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Abstract
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1 Introduction

The cornerstone of interest-rate theory is that prices of Treasury bonds, futures on bonds, and

options on Treasury bond futures can be characterized by postulating the pricing kernel process

and the evolution of the spot interest-rate. Despite progress on modeling bond dynamics, little

priority has been given to depicting and reconciling the return pattern of state-contingent claims

on interest-rate movements. This seems surprising since options on Treasury bond futures are

actively sought markets. We develop a set of results regarding the expected excess return of claims

on the downside and the upside, and then present the pattern of expected excess returns of options

on bond futures that is generated by a host of model classes (we feature seven).

In light of our theoretical approach, we construct the time-series of option returns on Treasury

bond futures. Our new empirical result is that the average returns of holding out-of-the-money

(OTM) puts and calls on bond futures are both negative, implying that both up and down interest-

rate movements can be disconcerting to a segment of investors. This finding can be used as a

guardrail to improve the modeling of interest-rates, granted that all interest-rate claims are priced

consistently under the same equivalent martingale measure (i.e., the risk-neutral measure).

We develop theoretical characterizations that synthesize the expected excess return of puts and

calls on bond futures under general diffusion processes for the pricing kernel (with spanned and

unspanned components) and spot interest-rate. We show that many (but not all) interest-rate

models and macro-finance models imply that the expected excess return to holding a call option

(respectively, put option) has the same sign (opposite sign) as the risk premium on bond futures.

Thus, these models manifest the property that the expected excess return to holding puts and calls

on bond futures cannot both be negative. Therefore, these models are not capable of matching our

featured empirical findings. In essence, we offer an empirical dimension to anchor interest-rate

models as well as a way for refining and differentiating among prospective macro-finance models.

Our tool of analysis is Tanaka’s formula for continuous semimartingales, which decomposes any

option-like payoff into three parts: First, the option’s intrinsic value; second, the gain (or loss)

process of a dynamic trading strategy; and, third, local time (e.g., Revuz and Yor (1991)). Suited

for our analytical treatment, local time is a construct that embodies the (integrated) variance of,
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for example, the bond futures price at a particular level, and is a stochastic process, related to, but

conceptually distinct from, quadratic variation.

Our development is to characterize the expectation of Tanaka’s formula for the option payoff

under the physical probability measure (i.e., the real-world measure) and the discounted option

payoff under the risk-neutral measure. Quantifying the sign and magnitude of the disparity in the

expectations leads us to study the risk premium on local time, which, in turn, yields concise, and

testable, implications that many (but not all) interest-rate models fail to cohere with.

The quantitative effects can be summarized in three findings. First, we show that the average

return of long positions in OTM options on the 10-year Treasury bond futures are negative. Second,

our bootstrap-based tests identify an increasing (decreasing) pattern in average returns across the

strike prices for puts (calls). Third, the results remain robust for options written on the 30-year

Treasury bond futures.

Our theoretical results, valid without imposing any parametric specification, distill new eco-

nomic insights into how investors’ dislike both rising and falling interest-rates and into risk com-

pensations tied to state-contingent movements in the Treasury bond markets.

Themes indispensable to our theoretical approach in this paper are market incompleteness

(distinguished by the relevance of unspanned risks in the pricing kernel) and sources of volatility

uncertainty. The role of some of these features is also studied by Collin-Dufresne and Goldstein

(2002), Heidari and Wu (2003), Li and Zhao (2006), Andersen and Benzoni (2010), Joslin, Priebsch,

and Singleton (2014), Filipovic, Larsson, and Trolle (2017), and Joslin (2018), but from a markedly

different perspective. Collin-Dufresne and Goldstein (2002) present evidence that interest-rate

volatility risks are not spanned by bonds, whereas Andersen and Benzoni (2010) show that quadratic

yield variation is not spanned by bond prices or bond yields.

Our theoretical treatment, which incorporates a salient role for market incompleteness and

volatility — via the formalism of Tanaka’s formula — unmasks the conditions for a negative risk

premium on local time (we provide corroborative evidence), a concept decoupled from unspanned

stochastic volatility. Our analytical results, with economic inspiration drawn from the concept of

local time risk premiums, hold, regardless of the number of state variables. We explore model
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designs that synthesize negative expected excess returns to holding OTM options, which uncovers

and introduces suitable economic restrictions on the unspanned components of the pricing kernel.

2 Theoretical framework

This section achieves three objectives. First, we develop theoretical characterizations, under general

diffusion processes, concerning the expected excess return to holding a put or a call option written

on the bond futures. Second, we feature the implications of Tanaka’s formula that respect the

interlinkages between the bond price, futures price, and option prices across strikes and maturities.

Third, we derive the pattern of expected excess returns of OTM options, probing the properties of

local time under the physical probability measure and under the risk-neutral probability measure.

Our theoretical results, developed using Tanaka’s formula, are new, allowing for the pricing

kernel to have spanned and unspanned components, and are informative about the empirical con-

sistency of interest-rate models. The theory is developed with an eye toward empirical predictions

and tests, using options data on Treasury bond futures. Later, we study parameterized frameworks.

2.1 Dynamics of the pricing kernel and the spot interest-rate

Let (Ω,F , (Ft)0≤t≤T,P) be a filtered probability space, with T being a fixed, finite time. The

filtration (Ft)0≤t≤T satisfies the usual conditions. Let P denote the physical probability measure,

and EP
t (•) ≡ EP(•|Ft) be the expectation under P, conditional on Ft (i.e., the information set

available at time t). All stochastic processes with a subscript t are Ft-measurable.

We consider a frictionless market in which zero coupon bonds and a bond futures contract trade.

Denote the time t price of a zero coupon bond maturing at time T by BT
t . We do not stipulate

that bonds of all maturities trade, but we do assume that a bond with maturity TO trades, where

TO denotes the maturity date of the option, written on the bond futures.

Additionally, we denote the time t bond futures price by F TF

t , where TF denotes the expiration

date of the futures contract. It is understood that

t ≤ TO ≤ TF ≤ TB , (1)
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where TB denotes the maturity of the zero coupon bond underlying the futures contract.

The spot interest-rate rt, at time t, is defined as rt ≡ limT↓t − 1
T−t logB

T
t . Let ω

P
t and uP

t be

vectors of independent standard Brownian motions under the probability measure P.

Assume that the stochastic differential equation (SDE) of the pricing kernel Mt, of rt, of bond

prices BT
t , and of bond futures prices F TF

t , under P, can be depicted as

d logMt = −rtdt−
1

2
λ[t,X]

′
λ[t,X]dt− 1

2
α[t,X]

′
α[t,X]dt+ λ[t,X]

′
dωP

t +α[t,X]
′
duP

t , (2)

drt = µr[t,X]dt+ σr[t,X]
′
dωP

t , (3)

dBT
t

BT
t

= µB[t, T,X]dt − σB [t, T,X]
′
dωP

t , and (4)

dF TF

t

F TF

t

= µF [t, TF ,X]dt− σF [t, TF ,X]
′
dωP

t . (5)

The standard Brownian motions uP
t are only present in the SDE for Mt and capture risks not

spanned by bond or bond futures returns but are, potentially, spanned by options.

The incorporation of unspanned risks, with α[t,X]
′
duP

t 6= 0, is consistent with the effects

considered by, among others, Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Li

and Zhao (2006), Andersen and Benzoni (2010), Joslin, Priebsch, and Singleton (2014), Filipovic,

Larsson, and Trolle (2017), and Joslin (2018). Our innovation is to show that the presence of

α[t,X]
′
duP

t is central to resolving the observed pattern of returns to options on bond futures.

In equations (2)–(5), µr[t,X], µB[t, T,X], and µF [t, TF ,X] are drift coefficients, whereas σr[t,X] >

0 (indicating that each and every element of the vector σr[t,X] is strictly positive), σB [t, T,X] > 0,

σF [t, TF ,X] > 0, λ[t,X], and α[t,X] are vectors of diffusion coefficients.

The drift and diffusion coefficients may depend upon a vector of variables X (we drop the

t subscript) and are adapted to Ft. Although not done here to maintain sparsity of equation

presentation, it is understood that the vector X can, if desired, be partitioned into two sets of

variables: one that is spanned by bonds and bond futures returns and the other that is unspanned.

We assume that µr[t,X], µB [t, T,X], µF [t, TF ,X], σr[t,X], σB [t, T,X], σF [t, TF ,X], λ[t,X],

and α[t,X] are sufficiently differentiable that Ito’s lemma can be applied, and they are sufficiently

regular so that the SDEs in (2)–(5) have a unique solution.
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2.2 Expected return of futures on the bond and volatility of futures return

The absence of arbitrage ensures the existence of a (risk-neutral) equivalent martingale measure Q

(e.g., Harrison and Kreps (1979)). By Girsanov’s theorem, under Q, dωQ
t and duQ

t , defined by

dωQ
t = dωP

t − λ[t,X]dt and duQ
t = duP

t − α[t,X]dt, (6)

are standard Brownian increments. The Radon-Nikodym derivative, denoted by dQ
dP

∣
∣
∣
t,T

, is

dQ

dP

∣
∣
∣
t,T

=
MT

Mt
e
∫
T

t
rℓdℓ for all T ≥ t, (7)

= exp(

∫ T

t
{−1

2
λ[ℓ,X]

′
λ[ℓ,X]dℓ+ λ[ℓ,X]

′
dωP

ℓ − 1

2
α[ℓ,X]

′
α[ℓ,X]dℓ +α[ℓ,X]

′
duP

ℓ }).

It holds that (i) EP
t (

dQ
dP

∣
∣
t,T

) = 1, and (ii) the state-price density, dQt,T e
−

∫
T

t
rℓdℓ, satisfies

dQt,T e
−

∫
T

t
rℓdℓ = MT

Mt
dPt,T . Assume that EP

t ({MT

Mt
e
∫
T

t
rℓdℓ}2) <∞.

The drift and diffusion coefficients of bond price and futures price dynamics are restricted by

the requirements that

BT
t = EP

t (
MT

Mt
) = E

Q
t (e

−
∫
T

t
rℓdℓ), for all t ≤ T , and (8)

F TF

t = EP
t (
Ms

Mt
e
∫
s

t
rℓdℓF TF

s ) = E
Q
t (F

TF
s ), for all t and s satisfying t ≤ s ≤ TF , (9)

where E
Q
t (•) is the expectation under the equivalent martingale measure Q, conditional on Ft.

