted in Figure 1. Specif-

ically, region 3 shows the patterns associated with the constrained equilibrium. For the

parameters in this specific example, we observe that average transaction costs rise only

slightly, but overall customer welfare decreases by a large amount due to the increase in

the fraction of customers who choose to refrain from trading. Region 4 in this example is

consistent with the unconstrained equilibrium, where further increases in cB have no impact

on any of the outcomes.

5 Robustness

In this section, we elaborate on three aspects of our model. In Section 5.1 we consider

a potential alternative metric for welfare that includes, in addition to customer welfare,

28The non-bank dealer’s profits could potentially fall if the bank dealer’s strategy attracts enough customers
to the matchmaking mechanism, but this can happen only for very high values of cB that are close to the
boundary of the unconstrained equilibrium.
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dealer profits and the implicit too-big-to-fail subsidy the bank dealer receives. We examine

what happens to this more expansive welfare metric when the regulatory costs of bank

dealers increase. In Section 5.2 we study a variation of our model in which the bank dealer is

benevolent: he maximizes customer welfare subject to a zero-profit condition. As we mention

in Section 4.1, solving this variation of the model demonstrates that the bank dealer’s market

power is a driving force behind the increase in customer welfare in region 2 (or Case 2) in

our model. In Section 5.3 we investigate a variation of our model in which the cost of

operating the matchmaking business increases with the number of customers utilizing it.

This demonstrates the robustness of our main finding—the increase in customer welfare in

region 2—to the assumption in our model that investment in matchmaking occurs at time

zero and the bank dealer incurs zero marginal cost for additional customer utilization. Proofs

of the results reported in this section are provided in the Internet Appendix.

5.1 Further Discussion of Welfare

Throughout the paper, we focus on customer welfare as the metric with which to evaluate

the ultimate benefit or cost of post-crisis regulations. This quantity, defined in (5), reflects

the gains from trade of customers in the model (who represent the investor population in

our economy). For us, this is a natural benchmark for regulators to consider.

Our customer welfare measure, however, lacks two components that one may care about.

First, the too-big-to-fail subsidy the bank dealer receives—reflected in the difference in bal-

ance sheet costs between the bank and non-bank dealers—ultimately comes out of the pocket

of investors (or the public in general), so we may want to include this adjustment. Second,

both the bank and non-bank dealers are agents in the economy, and one may want to include

them in the definition of welfare.

Therefore, we consider an alternative welfare measure as the sum of customer welfare

and dealer profits, while adjusting for the implicit too-big-to-fail subsidy of the bank dealer:

W = πc + πB + πNB −
2µ

r
(1−G (b)) (cNB − cB) IS=SB︸ ︷︷ ︸

Too-big-to-fail subsidy of the bank dealer, if cB < cNB

. (30)

The first three terms of this expression are defined in Section 3.3, but the last term requires

additional discussion. Our assumption is that, without giving an implicit public subsidy to

the bank dealer, the balance sheet costs of the bank dealer would be similar to those of the

non-bank dealer—that is, the same market-making activity would require the same cost of
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capital regardless of who provides it.29 Hence, the difference between the two balance sheet

costs, multiplied by the number of customers who trade using the market-making services of

the bank dealer, represents the welfare loss to investors associated with granting this subsidy

to the bank dealer. As post-crisis regulations increase the market-making costs of the bank

dealer, the likelihood that the dealer would need to be rescued decreases, and with it the

implicit subsidy. As cB approaches cNB, the subsidy given to the bank dealer’s balance sheet

cost disappears. The indicator function at the end of the term is there to ensure that the

subsidy is considered only when the bank dealer makes markets.

Because the subsidy to the bank dealer is relevant if and only if the bank dealer makes

markets, we can make the intuition more transparent by expanding (30) in Case 1 and Case

2 of the equilibrium, where cB < cNB and πNB = 0:

W =
2µ

r

[∫ b

x=f

HxdG(x) +

∫ ∞
x=b

(x− cNB)dG(x)

]
−K(H), if cB < cNB. (31)

This expression essentially measures investors’ gains from trades, after adjusting for the cost

K(H) of the technology investment and the non-bank dealer’s balance sheet cost cNB, which is

taken to be the market-determined, risk-based balance sheet cost of market-making activity.

While cB does not show up explicitly in (31), an increase in cB changes the equilibrium values

of f , b, and H as described in sections 4.2.1 and 4.2.2. Overall, W reflects the allocative

efficiency of the market.

The following proposition shows what happens to W as the bank dealer’s balance sheet

costs increase in Case 1 and Case 2 of the equilibrium.

Proposition 7. In the equilibria characterized by Proposition 1 and Proposition 3, if the

bank dealer’s balance sheet cost cB increases and holding all else equal, then the alternative

welfare measure, W , increases.

Proposition 7 shows that the implicit too-big-to-fail subsidy has substantial influence on

how the alternative welfare measure behaves. We know from Proposition 2 that in Case 1,

the bank dealer’s profit πB decreases in cB while customer welfare πc can decrease over the

entire region or start increasing in the interior for some parameter values (the non-bank

dealer does not trade in Case 1). Hence, the sum πB + πc can either decrease or have an

ambiguous sign for some parameter values. In Case 2, we know from Proposition 4 that

29The cost of capital in this context means the cost of capital of the activity, not of the entire institution
that may have many subsidiaries. In the data, the cost of capital for each business line might be difficult to
observe.
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customer welfare πc increases while the bank dealer’s profit πB decreases when cB rises.

Again, the manner in which πc + πB is changing as we increase cB could have an ambiguous

sign. The unambiguous result expressed in Proposition 7, that W increases in both cases, is

therefore a testament to the importance of accounting for the implicit too-big-to-fail subsidy,
2µ
r

(1−G (b)) (cNB − cB) IS=SB .

While the results using the alternative welfare measure are unambiguous, there are good

reasons to focus our analysis on customer welfare, πc, rather than on W . First, we set out

to model trading during normal times, not resiliency of dealers in times of stress or the

valuation of the implicit public subsidy. Our goal is to show the mechanism through which

post-crisis bank regulations can impact customer welfare by changing the market structure

for trading. Without explicitly modeling dealer bankruptcy or the formation of the public

subsidy, using the difference between the bank and non-bank dealers’ market-making costs to

represent the implicit subsidy is clearly a simplification. In practice, part of the difference in

market-making costs may arise for other reasons, such as operational efficiency, and we have

no way in this model to evaluate the actual costs imposed on the public by the too-big-to-fail

guarantee. Second, the bank dealer’s profit stems from his market power. While regulators

clearly see improving investor welfare during normal times as one of their goals, it is hard

to imagine a situation in which regulators justify their actions by appealing to the need

to maximize banks’ market power rents. As such, we think that overall customer welfare

remains the most natural metric with which to judge the impact of post-crisis regulations

during normal times, and in Section 6 we use it specifically to evaluate the regulations’

impact on investors in the corporate bond market.

5.2 Benevolent Bank Dealer

Why does customer welfare increase in region 2 (or Case 2) of the model? Competition

from the non-bank dealer prevents the bank dealer from increasing the spread as regulatory

costs rise, decreasing the rents it collects from the market-making business and incentivising

a shift into the matchmaking business. The competition element is important because the

bank dealer wields market power in his interaction with customers, and therefore it prices the

market-making spread to extract economic rents. As we discuss in Section 3.1, it has long

been established that dealers in the over-the-counter corporate bond market have market

power. This market power is critical to delivering our results. To illustrate this point, in

this section we discuss a variation of our model in which the bank dealer is benevolent. By

benevolent we mean that the bank dealer maximizes overall customer welfare subject to the
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constraint that he is making zero profit on providing liquidity. We focus on the parameter

range cB < cNB (i.e., Case 1 and Case 2 in our model), where the bank dealer is the sole

liquidity provider, because our goal is to scrutinize the result that customer welfare increases.

The bank dealer’s problem in this variation of the model is therefore

max
H ∈ [0, 1]

cNB ≥ S ≥ f ≥ 0

πc (S,H, f) =
2µ

r

[∫ b

f

(x− f)HdG (x) +

∫ ∞
b

(x− S) dG (x)

]
(32)

such that

πB (S,H, f, cB) =
2µ

r
[Hf (G (b)−G (f)) + (S − cB) (1−G (b))]−K (H) = 0. (33)

We define the maximum customer welfare as V (cB) = πc (S? (cB) ,H? (cB) , f ? (cB)),

where we use (S? (cB) ,H? (cB) , f ? (cB)) to denote the optimal solution to the above problem

when the balance sheet cost is cB.

Proposition 8. If K ′′ (H) > β1 for all H ∈ (0, 1), then V (cB) is decreasing in cB when

cB < cNB.30

The setting with a benevolent bank dealer who maximizes customer welfare and breaks

even on liquidity provision delivers a stark result: customer welfare will always decrease when

regulatory costs rise. The welfare result we obtain in our model is therefore attributable to

the inefficiency introduced by the market power of over-the-counter bank dealers. Regula-

tory intervention in this case facilitates competition (from non-bank dealers) that improves

efficiency and increases customer welfare.

5.3 An Alternative Formulation of the Bank Dealer’s Cost of

Matchmaking

In this section we consider an alternative formulation of the bank dealer’s matchmaking

cost, such that K(H) is incurred by the bank dealer when he provides matchmaking ser-

vices to each of the customers (
∫ b
x=f

K(H)dG(x)). In other words, the bank dealer incurs

a positive marginal cost for every customer who chooses matchmaking, and hence the term

[Hf–K(H)](G(b)−G(f)) appears in the bank dealer’s optimization problem.

30β1 is defined in Proposition 1 and is needed here to rule out the unrealistic case of H = 1.

34



Investigating this alternative formulation is worthwhile for two reasons. First, some

readers may question the external validity of specifying a one-time cost for matchmaking

speed.31 In particular, we want to investigate whether our result regarding the increase

in customer welfare in Case 2 is driven by the assumption that the cost of investing in

matchmaking occurs at time 0 and does not increase with the number of customers who

choose to utilize the matchmaking service. Second, the formulation in which the bank dealer

incurs a cost for each customer has intuitive appeal in the context of a search model. It

represents the effort the dealer invests in finding a counterparty, which can involve electronic

systems as well as non-electronic means. Such efforts were costly in the days of telephone

searches, and are still costly today even though investment in technology over the past several

years has substantially reduced the cost of searching. Hence, this cost-of-effort formulation

does not depend on any assumptions about the nature of the electronic systems that dealers

may adopt.

We are interested in investigating the case in which the bank dealer provides both market-

making and matchmaking services (cB < cNB), where our main model delivers the result

that customer welfare increases when regulatory costs rise. The bank dealer’s problem using

the alternative formulation can be written as

max
cNB≥S≥f≥0,H∈[0,1]

πB =
2µ

r
[(G(b)−G(f)) [Hf −K (H)] + (S − cB) (1−G (b))] (34)

and we characterize the equilibrium in the following proposition:

Proposition 9. If K (0) = 0, K ′ (0) = 0, and K (1) > cNB, then the equilibrium (Sa,Ha, fa)

exists.

If the equilibrium is unconstrained, i.e., Sa < cNB, then (Sa,Ha, fa) satisfies

Sa − cB −Hafa +K (Ha) =
1−G (ba)

G′ (ba)
(1−Ha) , (35)

fa −
K (Ha)

Ha

=
1−G (fa)

G′ (fa)
, (36)

(fa −K ′ (Ha)) (G (ba)−G (fa)) =
Sa − cB
1−Ha

(1−G (ba)) . (37)

31We should note that specifying a one-time cost is equivalent to the bank dealer’s paying a flow cost
K(H)dt at every instant dt. In the steady state, the bank dealer will choose a constant flow cost H for all
t. The present value of this flow cost will therefore equal a constant times K(H) and is identical to the
one-time cost, as in our main model.

35



If the equilibrium is constrained, i.e., Sa = cNB, then (Ha, fa) satisfies

Ha (G (ba)−G (fa))− (Hafa −K (Ha))G
′ (fa) +

Ha

1−Ha

G′ (ba) (Sa − cB −Hafa +K (Ha)) = 0,

(38)

(fa −K ′ (Ha)) (G (ba)−G (fa)) =
Sa − cB

(1−Ha)
2G
′ (ba) (Sa − cB −Hafa +K (Ha)) . (39)

Unfortunately, we are unable to obtain interpretable comparative statics without impos-

ing a specific distribution for G and a functional form for K. In the following analysis, we

consider the comparative statics when G follows a uniform distribution and K is a quadratic

function.32

Assumption 2. G(x) is uniformly distributed in the interval [0, B], where B ≥ cNB.

K (H) = 1
2
kH2, where k ≥ 4cNB.

The assumption that B ≥ cNB means that there exist customers who can afford the

market-making service even if S = cNB.

With Assumption 2, the optimization problem becomes

max
cNB ≥ S ≥ f ≥ 0

H ∈ [0, 1]

2µ

r
[(G(b)−G(f)) [Hf −K (H)] + (S − cB) (1−G (b))]

=
2µ

r

[
b− f
B

[Hf −K (H)] + (S − cB)

(
1− b

B

)]
=

2µ

r

1

B

[
S − f
1−H

(Hf −K (H)) + (S − cB)

(
B − S −Hf

1−H

)]
(40)

As we mention above, we focus on examining the robustness of the main contribution of

our model: establishing that overall customer welfare can increase when the bank dealer’s

regulatory cost rises. This happens when the bank dealer is constrained (Case 2), and the

following proposition provides the equivalent comparative statics for the constrained bank

dealer case when we use the alternative formulation of bank dealer matchmaking cost.

Proposition 10. Under Assumption 2, the unconstrained bank dealer equilibrium is obtained

in the range cB ∈ (0, 2cNB −B), and the constrained bank dealer equilibrium is obtained in

the range cB ∈ (2cNB −B, cNB). In the constrained equilibrium (Sa,Ha, fa), if the bank

32The uniform distribution satisfies Assumption 1 that we discuss in Section 4.2.
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dealer’s balance sheet cost cB increases and all else are held equal, then the bank dealer’s

spread does not change (Sa = cNB), the matching speed (Ha) increases, the matchmaking fee

(fa) decreases, and overall customer welfare (πc) increases.

We observe that the comparative statics in the constrained bank dealer case using the

alternative formulation of matchmaking costs are similar to those we obtain in the main

model. As the regulatory cost rises, the bank dealer has to keep the spread equal to the

balance sheet cost of the non-bank dealer and hence the profitability of his market-making

business declines. Therefore, he expends greater effort (i.e., invests in higher matchmaking

speed) and lowers the matchmaking fee, resulting in higher overall customer welfare, exactly

as in our main model.

Why then in our main model do we utilize the one-time cost of investing in the match-

making technology rather than the per-trade cost of effort? We believe there is added value

in solving the model in closed form and obtaining interpretable expressions for the compar-

ative statics with a general distribution for customer types and a general functional form

for the cost of matchmaking. Alas, we are unable to obtain interpretable expressions for

the comparative statics when using the alternative formulation of the bank dealer’s match-

making costs without using specific G and K. Hence, we use the general functions with the

one-time investment formulation as our main model, and provide the cost-of-effort formula-

tion with a specific distribution and a specific cost function to show the robustness of our

result pertaining to customer welfare.

6 Did Post-Crisis Bank Regulations Harm Investors in

the Corporate Bond Market?

We can use the model’s insights to evaluate whether bank regulations following the financial

crisis lowered the overall welfare of investors. Given the wide availability of empirical evi-

dence regarding the US corporate bond market, we focus our discussion on this market, but

the model’s insights would apply similarly to other markets affected by post-crisis bank regu-

lations. As we stress in the introduction, empirical estimates of transaction-based measures

of liquidity cannot capture investors’ loss of welfare when finding a trading counterparty

takes more time or when they forgo trading to avoid paying the high cost of immediacy. In

contrast, our theoretical model takes these potential welfare losses into account alongside the

out-of-pocket cost of trading. Our analysis shows that the implications of bank regulations
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for overall customer welfare depend on the manner in which competition between the bank

and non-bank dealers shapes the equilibrium. Hence, to evaluate the impact of post-crisis

regulations on welfare we need to tie the equilibrium regions in our model to the state of

affairs in the corporate bond market around the enactment of the bank regulations. In this

section we attempt to do so by mapping the implications of our model for observable market

outcomes onto the findings reported in the empirical literature.

The first set of results involves price-based measures: average transaction costs and the

cost of immediacy. The general finding in the empirical literature is that average transac-

tion costs in the form of bid-ask spreads or price impacts have declined (Mizrach (2015),

Adrian, Fleming, Shachar, and Vogt (2017), Anderson and Stulz (2017)) or have not changed

(Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), Trebbi and Xiao (2017)) fol-

lowing the enactment of post-crisis regulations. On the other hand, the cost of immediacy

or the cost of trading via the market-making mechanism has risen (Bao, O’Hara, and Zhou

(2018), Dick-Nielsen and Rossi (2018), Choi and Huh (2017)).

Referring back to the example depicted in Figure 1, the blue line in Panel A traces the cost

of immediacy (trading via the market-making mechanism) as we increase bank regulatory

costs (cB) on the x-axis. We observe that the market-making spread increases in region 1,

remains constant in region 2 (where it is constrained by the market-making cost of the non-

bank dealer), increases further in region 3 (where competitive pressure from the bank dealer

is easing), and is constant again in region 4 as the non-bank dealer charges his unconstrained

optimal spread. The matchmaking fee represented by the red line is constant in region 1,

declines in region 2 (where competition from the non-bank dealer makes it optimal for the

bank dealer to substantially increase his investment in matchmaking technology), increases

somewhat in region 3 (where the non-bank dealer’s market-making spread rises, enabling the

bank dealer to extract more matchmaking rents) and remains constant at the unconstrained

maximum in region 4. Average transaction costs, which take into account both the price

charged to customers and the amount of trading in each mechanism, are shown by the black

dotted line. They increase in region 1, decline in region 2, increase in region 3, and remain

unchanged in region 4.

The empirical findings of an increase in the cost of immediacy together with a decline in

average transaction costs around the enactment of post-crisis bank regulations must mean

we have moved from the right portion of region 1 to region 2 (or from the left portion of

region 2 to the left portion of region 3). Therefore, the key to observing both an increase in

the cost of immediacy and a decline in average transaction costs is that the market-making
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costs of bank dealers move through region 2, where the gains from lower matchmaking fees

materialize.33 Propositions 2, 4, and 6 show that this is a robust implication of our model

that is not tied to a particular example.

Panel B plots the fraction of traders choosing the market-making mechanism (light blue),

trading via the matchmaking mechanism (light green), or refraining from trade altogether

(red). A transition from region 1 to region 2 (or the left portion of region 3) implies a

large increase in matchmaking volume accompanied by a decline in market making. These

patterns also match the empirical findings: an increase in matchmaking volume driven by

bank dealers (Bao, O’Hara, and Zhou (2018), Choi and Huh (2017), Schultz (2017)) and

a significant decline in capital commitment to market making by bank dealers that is not

sufficiently offset by an increase in market making by non-bank dealers (Bao, O’Hara, and

Zhou (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018)).34

Proposition 4 predicts an increase in the overall volume of trading in region 2, where

customers who refrain from trading in region 1 are drawn to the market by lower matchmak-

ing fees and higher matching speed. The empirical evidence regarding volume is somewhat

nuanced. Overall trading volume in bonds has significantly increased, as our model predicts,

while turnover in each particular bond issue appears to have declined (increased) in more

(less) active bonds (BIS Committee on the Global Financial System (2014), Mizrach (2015),

Adrian, Fleming, Shachar, and Vogt (2017)). Some market observers note that the low

interest-rate environment greatly boosted the attractiveness of bond financing, and business

enterprises responded by issuing a record number of bonds. According to this explanation,

abnormal issuance, not a decline in the desire to trade, resulted in decreased turnover in

each bond issue (BIS Committee on the Global Financial System (2014)). In other words,

the higher observed overall volume could be driven by lower average transaction costs that

attract more customers to trade bonds (as in our model), but the record number of new

issues means that each bond issue would be traded less often.

Summarizing our discussion, the empirical findings relating to the implementation of

bank regulations in the aftermath of the financial crisis all point to the particular role that

33The figure also reflects the intuitive result that the fee charged to customers in the matchmaking mecha-
nism is lower than the cost of trading in the market-making mechanism, which is consistent with the empirical
evidence reported in Choi and Huh (2017) and Schultz (2017).

34In the model, there is a clear distinction between region 2, where the bank dealer captures the entire
market-making business, and region 3, where the non-bank dealer accommodates all customers who demand
immediacy. We would expect a more gradual transition in reality. The empirical evidence of an increase
(decline) in market-making activity by non-bank (bank) dealers following the enactment of post-crisis regu-
lations suggests that we are probably rather close to the border between region 2 and region 3 (where the
cost differential between the bank and non-bank dealers is very small).
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region 2 plays in our model. Perhaps we were in region 1 in the pre-crisis period and ended

up in region 2 (or the left portion of region 3) after bank regulations were imposed. We

might also have started in the left portion of region 2 and ended up further to the right in

region 2 (or the left portion of region 3). Either way, the empirical evidence suggests that

the regulations caused a move across region 2. With this in mind, we can now consider our

model’s predictions for overall customer welfare.

Panel C plots overall customer welfare (the dotted black line) as well as the welfare of

customers who utilize market making (red line) and matchmaking (blue line). We observe for

this particular example that welfare declines in region 1, increases in region 2, and declines

again in region 3. Propositions 2, 4, and 6 show that welfare can actually start increasing

already in the right portion of region 1 and continue to increase in the left portion of region 3

(before starting to decline) for some combination of parameters. Irrespective of parameter

choices, however, overall customer welfare unequivocally increases as the regulatory costs of

bank dealers rise throughout region 2.

The clear mapping of the empirical findings to an increase in regulatory costs across

region 2 in the model coupled with our welfare implications indicate that investors in the

corporate bond market are likely better off under the current bank regulatory regime com-

pared with the one that prevailed before the financial crisis. We cannot say whether a

particular feature of the Basel framework is responsible for this result and our results do not

imply that the Volcker Rule improved liquidity. Rather, considering the empirical findings

on the impact of the entire suite of post-crisis regulations, our model would suggest that the

increase in market-making costs benefits corporate bond investors even during normal times.

We believe that this insight is an important contribution of our work to the debate over the

merits of bank regulations that were imposed in the aftermath of the financial crisis.

7 Concluding Remarks

Our paper highlights the complex and multifaceted consequences that post-crisis bank reg-

ulations have for market liquidity and investor welfare. While the explicit goal of those

regulations is to enhance financial stability in times of stress, our work shows that these

regulations can improve market efficiency even during normal times by prompting a change

in the nature of liquidity provision. Pre-crisis, bank dealers underinvest in matchmaking

technology because they wish to keep their profitable market-making business, even though

such investment would benefit investors. Post-crisis regulations eliminate obstacles to com-
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petition in the most profitable business (market making) and incentivize bank dealers to

invest in the less profitable but more efficient market structure (matchmaking). The in-

dustrial organization angle combines with the market microstructure angle to deliver this

positive outcome.

The key insight we offer in this paper is that an increase in regulatory costs imposed on

banks can make customers in the corporate bond market better off. Specifically, our focus

is on balance sheet costs that were imposed on banks following the financial crisis to deter

proprietary trading and as a result increased the costs of market making. A notable aspect

of our work is that we do not focus on whether these costs reduce the likelihood or severity

of a crisis, which are presumably the stated goals of the regulation. Rather, we show that

the increase in regulatory costs can lower average transaction costs during normal times

and, more importantly, increase the overall welfare of customers. The driving forces behind

our results are four elements that characterize the corporate bond market: the coexistence

of two distinct trading mechanisms (market making and matchmaking), the market power

enjoyed by bank dealers, potential market-making competition from non-bank dealers, and

the investment in technology that is reshaping the trading environment. Although our paper

is motivated by and specifically speaks to observations in the corporate bond market, the

model we present can be applied to other over-the-counter markets that feature these four

elements.

How can customers be made better off by regulations that deter market making? The

rationale is that while market making is a very profitable form of intermediation for bank

dealers, it can be an expensive form of intermediation for customers. When regulation in-

creases the cost of market making for bank dealers and competition prevents them from

transferring the cost increase to their customers, bank dealers are incentivized to develop

their matchmaking business. They do so by lowering fees and investing in technology that

makes matchmaking more efficient, thereby rendering it more attractive to customers. The

increase in welfare of customers who obtain better execution using the matchmaking mech-

anism can be greater than the decline in the welfare of customers who must pay more for

market making when regulation increases its cost. This aggregate increase in welfare is not a

Pareto improvement—some customers are worse off—but the overall population of customers

benefits.

Regulators always worry about the unintended consequences of their regulatory inter-

ventions. While increasing the costs of market making was meant to enhance bank dealers’

resiliency in times of market stress, we believe that one (perhaps) “unintended” benefit of
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these bank regulations was to push bank dealers to invest in matchmaking. This can im-

prove overall customer welfare during normal times and therefore materially changes the

supposed tradeoff between resiliency in times of stress and day-to-day liquidity. The market

microstructure angle in this case is crucial to delivering this result. It is also important to

emphasize that the improvement in customer welfare in our model likely understates the

extent of the true effect. Our model intentionally shuts off one of the routes through which

customers are made better off when they switch to matchmaking. Specifically, bank dealers

in our model directly specify the matching rate by their investment in technology. While

this simplification allows us to present analytic solutions, waiting costs in a more general

search model would also fall as more customers switch to trading through the matchmaking

mechanism, further enhancing overall customer welfare.

Raising regulatory costs beyond a certain level would inevitably worsen welfare. A natural

question is whether we can help regulators identify the optimal level of such costs. While

one could calibrate our model with specifics pertaining to observable quantities to arrive at a

prescription for the optimal level of regulatory costs, we caution against taking an admittedly

simplified theoretical model and requiring it to provide such a prescription. Nonetheless, our

model does point to an approach that could help bank regulators. In particular, we show

that beneficial investment in matchmaking technology is boosted by competition in market

making as the cost differential between bank and non-bank dealers shrinks. Bank regulators

can therefore consider the market-making costs of non-bank dealers to help them judge the

level they should impose on bank dealers to ensure sufficient competition.

Five regulatory agencies—the Fed, the FDIC, the Office of the Comptroller of the Cur-

rency, the SEC, and the CFTC—have recently adopted the revised Volcker Rule.35 The

revision was intended, among other things, to “provide banking entities with clarity about

what activities are prohibited.” While our model is not about the Volcker Rule per se, we

stress that simply lowering the regulatory costs of bank dealers need not help liquidity in

the corporate bond market nor would it necessarily improve customer welfare. Our anal-

ysis suggests that, in addition to examining the market-making costs of non-bank dealers

as a benchmark, regulators should scrutinize their proposed revisions to ensure that they

do not induce bank dealers to reduce their investment in matchmaking technology. In fact,

regulators could specifically incentivize further investments in matchmaking to help ensure

that customers continue to benefit even as bank regulatory costs decline. It is this invest-

ment, and the partial shift from market making to matchmaking, that is key in our model

35See https://www.sec.gov/rules/final/2019/bhca-7.pdf.
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to generating higher overall customer welfare.

All theoretical models employ simplifications in the process of creating the appropriate

structure and deriving the results. Our model is no different. Aiming for robustness and

clarity while obtaining closed-form solutions necessitates abstracting from some features of

the economic environment. One example is that we do not model the matchmaking business

of non-bank dealers. Several other such features—intermediation chains, dealer inventory,

the nature of dealer funding, and the moral hazard problem that arises when a customer

employs an agent for searching—have recently been discussed in other papers (An, Song,

and Zhang (2017), An and Zheng (2017), Li and Li (2017), and Cimon and Garriott (2019)).