By Ito’s lemma, we have, for all t, TB , and TF (e.g., Cox, Ingersoll, and Ross (1981)), that the

expected excess returns of bonds and bond futures are

µB[t, TB ,X]− rt = λ[t,X]
′
σB [t, TB ,X] and µF [t, TF ,X] = λ[t,X]

′
σF [t, TF ,X]. (10)

For our results on the expected return of options on bond futures, we note that the return volatility

of bond futures is

σF [t, TF ,X] = σB [t, TB ,X] − σB [t, TF ,X]. (11)
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Such a relation follows, by Ito’s lemma, since (i) bond futures and forward prices have the same

instantaneous volatility (e.g., Cox, Ingersoll, and Ross (1981)), and (ii) forward bond prices have

the form
B

TB
t

B
TF
t

(e.g., Jarrow and Oldfield (1981, equation (13))).

By equations (6) and (7), we have, for all s ≥ t,

Mt

Ms
e−

∫
s

t
rℓdℓ = exp

(∫ s

t
{−1

2
λ[ℓ,X]

′
λ[ℓ,X]dℓ− λ[ℓ,X]

′
dωQ

ℓ − 1

2
α[ℓ,X]

′
α[ℓ,X]dℓ−α[ℓ,X]

′
duQ

ℓ }
)

.

(12)

For later use, we note that EQ
t (

Mt

Ms
e−

∫
s

t
rℓdℓ) = 1.

2.3 Expected excess return of puts and calls on bond futures

We are interested in computing the expected excess return to holding, over the time period t to

TO, an option written on the bond futures price, with moneyness k ≡ K

F
TF
t

, for strike price K.

Motivated by our empirical investigation, we center our theoretical analysis on out-of-the-money

(OTM) options or at-the-money options satisfying k ≤ 1 for puts and k ≥ 1 for calls.

Consider the Fs-measurable stochastic process (Gs) defined, for s ≥ t, by

Gs ≡
F TF
s

F TF

t

, the gross futures return, from t to s, for s satisfying t ≤ s ≤ TF . (13)

The notation (Gs) (in parentheses) is meant to emphasize the stochastic process for any arbitrary

time s. The former stands in contrast to Gs, which instead reflects its actual value at time s.

The dynamics of (Gs) under P are

dGs

Gs
=
dF TF

s

F TF
s

= µF [s, TF ,X] ds − σF [s, TF ,X]
′
dωP

s
︸︷︷︸

spanned

, for all s satisfying t ≤ s ≤ TF . (14)

Additionally, let the binary variable ℏ be defined by

ℏ = −1 for a put option on bond futures and ℏ = +1 for a call option on bond futures. (15)
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Denoting [a]+ = max(a, 0), the expected return µ
[ℏ]
t of holding the option over t to TO satisfies

1 + µ
[ℏ]
t ≡

EP
t ([ℏ(F

TF

TO
−K)]+)

E
Q
t (e

−
∫ TO
t rℓdℓ [ℏ(F TF

TO
−K)]+)

=
EP
t ([ℏ(GTO

− k)]+)

E
Q
t (e

−
∫ TO
t rℓdℓ [ℏ(GTO

− k)]+)
. (16)

Tanaka’s formula enables analytical tractability in our setting of stochastic interest rates. As

shown next, it allows us to decompose the payoff [ℏ(F TF

TO
−K)]+ in an economically appealing and

parsimonious fashion. In so doing, we formalize the P measure expectation of [ℏ(F TF

TO
−K)]+, the

Q measure expectation of e−
∫ TO
t rℓdℓ [ℏ(F TF

TO
−K)]+), and then consider the expected excess return

of options without explicit parameterizations.

2.3.1 Implications of Tanaka’s formula for expectations under P and Q

Tanaka’s formula for continuous semimartingales (e.g., Borodin and Salminen (2015)) implies that

[ℏ(GTO
− k)]+ = [ℏ(Gt − k)]+

︸ ︷︷ ︸

Intrinsic value ≡ It[ℏ,k]

+ ℏ

∫ TO

t
1{ℏGℓ>ℏk}dGℓ

︸ ︷︷ ︸

Gain/loss process

+ L
TO

t [k; 〈G〉]
︸ ︷︷ ︸

Local time

. (17)

While equation (17) appears abstract, it conveys a financial interpretation (e.g., Carr and Jarrow

(1990)). Consider the case of a put option with ℏ = −1.

- First, It[−1, k] ≡ [−(Gt − k)]+ = [k − Gt]
+ is the intrinsic value of the option (scaled by

1/F TF

t ) at inception. This quantity is zero for out-of-the-money and at-the-money options.

- Next, the term −
∫ TO

t 1{Gℓ<k}dGℓ = − 1

F
TF
t

(
∫ TO

t 1

{F
TF
ℓ

<K}
dF TF

ℓ ) is a stochastic integral that

represents the gains/losses to a dynamic trading strategy which takes a short position of

magnitude 1

F
TF
t

at time ℓ, in the futures, if, and only if, Gℓ < k (i.e., F TF

ℓ < K).

- Finally, the quantity L
TO

t [k; 〈G〉] is the local time of G at k, which, in turn, is related to the

quadratic variation 〈G〉t of (Gt) (e.g., Borodin and Salminen (2015, Chapter 2)).

A. Interpretation of local time and its risk premium. The form of the local time LTO

t [k; 〈G〉]

is

L
TO

t [k; 〈G〉] = 1

2

∫ TO

t
δ[Gℓ − k] d〈G〉ℓ, where δ[•] denotes the Dirac delta function. (18)
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L
TO

t [k; 〈G〉] is a non-negative and non-decreasing (in (TO − t)) stochastic process.

For an Ito process (Gt) of the form dGt

Gt
= µ̃[t,Gt] dt + σ̃[t,Gt] dωt, where ωt denotes standard

Brownian motion and σ̃[t,Gt] is the instantaneous volatility of dGt

Gt
, its quadratic variation is

〈G〉u ≡
∫ u

t
{σ̃[ℓ,Gℓ]Gℓ}2 dℓ, which reflects integrated variance. (19)

One may view local time as a measure of integrated variance computed when the process (Gt)

is precisely equal to k, which contrasts with measures of integrated variance computed on, for

example, the upside or downside, or unconditionally or with the use of integrated log variance (i.e.,

computed using the volatility of the log of an asset price; see Protter (1990)).

Quadratic variation and local time are sample path properties and do not vary with the prob-

ability measures P or Q. However, their expectations may differ under P and Q.

Suppose the transition probability density functions for Gt at time t to transition to k at time

ℓ, under P and Q, exist and are given by pP[t, ℓ; k,Gt] and pQ[t, ℓ; k,Gt], respectively. Then, the

expectation of the local time can be evaluated as (e.g., Borodin and Salminen (2015, page 21))

EP
t (L

TO

t [k; 〈G〉]) = 1

2

∫ TO

t

{σ̃[ℓ,Gℓ]Gℓ}2
∣
∣
∣
Gℓ=k

pP[t, ℓ; k,Gt]dℓ =
1

2

∫ TO

t

{σ̃[ℓ, k]}2k2pP[t, ℓ; k,Gt]dℓ, (20)

E
Q
t (L

TO

t [k; 〈G〉]) = 1

2

∫ TO

t

{σ̃[ℓ,Gℓ]Gℓ}2
∣
∣
∣
Gℓ=k

pQ[t, ℓ; k,Gt]dℓ =
1

2

∫ TO

t

{σ̃[ℓ, k]}2k2pQ[t, ℓ; k,Gt]dℓ. (21)

The quantity

EP
t (L

TO

t [k; 〈G〉]) − E
Q
t (L

TO

t [k; 〈G〉]) defines the risk premium on local time. (22)

As we show, studying the Tanaka decomposition under the probability measures P and Q, and

the allied expected excess return of the option on the bond futures enables economic insights.

Specifically, the attributes of the risk premium on local time can offer cues to differentiating between

interest-rate models, heeding to the notion that all interest-rate claims are priced consistently under

the same Q. Our theoretical innovation pertains to the non-zero contribution of the unspanned

risks α[t,X]
′
duP

t , which implies market incompleteness and may solicit local time risk premiums.

These features are our bridge to aligning theory and empirical evidence from interest-rate claims.
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B. Expected option payoff under P. Using Tanaka’s formula and taking expectations under

the P measure, the numerator of equation (16) becomes

EP
t ([ℏ(GTO

− k)]+) = It[ℏ, k] + EP
t (ℏ

∫ TO

t
1{ℏGℓ>ℏk}dGℓ) + EP

t (L
TO

t [k; 〈G〉])
︸ ︷︷ ︸

= E
Q
t
(

Mt
MTO

e−
∫TO
t

rℓdℓL
TO
t

[k;〈G〉])

(23)

where we recall It[ℏ, k] = [ℏ(Gt−k)]+. In addition, we use a change of measure dQt,TO
e−

∫ TO
t rℓdℓ Mt

MTO

=

dPt,TO
applied to EP

t (L
TO

t [k; 〈G〉]).

C. Expected discounted option payoff under Q. We recognize, using EQ
t (ã b̃) = E

Q
t (ã)E

Q
t (b̃)+

covQt (ã, b̃), for random variables ã and b̃, that

E
Q
t (e

−
∫ TO
t

rℓdℓ [ℏ(GTO
− k)]+) = BTO

t E
Q
t ([ℏ(GTO

− k)]+) + BTO

t Ct[ℏ, k], (24)

where Ct[ℏ, k] ≡ covQt (
1

BTO

t

e−
∫ TO
t rℓdℓ, [ℏ(GTO

− k)]+). (25)

Plugging equation (17) into equation (24), the expected discounted option payoff under Q is

E
Q
t (e

−
∫ TO
t rℓdℓ [ℏ(GTO

− k)]+)

= BTO

t

{
It[ℏ, k] + E

Q
t

(

ℏ

∫ TO

t
1{ℏGℓ>ℏk}dGℓ

)

︸ ︷︷ ︸

≡ 0

+ E
Q
t (L

TO

t [k; 〈G〉]) + Ct[ℏ, k]
}
, (26)

since F TF

t is a martingale under Q, so the stochastic integral in equation (26) is zero.

2.3.2 Putting the various parts together

The theoretical characterizations presented in equations (23) and (26) are not yet fully transparent

about the expected (gross) return of options 1+ µ
[ℏ]
t in equation (16). Our goal here is to compare

the expected option payoff under P, with the expected discounted option payoff under Q, and then

describe the pattern of expected excess return of options in relation to their strikes, under some

assumptions about the spanned and unspanned components of the pricing kernel.