Partially for that reason we forgo incorporating them in our model (e.g., we abstract from the

inventory consideration by using the same arrival rates for buyers and sellers). Instead, we

focus on dimensions we deem critical to understanding how customer welfare in the corporate

bonds market changes when regulation increases the costs of market making by bank dealers:

the dual trading mechanisms, dealer market power, and the nature of competition between

bank and non-bank dealers. The resulting model provides insights that we hope capture the

more salient trade-offs. Nonetheless, integrating additional economic features and specifying

a more general search model in which the size of the pool of searching customers impacts

the match rate could be valuable extensions of the work we pursue in this paper.

Crucial to our analysis are customers who optimize over several key choices—from the

basic decision of whether to trade to the tradeoff between search time and the cost of ex-

ecution in the two trading mechanisms—but we recognize that we could not capture all

aspects of customer behavior. For example, increased market-making costs could incentivize

customers to shift their trading to newly issued securities to minimize transaction costs.

Furthermore, the low interest-rate environment following the financial crisis encouraged new

bond issues and made such substitutions easier to achieve. Such coping strategies may limit

portfolio flexibility and adversely affect welfare. Similarly, customers may choose to reduce

their average trade size in response to the higher cost of market making. The implications of

a reduction in trade size for customer welfare are ambiguous: larger trades have traditionally

exhibited lower transaction costs in the corporate bonds market but the increase in electronic

trading could make order-splitting optimal (as has been the case in equity markets). We be-

lieve that these aspects of customer behavior (choosing newer issues or a smaller trade size)

play a lesser role in determining customer welfare than the pronounced shift from market

making to matchmaking, but nonetheless they suggest a complexity to the manner in which

customers respond to changes in their economic environment.
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The evolving regulatory frameworks and the breathtaking pace at which technology im-

pacts securities markets continue to dominate the agenda of regulators, practitioners, and

academics. We hope that our work—studying how regulation impacts incentives to invest in

technology and as a consequence alters the market structure for trading securities—would

serve to both highlight important tradeoffs and spur additional work on the changing nature

of our securities markets.
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Appendix

A Proofs of Propositions 1–4

A.1 Proof of Proposition 1

First, we want to show that H?
1 > 0. If the bank dealer chooses H?

1 = 0, then it has zero
matchmaking capacity and its profit is invariant to f ?1 . Suppose, in this case, the bank
dealer chooses (S?NM ,H? = 0, f ?), where “NM” means no matching. Now let’s think about
∂Π1(S?NM ,H,f?)

∂H |H=0. If this derivative is positive for some reasonable f ?, then it is profitable
for the bank dealer to choose a positive H. It is easy to show that

∂Π1 (S?NM ,H, f ?)
∂H

|H=0 ∝ f ? (G (b?)−G (f ?))− (S?NM − cB)G′ (b?) (S?NM − f ?) , (41)

where b? is the cutoff value b evaluated at (S?NM ,H?, f ?). In this case b? = S?NM because we
set H? = 0. Then with K ′ (0) = 0, we have

∂Π1 (S?NM ,H, f ?)
∂H

|H=0 ∝ f ? (G (S?NM)−G (f ?))− (S?NM − cB)G′ (S?NM) (S?NM − f ?)

∝ (S?NM − f ?)
(
f ?
G (S?NM)−G (f ?)

S?NM − f ?
− (S?NM − cB)G′ (S?NM)

)
.

We only need to find one f ? such that the above equation is positive. Now let’s set f ? ↑ S?NM ,

in which case (S?NM − f ?) > 0,
G(S?NM)−G(f?)

S?NM−f?
→ G′ (S?NM), and f ? > S?NM − cB. Thus, in this

case,
∂Π1(S?NM ,H,f?)

∂H |H=0 > 0. So it is never optimal to choose H = 0.
With the assumption K ′′ > β1 , we can show that it is not optimal to choose H?

1 = 1 (if
H?

1 = 1, the bank dealer’s profit would be negative). So the optimal solution must satisfy
H?

1 ∈ (0, 1), i.e., H?
1 is an interior solution.

To characterize the equilibrium, let’s make the following change of variables S
f
H

→
 b
f
H

 (42)

where b = S−fH
1−H . It is easy to show that S = (1−H) b + fH. The optimization problem
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now becomes

max
S≥f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + (S − cB) (1−G (b))]−K (H)

⇐⇒ max
b≥f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + ((1−H) b+ fH− cB) (1−G (b))]−K (H) .

(43)

It can be shown that if b ≤ f , we must have S ≤ f , and in this case the value from the
above formula must be less than or equal to the case in which the bank dealer offers only
the market-making service, and we have already proved that it is not optimal for the bank
dealer to abandon matchmaking completely. So without loss of generality, we just need to
consider the following relaxed problem:

max
b≥0,f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + ((1−H) b+ fH− cB) (1−G (b))]−K (H) . (44)

Rewriting the problem, we obtain

max
b≥0,f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + ((1−H) b+ fH− cB) (1−G (b))]−K (H)

⇐⇒max
b≥0

max
f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + ((1−H) b+ fH− cB) (1−G (b))]−K (H)

⇐⇒ max
b≥0

Π̃1 (b) , (45)

where

Π̃1 (b) = max
f≥0,H∈[0,1]

2µ

r
[Hf (G (b)−G (f)) + ((1−H) b+ fH− cB) (1−G (b))]−K (H)

= max
f≥0,H∈[0,1]

Π̃ (f,H; b) . (46)

Let’s consider the first-order derivative of the above equation:

∂Π̃ (f,H; b)

∂f
=

2µ

r
H [(G (b)−G (f))− fG′ (f) + 1−G (b)] (47)

=
2µ

r
H [1−G (f)− fG′ (f)] (48)

=
2µ

r
HG′ (f)

[
1−G (f)

G′ (f)
− f

]
. (49)

Given the assumption Φ ≥ 0, we know 1−G(f)
G′(f)

is weakly decreasing in f , ∂Π̃(f,H;b)
∂f

|f=0 > 0,

and ∂Π̃(f,H;b)
∂f

|f=∞ < 0. So, there exists a unique f ?1 > 0 such that ∂Π̃(f,H;b)
∂f

> 0 if f < f ?1
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and ∂Π̃(f,H;b)
∂f

< 0 if f > f ?1 . And f ?1 is independent of (b,H). Thus, f ?1 is the global optimal
value. Then

Π̃1 (b) = max
H∈[0,1]

2µ

r
[Hf ?1 (G (b)−G (f ?1 )) + ((1−H) b+ f ?1H− cB) (1−G (b))]−K (H) .

(50)
And the first-order derivative of Π̃ (f ?1 ,H; b) with respect to H is

∂Π̃ (f ?1 ,H; b)

∂H
=

2µ

r
[f ?1 (G (b)−G (f ?1 )) + (−b+ f ?1 ) (1−G (b))]−K ′ (H) . (51)

We know that K is strictly convex, so there must exist a unique H? (f ?1 , b), such that
∂Π̃(f,H;b)

∂H |f=f?1
> 0 if and only if H < H? (f ?1 , b), where H? (f ?1 , b) is solved by

K ′ (H?) = max

{
2µ

r
[f ? (G (b)−G (f ?1 )) + (−b+ f ?1 ) (1−G (b))] , 0

}
(52)

= max

{
2µ

r
[f ?1 (1−G (f ?1 ))− b (1−G (b))] , 0

}
. (53)

Then

Π̃1 (b) =
2µ

r
[H?f ?1 (G (b)−G (f ?1 )) + ((1−H?) b+ f ?1H? − cB) (1−G (b))]−K (H?) . (54)

By the envelope theorem,

dΠ̃1 (b)

db
=

2µ

r
G′ (b) (1−H?)

[
cB

1−H?
−
(
b− 1−G (b)

G′ (b)

)]
. (55)

If
(
b− 1−G(b)

G′(b)

)
≤ 0, we would have dΠ̃1(b)

db
> 0. In particular, at b = 0, b− 1−G(b)

G′(b)
= − 1

G′(0)
< 0

and dΠ̃1(b)
db
|b=0 > 0. In the region

(
b− 1−G(b)

G′(b)

)
> 0, we can show that cB

1−H? is non-decreasing

in b. To see this, note that the expression
∂Π̃(f?1 ,H;b)

∂H is equal to zero at the optimal solution.
We can then take the total derivative again to obtain

r

2µ
K ′′ (H?) dH +

[
1−G (b)

G′ (b)
− b
]
G′ (b) db = 0⇐⇒ dH?

db
> 0. (56)

Then cB/(1−H) is also increasing in H.
Lemma 2 below shows that if K ′′(·) ≥ β1, then

d
[

cB
1−H?(b)

]
db

<
d
[
b− 1−G(b)

G′(b)

]
db

if

(
b− 1−G (b)

G′ (b)

)
> 0, (57)
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and if limb→∞
dΠ̃1(b)
db

< 0, then there must exist a unique b? such that dΠ̃1(b)
db

> 0 iff b < b?,
because

dΠ̃1 (b)

db
> 0⇐⇒ cB

1−H?
−
(
b− 1−G (b)

G′ (b)

)
> 0.

Define y (b) = cB
1−H? −

(
b− 1−G(b)

G′(b)

)
. First we know that b − 1−G(b)

G′(b)
is increasing in b,

so there exists a threshold b1 such that
{
b|b− 1−G(b)

G′(b)
≤ 0
}

= [0, b1]. (Actually b1 = f ?1 , as

shown before.) Then y (b) > 0 when b ∈ [0, b1]. In region b ∈ (b1,∞), we know b− 1−G(b)
G′(b)

> 0.

With the assumption K ′′ > β1, Lemma 2 below shows that y′ (b) < 0 if b ∈ (b1,∞). From
the assumption K ′′ > β1, we know there exists an H̃ < 1 such that the optimal H? satisfies
H? < H̃ < 1. Then as b → ∞, cB

1−H? must be bounded. Moreover, we know both b and

−1−G(b)
G′(b)

are increasing in b, and −1−G(0)
G′(0)

is bounded, so b − 1−G(b)
G′(b)

→ ∞ as b → ∞. Then

we must have y(∞) = −∞. Together with the conditions y (b1) > 0 and y′ (b) < 0 for all
b ∈ (b1,∞), there must exist a b?1 such that y (b) > 0 if and only if b < b?1, which is equivalent

to dΠ̃1(b)
db

> 0 if and only if b < b?1.
Therefore, the global optimal solution is (b?1, f

?
1 ,H? (f ?1 , b

?
1)) and, from the above deriva-

tion, we know that the global optimal solution can be solved by the first-order approach.
Because of the one-to-one mapping from (S, f,H) to (b, f,H), we also know that the global
optimal solution to the original problem can also be solved by the first-order approach and
the solution is unique.

Lemma 2. Let β1 be the unique solution of

r

2µ
β =

1(
1−

√
2µ
r

√
4c̄
β

)2 cB max
b
{bG′ (b)} . (58)

If K ′′ (H) ≥ β1 for all H, then

d
[

cB
1−H?(b)

]
db

<
d
[
b− 1−G(b)

G′(b)

]
db

(59)

for all b that satisfies
(
b− 1−G(b)

G′(b)

)
> 0.

Proof. The LHS is

d
[

cB
1−H?(b)

]
db

=
cB

(1−H?)2

dH?

db

=
cB

(1−H?)2

bG′ (b)− (1−G (b))
r

2µ
K ′′ (H?)

.
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The RHS is
d
[
b− 1−G(b)

G′(b)

]
db

= 2 +
(1−G (b))G′′ (b)

(G′ (b))2 .

Then

cB

(1−H?)2

bG′ (b)− (1−G (b))
r

2µ
K ′′ (H)

< 2 +
(1−G (b))G′′ (b)

(G′ (b))2

⇐⇒ r

2µ
K ′′ (H?) (1−H?)2 ≥ cB

bG′ (b)− (1−G (b))

2 + (1−G(b))G′′(b)

(G′(b))2

< cBbG
′ (b) . (60)

Thus, a sufficient condition for the desired inequality is

r

2µ
K ′′ (H?) (1−H?)2 ≥ cB max

b
bG′ (b) . (61)

Now we want to show that (61) is implied by K ′′ ≥ β1. Given K(0) = 0 and K
′
(0) = 0,

for any β such that K
′′
> β, we must have K(H) > 1

2
βH2. The total profit from the

bank dealer’s liquidity provision in market making and matchmaking is less than 2µ
r

2c̄ (a
customer pays the bank dealer no more than the non-bank dealer’s cost cNB < c̄). Then in
any equilibrium, we must have 1

2
βH2 < 2µ

r
2c̄ (the bank dealer’s profit is non-negative), which

is H <
√

2µ
r

√
4c̄
β

. This implies that, if K
′′
> β, then H? <

√
2µ
r

√
4c̄
β

. Now assume that

K ′′ > β1. Then the LHS of (61) becomes r
2µ
K ′′ (H?) (1−H?)2 > r

2µ
β1

(
1−

√
2µ
r

√
4c̄
β1

)2

=

cB maxb bG
′(b), that is, (61) is satisfied.

A.2 Proof of Proposition 2

1. Spread, fee, and speed. Because f ?1 −
1−G(f?1 )
G′(f?1 )

= 0, f ?1 is a constant.

Consider the first-order condition dΠ̃1(b)
db

= 0, which is

cB
1−H?

−
(
b?1 −

1−G (b?1)

G′ (b?1)

)
= 0. (62)

Taking the total derivative of the above equality, we have

dcB
1

1−H?
+ cB

d 1
1−H?

db?
db? −

d

(
b?1 −

1−G(b?1)
G′(b?1)

)
db?

db? = 0. (63)
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From Lemma 2 we know

cB
d 1

1−H?

db?
<

d

(
b?1 −

1−G(b?1)
G′(b?1)

)
db?

. (64)

Rearranging the expressions in the total derivative, we have db?

dcB
> 0.

We already show that dH?
db

> 0, so H?
1 also increases.

Moreover, because the function x− 1−G(x)
G′(x)

is increasing in x, we know that b?1 > f ?1 .

We know S?1 = (1−H?
1) b?1 + f ?1H?

1, in which case

dS?1
db?1

= (1−H?
1)− b?1

dH?
1

db?1
+ f ?1

dH?
1

db?1

= (1−H?
1) + (f ?1 − b?1)

b?1G
′ (b?1)− (1−G (b?1))

r
2µ
K ′′ (H?

1)
.

Given the assumption K ′′ ≥ β1, we have

r

2µ
K ′′ (H?

1) (1−H?
1)2 > cB · sup

b
bG′ (b) > cB · [b?1G′ (b?1)− (1−G (b?1))] , (65)

Because f ?1 − b?1 < 0, we have

dS?1
db?1

> (1−H?
1) + (f ?1 − b?1)(1−H?

1)2 1

cB
. (66)

A sufficient condition for
dS?1
db?1

> 0 is cB
1−H?1

> b?1 − f ?1 . This condition holds because

cB
1−H?

1

=

(
b?1 −

1−G (b?1)

G′ (b?1)

)
≥ b?1 −

1−G (f ?1 )

G′ (f ?1 )
= b?1 − f ?1 , (67)

where we have used Assumption 1, that 1−G(x)
G′(x)

is weakly decreasing in x.

2. Customers’ choices. By the change of variables, b = S−Hf
1−H = f + S−f

1−H . As shown in
the previous part, as cB increases, S?1 increases, H?

1 increases, and f ?1 stays the same.
So b?1 also increases and the fraction of customers paying the market making spread,
1−G (b?1), decreases.

The fraction of customers doing matching, G(b?1)−G(f ?1 ), increases because b?1 increases.

The fraction of customers not trading, G(f ?1 ), remains the same because f ?1 is invariant
to cB.

3. Customers’ average transaction costs.
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As cB increases, the change in customers’ average transaction costs is

1

1−G (f ?1 )
[(1−G (b?1)) dS?1 − (S1 − f)G′ (b?1) db?1] , (68)

so the average transaction costs increases if and only if

(1−G (b?1)) dS?1 ≥ (S?1 − f ?1 )G′ (b?1) db1. (69)

From S = Hf + (1−H) b, we have

dS?1 = (f ?1 − b?1) dH?
1 + (1−H?

1) db?1, (70)

in which case

(1−G (b?1)) dS?1 ≥ (S?1 − f ?1 )G′ (b?1) db1 (71)

⇐⇒ (1−G (b?1))

(
db?1 −

b?1 − f ?1
1−H?

1

dH?
1

)
≥ (b?1 − f ?1 )G′ (b?1) db1

⇐⇒dH?
1

db?1
≤ (1−H?

1)

(
1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)

)
.

From the proof in Proposition 1, we know that

dH?
1

db?1
=
b?1G

′ (b?1)− (1−G (b?1))
r

2µ
K ′′(H?

1)
, (72)

so

dH?
1

db?1
≤ (1−H?

1)

(
1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)

)
(73)

⇐⇒b?1G
′ (b?1)− (1−G (b?1))

r
2µ
K ′′(H?

1)
≤ (1−H?

1)

(
1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)

)
.

In equilibrium we have cB
1−H?1

=
b?1G

′(b?1)−(1−G(b?1))
G′(b?1)

, and substituting this condition into

the above result, we obtain

cBG
′ (b?1)

r
2µ
K ′′ (H?

1) (1−H?
1)2 ≤

1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)
. (74)

We proved (from the above result) that, as cB increases, average transaction costs
increase if and only if (74) holds. Rewriting this condition gives us

cB
r

2µ
K ′′ (H?

1) (1−H?
1)2 ≤

1

G′ (b?1) (b?1 − f ?1 )
− 1

1−G (b?1)
. (75)
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As cB increases, both H?
1 and b?1 increase, so the LHS is non-decreasing based on

the assumption stated in the proposition. Now we want to show that the RHS is a
decreasing function of b?1. To show this, define

y (b?1) =
1

G′ (b?1) (b?1 − f ?1 )
− 1

1−G (b?1)
. (76)

Then

dy

db?1
=

−1

(G′ (b?1) (b?1 − f ?1 ))2 (G′′ (b?1) (b?1 − f ?1 ) +G′ (b?1))− G′ (b?1)

(1−G (b?1))2 . (77)

From our Assumption 1, we know

− G′′ (b?1)

G′ (b?1)
≤ G′ (b?1)

1−G (b?1)
. (78)

Then we have

dy

db?1
≤ 1

1−G (b?1)

1

b?1 − f ?1
− 1

G′ (b?1) (b?1 − f ?1 )2 −
G′ (b?1)

(1−G (b?1))2 (79)

=
1

G′ (b?1)

[
G′ (b?1)

1−G (b?1)

1

b?1 − f ?1
− 1

(b?1 − f ?1 )2 −
(

G′ (b?1)

1−G (b?1)

)2
]
.

We know

G′ (b?1)

1−G (b?1)

1

b?1 − f ?1
− 1

(b?1 − f ?1 )2 −
(

G′ (b?1)

1−G (b?1)

)2

≤ 2
G′ (b?1)

1−G (b?1)

1

b?1 − f ?1
− 1

(b?1 − f ?1 )2 −
(

G′ (b?1)

1−G (b?1)

)2

= −
(

1

b?1 − f ?1
− G′ (b?1)

1−G (b?1)

)2

< 0, (80)

so we must have dy
db?1

< 0. Then the RHS of (75) is decreasing in cB. As cB → 0,

the LHS of (75) is close to zero, while the RHS converges to infinity (because in this
case b → f). So if cB is close to zero, customers’ average transaction costs must be
increasing in cB. As cB increases, either the condition (75) holds until the equilibrium
reaches Case 2, or the condition is violated at some value of cB and will be violated for
all cB larger than that value. So customers’ average transaction costs is a hump-shaped
function of cB, and the decreasing region may not exist.

4. Bank dealer’s profit. By the envelope theorem, dπB
dcB

= ∂πB
∂cB

= 2µ
r

(−1) (1−G (b?1)) <
0.
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5. Customer welfare.

As cB increases, we have

dπc =

∫ b?1

f?1

(x− f ?1 ) dH?
1dG (x)−

∫ ∞
b?1

dS?1dG (x) . (81)

By S?1 = (1−H?
1) b?1 +H?

1f
?
1 , we have

dπc = dH?
1

(∫ b?1

f?1

xdG (x)

)
− f ?1 (1−G (f ?1 )) dH?

1 − (−dH?
1b
?
1 + (1−H?

1) db?1) (1−G (b?1)) .

(82)

Using∫ b?1

f?1

xdG (x) = −b?1 (1−G (b?1)) + f ?1 (1−G (f ?1 )) +

∫ b?1

f?1

(1−G (x)) dx, (83)

we have

dπc = dH?
1

∫ b?1

f?1

(1−G (x)) dx− (1−H?
1) (1−G (b?1)) db?1. (84)

By
dH?1
db?1

=
b?1G

′(b?1)−(1−G(b?1))
r

2µ
K′′
(
H?1
) and cB

1−H?1
=

b?1G
′(b?1)−(1−G(b?1))

G′(b?1)
, we have

dπc ≤ 0 (85)

⇐⇒dH?
1

db?1
≤ (1−H?

1) (1−G (b?1))∫ b?1
f?1

(1−G (x)) dx

⇐⇒ r

2µ
K ′′ (H?

1) (1−H?
1)2 ≥ cB

G′ (b?1)

1−G (b?1)

∫ b?1

f?1

(1−G (x)) dx.

From the above proof, we know that πc decreases if and only if

r

2µ
K ′′ (H?

1) (1−H?
1)2 ≥ cB

G′ (b?1)

1−G (b?1)

∫ b?1

f?1

(1−G (x)) dx. (86)

In the unconstrained bank dealer case, as cB increases, both H?
1 and b?1 increase, so

the RHS of condition (86) is increasing in cB and, by the assumption stated in the
proposition, the LHS is non-increasing in cB. When cB is close to zero, condition (86)
must be satisfied. As cB increases from zero, there are two possibilities: first, the
condition is satisfied until the equilibrium becomes the constrained bank dealer case;
second, the condition is violated at some value and it will be violated for all cB higher
than that value.
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A.3 Proof of Proposition 3

We prove the result in the following steps.

1. The solution must exist because the domain is a closed set and the objective function
is continuous.

2. We must have H?
2 ∈ (0, 1), i.e., H?

2 is an interior solution. The proof is the same as in
Proposition 1.

3. We must have S?2 = cNB. If S?2 < cNB, then (S?2 ,H?
2, f

?
2 ) must be a local maximum in the

unconstrained problem. We have already shown, however, that the objective function
in the unconstrained problem is single-peaked with a unique local maximum (under
the assumption K ′′ > β1), so in this constrained problem, we must have S?2 = cNB.

4. We must have f ?2 ∈ (0, cNB). If f ?2 = 0, we must have H?
2 = 0, which is not optimal,

as proved before. It is also impossible to have f ?2 = S?2 = cNB because, in this case, no
customer would choose matching and the optimal speed becomes H?

2 = 0, which again
is not optimal.

5. (H?
2, f

?
2 ) satisfies the first-order conditions. From the previous steps, we know that

S?2 = cNB and (H?
2, f

?
2 ) is an interior solution, and because the objective function is

continuously differentiable, the optimal solution must satisfy the first-order conditions.

A.4 Proof of Proposition 4

1. Spread, fee, and speed. S?2 = cNB is invariant to cB.

(H?
2, f

?
2 ) satisfies the first-order conditions for Π2 (H, f ; cB). By the implicit function

theorem,
∂f ?2
∂cB
∝
(
∂2Π2

∂f∂H
∂2Π2

∂H∂cB
− ∂2Π2

∂H2

∂2Π2

∂f∂cB

)∣∣∣∣
(H?2,f?2 )

. (87)

For simplicity of notation, we drop the subscripts “2” from the remainder of the proof
wherever it is not ambiguous. At the optimal solution, we have

r

2µ

∂2Π2

∂f∂H
=
H

1−H
(S − f) (S − cB − fH)

G′′ (b)

(1−H)2 − [fG′ (f)−G (b) +G (f)]

+
G′ (b)

(1−H)2 (S − cB − fH) +
G′ (b)

(1−H)2H (S − f − f (1−H)) . (88)

From the first-order conditions, we have (S − cB − fH) = 1−H
G′(b)

[fG′ (f)−G (b) +G (f)],
in which case the above expression becomes

r

2µ

∂2Π2

∂f∂H
=
fG′ (f)−G (b) +G (f)

(1−H)
2 H

[
(S − f)

G′′ (b)

G′ (b)
+ 1−H

]
+H G′ (b)

(1−H)
2 (S − f − f (1−H)) .

(89)

55



Moreover, we can solve the following results at the optimum (S?2 ,H?
2, f

?
2 ):

r

2µ

∂2Π2

∂H∂cB
=

S − f
(1−H)2G

′ (b) > 0, (90)

r

2µ

∂2Π2

∂H2
=

S − f
(1−H)4 [− (S − f) (S − cB − fH)G′′ (b)− 2 (1−H) (S − cB − f)G′ (b)]

− r

2µ
K ′′ (H) ,

r

2µ

∂2Π2

∂f∂cB
= − H

1−H
G′ (b) < 0. (91)

The necessary and sufficient condition for
∂f?2
∂cB

< 0 is

∂2Π2

∂f∂H
∂2Π2

∂H∂cB
<
∂2Π2

∂H2

∂2Π2

∂f∂cB
⇐⇒ ∂2Π2

∂f∂H
b− f
H

< −∂
2Π2

∂H2
. (92)

Using b− f = S−f
1−H , we have

r

2µ

∂2Π2

∂f∂H
= (fG′ (f)−G (b) +G (f))

H
1−H

[
(b− f)

G′′ (b)

G′ (b)
+ 1

]
+G′ (b)

H
1−H

(b− 2f) .

(93)
By the first-order condition (17), we know at the optimum,

fG′ (f)−G (b) +G (f) =
S − cB −Hf

1−H
G′ (b)

=

(
b− cB

1−H

)
G′ (b) .

Substituting this into (93), we obtain

r

2µ

∂2Π2

∂f∂H
= G′ (b)

H
1−H

[(
b− cB

1−H

)[
(b− f)

G′′ (b)

G′ (b)
+ 1

]
+ (b− 2f)

]
. (94)
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Similarly, we obtain

r

2µ

∂2Π2

∂H2
=

S − f
(1−H)4 [− (S − f) (S − cB − fH)G′′ (b)− 2 (1−H) (S − cB − f)G′ (b)]

− r

2µ
K ′′ (H)

=
b− f

(1−H)2 [− (b− f) (S − cB − fH)G′′ (b)− 2 (S − cB − f)G′ (b)]

− r

2µ
K ′′ (H) . (95)

Using the following relations

S − cB − fH = (1−H)

(
b− cB

1−H

)
, (96)

S − cB − f = (1−H)

(
b− f − cB

1−H

)
, (97)

we obtain

r

2µ

∂2Π2

∂H2
=

b− f
1−H

[
− (b− f)

(
b− cB

1−H

)
G′′ (b)− 2

(
b− f − cB

1−H

)
G′ (b)

]
− r

2µ
K ′′ (H) .