The results to follow are theoretically inspired and pertain to whether the local time risk pre-

mium is zero or negative, which, in turn, is related to the unspanned components of the pricing
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kernel (that is to say, the components which capture risks not spanned by bond or bond futures

returns). We further explain these ideas in the context of featured parameterized frameworks in

Sections 4.1 and 4.2 and also textbook models in Section 4.3, in order to place our results on a

firmer economic footing.

Hereinafter, we consider OTM options with intrinsic value It[ℏ, k] = 0.

By a consequence of the P-measure (respectively, Q-measure) expectation of Tanaka’s formula

in equation (23) (respectively, equation (26)), we determine, from equation (16), that

1 + µ
[ℏ]
t − 1

BTO

t
︸ ︷︷ ︸

Expected excess return of OTM options

=
1

BTO

t

(
EP
t (ℏ
∫ TO

t 1{ℏGℓ>ℏk}dGℓ) + EP
t (L

TO

t [k; 〈G〉])
E
Q
t (L

TO

t [k; 〈G〉]) + Ct[ℏ, k]
− 1). (27)

Our transformations using Tanaka’s formula imply that the expected excess return of holding

the option depends on (a) the expected value of the dynamic trading strategy in futures, (b) the

magnitude of the covariance Ct[ℏ, k] under Q, and (c) the relative magnitudes of expected local time

under P and under Q. Instrumental to our theoretical treatment is the sign (and size, to mimic

empirical quantities) of the local time risk premium.

The following results on expected excess return of OTM options on bond futures are introduced

without parameterizing the evolution of the spot interest-rate or the form of λ[t,X] or α[t,X]. In

so doing, we analytically highlight the channel of local time risk premiums in a general setting.

Introducing this effect, in turn, requires assessing a covariance under the Q measure:

covQt (
Mte

−
∫ TO
t

rℓdℓ

MTO

, LTO

t [k; 〈G〉]) = E
Q
t (
Mte

−
∫ TO
t

rℓdℓ

MTO

L
TO

t [k; 〈G〉])
︸ ︷︷ ︸

= EP
t
(L

TO
t

[k;〈G〉])

− E
Q
t (
Mte

−
∫ TO
t

rℓdℓ

MTO

)

︸ ︷︷ ︸

= 1, using eq. (12)

E
Q
t (L

TO

t [k; 〈G〉]).

(28)

Now we show the following:

Result 1 (Expected excess returns of OTM options on bond futures) Assume that

EP
t (
∫ TO

t 1{Gℓ>k}dGℓ) is positive and EP
t (−

∫ TO

t 1{Gℓ<k}dGℓ) is negative. (29)

10



(a) (Absence of unspanned risks; market is complete). If

α[t,X] = 0, for all t, (no unspanned risks) (30)

then covQt (
Mt

MTO

e−
∫ TO
t

rℓdℓ, LTO

t [k; 〈G〉]) = 0, and the local time risk premium is zero. Fur-

thermore, the expected excess return of an OTM put (call) option on bond futures is negative

(positive), when it holds that Ct[ℏ, k] is negligible in the sense that Ct[ℏ,k]

E
Q
t
(L

TO
t

[k;〈G〉])
≈ 0.

(b) (With spanned and unspanned risks; market is incomplete). Suppose, for all t,

α[t,X] 6= 0 and covQt (
Mt

MTO

e−
∫ TO
t

rℓdℓ, LTO

t [k; 〈G〉]) < 0. (31)

The local time risk premium is negative. In this case, the expected excess return of OTM puts

and calls can both be negative.

Proof: See Appendix A. �

The assumption in equation (29), used in the proof of Result 1, strengthens the idea of a

positive bond futures risk premium, namely, EP
t (
∫ TO

t dGℓ) > 0, to EP
t (
∫ TO

t 1{Gℓ>k}dGℓ) > 0 and

EP
t (
∫ TO

t 1{Gℓ<k}dGℓ) > 0. Notably, the term ℏ
∫ TO

t 1{ℏGℓ>ℏk} dGℓ relates to risks spanned by bond

and bond futures returns. If all risks were to be spanned by bond and bond futures returns; that is,

if α[t,X] = 0, then EP
t (L

TO

t [k; 〈G〉]) = E
Q
t (L

TO

t [k; 〈G〉]) and the expected excess return to holding

an option would, in essence, be determined by the sign of the bond futures risk premium.

We underscore that α[t,X] = 0 is a sufficient condition to prove part (a) of Result 1 but

it is not necessary. If α[t,X] 6= 0 (so the market is, in fact, incomplete) but the covariance

covQt (
Mt

MTO

e−
∫ TO
t

rℓdℓ, LTO

t [k; 〈G〉]) equals zero, part (a) of Result 1 would still hold.

The big picture is that if there are no unspanned risks present in the pricing kernel process,

then the expected excess return of puts and calls cannot both be negative.

Our analysis in part (b) of Result 1 incorporates an explicit role for market incompleteness.

In order to align the expected excess return to holding an option on bond futures with empirical

realities (reported in Section 3), a necessary condition is that there are unspanned risks (i.e.,

α[t,X] 6= 0) in the pricing kernel process and a negative local time risk premium.

11



One key implication of Result 1 is that, in order to generate a non-zero local time risk premium,

it is not sufficient to feature time-varying volatility of bond futures returns (as in, for example, the

model of Cox, Ingersoll, and Ross (1985)). Crucially, the evolution of the return volatility should

incorporate components driven by duP
t , and the local time should exhibit a non-zero (to match

empirics, specifically, a negative) correlation with the unspanned component of the pricing kernel.

Emphasizing our treatment of the problem in Sections 4.1 and 4.2, we consider models with market

incompleteness and volatility uncertainty, and then develop, in particular, the analytical restrictions

that uncover negative local time risk premiums.

It is provable (but omitted) that the risk premium on local time, depicted as a covariance

under the Q measure in equation (28), is also interpretable as a P measure covariance. Specifically,

EP
t (L

TO

t [k; 〈G〉]) − E
Q
t (L

TO

t [k; 〈G〉]) = − 1

B
TO
t

covPt (
MTO

Mt
, LTO

t [k; 〈G〉]). We focus on the Q measure

covariance for two reasons. First, we are interested in identifying and measuring the local time risk

premiums through the empirical counterpart to the expected excess return of an options portfolio

(our Result 2). Second, we draw the link to the unspanned components of the pricing kernel.

What about the plausibility of the small quantitative effect of the covariance Ct[ℏ, k]; that is,

Ct[ℏ, k] is negligible. By the Cauchy-Schwarz inequality, |Ct[ℏ, k]| ≤ {varQt ( 1

B
TO
t

e−
∫ TO
t

rℓdℓ) varQt ((GTO
−

k)1{ℏGTO
>ℏk})}1/2. The rationale for a very small |Ct[ℏ, k]| is that short-dated bond return volatil-

ities (relevant for one month options) are low. We give further support to the notion that Ct[ℏ, k]

is negligible in Bakshi, Crosby, and Gao (2019, Section I, Table Appendix-I).

The dynamics, in equations (2)–(5), assume that bond prices and bond futures prices have

continuous sample paths (although the state variables X may have jumps), but they are sufficiently

versatile so that the initial term-structure of interest-rates can be matched (as also noted in the

analyses of Heath, Jarrow, and Morton (1992)). Thus, our dynamics and the expectations under

P of [ℏ(GTO
− k)]+ and under Q of e−

∫ TO
t

rℓdℓ [ℏ(GTO
− k)]+, using Tanaka’s formula, encompass

many of those considered in the literature. However, supporting our empirical findings requires

market incompleteness generating negative local time risk premiums.

Our remaining work involves articulating the information content of options data on Treasury

bond futures for models, and the evidence that the average returns of OTM puts and calls on the

Treasury bond futures are negative. We derive a theoretical result (Result 2) that links expected

12



straddle returns to the local time risk premium when the strike price equals the current futures

price, and study its testable implications. Finally (in Section 4), we explore models in which the

interplay between dynamics under P and those under Q is such that as to achieve qualitative

consistency with the average returns of OTM options on bond futures. In so doing, our focus is on

the properties of local time and unspanned components.

3 The empirical puzzle in the Treasury market

The empirical finding highlighted in this section is that

E
Q
t (e

−
∫ TO
t

rℓdℓ[K − F TF

TO
]+) dominates EP

t ([K − F TF

TO
]+) for K < F TF

t , and (32)

E
Q
t (e

−
∫ TO
t

rℓdℓ[F TF

TO
−K]+) dominates EP

t ([F
TF

TO
−K]+) for K > F TF

t . (33)

This outcome is consistent with average returns of options on bond futures being negative for both

OTM puts and calls. Moreover, this effect is more pronounced for deeper OTM options. We provide

support for these empirical findings using options data on futures of both 10- and 30-year Treasury

bonds. Our findings can be considered puzzling because many workhorse models (as explained in

Section 4.3) manifest the property that the expected excess return to holding OTM puts and calls

on bond futures cannot both be negative.

An economic interpretation of these featured findings is that certain investors, such as those who

are leveraged or have floating-rate debt, have an incentive to protect their exposures to increases in

interest-rates, which coincide with adverse movements in the value of bond portfolios. On the other

hand, certain other investors protect their exposures to declining interest-rates. Thus, investors

are averse to both interest-rate increases and interest-rate decreases, resulting in negative average

returns of OTM puts and calls. Our results pertaining to expected excess return of OTM options

on bond futures are new and not manifested in the theoretical work on options on Treasury bonds.1

1The papers that develop bond option formulas include, among others, Cox, Ingersoll, and Ross (1985), Jamshidian
(1989), Turnbull and Milne (1991), Chen and Scott (1992), Heath, Jarrow, and Morton (1992), Longstaff and Schwartz
(1992), Das and Foresi (1996), Attari (1999), Buhler, Uhrig-Homburg, Walter, and Webber (1999), Chacko and Das
(2002), Carr, Gabaix, and Wu (2009), Heidari and Wu (2009), Trolle and Schwartz (2009), and Almeida, Graveline,
and Joslin (2011).
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A. Data on options on the Treasury bond futures. Our investigation focuses on options on

the 10-year and 30-year Treasury bond futures over expiration cycles. These option contracts —

which are of American style — are actively traded compared to those on 5- and 2-year Treasury

bond futures. We collect the daily data of options from the CME group, which includes the strike

price, the settlement price of options, the settlement price of futures, and the remaining maturity.

At the beginning of each expiration cycle, we select OTM put and call options, where OTM puts are

associated with moneyness log K

F
TF
t

= log k < 0, whereas OTM calls are associated with moneyness

log
F

TF
t

K = − log k < 0.2 Table 1 displays the average dollar open interest and dollar trading volume

for OTM options on Treasury bond futures. Our comparison with S&P 500 equity index options

indicates that options on Treasury bond futures are liquid.