(98)

Substituting (94) and (98) into (92), the condition becomes

r

2µ
K ′′ (H)− b− f

1−H

[
− (b− f)

(
b− cB

1−H

)
G′′ (b)− 2

(
b− f − cB

1−H

)
G′ (b)

]
≥ b− f
H

G′ (b)
H

1−H

[(
b− cB

1−H

)[
(b− f)

G′′ (b)

G′ (b)
+ 1

]
+ (b− 2f)

]
. (99)

Simplifying the above condition, we obtain

r

2µ
K ′′ (H) (1−H)2 ≥ cB (b− f)G′ (b) . (100)

If K ′′ (H) ≥ β1, we can verify that the above holds, and f ?2 is decreasing in cB.

We now move on to H?
2. By the implicit function theorem, we have

∂H?
2

∂cB
∝ ∂2Π2

∂f∂H
∂2Π2

∂f∂cB
− ∂2Π2

∂f 2

∂2Π2

∂H∂cB
. (101)
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At the optimum, we have

∂2Π2

∂f 2
=
H2 [− (S − cB − fH)G′′ (b)− 2 (1−H)G′ (b)] +H (1−H)2 (−fG′′ (f)− 2G′ (f))

(1−H)2

(102)
Substituting equations (89), (90), (91), and (102) into equation (101), we obtain

∂2Π2

∂f∂H
∂2Π2

∂f∂cB
− ∂2Π2

∂f 2

∂2Π2

∂H∂cB
∝{

−
[
(S − cB − fH)− cB

H
1−H

]
G′ (b) + (1−H) (fG′ (f)−G (b) +G (f))

}
+ {(S − f) (fG′′ (f) + 2G′ (f))} . (103)

Simplifying the terms in the first pair of braces using the following first-order condition,

G (b?2)−G (f ?2 ) = − (cNB − cB −H?
2f

?
2 )G′ (b?2)

1

1−H?
2

+ f ?2G
′ (f ?2 ) , (104)

we can obtain

∂2Π2

∂f∂H
∂2Π2

∂f∂cB
−∂

2Π2

∂f 2

∂2Π2

∂H∂cB
∝ cB

H
1−H

G′ (b)+{(S − f) (fG′′ (f) + 2G′ (f))} . (105)

Because fG′′ (f) + 2G′ (f) > fG′′ (f) +G′ (f) > 0 at the optimum,36 we must have

∂2Π2

∂f∂H
∂2Π2

∂f∂cB
− ∂2Π2

∂f 2

∂2Π2

∂H∂cB
> 0. (106)

Thus
∂H?2
∂cB

> 0.

2. Customers’ choices. We know b = cNB−fH
1−H = cNB + (cNB − f) H

1−H . So as f decreases
and H increases in cB, b increases, and the fraction of customers paying the spread,
(1−G (b?2)), decreases.

Because b?2 increases and f ?2 decreases in cB, the fraction of customers using the match-
making service, G(b?2)−G(f ?2 ), increases.

Because f ?2 decreases in cB, the fraction of customers choosing not to trade decreases.

3. Customers’ average transaction costs. Define ξ =
1−G(b?2)
1−G(f?2 )

, which makes the

average transaction costs (1− ξ) f ?2 + ξS?2 . If cB increases, the above comparative
statics imply that f ?2 decreases and (1−G (b?2)) decreases and thus ξ decreases. Then

36This can be proved by Φ ≥ 0 and f < 1−G(f)
G′(f) at the optimum.
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the change in average transaction costs is

(1− ξ) df ?2 + f ?2 (−dξ) + S?2dξ = (1− ξ) df ?2 + dξ (S?2 − f ?2 ) . (107)

We know that df ?2 < 0, (S?2 − f ?2 ) > 0 and dξ < 0, so average transaction costs decrease.

4. Bank dealer’s profit. The bank dealer’s profit is πB = Π2 (S?2 ,H?
2, f

?
2 ). By the

envelope theorem,
dπB
dcB

= −2µ

r
(1−G (b?2)) < 0. (108)

5. Customer welfare. Customer welfare is

πc =
2µ

r

[∫ b?2

f?2

(b− f ?2 )H?
2dG (b) +

∫ ∞
b?2

(b− cNB) dG (b)

]
, (109)

so

r

2µ

dπC
dcB

= (b?2 − f ?2 )H?
2G
′ (b?2)

∂b?2
∂cB

+

∫ b?2

f?2

∂ [(b− f ?2 )H?
2]

∂cB
dG (b)− ∂b?2

∂cB
(b?2 − cNB)G′ (b?2)

(110)

=

∫ b?2

f?2

∂ [(b− f ?2 )H?
2]

∂cB
dG (b) > 0, (111)

where in the second equality we have used b?2 =
cNB−H?2f?2

1−H?2
.
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Figure 1: Example Panel A presents the market-making spread, the matchmaking fee, and average transaction costs.
Panel B plots the fractions of traders choosing market making, matchmaking, or refraining from trading. Panel C depicts
overall customer welfare and, separately, its market-making and matchmaking components. The dashed vertical lines in
each panel indicate the transitions between regions 1, 2, 3, and 4. The example uses an exponential distribution for
customer private values, G (b), and a quadratic function with parameter k for the cost of speed, K (H). The parameters
used in the example are µ = 1, r = 0.01, cNB = 20bps, and k = 0.1.
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Internet Appendix for

“From Market Making to Matchmaking: Does Bank

Regulation Harm Market Liquidity?”

Gideon Saar, Jian Sun, Ron Yang, and Haoxiang Zhu

B Proofs of Case 3 of the Main Model

B.1 Proof of Lemma 1

As proven in previous propositions, we can show that for any S, it is never optimal for the
bank dealer to choose H = 0 or f > S, i.e., the bank dealer can always make a weakly
positive profit by choosing f ≤ S. (The bank dealer can make a strictly positive profit if
S > 0 and the bank dealer sets some f < S.)

So without loss of generality, the optimization problem for the bank dealer given the
non-bank dealer’s spread S is

max
H∈[0,1],S≥f≥0

ΠB,3 =
2µ

r
Hf (G (b)−G (f))−K (H) . (112)

Given S,

∂ΠB,3 (S,H, f)

∂f
∝ H

[
G (b)−G (f)− f

(
G′ (b)

H
1−H

+G′ (f)

)]
∝ H

[
G (b)− fG′ (b) H

1−H
− 1 +G′ (f)

[
1−G (f)

G′ (f)
− f

]]
.

By Assumption 1,
(

1−G(f)
G′(f)

− f
)

is decreasing in f . Since f̃ solves
1−G(f̃)
G′(f̃)

− f̃ = 0, we

know that whenever H > 0,
∂ΠB,3(S,H,f)

∂f
< 0 if f ≥ f̃ . And we have shown before that the

optimal H > 0. This implies that the optimal f < f̃ .
Now we show that the non-bank dealer never wants to choose S ≤ f , conditional on

f < f̃ . If the non-bank dealer chooses S < f , then

∂ΠNB,3

∂S
∝
[

1−G (S)

G′ (S)
− S + cNB

]
. (113)

By the definition of f̃ , we must have 1−G(S)
G′(S)

−S+cNB > 0 for any S ≤ f < f̃ . So the optimal
S must be greater than f .
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B.2 Proof of Proposition 5

We prove the result in the following steps:

1. Both the bank dealer and the non-bank dealer’s best response functions are single-
valued.

2. Use Kakutani’s fixed point theorem to show equilibrium existence.

3. Discuss equilibria if cB is very small or very large.

Based on the assumption K ′′ > β2, we know there exists an upper bound H̄ < 1 that the
bank dealer will never choose any H > H̄ (see the derivations for β?1 for details). So we just
focus on the strategy space

Ω =
{

(S,H, f) |cB ≥ S ≥ f ≥ 0,H ∈
[
0, H̄

]}
. (114)

Step 1-1: Non-bank dealer’s best response function

Let’s first consider the non-bank dealer’s best response function BRNS (H, f).

BRNB (H, f) = arg max
cB≥S≥f

2µ

r
[(SNB − cNB) (1−G (b))] . (115)

It is obvious that the objective function is continuous in all arguments, and the corre-
spondence (H, f) → [f, cB] is a compact-valued correspondence and is continuous at any
(H, f). Then the best response function (correspondence) BRNB is non-empty, compact-
valued, and upper hemicontinuous (by the maximum theorem). Besides, we can show that
BRNB is single-valued. To see this, we have

r

2µ

∂ΠNB,3 (S,H, f)

∂S
= 1−G (b)− (S − cNB)G′ (b)

1

1−H

= G′ (b)

[
1−G (b)

G′ (b)
− S − fH

1−H
+
cNB − fH

1−H

]
= G′ (b)

[
1−G (b)

G′ (b)
− b+

cNB − fH
1−H

]
. (116)

We know that b is increasing in S, and 1−G(b)
G′(b)

− b is decreasing in b. So given (H, f),(
1−G(b)
G′(b)

− b
)

is decreasing in S. Then, there exists a unique best response value SNB (H, f) ∈
[f,∞) for each (H, f).
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Step 1-2: Bank dealer’s best response function

Let’s look at the bank dealer’s best response function BRS (S):

BRB (S) = arg max
H∈[0,H̄],S≥f≥0

2µ

r
Hf (G (b)−G (f))−K (H) . (117)

It is obvious that the objective function is continuous in all arguments, and the corre-
spondence S →

{
(H, f) |H ∈

[
0, H̄

]
, S ≥ f ≥ 0

}
is a compact-valued correspondence and is

continuous at any S. Then, the best response function (correspondence) BRS is non-empty,
compact-valued and upper hemicontinuous. Next, we will show that BRB (S) is a single-
valued function when K ′′ (H) is large enough. To see this, we will find a new and concave
strategy space for the bank dealer, and show that the bank dealer’s objective function is
always strictly concave in this strategy space. Let’s first look at

∂ΠB,3 (S,H, f)

∂f
∝ H

[
G (b)−G (f)− f

(
G′ (b)

H
1−H

+G′ (f)

)]
∝ H

[
G (b)− fG′ (b) H

1−H
− 1 +G′ (f)

[
1−G (f)

G′ (f)
− f

]]
. (118)

First we know
(

1−G(f)
G′(f)

− f
)

is decreasing in f . Recall f̃ is the unique solution to
1−G(f̃)
G′(f̃)

−

f̃ = 0. If
(

1−G(f)
G′(f)

− f
)
≤ 0, i.e., if f ≥ f̃ , we must have

∂ΠB,3(S,H,f)

∂f
< 0 as the RHS of the

above expression is negative. In the interval f ∈
[
0, f̃
]
, given (S,H), G (b) is decreasing in f ,(

−fG′ (b) H
1−H

)
is decreasing in f , G′ (f) is decreasing in f , and

(
1−G(f)
G′(f)

− f
)

is positive and

decreasing in f . With these results, we can show that given H 6= 0, if f ∈
[
0, f̃
]
,
∂ΠB,3(S,H,f)

∂f

is decreasing in f , and if f ∈
[
f̃ , S

]
,
∂ΠB,3(S,H,f)

∂f
is always negative. By iterated elimination

of strictly dominated strategies, the bank dealer will never choose f ≥ f̃ , so we can focus on
the new strategy space for the bank dealer:

Ω0 (S) =
{

(H, f) |H ∈
(
0, H̄

)
; f ∈

(
0,min

{
f̃ , S

})}
, (119)

and it is obvious that Ω0 (S) is a convex set for any S.
Now let’s show that the bank dealer’s objective function

ΠB,3 =
2µ

r
Hf (G (b)−G (f))−K (H) (120)
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is a strictly concave function in Ω0 (S). To show this, let’s consider its Hessian matrix

HB =

[
∂2ΠB,3
∂f2

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂H2

]
. (121)

The sufficient and necessary condition for ΠB,3 to be strictly concave is that HB is negative
definite, which is equivalent to the following conditions

∂2ΠB,3

∂f 2
< 0, (122)

and
∂2ΠB,3

∂f 2

∂2ΠB,3

∂H2
−
(
∂2ΠB,3

∂H∂f

)2

> 0. (123)

To check these conditions, first we have

r

2µ

∂2ΠB,3

∂f 2
= H

[
−2H
1−H

G′ (b) +
fH2

(1−H)2G
′′ (b)− 2G′ (f)− fG′′ (f)

]
. (124)

In Ω0 (S), we must have fG′′ (f) + G′ (f) > 0 (derived from f < 1−G(f)
G′(f)

and Φ ≥ 0), so
∂2ΠB,3
∂f2 < 0 for all (H, f) ∈ Ω0 (S).

To check condition (123), first we derive the following results :

r

2µ

∂2ΠB,3

∂H2
=

(b− f) f

(1−H)2 [2G′ (b) +H (b− f)G′′ (b)]− r

2µ
K ′′ (H) , (125)

r

2µ

∂2ΠB,3

∂f∂H
=

H
(1−H)2 [−Hf (b− f)G′′ (b) + (S − 2f)G′ (b)] . (126)

Let’s define

LHS1 =

[
−2H
1−H

G′ (b) +
fH2

(1−H)2G
′′ (b)− 2G′ (f)− fG′′ (f)

]
·
[
(b− f) f [2G′ (b) +H (b− f)G′′ (b)]− r

2µ
K ′′ (H) (1−H)2

]
, (127)

RHS1 =
H

(1−H)2 [−Hf (b− f)G′′ (b) + (S − 2f)G′ (b)]
2
. (128)

Then it is easy to verify

∂2ΠB,3

∂f 2

∂2ΠB,3

∂H2
−
(
∂2ΠB,3

∂H∂f

)2

> 0⇐⇒ LHS1 > RHS1. (129)
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Expanding LHS1,
LHS1 = LHS1−1 + LHS1−2 + LHS1−3, (130)

where

LHS1−1 = {−2G′ (f)− fG′′ (f)}
{

(b− f) f [2G′ (b) +H (b− f)G′′ (b)]− r

2µ
K ′′ (H) (1−H)2

}
,

(131)

LHS1−2 = − r

2µ
K ′′ (H) (1−H)2

[
−2H
1−H

G′ (b) +
fH2

(1−H)2G
′′ (b)

]
, (132)

LHS1−3 = (b− f) f [2G′ (b) +H (b− f)G′′ (b)]

[
−2H
1−H

G′ (b) +
fH2

(1−H)2G
′′ (b)

]
. (133)

Expanding LHS1−3 and RHS1, we get

LHS1−3 = (b− f)2 f 2H
(
H

1−H

)2

G′′2 (b)− (b− f) f
4H

1−H
G′2 (b)

+ (b− f) f

[
2f

(
H

1−H

)2

− 2H2

1−H
(b− f)

]
G′ (b)G′′ (b) , (134)

RHS1 = (b− f)2 f 2H
(
H

1−H

)2

G′′2 (b)− 2H2f (b− f) (S − 2F )

(1−H)2 G′ (b)G′′ (b)

+
H

(1−H)2 (S − 2f)2G′2 (b) , (135)

RHS1 − LHS1−3 = G′2 (b)
H

(1−H)2S
2. (136)

So

LHS1 = LHS1−1+LHS1−2+LHS1−3 > RHS1 ⇐⇒ LHS1−1+LHS1−2 > G′2 (b)
H

(1−H)2S
2.