Next, we keep the shortest maturity options, which usually expire on the last Friday at least

two business days from the last business day of the next month. These shortest maturity options

have an average maturity of 27.3 days.

In our calculations, we choose one put (call) where log K

F
TF
t

(log
F

TF
t

K ) is closest to 1%, 3%, and

5% OTM, respectively. To maintain the expiration cycle returns, the option and futures sample

starts on 7/22/1991 (respectively, 12/24/1990) for futures on 10-year (30-year) Treasury bond and

ends on 12/24/2018, for a total of 330 (337) expiration cycles.

B. Futures risk premium on the 10- and 30-year Treasury bonds is reliably positive.

Key to our theoretical characterizations is the notion of a positive risk premium on a long futures

position. The excess return of a long position (fully collateralized) in the futures contract is

zfuturest,TO
=

F TF

TO

F TF

t

− 1, for futures on the 10-year and 30-year Treasury bonds, (34)

where F TF

t and F TF

TO
are, respectively, the futures price observed at the start and end of the options

expiration cycle.

Table 2 shows that the average excess return corresponding to the 10-year (30-year) futures

contract is 3.0% (3.5%) annualized, with a standard deviation of 5.3% (8.7%). To assess statistical

significance, we jointly bootstrap (via an i.i.d bootstrap) the returns of 10-year and 30-year futures.

2The study of Flesaker (1993) indicates that the impact of the early exercise premium on option prices in the
fixed-income market is small, and we are mindful that this may be especially true for OTM options.
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With 100,000 bootstrap draws, we obtain 90% confidence intervals, for the average return (in %) of

[1.3 4.7] and [0.7 6.1], respectively, which do not intersect zero. Thus, a distinctive attribute of the

Treasury market is that the average return of bond futures is positive and statistically significant.

C. Pattern of average returns of puts and calls on bond futures across strikes. We

compute the time-series of option (net) returns of fixed moneyness as

zputt,TO ,ℵ% =
[K − F TF

TO
]+

Pt[K]
− 1, where K corresponds to K = F TF

t e−ℵ%, ℵ = 1%, 3%, and 5%,

zcallt,TO ,ℵ% =
[F TF

TO
−K]+

Ct[K]
− 1, where K corresponds to K = F TF

t e+ℵ%, ℵ = 1%, 3%, and 5%,

and Pt[K] (Ct[K]) is the settlement price of a put (call) on the Treasury bond futures with strike

K, as reported by the CME. The bid and ask option prices are not reported separately.

Table 3 reports the average returns of put and call options. Focusing on the results from options

on the futures on 10-year Treasury bonds, the first observation is that the 5% OTM put returns

and the 5% OTM call returns are both highly negative. In particular, the 5% OTM puts generate

an average of −93% and the 5% OTM calls an average of −91% (over 27.3 days, not annualized).

The second observation is that the average returns become less negative as the moneyness

declines for both puts and calls. For example, the average returns of the 3% OTM puts are −71%

and increase (i.e., become less negative) to −41% for the 1% OTM puts. Similarly, the average

returns of the 3% OTM calls are −76% and increase to −11% for the 1% OTM calls.

Note further from Table 3 (Panel B) that the pattern of average returns across moneyness is

preserved with options on the futures on 30-year Treasury bonds.

Reported also are the 90% bootstrap confidence intervals on the average option returns. Our

procedure is to jointly bootstrap all option returns with replacement. The individual average option

returns are generally statistically significant and negative, robustly so for puts. This can be gauged

by 11 out of 14 bootstrap confidence intervals on average option returns that do not bracket zero.

Finally, options on the 10-year Treasury bond futures deliver more negative average returns

than their 30-year counterparts, which can be attributable to the shorter bond duration for the

same fixed moneyness. In other words, the 10-year bond futures are written on an asset that is
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less sensitive to interest-rate fluctuations. Intuitively, the lower volatility of the underlying asset

translates into fewer extreme returns on the option, reflecting a P-measure property that a model

should seek compatibility with unconditionally.

D. Bootstrap evidence on adjacent strikes. Table 4 tests the average return differences

between adjacent strikes for both puts and calls. The hypothesis is that (analogously for calls)

zputt,TO,5% − zputt,TO ,1% ≥ 0, or, zputt,TO ,5% − zputt,TO,3% ≥ 0, or, zputt,TO,3% − zputt,TO ,1% ≥ 0. (35)

We conduct a bootstrap (with 100,000 draws) and compute the frequency, for instance, zputt,TO,5% −

zputt,TO ,1% ≥ 0, and report it as empirical p-values. Low p-values imply rejection. Table 4 shows that

our evidence is consistent with the feature that deeper OTM options exhibit more negative average

returns, and this pattern is stronger for options on the 10-year futures. This pattern also holds for

options on the futures of the 30-year bond, with the exception that the 3% OTM call is statistically

indistinguishable from the 1% OTM call.

Overall, our evidence suggests that the average returns of deeper OTM options on bond futures

tend to be more negative. The average returns are also increasing (i.e., less negative) as one moves

from strikes deeper OTM to near-money.

E. Tackling the negative risk premium on local time. We develop the following result in the

context of our theory with spanned and unspanned components of the pricing kernel (in equation

(2)). This result holds without making parametric assumptions about the spot interest-rate process

or the form of λ[t,X] or α[t,X].

Result 2 The percentage risk premium on local time when k = K

F
TF
t

= 1 can be inferred from the

expected excess return of straddles on bond futures as

Percentage risk premium on local time
︷ ︸︸ ︷

EP
t (L

TO

t [k; 〈G〉])
E
Q
t (L

TO

t [k; 〈G〉])

∣
∣
∣
∣
∣
k=1

− 1 ≈ BTO

t

Expected excess return of straddles
︷ ︸︸ ︷
(

EP
t ([F

TF

TO
− F TF

t ]+ + [F TF

t − F TF

TO
]+)

Ct[F
TF

t ] + Pt[F
TF

t ]
− 1

BTO

t

)

. (36)

Proof: Equation (36) follows by summing Tanaka’s formula applied to [GTO
−1]+ and [1−GTO

]+.

See Appendix B. �
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We assess the local time risk premium for k = 1 by constructing the returns of long straddles.

In implementation, we search for a put and a call with strike K ≈ F TF

t . Table 3 shows that

average return of at-the-money straddles of −11% (again, not annualized) when the underlying

is the futures on the 10-year bond and −9% when it is the futures on the 30-year bond. Thus,

equation (36) implies that the (percentage) local time risk premium, when k = 1, for futures on the

10-year (30-year) bond is −11% (−9%), and is reliably negative. The unambiguously negative local

time risk premium imputed from options brings in an additional piece of evidence that reinforces

our theoretical angles.

F. Summary and interpretation. Our documented patterns constitute a yardstick for interest-

rate models to consider and match, since models should be consistent with both P-measure and

Q-measure cumulative distribution functions. One may envision our empirical results as a form of

discrepancy in expectations that looks to align the theory with the data. As such, it imposes a

set of restrictions on their joint behavior (i.e., the risk premium on local time) instead of enforcing

consistency with one probability measure (say, P) without regard for the other (say, Q). Having

data on state-contingent contracts from the Treasury markets is crucial to articulating this disparity

and is as fundamental to macro-finance models as state-contingent contracts on the equity market

index. Our evidence indicates that investors perceive interest-rate movements to both the downside

and the upside as unpalatable.

4 What modeling features are consistent with the empirical data?

We now focus on exploring model designs that can be consistent with the data on average returns

of options on Treasury bond futures. Encapsulated within these model classes is market incom-

pleteness combined with sources of volatility uncertainty and negative risk premiums on local time.

4.1 An economy in which bonds do not span local time

In what follows, we partition the vector of state variables into two sets: Xt ≡ [Z′
t U

′
t]
′, where Zt

(respectively, Ut) are spanned (unspanned) by bond returns.
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Let t0 be some arbitrary initial date. Define the quantity

Munspanned
t ≡ exp(

∫ t

t0

−1

2
α[ℓ,Z,U]

′
α[ℓ,Z,U]dℓ + α[ℓ,Z,U]

′
duP

ℓ ). (37)

Thus, for T ≥ t, we have
Munspanned

T

Munspanned
t

= exp(
∫ T
t −1

2α[ℓ,Z,U]
′
α[ℓ,Z,U]dℓ +α[ℓ,Z,U]

′
duP

ℓ ).

Under our theoretical setup, Munspanned
t is a martingale (under P) satisfying

EP
t (M

unspanned
T ) = Munspanned

t . (38)

Next, we construct the pricing kernel Mt as follows:

Mt =

as in Filipovic, Larsson, and Trolle (2017)
︷ ︸︸ ︷

e−νt (φ+ψ
′
Zt) × Munspanned

t , with (39)

dZi,t = (κZ(Z− Zt))i dt + σi,Z [Zt,Ut] dωP
i,t

︸︷︷︸

spanned

, for i = 1, . . . , N. (40)

The representation of the pricing kernel in equation (39) complements Filipovic, Larsson, and

Trolle (2017), who assume Munspanned
t ≡ 1 (i.e., that α[t,Z,U] ≡ 0). There are N independent

spanned state variables, denoted by Zt, which are driven by ωP
t (representing spanned risks).

Furthermore, κZ is a N -dimensional square matrix, and Zi > 0 and ψi, for i = 1, . . . , N , ν, and φ

are constant scalars, with ψi and φ chosen to ensure φ+ψ
′
Zt > 0, almost surely, for all t.

Our approach in equation (39) is motivated by the feature that α[t,Z,U]
′
duP

t = 0 is a sufficient

condition for a zero local time risk premium (see Result 1). We formalize Munspanned
t to target

consistency with the observed pattern of average returns of options on bond futures.

The implication of equations (39)–(40) is that zero-coupon bond prices are given by

BT
t = EP

t (
MT

Mt
) =

e−νT

e−νt
EP
t (
φ+ψ

′
ZT

φ+ψ′Zt
)× EP

t (
Munspanned

T

Munspanned
t

) (by independence and (38)) (41)

= B(T − t,Zt), where B : R× RN → R satisfies (42)

B(T − t,Zt) ≡ e−ν(T−t)
(φ+ψ

′
Z+ψ

′
(e−κZ (T−t)(Zt − Z))

φ+ψ′Zt

)
, (43)

and depend upon Zt but not Ut.
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In essence, we preserve the Filipovic, Larsson, and Trolle (2017) specification of the spot interest-

rate and of λ[t,Z,U] but we additionally incorporate unspanned risks (i.e, allow α[t,Z,U]
′
duP

t 6= 0)

in the pricing kernel dynamics. Ito’s lemma applied to (39) reveals

dMt

Mt
= −rt dt + λ[t,Z,U]

′
dωP

t + α[t,Z,U]
′
duP

t ,
︸ ︷︷ ︸

term not in Filipovic, Larsson, and Trolle

with (44)

rt = ν − ψ
′
κZ(Z− Zt)

φ+ψ
′
Zt

and λ[t,Z,U] =

∑N
i=1 σi,Z [Zt,Ut]ψi

φ+ψ
′
Zt

. (45)

We note that (▽Z denotes partial derivatives)

dBT
t

BT
t

= (rt + λ[t,Z,U]
′
σB [t, TB ,Z,U])dt − σB [t, T,Z,U]

′
dωP

t , where (46)

σB,i[t, T,Z,U] = − σi,Z [Z,U]
( ▽ZB(T − t,Z)

B(T − t,Z)

)

i
. (47)

We will specify a form of σi,Z [Zt,Ut] which is tractable and desirable from economic standpoints.

Under the constructions in equation (44), with a form of incompleteness due to α[t,Z,U]
′
duP

t 6=

0, our value-added is to develop the restrictions on α[t,Z,U] such that (i) the local time risk

premium is negative, and (ii) the expected excess returns of OTM puts and calls on bond futures

can both be negative.

Working toward our goals, first, we specify that the M unspanned state variables Ui,t follow

dUi,t = κPi (U i − Ui,t) dt+ σi,U
√

Ui,t duPi,t
︸︷︷︸

unspanned

, for i = 1, . . . ,M, with M ≤ N, (48)

where U i > 0, κPi > 0, and σi,U > 0 are constants.

Completing the picture, second, we consider σi,Z [Zt,Ut], in equation (40), for i = 1, . . . , N , to

be of the form

σi,Z [Zt,Ut] =
√

ζiZi,t + βiUi,t, (i.e., shaped by both spanned and unspanned variables) (49)

for constant scalars ζi ≥ 0 and βi ≥ 0, with at least one inequality for βi strict, and βi = 0 if i > M .
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Consider next the futures contract and its dynamics:
dF

TF
t

F
TF
t

= λ[t,Z,U]
′
σF [t, TF ,Z,U] dt −

σF [t, TF ,Z,U]
′
dωP

t . By Ito’s lemma, equation (47), and equation (11), the volatility of futures

returns σF [t, TF ,Z,U], needed for calculating L
TO

t [k; 〈G〉], takes the form

σF,i[t, TF ,Z,U] = σB,i[t, TB ,Z,U] − σB,i[t, TF ,Z,U] ≡ ℧i,t

√

ζiZi,t + βiUi,t, (50)

where ℧i,t ≡
( ▽ZB(TF − t,Zt)

B(TF − t,Zt)
− ▽ZB(TB − t,Zt)

B(TB − t,Zt)

)

i
. (51)

Here, ℧i,t depends on TB , TF , and Zt but we suppress the dependence, for brevity.

As a consequence, the dynamics of (Gs) under Q are

dGt

Gt
= −

N∑

i=1

σF,i[t, TF ,Z,U] dωQ
i,t = −

N∑

i=1

√

ζiZi,t + βiUi,t ℧i,t dωQ
i,t.

︸ ︷︷ ︸

spanned

(52)

Pertinent to our theory, and for tractability and sparsity of specification, we set

αi[t,U] = bi
√

Ui,t, for each i = 1, . . . ,M, where b1, . . . , bM are constants. (53)

Then, by Girsanov’s theorem, for i = 1, . . . ,M , we obtain the Ui,t dynamics under Q as follows

dUi,t = κQi (U i − Ui,t) dt + σi,U
√

Ui,t du
Q
i,t, where κQi ≡ κPi − bi σi,U . (54)

With spanned and unspanned components in the pricing kernel in equation (39), we now proceed

to the specification of local time. By equation (18), we determine LTO

t [k; 〈G〉] = 1
2

∫ TO

t

∑N
i=1 δ[Gℓ−

k] (ζiZi,ℓ + βiUi,ℓ)℧
2
i,ℓG

2
ℓ dℓ.

We are motivated by part (b) of Result 1. For tractability, we consider the sign of the

Q covariance covQt (log(
Mt

MTO

e−
∫ TO
t

rℓdℓ),LTO

t [k; 〈G〉]). This is sufficient, by Ito’s lemma, as our

theory hinges on the sign of covQt (
Mt

MTO

e−
∫ TO
t rℓdℓ,LTO

t [k; 〈G〉]). Because log( Mt

MTO

e−
∫ TO
t rℓdℓ) =

∫ TO

t {−1
2λ[s,Z,U]

′
λ[s,Z,U]ds − λ[s,Z,U]

′
dωQ

s − 1
2α[s,U]

′
α[s,U]ds − α[s,U]

′
duQ

s }, we condi-
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tion on Is, the sub-filtration of Fs generated by ωQ
s and λ[s,Z,U]

′
dωQ

s (see the proof of Result 1).

Then,

covQt (

∫ TO

t
−α[s,U]

′
duQ

s ,
1

2

∫ TO

t

N∑

i=1

δ[Gℓ − k](ζiZi,ℓ + βiUi,ℓ)℧
2
i,ℓG

2
ℓ dℓ | ITO

)

= covQt (

∫ TO

t
−α[s,U]

′
duQ

s ,
1

2

∫ TO

t

M∑

i=1

∫ ℓ

t
βi σi,U e

κQ
i
(s−ℓ)δ[Gℓ − k]

√

Ui,s du
Q
i,s℧

2
i,ℓG

2
ℓ dℓ | ITO

)

= covQt (

∫ TO

t
−α[s,U]

′
duQ

s ,

∫ TO

t

M∑

i=1

√

Ui,s {
∫ TO

s

βiσi,U
2

eκ
Q
i
(s−ℓ)δ[Gℓ − k]℧2

i,ℓG
2
ℓ dℓ} duQi,s | ITO

)

= −E
Q
t (

M∑

i=1

∫ TO

t
bi
√

Ui,s

√

Ui,s {
∫ TO

s

βiσi,U
2

eκ
Q
i
(s−ℓ)δ[Gℓ − k]℧2

i,ℓG
2
ℓ dℓ} ds | ITO

)

= −E
Q
t (

M∑

i=1

∫ TO

t
biUi,s {

∫ TO

s

βiσi,U
2

eκ
Q
i
(s−ℓ) δ[Gℓ − k]℧2

i,ℓG
2
ℓ dℓ } ds | ITO

). (55)

We unpack the steps above as follows. In going from the first line to the second, we recognize that

the term ζiZi,ℓ is irrelevant to the covariance, and, from the second to the third, we used equation

(54) for the evolution of Ui,ℓ (under Q); that is, for ℓ ≥ t, Ui,ℓ = Ui,t e
κQ
i
(t−ℓ)+

∫ ℓ
t U iκ

Q
i e

κQ
i
(s−ℓ)ds +

∫ ℓ
t σi,U eκ

Q
i
(s−ℓ)

√
Ui,s du

Q
i,s. Then, we performed a change of the order of integration.

We make three observations. First, considering equation (55), from the perspective of part (b)

of Result 1, we note that the integral in curly brackets is positive. Second,

if bi ≥ 0, and at least one inequality is strict, then EP
t (L

TO

t [k; 〈G〉])−E
Q
t (L

TO

t [k; 〈G〉]) < 0. (56)

Hence, (by part (b) of Result 1) negative expected excess returns to both OTM puts and calls on

bond futures are possible.

If α[t,U] were to be zero; that is, if bi = 0, for all i = 1, . . . ,M , then the Q-measure covariance

in equation (55) is zero. As a consequence, EP
t (L

TO

t [k; 〈G〉]) − E
Q
t (L

TO

t [k; 〈G〉]) = 0, and there

would be zero risk premium on local time, contradicting our empirical evidence (e.g., negative

average straddle returns). Thus, our result on local time risk premiums relies on a particular

parametrization of αi[t,U] 6= 0 in equation (53), which implies market incompleteness.

What is the intuition that a certain class of depicted models can characterize the observed

patterns to holding OTM options on bond futures? The necessary condition, broadly speaking, for
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empirical viability, is that the volatility of bond futures returns depends upon state variables whose

evolution is impacted by the standard Brownian motions uP
t . Further, the pricing kernel dynamics

embed α[t,X]
′
duP

t , which captures risks not spanned by bond or bond futures returns. Moreover,

−α[t,X]
′
duQ

t , and, thus
Mt

MTO

e−
∫ TO
t

rℓdℓ, is seen negatively correlated with local time under the Q

measure, a feature that results in negative local time risk premiums. In essence, desirable models

are at the intersection of those that adequately fit the cross-section of interest-rate yields and

volatilities and those that synthesize negative average returns of options on Treasury bond futures.

4.2 Mechanics of another economy in which local time is not spanned by bonds

Our idea throughout is that the workings of incomplete markets, combined with particularly pa-

rameterized volatility uncertainty, can result in empirically plausible economies.

Fundamental to the model of Collin-Dufresne and Goldstein (2002, Proposition 8) are the

dynamics of the spot interest-rate rt, the long-run mean interest-rate θt, and stochastic variance,

vt. Their model entertains the possibility of both spanned and unspanned variables in the pricing

kernel process, with spanned variables Zt ≡ [rt θt] and unspanned variables Ut ≡ [vt].

Collin-Dufresne and Goldstein (2002, equations (47), (48), and (49)) propose the following

dynamics under Q:

Spot interest-rate : drt = κr(θt − rt) dt +
√
αr + vt dω

Q
r,t + σrθ dω

Q
θ,t, (57)

Long run mean : dθt = (γθ − 2κrθt +
1

κr
vt) dt + σθ dω

Q
θ,t, and (58)

Variance : dvt = (γv − κQv vt) dt + σv
√
vt du

Q
v,t, (59)

with γv > 0, κQv > 0, σv > 0, γθ > 0, κr > 0, and αr ≥ 0. Further, bond prices, BT
t , are given by

(i.e., Collin-Dufresne and Goldstein (2002, equations (55) and (56)))

BT
t = exp(a[T − t]− b[T − t] rt − c[T − t] θt), where (60)

b[T − t] =
1

κr
(1− e−κr(T−t)), and c[T − t] =

1

2κr
(1− e−κr(T−t))2, (61)

and a[T − t] satisfies an ODE. (62)
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Our objectives are two fold: First, to consider the mechanics of local time risk premiums and options

on bond futures and disentangle their implications for the pattern of expected excess returns of

OTM options on bond futures; second, to articulate restrictions on the unspanned components

α[t,U]
′
duQ

t that ensure empirical consistency with data on interest-rate claims.