(137)
Expanding LHS1−1 + LHS1−2, we get

LHS1−1 + LHS1−2 > G′2 (b)
H

(1−H)2S
2 ⇐⇒ r

2µ
K ′′ (H) (1−H)2 · LHS2 > RHS2 (138)
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where

LHS2 = 2G′ (f) + fG′′ (f) +
2H

1−H
G′ (b)− fH2

(1−H)2G
′′ (b) , (139)

RHS2 = G′2 (b)
H

(1−H)2S
2 + (b− f) f [2G′ (b) +H (b− f)G′′ (b)] [2G′ (f) + fG′′ (f)] .

(140)

We know LHS2 > 0 in Ω0 (S), so the condition (138) is equivalent to

r

2µ
K ′′ (H) (1−H)2 >

RHS2

LHS2

. (141)

Consider the sufficient condition for the above inequality

RHS2

LHS2

<
G′2 (b) H

(1−H)2S2

2H
1−HG

′ (b)
+ (b− f) f [2G′ (b) +H (b− f)G′′ (b)]

<
1

2

S2G′ (b)

1−H
+ 2fbG′ (b) . (142)

By S < cB and S < b, we know

1

2

S2G′ (b)

1−H
+ 2fbG′ (b) <

5

2

cBbG
′ (b)

1−H
. (143)

From assumption K ′′ > β2 and the definition of β2, we know

r

2µ
K ′′ (H) (1−H)3 ≥ 5

2
cB max

b
{bG′ (b)} (144)

holds in the whole space Ω0 (S), so in this space

r

2µ
K ′′ (H) (1−H)2 >

5

2

cBbG
′ (b)

1−H
>
RHS2

LHS2

, (145)

which means
∂2ΠB,3

∂f 2

∂2ΠB,3

∂H2
−
(
∂2ΠB,3

∂H∂f

)2

> 0. (146)

So the Hessian matrix in Ω0 (S) is negative definite. Thus, the bank dealer’s objective
function is strictly concave in Ω0 (S) for all S. Then, the bank dealer’s best response function
BRB (S) must be single-valued.
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Step 2: Applying Kakutani’s fixed point theorem

Now let’s consider a new function defined on (H, f) ∈
[
0, H̄

]
×
[
0,min

{
f̃ , S

}]
BR ((S,H, f)) = (BRNB (H, f) , BRB (S)) . (147)

• BothBRNB andBRB are upper hemicontinuous; thus, BR is also upper hemicontinuous.

• By the Closed Graph Theorem,37 because BR is hemicontinuous, the domain is closed,
then the graph for BR (denoted as Gr (BR)) is closed.

• Because both BRNB and BRB are single valued, BR ((S,H, f)) is single valued for any
(S,H, f). Thus BR ((S,H, f)) is convex set for any (S,H, f).

• Then by Kakutani’s fixed point theorem,38 because the domain is a non-empty, com-
pact, and convex subset of Euclidean space, BR has closed graph and BR ((S,H, f)) is
non-empty and convex for all (S,H, f), then BR must have a fixed point. And by the
definition of equilibrium, this fixed point is the equilibrium.

Step 3: Effect of cB on the equilibrium structure

Next, we will show that if cB > cNB but close enough, the equilibrium must be a constrained
equilibrium with S?3 = cB. And from the above we know that the bank dealer’s best response
function is single-valued, so the equilibrium is unique. To see this, suppose the bank dealer
chooses (H, f), then the non-bank dealer’s first order derivative is

∂ΠNB,3 (S,H, f)

∂S
= 1−G (b)− (S − cNB)G′ (b)

1

1−H
. (148)

Then if the non-bank dealer chooses S = cB and
∂ΠNB,3(S,H,f)

∂S
> 0, then it is still optimal for

the non-bank dealer to choose S = cB. We have

1−G (b)− (cB − cNB)G′ (b)
1

1−H
> 0

⇐⇒ cB − cNB < (1−H)
1−G (b)

G′ (b)
. (149)

The RHS of above inequality is decreasing in H and decreasing in S. And based on our
assumption K ′′ (H) > β2, we know in any equilibrium the bank dealer will always choose

H < H̄ =
√

2µ
r

√
4c̄
β2

, so if we define c̄1 as the unique solution of

c̄1 − cNB =

(
1−

√
2µ

r

√
4c̄

β2

)
1−G (b)

G′ (b)
, (150)

37See Proposition 1.4.8 of Aubin and Frankowska (2009).
38See Osborne and Rubinstein (1994).
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where b = c̄1

1−
√

2µ
r

√
4c̄
β2

, then if cB ∈ [cNB, c̄1], there exists a unique constrained equilibrium.

If cB is very large, we want to show that
∂ΠNB,3(S,H,f)

∂S
|S=cB < 0 is always true for any

plausible (H, f). Then any equilibrium must be an interior equilibrium. To see this, note

1−G (b)− (cB − cNB)G′ (b)
1

1−H
< 0 (151)

⇐⇒ cB − cNB > (1−H)
1−G (b)

G′ (b)
. (152)

We know 1−G(b)
G′(b)

is decreasing in b, so if cB− cNB > 1
G′(0)

, then all equilibria must be interior.

Let c̄2 = cNB + 1
G′(0)

.

B.3 Proof of Proposition 6

First it is obvious that for an unconstrained equilibrium, the change of cB has no impact on
the equilibrium. Now we prove results for the constrained equilibrium.

1. Spread, fee, speed. Because S?3 = cB, an increase in cB obviously increases the
spread.

By the implicit function theorem, we have

∂f ?3
∂cB
∝ ∂2ΠB,3

∂H∂cB
∂2ΠB,3

∂H∂f
− ∂2ΠB,3

∂H2

∂2ΠB,3

∂f∂cB

∣∣∣∣
(S?3 ,H?3,f?3 )

. (153)

At (S?3 ,H?
3, f

?
3 ), by direct calculation, we get

r

2µ

∂2ΠB,3

∂f∂cB
=

H
(1−H)2 [(1−H)G′ (b)−HfG′′ (b)] , (154)

r

2µ

∂2ΠB,3

∂H∂f
=

H
(1−H)2 [−fH (b− f)G′′ (b) + (S − 2f)G′ (b)] , (155)

r

2µ

∂2ΠB,3

∂H2
=

(b− f) f

(1−H)2 {2G
′ (b) +H (b− f)G′′ (b)} − r

2µ
K ′′ (H) , (156)

r

2µ

∂2ΠB,3

∂H∂cB
=
fG′ (b) +Hf (b− f)G′′ (b)

(1−H)2 . (157)

At (S?3 ,H?
3, f

?
3 ), it is obvious that

∂2ΠB,3
∂f∂cB

> 0, so

(
r

2µ

)2(
∂2ΠB,3

∂H∂cB
∂2ΠB,3

∂H∂f
− ∂2ΠB,3

∂H2

∂2ΠB,3

∂f∂cB

)
> 0⇐⇒

∂2ΠB,3
∂H∂cB

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂f∂cB

>
∂2ΠB,3

∂H2
. (158)
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Here, we have

r

2µ

∂2ΠB,3
∂H∂cB

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂f∂cB

=

r
2µ

(1−H)2

[−fH (b− f)G′′ (b) + (S − 2f)G′ (b)] [fG′ (b) +Hf (b− f)G′′ (b)]

HG′ (b)− fH2

1−HG
′′ (b)

.

(159)

It is easy to verify the following results (using S − f = (1−H) (b− f)):

fG′ (b) +Hf (b− f)G′′ (b) = SG′ (b)− (b− f) [(1−H)G′ (b)−HfG′′ (b)] ,
(160)

−fH (b− f)G′′ (b) + (S − 2f)G′ (b) = −fG′ (b) + (b− f) [(1−H)G′ (b)−HfG′′ (b)] .
(161)

Then

r

2µ

∂2ΠB,3

∂H∂cB
∂2ΠB,3

∂H∂f
∂2ΠB,3

∂f∂cB

=

r
2µ

(1−H)2

{
−SfG′2 (b)

(1−H)G′ (b)−HfG′′ (b)
+ (S + f) (b− f)G′ (b)− (b− f)2 [(1−H)G′ (b)−HfG′′ (b)

]2}
. (162)

Using the above expression and the expression for r
2µ

∂2ΠB,3
∂H2 , we have

∂2ΠB,3
∂H∂cB

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂f∂cB

>
∂2ΠB,3

∂H2
(163)

⇐⇒ r

2µ
K ′′ (H) (1−H)2 ≥ (b− f) f {2G′ (b) +H (b− f)G′′ (b)} (164)

+
SfG′2 (b)

(1−H)G′ (b)−HfG′′ (b)
− (S + f) (b− f)G′ (b) + (b− f)2 [(1−H)G′ (b)−HfG′′ (b)]2

⇐⇒ r

2µ
K ′′ (H) (1−H)2 ≥ SfG′ (b)

(1−H)−Hf G′′(b)
G′(b)

⇐=
r

2µ
K ′′ (H) (1−H)3 ≥ SfG′ (b) . (165)

By the assumption K ′′ (H) > β2 and the expression of β2, we know at the equilibrium
(S?3 ,H?

3, f
?
3 ), we must have

r

2µ
K ′′ (H) (1−H)3 ≥ 5

2
cBbG

′ (b) . (166)
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This is a sufficient condition for

r

2µ
K ′′ (H) (1−H)3 ≥ SfG′ (b) . (167)

Thus we must have
∂2ΠB,3
∂H∂cB

∂2ΠB,3
∂H∂f

∂2ΠB,3
∂f∂cB

>
∂2ΠB,3

∂H2
(168)

in this case, which implies that
df ?3
dcB

> 0. (169)

By the implicit function theorem, we have

∂H?
3

∂cB
∝ ∂2ΠB,3

∂f∂cB

∂2ΠB,3

∂H∂f
− ∂2ΠB,3

∂f 2

∂2ΠB,3

∂H∂cB

∣∣∣∣
(S?3 ,H?3,f?3 )

. (170)

By direct calculation, we have

r

2µ

∂2ΠB,3

∂f∂cB
=

H
(1−H)2 [(1−H)G′ (b)−HfG′′ (b)] , (171)

r

2µ

∂2ΠB,3

∂H∂f
=

H
(1−H)2 [−fH (b− f)G′′ (b) + (S − 2f)G′ (b)] , (172)

r

2µ

∂2ΠB,3

∂H∂cB
=
fG′ (b) +Hf (b− f)G′′ (b)

(1−H)2 , (173)

r

2µ

∂2ΠB,3

∂f 2
= H

[
−fG′′ (f)− 2G′ (f) +

(
H

1−H

)2

fG′′ (b)− 2H
1−H

G′ (b)

]
. (174)

Then

∂2ΠB,3

∂f∂cB

∂2ΠB,3

∂H∂f

=

(
H

(1−H)2

)2 { H
1−H

(S − 2f)G′2 (b)−
(
fH2

1−H
(b− f) +

fH2

(1−H)2
(S − 2f)

)
G′ (b)G′′ (b) +

f2H3

(1−H)2
(b− f)G′′ (b)

}
.

(175)

Let’s write
∂2ΠB,3
∂f2

∂2ΠB,3
∂H∂cB

as

∂2ΠB,3

∂f 2

∂2ΠB,3

∂H∂cB
= RHS1 +RHS2, (176)
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where

RHS1 =
Hf

(1−H)2

[
G′ (b) +H (b− f)G′′ (b)

] [( H
1−H

)2

fG′′ (b)−
2H

1−H
G′ (b)

]
(177)

=
Hf

(1−H)2

{
−

2H
1−H

G′2 (b) +

[
H (b− f)

(
−2H
1−H

)
+

(
H

1−H

)2

f

]
G′ (b)G′′ (b) +H (b− f)

(
H

1−H

)2

fG′′2 (b)

}
,

RHS2 =
Hf

(1−H)2

[
G′ (b) +H (b− f)G′′ (b)

] [
−fG′′ (f)− 2G′ (f)

]
. (178)

Then

∂2ΠB,3

∂f∂cB

∂2ΠB,3

∂H∂f
>
∂2ΠB,3

∂f 2

∂2ΠB,3

∂H∂cB
⇐⇒ ∂2ΠB,3

∂f∂cB

∂2ΠB,3

∂H∂f
−RHS1 > RHS2. (179)

We can directly check

∂2ΠB,3

∂f∂cB

∂2ΠB,3

∂H∂f
−RHS1 =

H
(1−H)2

H
1−H

SG′2 (b) , (180)

then H?
3 increases if and only if at the optimum (S?3 ,H?

3, f
?
3 )

H
(1−H)2

H
1−H

SG′2 (b) > RHS2 =
Hf

(1−H)2 [G′ (b) +H (b− f)G′′ (b)] [−fG′′ (f)− 2G′ (f)] .