Focusing on the constant parameter Λcg, whose sign we impute for empirical consistency, and

in line with Collin-Dufresne and Goldstein (2002, equations (51)–(53)) and our (6), we set

duQv,t = duPv,t − {−Λcg
√
vt}

︸ ︷︷ ︸

= α[t,U]

dt, dωP
r,t − dωQ

r,t = 0, and dωP
θ,t − dωQ

θ,t = 0. (63)

Equation (63) reveals the link between the standard Brownian motions under P and Q. Hence, the

Girsanov theorem induced change of measure implies the restrictions that

λ[t,Z,U] = 0, (zero risk premium on bonds and bond futures), and (64)

α[t,U] = −Λcg
√
vt. (mapping to our equation (6)) (65)

It follows that

dvt = (γv − {κQv − σv Λcg}vt) dt + σv
√
vt duPv,t

︸︷︷︸

unspanned

, under P. (66)

As Collin-Dufresne and Goldstein (2002) note, bond prices (in equation (60)) do not depend upon

vt (the unspanned variance state variable).

However, since dωQ
r,t = dωP

r,t, dω
Q
θ,t = dωP

θ,t, and λ[t,Z,U] = 0, it follows that EP
t (F

TF

TO
) −

E
Q
t (F

TF

TO
) = 0 and, hence, the bond futures risk premium is zero. Write dωP

t = (dωP
r,t, dω

P
θ,t)

′
and

dωQ
t = (dωQ

r,t, dω
Q
θ,t)

′
.

Building on this setup, we additionally derive the dynamics of (Gs). By Ito’s lemma and

equations (60) and (11), we obtain the form of the volatility of bond futures returns. Thus,

dGt

Gt
= −σF [t, TF ,Z,U]

′
dωQ

t
︸︷︷︸

spanned

, where σF [t, TF ,Z,U] =






(b[TB − t]− b[TF − t])
√
αr + vt

(c[TB − t]− c[TF − t])σrθ




 . (67)
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The not-yet-answered question is: Under what restrictions can this model produce negative

expected excess return of OTM puts and calls on bond futures?

Viewing through the prism of equations (23) and (26), we define

σ̃v[ℓ] ≡ b[TB − ℓ]− b[TF − ℓ] and σ̃[ℓ] = (c[TB − ℓ]− c[TF − ℓ])σrθ. (68)

Thus, {αr + vℓ}(σ̃v [ℓ])2 + (σ̃[ℓ])2 is the instantaneous (log) variance, at time ℓ, of Gℓ.

The dynamics of variance vt in equation (59) imply that, for all ℓ ≥ t, the level of vℓ satisfies

vℓ = vte
κQ
v (t−ℓ) +

∫ ℓ

t
γve

κQ
v (s−ℓ)ds +

∫ ℓ

t
σve

κQ
v (s−ℓ)√vs duQv,s, under Q. (69)

Using our Result 1, we consider the Q covariance between L
TO

t [k; 〈G〉] and log( Mt

MTO

e−
∫ TO
t

rℓdℓ) =
∫ TO

t {−1
2λ[s,Z,U]

′
λ[s,Z,U]ds − λ[s,Z,U]

′
dωQ

s − 1
2α[s,U]

′
α[s,U]ds −α[s,U]

′
duQ

s }.

Recognizing that α[t,U] = −Λcg
√
vt, we compute

covQt (

∫ TO

t

−{−Λcg
√
vs du

Q
v,s},

1

2

∫ TO

t

δ[Gℓ − k]{(αr + vℓ) (σ̃v[ℓ])
2 + (σ̃[ℓ])2}G2

ℓ dℓ | ITO
)

= covQt (

∫ TO

t

Λcg
√
vs du

Q
v,s,

1

2

∫ TO

t

∫ ℓ

t

(αr + σve
κQ
v
(s−ℓ)√vsduQv,s) δ[Gℓ − k](σ̃v[ℓ])

2G2
ℓdℓ | ITO

)

= covQt (

∫ TO

t

Λcg
√
vs du

Q
v,s,

∫ TO

t

√
vs {

∫ TO

s

σv
2
eκ

Q
v
(s−ℓ)δ[Gℓ − k](σ̃v[ℓ])

2G2
ℓ dℓ} duQv,s | ITO

)

= E
Q
t (

∫ TO

t

Λcg
√
vs

√
vs {

∫ TO

s

σv
2
eκ

Q
v
(s−ℓ)δ[Gℓ − k](σ̃v[ℓ])

2G2
ℓ dℓ} ds | ITO

)

= Λcg E
Q
t (

∫ TO

t

vs {
∫ TO

s

σv
2
eκ

Q
v
(s−ℓ)δ[Gℓ − k](σ̃v[ℓ])

2G2
ℓ dℓ} ds | ITO

)

︸ ︷︷ ︸

>0

. (70)

Our steps emphasize that the term (σ̃[ℓ])2 is irrelevant to the covariance, and, we use the evolution

of variance vℓ (under Q) in equation (69). Finally, we change the order of integration.

Accordingly, the Q measure covariance in equation (70) is negative, provided

Λcg < 0. (restriction for negative local time risk premium) (71)
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Equivalently, when Λcg < 0, it unravels the theoretical restriction that

α[t,U] ≡ − Λcg
︸︷︷︸

<0

√
vt

︸︷︷︸

>0

> 0, which guides the structure of α[t,U]
′
duP

t and α[t,U]
′
duQ

t . (72)

In line with our empirical evidence, the local time risk premium can be negative, and the expected

excess return to OTM puts and calls on bond futures can both be negative, provided Λcg < 0 and

α[t,U] > 0. The identification of Λcg < 0 is a central implication of our theory.

4.3 Workhorse models and positioning the relevance of our theoretical results

The following examples are presented to position the relevance of our theoretical and empirical

results and to hone economic intuition behind our emphasis on the properties of unspanned com-

ponents of the pricing kernel.

The proofs of our statements with regard to these extant models are sometimes tedious and

require intermediate results; they are detailed in an online note (Bakshi, Crosby, and Gao (2019)).

Case 1 (Extended Vasicek (1977)) The model assumes, in addition to α[t,X] = 0, that

drt = (θP − κP rt) dt+ σ dωP
t under P, (73)

drt = (θQt − κQ rt) dt+ σ dωQ
t under Q, and (74)

λ[t, rt] ≡ 1

σ
(θQt − θP − (κQ − κP) rt), where θQt is time-varying. (75)

In this model, the bond futures price F TF
s , and also Gs, for s ≥ t, are lognormally distributed

martingales under Q, with

dF TF

t

F TF

t

= −σF [t, TF ] dωQ
t , where σF [t, TF ] ≡

σ

κQ
((1− e−κQ(TF−t))− (1− e−κQ(TB−t))). (76)

For this model, the expected excess return of holding OTM puts and OTM calls cannot both be

negative. Key to deciphering this outcome is that this model embeds deterministic bond futures

volatilities, resulting in zero local time risk premiums. Here, one can derive closed-form expressions

for EP
t (L

TO

t [k; 〈G〉]) and E
Q
t (L

TO

t [k; 〈G〉]).
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Case 2 (Rare disaster macro-finance (nominal version) model) Typifying a rare disaster

approach is the model of Wachter (2013) with Epstein and Zin (1989) utility, entailing the real

pricing kernel, denoted by M real
t , which satisfies

dM real
t

M real
t−

= −rrealt dt− pt Ez(e
−γz − 1) dt− γ σc dω

P
c,t + b σp

√
pt dω

P
p,t + (e−γz − 1)dNt, (77)

rrealt = β + µ− γσ2c + pt Eν(e
−γz{ez − 1}). (78)

All sources of uncertainty are uncorrelated, β is the constant rate of time preference, γ is the

coefficient of risk aversion, and p is the probability of a disaster. To determine the nominal term-

structure, we assume that consumption prices pc,t, and its expected growth gt, follow

dpc,t
pc,t

= gtdt+ σpc
√

αg + βg gt dω
P
pc,t and dgt = κg (µg − gt) dt+

√

αg + βg gt dω
P
g,t, (79)

where ωP
pc,t and ωP

g,t are independent standard Brownian motions, and σpc, αg, and βg are non-

negative constants.

Hence, the nominal pricing kernel Mt satisfies

dMt

Mt−
= − rt

︸︷︷︸

= rrealt +gt

dt − pt Ez(e
−γz − 1)dt − γσc dω

P
c,t + b σp

√
pt dω

P
p,t

− σpc
√

αg + βg gt dω
P
pc,t + (e−γz − 1)dNt, (80)

where b is a derived constant (Wachter (2013, equation (A9), page 1023)).

Given that there are jumps only in the pricing kernel, and, crucially, not in bond prices, our

results in Sections 2.3.1–2.3.2 go through. Mirroring our framework, rrealt , and, hence, rt does not

jump and it is a diffusion. This leads to a two-factor term-structure model, of the type presented

in Cox, Ingersoll, and Ross (1985).

We can show that if EP
t (F

TF

TO
) > E

Q
t (F

TF

TO
), then EP

t ([k − GTO
]+) is less than E

Q
t ([k − GTO

]+),

and EP
t ([GTO

− k]+) is greater than E
Q
t ([GTO

− k]+). Thus, in this rare disaster model, the expected

excess returns of holding OTM puts and calls on bond futures cannot both be negative.
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Case 3 (Quadratic term-structure model (e.g., Leippold and Wu (2002))) The log bond

prices are quadratic functions of mean-reverting Gaussian state variables. For this model, the

expected excess return to holding OTM puts and calls on bond futures cannot both be negative.

Case 4 (Long-run risks (nominal version) model) We consider a version of the long-run risks

model of Bansal and Yaron (2004), as in Zhou and Zhu (2015). The model emphasizes recursive

preferences and a long-run risk process, which governs the conditional mean of consumption and

dividend growths. We transform this model (using a process for inflation as in equation (79)) to

study implications for the nominal term-structure. The empirical disparity that arises is that the

expected excess return to holding OTM puts and calls on bond futures cannot both be negative.

In sum, in the considered cases, models are amiss, with respect to our empirical observation

that the average return to holding OTM options on Treasury bond futures are negative.

5 Conclusions

Understanding the intricacies of the term-structure of bonds has been the staple of intellectual

activity among finance scholars. It has lead to the development of innovative models of interest-rate

sensitive securities, which has also transformed the management of bond portfolios and interest-rate

risk by fund managers and corporations.3

In this paper, we employ Tanaka’s formula for continuous semimartingales, while recognizing

that the valuation of all interest-rate claims is linked by the same equivalent martingale measure.

Developing the model-free expectation of option-like payoffs using Tanaka’s formula, under the

physical measure and the equivalent martingale measure, synthesizes the risk premiums on local

3We refer the reader to Cox, Ingersoll, and Ross (1985), Heath, Jarrow, and Morton (1992), Hull and White
(1990), Constantinides (1992), Longstaff and Schwartz (1992), Dai and Singleton (2000), Ahn, Dittmar, and Gallant
(2002), Collin-Dufresne and Goldstein (2002), Leippold and Wu (2002), Cochrane and Piazzesi (2005), Feldhütter
and Lando (2008), Joslin, Priebsch, and Singleton (2014), Filipovic, Larsson, and Trolle (2017), Cieslak and Povala
(2018), Joslin and Konchitchki (2018), Fleckenstein and Longstaff (2018). Cieslak and Povala (2016) decompose
conditional volatilities of Treasury yields into components due to short-rate expectations and to term premia. They
find that investors pay a large premium for hedging variance risk with derivatives. Joslin (2018) studies conditions
under which a class of affine term structure models exhibits unspanned stochastic volatility (USV). He shows that
the USV conditions restrict the mean-reversion rates of risk factors and the cross-section of conditional yields in such
a way that affine USV models are unlikely to generate the observed cross section of yield volatilities. The study of
Cremers, Fleckenstein, and Gandhi (2018) extracts implied volatilities from options on Treasury bond futures and
show that it predicts the level and volatility of macroeconomic activities. The mindset of our theoretical and empirical
exercises, conducted in the context of unspanned components of the pricing kernel and Treasury bond options, also
departs from Breeden and Litzenberger (2014), Wright (2017), and Bretscher, Schmid, and Vedolin (2018).
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time. This newly introduced quantity is informative about the expected excess returns to holding

options, and our approach allows us to connect the term-structure of interest rates together with

the contingent claims on Treasury bond futures. It places the focus on the issue of market incom-

pleteness and the properties of the unspanned components of the pricing kernel (i.e., capturing

risks not spanned by bonds or bond futures).

We feature three contributions. First, we construct the returns to holding a long position in

options on the futures of the 10- and 30-year Treasury bonds over expiration cycles. Our empirical

exercises show that the average returns of out-of-the-money puts and calls on bond futures are both

negative, and this effect is more pronounced for deeper out-of-the-money options.

Second, we present results under general diffusion processes for the pricing kernel and interest-

rates, that formalize negative expected excess return of options across strikes. Central to achieving

theoretical reconciliation is the modeling of market incompleteness and sources of volatility uncer-

tainty, which can plausibly parameterize the negative risk premium on local time.

Third, we consider parameterized frameworks (our Sections 4.1 and 4.2), which are broadly

consistent with our empirical findings under suitable restrictions on the unspanned components of

the pricing kernel dynamics. To offer a contrast, we also consider a variety of workhorse models

and show that the expected excess return to holding a call (respectively, put) on bond futures has

the same sign (opposite sign) as the risk premium on bond futures. Thus, the expected excess

return to holding puts and the expected excess return to holding calls cannot both be negative

(which is inconsistent with our empirical findings and with our featured parameterized frameworks

incorporating unspanned risks in the pricing kernel).

Our theoretical results and empirical observations about the plausibility of negative risk pre-

mium on local time can pave the path for models that are consistent with the evolution of the yield

curve as well as the data on options on Treasury bond futures. The desirability of using Tanaka’s

formula lies in its ability to link the developed theory to realities of Treasury options data, without

imposing any parametric assumptions on the pricing kernel or the factor structure of interest-rates.
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Appendix

Throughout the paper, we employ the following notations.

- TB is the maturity of the zero coupon Treasury bond that underlies the bond futures contract.

- TF is the maturity of the futures contract on the zero coupon bond.

- TO is the maturity of the option on the bond futures (with TO ≤ TF ≤ TB).

- BT
t denotes the time t price of a zero coupon bond maturing at a given date T .

- F TF

t is the time t price of the bond futures (maturity date TF (with TF ≤ TB)).

- ℏ is 1 if the payoff is (F TF

TO
−K)+ (i.e., a call) and −1 if the payoff is (K − F TF

TO
)+ (i.e., a put).

- 1
{F

TF
TO

>K}
is an indicator function that takes a value of 1 if F TF

TO
> K and zero otherwise.

- δ[•] is the Dirac delta function.

- Gs ≡ F
TF
s

F
TF
t

is the gross return on the bond futures price over the time period t to s.

A Appendix A: Proof of Result 1 on the expected excess return of options on

the bond futures

For the proof, we denote by Is, the sub-filtration of Fs, generated by ωQ
s and λ[s,X]

′
dωQ

s in

the context of the dynamics in equations (2)–(5). We first establish a result on the covariance

covQt (
Mt

MTO

e−
∫ TO
t

rℓdℓ, LTO

t [k; 〈G〉]) by conditioning on ITO
. By the law of total covariance,

covQt (

from equation (12)
︷ ︸︸ ︷

Mt

MTO

e−
∫ TO
t

rℓdℓ, LTO

t [k; 〈G〉])

= E
Q
t (cov

Q
t (e

∫ TO
t

{− 1
2
λ[s,X]

′
λ[s,X]ds−λ[s,X]

′
dωQ

s −
1
2
α[s,X]

′
α[s,X]ds−α[s,X]

′
duQ

s }, LTO

t [k; 〈G〉]
∣
∣ ITO

))

+ covQt (E
Q
t (

Mt

MTO

e−
∫ TO
t

rℓdℓ
∣
∣ITO

)

︸ ︷︷ ︸

= a constant

, EQ
t (L

TO

t [k; 〈G〉] | ITO
)), (A1)

= E
Q
t (e

∫ TO
t

{− 1
2
λ[s,X]

′
λ[s,X]ds−λ[s,X]

′
dωQ

s } ×

covQt (e
∫ TO
t

{− 1
2
α[s,X]

′
α[s,X]ds−α[s,X]

′
duQ

s }, LTO

t [k; 〈G〉]
∣
∣ITO

)), (A2)
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because the covariance of the two expectations vanishes since one term is a constant.

Equation (A2) holds generally.

Now set α[t,X] = 0 (i.e., omitting unspanned risks). The covariance term in the final line of

equation (A2) becomes zero. This is because withα[t,X] = 0, it holds that exp(
∫ TO

t {−1
2α[s,X]

′
α[s,X]ds−

α[s,X]
′
duQ

s }) = 1.

The consequence is that covQt (
Mt

MTO

e−
∫ TO
t rℓdℓ,LTO

t [k; 〈G〉]) = 0. Via equation (28), therefore,

E
Q
t (

Mt

MTO

e−
∫ TO
t

rℓdℓL
TO

t [k; 〈G〉])
︸ ︷︷ ︸

EP
t
(L

TO
t

[k;〈G〉])

− E
Q
t (

Mt

MTO

e−
∫ TO
t

rℓdℓ)

︸ ︷︷ ︸

=1

E
Q
t (L

TO

t [k; 〈G〉]) = 0. (A3)

Hence, when α[t,X] = 0, we have the result that

EP
t (L

TO

t [k; 〈G〉]) − E
Q
t (L

TO

t [k; 〈G〉]) = 0.
︸︷︷︸

Zero risk premium for local time

(A4)

Return now to the expression for the expected excess return of the option in equation (27). Set

f [C] ≡ EP
t (ℏ

∫ TO
t

1{ℏGℓ>ℏk}dGℓ)+EP
t (L

TO
t

[k;〈G〉])

E
Q
t
(L

TO
t

[k;〈G〉])+ C
− 1. The Taylor series expansion of f [C] around zero is

f [C] =
EP
t (ℏ
∫ TO

t 1{ℏGℓ>ℏk}dGℓ) + EP
t (L

TO

t [k; 〈G〉])
E
Q
t (L

TO

t [k; 〈G〉])
− 1

−
EP
t (ℏ
∫ TO

t 1{ℏGℓ>ℏk}dGℓ) + EP
t (L

TO

t [k; 〈G〉])
E
Q
t (L

TO

t [k; 〈G〉])
C

E
Q
t (L

TO

t [k; 〈G〉])
+O[C2]. (A5)

If it were to hold that Ct[ℏ, k] is negligible; that is, Ct[ℏ,k]

E
Q
t
(L

TO
t

[k;〈G〉])
≈ 0, the sign of the expected

excess option return is revealed, since
EP
t (L

TO
t [k;〈G〉])

E
Q
t
(L

TO
t

[k;〈G〉])
− 1 = 0 from equation (A4). Specifically,

1 + µ
[ℏ]
t − 1

BTO

t

≈ 1

BTO

t







< 0 by (29)

︷ ︸︸ ︷

EP
t (−

∫ TO

t

1{Gℓ<k}dGℓ)

E
Q
t
(L

TO
t

[k;〈G〉])
+

= 0 when α[t,X]=0

︷ ︸︸ ︷

{E
P
t (L

TO

t [k; 〈G〉])
E
Q
t (L

TO

t [k; 〈G〉])
− 1} < 0 for OTM puts,

EP
t
(
∫ TO
t

1{Gℓ>k}dGℓ)

E
Q
t
(L

TO
t

[k;〈G〉])
+ { EP

t
(L

TO
t

[k;〈G〉])

E
Q
t
(L

TO
t

[k;〈G〉])
− 1} > 0 for OTM calls,

(A6)

by equations (27) and (A5). This concludes our proof of part (a) of Result 1.
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With regard to part (b) of Result 1, consider the situation whenα[t,X] 6= 0. When EP
t (L

TO

t [k; 〈G〉]) <

E
Q
t (L

TO

t [k; 〈G〉]), then, in view of equations (27) and (A6), negative expected excess returns to both

puts and calls on bond futures are possible. ♣

B Appendix B: Proof of Result 2 (Local time risk premium when k = K

F
TF
t

= 1

is tied to the expected excess return of straddles on bond futures)

In view of our definitions that, for s ≥ t, Gs = F
TF
s

F
TF
t

and k = K

F
TF
t

, the at-the-money straddles

correspond to k = 1.

For brevity of presentation, write L
TO

t [k; 〈G〉]
∣
∣
k=1

= L
TO

t [1; 〈G〉].