At the optimum, from equation (25), we know that fG′ (f) + G (f) < 1, with the
assumption on Φ we can show −fG′′ (f) − 2G′ (f) < 0. So a sufficient condition for
the above inequality is

G′ (b) +H (b− f)G′′ (b) > 0⇐⇒ G′ (b) +
H

1−H
(S − f)G′′ (b) > 0

⇐⇒ H <
1

1 + (S − f)
(
−G′′(b)

G′(b)

) , (181)

which is equivalent to
∂2ΠB,3
∂H∂cB

> 0. With the assumption K ′′ > β3, we know the
equilibrium speed H?

3 must satisfy

H?
3 <

√
2µ

r

√
4c̄

β
<

1

1 + c̄
(
−G′′(0)

G′(0)

) . (182)

From the assumption Φ′ < 0, we can show that −G′′(x)
G′(x)

is a decreasing function of x,

so the above inequality is a sufficient condition for (181). Then with the assumption
K ′′ > β3, H?

3 increases in cB.

11



2. Customers’ choices. From equilibrium conditions (25) and (26), we have

b (G (b)−G (f))− (b− f) fG′ (f) =
r

2µ
K ′ (H) . (183)

Taking the total derivative of the above condition, we have

[G (b) + bG′ (b)−G (f)− fG′ (f)]
db

dcB
= (b− f) [2G′ (f) + fG′′ (f)]

df

dcB
+
r

2µ
K ′′ (H)

dH
dcB

.

(184)
Using equation (25), the above result becomes

cB
1−H

G′ (b)
db

dcB
= (b− f) [2G′ (f) + fG′′ (f)]

df

dcB
+

r

2µ
K ′′ (H)

dH
dcB

. (185)

Then taking the total derivative of equation (25), we have[
G′ (b)− f H

1−H
G′′ (b)

]
db

dcB
=

[
H

1−H
G′ (b) + 2G′ (f) + fG′′ (f)

]
df

dcB
+
fG′ (b)

(1−H)2

dH
dcB

.

(186)
Finally, taking the total derivative of b = cB−Hf

1−H , we have

db

dcB
=

1

1−H
+
−H

1−H
df

dcB
+
b− f
1−H

dH
dcB

. (187)

From (185) and (186), we can get

df?3
dcB
db?3
dcB

=

fG′(b)
r

2µ
K′′(H)(1−H)2

cB
(1−H)

G′ (b)−G′ (b) + Hf
1−HG

′′ (b)

(b− f) fG′(b)
r

2µ
K′′(H)(1−H)2 (2G′ (f) + fG′′ (f))− H

1−HG
′ (b)− (2G′ (f) + fG′′ (f))

.

(188)

From the assumption K ′′ (H) > β2, we know at the equilibrium, we must have

r

2µ
K ′′ (H) (1−H)3 >

5

2
cBbG

′ (b) . (189)

Then we get (consider cB ≥ S ≥ f)

fG′ (b)
r

2µ
K ′′ (H) (1−H)2

cB
(1−H)

< 1, (190)

and

(b− f)
fG′ (b)

r
2µ
K ′′ (H) (1−H)2 =

(S − f) fG′ (b)
r

2µ
K ′′ (H) (1−H)3 < 1. (191)
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So both the numerator and denominator of the RHS of (188) are negative. Then

df?3
dcB
db?3
dcB

> 0. (192)

Because we already show that
df?3
dcB

> 0, we must have
db?3
dcB

> 0. That is, the fraction of
customers who refrain from trading goes down.

At the equilibrium (S?3 ,H?
3, f

?
3 ), (G (b)−G (f)) increases if and only if

df

db
<
G′ (b)

G′ (f)
. (193)

Define Γ = fG′(b)
r

2µ
K′′(H)(1−H)2 and by (185)×Γ−(186), we can solve

df

db
=

(
1− Γ cB

1−H

)
G′ (b)− Hf

1−HG
′′ (b)

(1− Γ (b− f)) (2G′ (f) + fG′′ (f)) + H
1−HG

′ (b)
. (194)

So (G (b)−G (f)) increases if and only if(
1− Γ cB

1−H

)
G′ (b)− Hf

1−HG
′′ (b)

(1− Γ (b− f)) (2G′ (f) + fG′′ (f)) + H
1−HG

′ (b)
<
G′ (b)

G′ (f)
. (195)

When cNB → 0 and cB ↓ cNB, there is no matchmaking because in equilibrium
S?3 = cB → 0. As cB increases, S?3 increases and some customers start to use the
matchmaking mechanism. Because G (b?3) − G (f ?3 ) is a continuous function of cB, in
the region that cNB is small enough and cB is mildly above cNB, the share of match-
making must increase.

Because f ?3 increases in cB, the fraction of customers who refrain from trading increases.

3. Customers’ average transaction cost can be rewritten as

f +
1−G (b)

1−G (f)
(S − f) . (196)
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As cB increases, we know f ?3 increases, so at the equilibrium, we must have

d

(
f +

1−G (b)

1−G (f)
(S − f)

)
> df +

d [(1−G (b)) (S − f)]

1−G (f)

= df +
1

1−G (f)
{d [(1−G (b))S]− d [(1−G (b)) f ]}

= df +
1

1−G (f)
{d [(1−G (b))S] +G′ (b) fdb− (1−G (b)) df}

>
d [(1−G (b))S]

1−G (f)
+
G (b)−G (f)

1−G (f)
df. (197)

So a sufficient condition for d
(
f + 1−G(b)

1−G(f)
(S − f)

)
> 0 is

d [(1−G (b))S] > 0 (198)

which is equivalent to

(1−G (b)) dS −G′ (b)Sdb > 0⇐⇒ S
db

dS
<

1−G (b)

G′ (b)
. (199)

If cNB is small enough and cB ↓ cNB, we have a constrained equilibrium, so the above
condition becomes

cB
db

dcB
<

1−G (b)

G′ (b)
. (200)

Here, db
dcB

can be solved by (185), (186), and (187). So if cB − cNB is small enough, the
above inequality must hold (because the LHS → 0 while the RHS is positive). In this
case, average transaction costs must increase.

4. The profits of dealers (bank dealer and non-bank dealer). By the envelope
theorem, we have

r

2µ

dπB
dcB

= H?
3f

?
3G
′ (b?3)

1

1−H?
3

> 0. (201)

Now we turn to the non-bank dealer’s profit. First, we have

r

2µ

dπNB
dcB

= 1−G (b?3)−G′ (b?3) (cB − cNB)
db?3
dcB

. (202)

Then if
db?3
dcB

is bounded and cB ↓ cNB, we must have dπNB
dcB

> 0. Let’s show that
db?3
dcB

is bounded. By (185), (186) and (187), as cB ↓ cNB, db
dcB

can be solved and must be
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bounded.39 Then, we must have

lim
cB↓cNB

dπNB
dcB

> 0. (203)

For the case in which cB is close to the unconstrained level, let’s use
db?3
dcB

= 1
1−H?3

+
−H?3
1−H?3

df?3
dcB

+
cB−f?3

(1−H?3)
2

dH?3
dcB

. If cB is large enough, 1 − G (b?3) − G′ (b?3) (cB − cNB) 1
1−H?3

→

0 (this is the non-bank dealer’s first-order condition). In this case, if
−H?3
1−H?3

df?3
dcB

+
cB−f?3

(1−H?3)
2

dH?3
dcB

> 0, we have dπNB
dcB

< 0. We claim that this is true when K ′′ is large

enough. We now show it.

Suppose that K ′′ is sufficiently high (the equilibrium speed H is close to zero) and cB is
sufficiently high so that it is close to the unconstrained equilibrium level. From Proposi-
tion 5, define cuB = infcx {there exists at least one unconstrained equilibrium for cB = cx}.
First cuB is well defined and is greater than cNB. Second, at the unconstrained equilib-
rium S?3 = cuB, the non-bank dealer’s first-order condition satisfies

1−G (b?3)−G′ (b?3) (cuB − cNB)
1

1−H?
3

= 0. (204)

Besides, for any cNB < cB < cuB, there exists only one constrained equilibrium with
S?3 = cB. If K ′′ is sufficiently high (say K ′′ → ∞), then in any equilibrium H?

3 → 0.
In this case b?3 → S?3 and the equilibrium S?3 can be solved from the non-bank dealer’s
first-order condition. f ?3 can be solved by (taking H?

3 → 0)

G (S?3)−G (f ?3 ) = f ?3G
′ (f ?3 ) > 0. (205)

From (26) we know
r

2µ
K ′ (H?

3)→ f ?3 (G (S?3)−G (f ?3 ))

is finite. Then, we must have
dH?3
dcB
→ 0 because K ′′ (H?

3)
dH?3
dcB

=
d(K′(H?3))

dcB
. Then (186)

becomes

G′ (b)
db

dcB
= [2G′ (f) + fG′′ (f)]

df

dcB
. (206)

Substituting this into (185), we have (taking H?
3 → 0)

fG′ (b)
db

dcB
=

r

2µ
K ′′ (H)

dH
dcB

. (207)

39the exception is when the coefficient matrix for the system is singular when cB = cNB , but this is a
degenerate case.
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Consider (26), we have

r

2µ

K ′ (H)

H
= f

G (b)−G (f)

b− f
b− f
H
→ r

2µ
K ′′ (H) . (208)

Then H df
dcB

< (b− f) dH
dcB

because

df

dcB
<
b− f
H

dH
dcB

⇐⇒f G (b)−G (f)

b− f
df

dcB
<

r

2µ
K ′′ (H)

dH
dcB

⇐⇒G (b)−G (f)

b− f
< G′ (f) + (G′ (f) + fG′′ (f)) . (209)

If K ′′ (H) is sufficiently large, we must have

H df

dcB
< (b− f)

dH
dcB

(210)

in any equilibrium. Now consider

r

2µ

dπNB
dcB

= 1−G (b)−G′ (b) (cB − cNB)
db

dcB

= 1−G (b)−G′ (b) (cB − cNB)

[
1

1−H
+
−H

1−H
df

dcB
+
b− f
1−H

dH
dcB

]
. (211)

If K ′′ to be sufficiently high,
(
−H
1−H

df
dcB

+ b−f
1−H

dH
dcB

)
is always positive and bounded away

from zero. This is because df
dcB

is bounded away from zero and H increases in cB if K ′′

is sufficiently high (from the comparative statics of H?
3).

Then, we move cB to the unconstrained level cuB (given K ′′), in this case

1−G (b)−G′ (b) (cB − cNB)
1

1−H
→ 0, (212)

and
r

2µ

dπNB
dcB

→ −G′ (b) (cB − cNB)

(
−H

1−H
df

dcB
+
b− f
1−H

dH
dcB

)
< 0. (213)

5. Customer welfare.

As cNB → 0 and cB ↓ cNB, the only equilibrium is a constrained equilibrium with
S?3 = cB, and b?3 → 0 so all customers choose market making with zero cost. Then,
customers welfare reaches the maximum in this case. Now, if cB increases, the spread
will increase because S?3 = cB. In the meantime f ?3 also increases, so the customer
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welfare decreases. Customer welfare is a continuous function of both cB and cNB, so it
decreases if cNB is small enough and cB − cNB is sufficiently small (and positive).

Using H (b− f) = b− S, we can get

dπc
dcB

=

∫ b

f

H
(
− df

dcB

)
G′ (x) dx+

∫ b

f

(x− f)
dH
dcB

G′ (x) dx− (1−G (b))

<

∫ b

f

(x− f)
dH
dcB

G′ (x) dx− (1−G (b)) .

From the analysis in the proof for the comparative statics of πNB, we know that when
K ′′ is sufficiently high, dH

dcB
→ 0, and both b and f converge to constant numbers. Then

in this case, we must have

dπc
dcB

<

∫ b

f

(x− f)
dH
dcB

G′ (x) dx− (1−G (b))→ − (1−G (b)) < 0.

This is intuitive: when cB increases, both the matchmaking fee f and market making
spread S increase, and both make consumers worse off. The only possible benefit that
consumers can get is from the increase of matching speed H, but if the cost of the
matching technology is very high, the increase in matching speed will be very small,
and the overall customer welfare will decrease.

C Proofs of Propositions in the Robustness Section

C.1 Proof of Proposition 7

Case 1 of the equilibrium: In this case, we know based on previous results that at the
equilibrium (S?1 ,H?

1, f
?
1 ),

r

2µ
dπc = dH

∫ b

f

(1−G (x)) dx− (1−H) (1−G (b)) db, (214)

r

2µ
d (πB + (cB − cNB) (1−G (b))) = − (cB − cNB)G′ (b) db, (215)

πNB ≡ 0. (216)

Then dW > 0 is equivalent to

dH
db

∫ b

f

(1−G (x)) dx− (1−H) (1−G (b))− (cB − cNB)G′ (b) > 0. (217)
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We know that at the equilibrium,

cB
1−H

=
bG′ (b)− (1−G (b))

G′ (b)
, (218)

so
(1−H) (1−G (b)) + cBG

′ (b) = (1−H) bG′ (b) . (219)

Then

dH
db

∫ b

f

(1−G (x)) dx− (1−H) (1−G (b))− (cB − cNB)G′ (b) > 0

⇐⇒dH
db

∫ b

f

(1−G (x)) dx > (1−H) bG′ (b)− cNBG′ (b) . (220)

From previous results we know that at the equilibrium

dH
db

> 0. (221)

So the LHS of (220) is positive. The RHS of (220) becomes

(1−H) bG′ (b)− cNBG′ (b) = G′ (b) [(1−H) b− cNB] (222)

= G′ (b) [S −Hf − cNB] . (223)

In Case 1, we have S −Hf − cNB < 0, so (220) always holds. Thus, dW
dcB

> 0.
Case 2 of the equilibrium: Based on our previous results, at the equilibrium (S?2 ,H?