By Tanaka’s formula,

[GTO
− 1]+ = [Gt − 1]+ +

∫ TO

t
1{Gℓ>1}dGℓ + L

TO

t [1; 〈G〉] and (B1)

[1−GTO
]+ = [1−Gt]

+ −
∫ TO

t
1{Gℓ<1}dGℓ + L

TO

t [1; 〈G〉]. (B2)

Summing the left-hand sides of equations (B1) and (B2), noting in the present context of at-the-

money options that [Gt − 1]+ = [1−Gt]
+ = 0, and rearranging, we have

2LTO

t [1; 〈G〉] = [GTO
− 1]+ + [1−GTO

]+ −
= 0

︷ ︸︸ ︷

[Gt − 1]+ −
= 0

︷ ︸︸ ︷

[1−Gt]
+

−
∫ TO

t
1{Gℓ>1}dGℓ +

∫ TO

t
1{Gℓ<1}dGℓ. (B3)

Therefore,

L
TO

t [1; 〈G〉] =
1

2
[GTO

− 1]+ +
1

2
[1−GTO

]+

−1

2

∫ TO

t
1{Gℓ>1}dGℓ +

1

2

∫ TO

t
1{Gℓ<1}dGℓ. (B4)
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Then, in conjunction with P-measure and Q-measure expectations of [GTO
−1]+ and [1−GTO

]+,

and recognizing that EQ
t (
∫ TO

t 1{Gℓ>1}dGℓ) = 0 and E
Q
t (
∫ TO

t 1{Gℓ<1}dGℓ) = 0, we obtain

EP
t (L

TO

t [1; 〈G〉]) − E
Q
t (L

TO

t [1; 〈G〉])

=
1

2

{
EP
t ([GTO

− 1]+ + [1−GTO
]+)− EP

t (

∫ TO

t
1{Gℓ>1}dGℓ −

∫ TO

t
1{Gℓ<1}dGℓ)

− E
Q
t ([GTO

− 1]+ + [1−GTO
]+)
}
, (B5)

= BTO

t E
Q
t (L

TO

t [1; 〈G〉])
(

Expected excess return
︷ ︸︸ ︷

(1 + µstraddlet )− 1

BTO

t

−
EP
t (

Dynamic futures strategy
︷ ︸︸ ︷
∫ TO

t
(1{Gℓ>1} − 1{Gℓ<1})dGℓ)

BTO

t E
Q
t (L

TO

t [1; 〈G〉])
)
, (B6)

where (1 + µstraddlet ) ≡ EP
t ([GTO

− 1]+ + [1−GTO
]+)

BTO

t E
Q
t ([GTO

− 1]+ + [1−GTO
]+)

. (B7)

If one were to assume that Ct[ℏ, 1] is negligible, then (1 + µstraddlet ) − 1

B
TO
t

is the expected excess

return to holding an at-the-money straddle, over the time period t to TO.

The term
∫ TO

t (1{Gℓ>1} − 1{Gℓ<1})dGℓ is the gain (loss) from a dynamic trading strategy in the

bond futures. However, we are guided by the plausibility that

EP
t (

∫ TO

t
{1{Gℓ>1} − 1{Gℓ<1}}dGℓ) ≈ 0, (B8)

because the trading strategy requires, at time ℓ, being long bond futures when Gℓ > 1 and short

when Gℓ < 1. Thus, if the distribution of futures returns is approximately “symmetrical” and the

futures risk premium is not too large, there may be a partial offset of the futures risk premium.

When the expression in equation (B8) is zero and Ct[ℏ, 1] is negligible, equation (B6) becomes

EP
t (L

TO

t [1; 〈G〉])
E
Q
t (L

TO

t [1; 〈G〉])

∣
∣
∣
∣
∣
k=1

− 1

≈ BTO

t

Expected excess return of straddles
︷ ︸︸ ︷

(
EP
t ([F

TF

TO
− F TF

t ]+ + [F TF

t − F TF

TO
]+)

E
Q
t (e

−
∫ TO
t

rℓdℓ[F TF

TO
− F TF

t ]+)
︸ ︷︷ ︸

Ct[F
TF
t

]

+ E
Q
t (e

−
∫ TO
t

rℓdℓ[F TF

t − F TF

TO
]+)

︸ ︷︷ ︸

Pt[F
TF
t

]

− 1

BTO

t

) . (B9)

Our conclusion in equation (36) then follows. ♣
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Table 1: Dollar open interest and dollar trading volume for options on Treasury bond
futures and the S&P 500 equity index

Reported is the average dollar open interest (in $ billions) and average dollar trading volume (in $ billions).
The dollar open interest (dollar trading volume) is the number of options contracts outstanding (number
of options contracts traded) multiplied by the Treasury bond futures price, observed on the last day of the
month. We then average the dollar open interest and dollar trading volume for OTM puts and OTM calls
over the sample period. NOBS is the number of monthly observations. The data on options on the S&P 500
equity index is obtained from the CBOE.

Options on Begin End NOBS OTM puts OTM calls
date date Dollar Dollar Dollar Dollar

open trading open trading
interest volume interest volume

10-year Treasury bond futures 7/31/1991 12/31/2018 330 66.9 8.9 55.9 7.2
30-year Treasury bond futures 12/31/1990 12/31/2018 337 27.6 3.6 27.1 3.4
S&P 500 equity index 1/31/1990 12/31/2018 348 63.5 8.4 53.1 6.9
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Table 2: Properties of the futures risk premiums and bootstrap confidence intervals
Reported are return properties of futures on the 10- and 30-year Treasury bonds. We compute
F

TF
TO

F
TF
t

−1, which is the excess return corresponding to a fully collateralized long futures position. The

return of futures on the 10-year (30-year) Treasury bond are over the sample period of 07/22/1991
to 12/24/2018 (12/24/1990 to 12/24/2018). Shown is the annualized mean, annualized standard
deviation, skewness, excess kurtosis, minimum, and maximum. We report the 90% bootstrap
confidence intervals based on an i.i.d. bootstrap. The Ljung-Box test, at lags up to 12, rejects
autocorrelation in these time-series, hence our focus on the i.i.d. bootstrap. ACF(1) is the first-
order autocorrelation, and “Cycles” denotes the number of expiration cycles.

Futures on Treasury bonds
Excess return 10-year 30-year

Mean (annualized) 3.0 3.5

Lower Bootstrap CI 1.3 0.7
Upper Bootstrap CI 4.7 6.1

SD (annualized) 5.3 8.7
Minimum -4.8 -8.3
Maximum 5.0 10.4

ACF(1) 0.05 0.02
Skewness 0.00 -0.02
Kurtosis (excess) 0.41 1.04

Cycles 330 337
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Table 3: Properties of option returns on the futures of the Treasury bond
This table reports the properties of put and call option returns on the futures of the Treasury bond.
We construct the (net) option returns as

zputt,TO ,ℵ% =
[K − F TF

TO
]+

Pt[K]
− 1, where K corresponds to K = F TF

t e−ℵ%, ℵ = 1%, 3%, and 5%,

zcallt,TO ,ℵ% =
[F TF

TO
−K]+

Ct[K]
− 1, where K corresponds to K = F TF

t e+ℵ%, ℵ = 1%, 3%, and 5%,

where Pt[K] (Ct[K]) is the settlement price of a put (call) on the Treasury bond futures with strike
price K, as reported by the CME. The bid and ask option prices are not reported separately. For
each moneyness level, we show the average (AVG.), the standard deviation (SD), the skewness, the
(excess) kurtosis, and the maximum of option returns over non-overlapping intervals. Interpreting
the averages, the reported entry for straddle on futures on a 10-year Treasury bond implies an aver-
age return of −11% over the expiration cycles (average of 27.3 days, not annualized). The statistic
1z>0 refers to the number of expiration cycles in which the options return is positive. The sample
period for the option returns on the futures of the 10-year (30-year) is 07/22/1991 to 12/24/2018
(12/24/1990 to 12/24/2018). The Ljung-Box test, at lags up to 12, rejects autocorrelation in these
time-series, hence we focus on the i.i.d. bootstrap to compute the confidence intervals.

90% Bootstrap CI
OTM AVG. Lower Upper SD Skewness Kurtosis Max. 1z>0

(%)

Panel A: Options on futures of the 10-year Treasury bond (330 observations)
Puts 5 -93 -99 -81 110 17 300 18 3
Puts 3 -71 -91 -45 260 13 200 41 9
Puts 1 -41 -54 -26 160 4 18 13 54

Straddle -11 -18 -3 80 1 3 5 122

Calls 1 -11 -27 6 180 2 5 8 79
Calls 3 -76 -88 -63 140 7 54 13 13
Calls 5 -91 -99 -82 90 13 186 13 5

Panel B: Options on futures of the 30-year Treasury bond (337 observations)
Puts 5 -80 -96 -61 200 12 169 29 6
Puts 3 -58 -73 -40 180 6 35 16 23
Puts 1 -28 -42 -13 160 3 7 8 72

Straddle -9 -16 -2 80 1 1 3 134

Calls 1 -3 -22 18 220 4 30 20 90
Calls 3 -17 -59 37 540 12 158 81 30
Calls 5 -58 -92 -10 480 15 255 81 7
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Table 4: Pairwise bootstrap p-values for average return differences across moneyness

Let zputt,TO ,ℵ% and zcallt,TO,ℵ% denote the average return of ℵ% OTM put and call options on Treasury
bond futures, respectively. Reported are the p-values for the following hypothesis

zputt,TO ,5% − zputt,TO ,1% ≥ 0, or, zputt,TO,5% − zputt,TO ,3% ≥ 0, or, zputt,TO ,3% − zputt,TO,1% ≥ 0

and
zcallt,TO,5% − zcallt,TO ,1% ≥ 0, or, zcallt,TO ,5% − zcallt,TO,3% ≥ 0, or, zcallt,TO,3% − zcallt,TO ,1% ≥ 0.

We jointly bootstrap the returns of all options with replacement. Reported is the frequency of the
observations, for instance, zputt,TO,5% − zputt,TO,1% ≥ 0. Lower p-values indicate rejection, implying that
deeper OTM options have more negative average returns.

Underlier of option is futures on

Hypothesis 10-year bond 30-year bond

zputt,TO,5% − zputt,TO ,1% ≥ 0 0.000 0.000

zputt,TO,5% − zputt,TO ,3% ≥ 0 0.000 0.002

zputt,TO,3% − zputt,TO ,1% ≥ 0 0.009 0.000

zcallt,TO,3% − zcallt,TO ,1% ≥ 0 0.000 0.235

zcallt,TO,5% − zcallt,TO ,3% ≥ 0 0.000 0.038

zcallt,TO,5% − zcallt,TO ,1% ≥ 0 0.000 0.018
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