2, f
?
2 )

we have

dπB
dcB

= −2µ

r
(1−G (b)) , (224)

dπc =
2µ

r

∫ b

f

∂ [(x− f)H]

∂cB
dG (x) , (225)

πNB ≡ 0. (226)

So

dW

dcB
= −2µ

r
(1−G (b)) +

2µ

r

∫ b

f

d [(x− f)H]

dcB
dG (x) +

2µ

r

d ((cB − cNB) (1−G (b)))

dcB
(227)

=
2µ

r

[
− (cB − cNB)G′ (b)

db

dcB
+

∫ b

f

d [(x− f)H]

dcB
dG (x)

]
. (228)

In Case 2, we have cB − cNB < 0, db
dcB

> 0, df
dcB

< 0, and dH
dcB

> 0, so dW
dcB

> 0.
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C.2 Proof of Proposition 8

If we can show V (c1) > V (c2) for any 0 < c1 < c2 < cNB, then this result is proved. Define S2

H2

f2

 =

 S? (c2)
H? (c2)
f ? (c2)

 , V2 = V (c2) ; (229)

and  S1

H1

f1

 =

 S? (c1)
H? (c1)
f ? (c1)

 , V1 = V (c1) . (230)

Start with cB = c2. Then the equilibrium is (S2,H2, f2), and overall customer welfare is
V2 = V (c2). Now let’s decrease cB from c2 to c1. If the bank dealer still chose the strategy
(S2,H2, f2), the zero profit condition would be violated and the bank dealer’s profit would
be positive because

2µ

r
[H2f2 (G (b2)−G (f2)) + (S2 − c1) (1−G (b2))]−K (H2) >

2µ

r
[H2f2 (G (b2)−G (f2)) + (S2 − c2) (1−G (b2))]−K (H2) = 0.

(231)

Consider the following adjustment by the bank dealer: keeping S2 and f2 unchanged,
but increasing H such that the bank dealer finds an H̃ ∈ (H2, 1) to satisfy the zero profit
condition:

πB

(
S2, H̃, f2, c1

)
=

2µ

r

[
H̃f2

(
G
(
b̃
)
−G (f2)

)
+ (S2 − c1)

(
1−G

(
b̃
))]
−K

(
H̃
)

= 0.

(232)
This can always be done because

1. If the bank dealer chooses H = 1, his profit will be negative (from the assumption
about β1):

πB (S2,H = 1, f2, c1) < 0. (233)

2. We have shown above that
πB (S2,H2, f2, c1) > 0. (234)

Therefore, by the mean value theorem, there must exist H̃ ∈ (H2, 1) such that πB

(
S2, H̃, f2, c1

)
=

0.
Having shown that the zero profit condition will be satisfied if the bank dealer chooses(

S2, H̃, f2

)
if cB = c1, we show that this choice delivers higher customer welfare than

(S2,H2, f2) (which is the equilibrium if cB = c2). To see this, we fix S = S2 and f = f2, and
consider ∂πc

∂H :

∂πc
∂H
|(S=S2,H,f=f2) =

2µ

r

[
(b− f2)HG′ (b) ∂b

∂H
− (b− S2)G′ (b)

∂b

∂H
+

∫ b

f2

(x− f2) dG (x)

]
,

(235)
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where b = S2−Hf2

1−H . It is straightforward to show that ∂b
∂H = S2−f2

(1−H)2 and (b− f2)H−(b− S2) =

0. Then,

∂πc
∂H
|(S=S2,H,f=f2) =

2µ

r

[
((b− f2)H− (b− S2))G′ (b)

S2 − f2

(1−H)2 +

∫ b

f2

(x− f2) dG (x)

]
(236)

=
2µ

r

[
0 +

∫ b

f2

(x− f2) dG (x)

]
> 0. (237)

So, given S = S2 and f = f2, πc is increasing in H. Since we know H̃ > H2, we must have

πc

(
S2, H̃, f2

)
> πc (S2,H2, f2) = V2 (238)

i.e.,

2µ

r

[∫ b̃

f2

(x− f2) H̃dG (x) +

∫ ∞
b̃

(x− S2) dG (x)

]
>

2µ

r

[∫ b2

f2

(x− f2)H2dG (x) +

∫ ∞
b2

(x− S2) dG (x)

]
.

(239)
Hence, when cB = c1 and if the bank dealer chooses S = S2, H = H̃, and f = f2, the
bank dealer’s zero profit condition will be satisfied and customer welfare will be higher than
that when the bank dealer chooses S = S2, H = H2 and f = f2 (which is the equilibrium
customer welfare in the case when c = c2).

By definition, (S1,H1, f1) should generate weakly better customer welfare than any other
strategy (S,H, f) that satisfies the zero profit condition when cB = c1, i.e.,

V1 = πc (S1,H1, f1) ≥ πc (S,H, f) ∀ (S,H, f) ∈ {(S,H, f) |πB (S,H, f, c1) = 0} . (240)

Since
(
S2, H̃, f2

)
satisfies the zero profit condition when cB = c1, we must have

V1 = πc (S1,H1, f1) ≥ πc

(
S2, H̃, f2

)
. (241)

Combining (238) and (241), we have

V1 = πc (S1,H1, f1) ≥ πc

(
S2, H̃, f2

)
> πc (S2,H2, f2) = V2. (242)

The above analysis is true for any 0 < c1 < c2 < cNB, so V (cB) must be decreasing in cB.

C.3 Proof of Proposition 9

The objective function is a continuous function of (S, f,H), and the domain is a compact
set, so the maximum must exist. To show the FOCs are satisfied, we just need to show that
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the optimum is not a corner solution, i.e., the optimal solution cannot be fa = 0, Ha = 0,
or Ha = 1.

First, Ha = 1 is not an optimum. Suppose H = 1, then b =∞ and the bank dealer’s
profit becomes

2µ

r
[(G(b)−G(f)) [Hf −K (H)] + (S − cB) (1−G (b))]

=
2µ

r
[(1−G(f)) [f −K (1)] + (S − cB) (1− 1)]

Since K (1) > cNB > f , the bank dealer’s profit will be negative thus this cannot be an
optimum.

Second, Ha = 0 is not an optimum. We prove this by contradiction. Suppose H = 0,
then the bank dealer’s profit becomes

2µ

r
[(S − cB) (1−G (S))] (243)

which is invariant to f . Then, the optimal solution (Sa, fa) is given by

Sa = arg max
S≤cNB

2µ

r
[(S − cB) (1−G (S))] , (244)

fa ∈ [0, Sa] . (245)

Here fa can be any value in [0, Sa]. Consider ∂πB
∂H |(Sa,Ha=0,fa). If this derivative is positive for

some fa ∈ [0, Sa], then it is profitable for the bank dealer to choose a positive H. We can
show that

∂πB
∂H
|(Sa,Ha=0,fa) =

2π

r
[(G (ba)−G (fa)) fa − (Sa − cB)G′ (ba) (Sa − fa)] , (246)

where ba = Sa−Hafa
1−Ha = Sa. So,

∂πB
∂H
|(Sa,Ha=0,fa) =

2π

r
(Sa − fa)

[
fa
G (Sa)−G (fa)

Sa − fa
− (Sa − cB)G′ (Sa)

]
. (247)

We only need to find one fa such that the above derivative is positive. Consider fa → Sa.
Then, Sa − fa > 0, G(Sa)−G(fa)

Sa−fa → G′ (Sa), and fa > Sa − cB. The derivative of the bank
dealer’s profit with respect to the matching speed is positive, and hence it is not optimal to
set Ha = 0.

Third, fa = 0 is not an optimum. If fa = 0, it is obvious that the bank dealer should
not invest in matchmaking, i.e., Ha = 0. But we have already shown that this cannot be an
optimum.
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C.4 Proof of Proposition 10

Based on Assumption 2, the optimization problem becomes

max
cNB ≥ S ≥ f ≥ 0
H ∈ [0, 1]

2µ

r
[(G(b)−G(f)) [Hf −K (H)] + (S − cB) (1−G (b))]

=
2µ

r

[
b− f
B

[Hf −K (H)] + (S − cB)

(
1− b

B

)]
=

2µ

r

1

B

[
S − f
1−H

(Hf −K (H)) + (S − cB)

(
B − S −Hf

1−H

)]
. (248)

Suppose the constraint cNB ≥ S is not binding. Given any H and f , the objective
function is a quadratic function of S and the FOC is

1

1−H
(Hf −K (H)) +B − S −Hf

1−H
+ (S − cB)

(
−1

1−H

)
= 0

⇒ Hf −K (H) +B (1−H)− S +Hf − S + cB = 0

⇒ 2S = Hf −K (H) +B (1−H) +Hf + cB

⇒ S = Hf +
B (1−H) + cB −K (H)

2
. (249)

Similarly, the objective function is also a quadratic function of f and the FOC is

− 1

1−H
(Hf −K (H)) +

S − f
1−H

H + (S − cB)
H

1−H
= 0

⇒ − f +
K (H)

H
+ S − f + S − cB = 0

⇒ f = S − 1

2

(
cB −

K (H)

H

)
. (250)

Given any H (and with the constraint S ≥ f ≥ 0), solving the above two FOCs gives us the
best response functions

S =
B + cB

2
, (251)

f = min

{
B + K(H)

H
2

, S

}
=
B

2
+

1

2
min

{
K (H)

H
, cB

}
. (252)

To find the optimum, we need to substitute (251) and (252) into the objective function,

and find the optimal H. We can then find the optimal f using (252). Note that K(H)
H is

increasing in H (since K is convex). When K(H)
H > cB, f = S and the objective function

will be independent of H. So without loss of generality, we just need to consider the region
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K(H)
H ≤ cB. Then, the best response function of f is

f =
B

2
+

1

2

K (H)

H
. (253)

We substitute (251) and (253) into the objective function to obtain

S − f
1−H

(Hf −K (H)) + (S − cB)

(
B − S −Hf

1−H

)
(254)

=
1

2 (1−H)

(
cB −

K (H)

H

)(
HB

2
− 1

2
K (H)

)
+
B − cB

2

(
B

2
− cB −K (H)

2 (1−H)

)
. (255)

The optimal H can be solved from the above objective function with the constraint K(H)
H ≤

cB.
The optimal spread S = B+cB

2
is an increasing function of cB. Hence, when B+cB

2
≤

cNB ⇐⇒ cB ≤ 2cNB−B, the equilibrium is unconstrained, and when cB ∈ (2cNB −B, cNB),
the equilibrium is constrained.

We focus on the constrained equilibrium because our goal is to examine whether the
increase in customer welfare in Case 2 of our main model is robust to the alternative formu-
lation of the bank dealer’s cost of matchmaking. We now derive the comparative statics for
the bank dealer’s matchmaking fee, matching speed, and most importantly overall customer
welfare. In the constrained equilibrium, Sa = cNB and the objective function is

ΠB =
2µ

r

1

B

[
cNB − f
1−H

(Hf −K (H)) + (cNB − cB)

(
B − cNB −Hf

1−H

)]
. (256)

Given any H ∈ (0, 1), ΠB is a quadratic function of f , and the FOC with respect to f is

−1

1−H
(Hf −K (H)) +

cNB − f
1−H

H + (cNB − cB)
H

1−H
= 0

⇒f = cNB −
1

2

(
cB −

K (H)

H

)
. (257)

As we argued before, we just need to consider the case when cB ≥ K(H)
H and verify that the

solution (257) satisfies the constraint f ≤ S = cNB.
Then, the objective function becomes

rB

2µ
ΠB =

H
2 (1−H)

[(
cB −

K (H)

H

)(
cNB −

1

2

(
cB +

K (H)

H

))]
+ (cNB − cB) (B − cNB)−

H
2 (1−H)

(
cB −

K (H)

H

)
(cNB − cB)

=
H

2 (1−H)

[
−

1

2

(
cB −

K (H)

H

)(
cB +

K (H)

H

)
+ cB

(
cB −

K (H)

H

)]
+ (cNB − cB) (B − cNB)

=
H

4 (1−H)

(
cB −

K (H)

H

)2

+ (cNB − cB) (B − cNB) (258)
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For K (H) = 1
2
kH2,

rB

2µ
ΠB =

H
4 (1−H)

(
cB −

1

2
kH
)2

+ (cNB − cB) (B − cNB) . (259)

The derivative with respect to H is

rB

2µ

dΠB

dH
=

1

4

[
1

(1−H)2

(
cB −

1

2
kH
)2

− H
1−H

k

(
cB −

1

2
kH
)]

(260)

=
cB − 1

2
kH

4 (1−H)2

[
cB −

1

2
kH− kH (1−H)

]
. (261)

We have already shown that one only needs to consider the value of H when K(H)
H = 1

2
kH ≤

cB. Therefore, if k ≥ 4cNB, we have 1
2
kH ≤ cB ⇒ H ≤ 1

2
, then

cB− 1
2
kH

4(1−H)2 > 0 and cB − 1
2
kH−

kH (1−H) is decreasing in H. The unique optimal Ha is solved by

cB −
1

2
kHa − kHa (1−Ha) = 0. (262)

It is clear that when cB increases, the optimal Ha must increase. Besides,

cB −
1

2
kHa = kHa (1−Ha) (263)

also increases. Then, the optimal fee

fa = cNB −
1

2

(
cB −

1

2
kHa

)
(264)

must decrease. Similar to Case 2 of our main model, the change in overall customer welfare
when the regulatory cost increases is

r

2µ

dπc
dcB

=

∫ ba

fa

d [(x− fa)Ha]

dcB
dG (x)

=

∫ ba

fa

[
− dfa
dcB
Ha + (x− fa)

dHa

dcB

]
dG (x) , (265)

where ba = cNB−Hafa
1−Ha . We already proved dHa

dcB
> 0 and dfa

dcB
< 0, and therefore we must have

− dfa
dcB
Ha + (x− fa)

dHa

dcB
> 0 (266)
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for all x ∈ (fa, ba). Then, ∫ b

f

[
− dfa
dcB
Ha + (x− fa)

dHa

dcB

]
dG (x) (267)

must be positive, and thus dπc
dcB

> 0.
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