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Abstract

Macroeconomic variations and housing price fluctuations are tightly interlinked. In this paper,
we study the impact of (system) long-memory on a model of dynamic interactions between a
housing market and a macroeconomy. We characterize housing price equilibrium via iden-
tification and quantification of distinct demand and supply responses to changes in macroe-
conomic conditions. We argue that the actual disequilibrium error corrections in the interac-
tive system are slow and nonlinear inducing an undesirable interplay of many economy-wide
shocks so many so that the expected dynamic stability of the system becomes a difficult ob-
jective to achieve. To resolve this issue, using a quarterly data (1975Q1-2016Q1) for the US,
our fractionally cointegrated vector autoregressive estimations demonstrate that the housing
market adjusts gradually towards the market clearing, while shocks in the system are featured
with a long-memory, further indicating informational inefficiency in the housing market. We
quantify memory-driven impacts of macroeconomic variables, and find that the impacts can
be transmitted not only through either the housing demand or supply channel exclusively, but
also through both the channels simultaneously. Overall impacts of macroeconomic variables
are eventually derived by aggregating their possible impacts from both the channels. We con-
clude that a failure to identify the distinct demand and supply effect-transmission channels
could result in an estimation bias of macroeconomic effects; disregarding the memory pattern
of shocks in the system further leads to a mis-representation of macroeconomic policy effec-
tiveness in an environment with persistent policy uncertainty. A forecasting exercise confirms
the predictive power of the FCVAR model, and robustness checks support our baseline results.
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1 Introduction

“No memory is ever alone; it’s at the end of a trail of memories, a dozen trails that each have
their own associations.”Louis L’Amour (An American Author)

A growing body of literature has emerged recently arguing that changes in macroeconomic con-
ditions are not only veritable sources of (international) housing price fluctuations (Arestis and
Gonzalez-Martinez, 2016; Carstensen, 2006), but their inherent impacts on equilibrium housing
prices, if disregarded, would induce systematic over-estimation bias (Duan et al., 2018a,b). It
is well-known that a given macroeconomic factor could impact housing prices through distinct
demand and supply effect-transmission channels either exclusively through one channel or si-
multaneously through both of them; the equilibrium housing prices are eventually determined by
the macroeconomic variables, which impacts are transmitted through these two channels. So far,
prior literature reports a ‘puzzling’ housing price behaviour in the face of a macroeconomic shock.
Given a clear dearth theory and empirical strategy, one potential argument can be the identifiable
distinct while normally intertwined impacts of the same macroeconomic variable on shifting the
housing demand and supply curves, respectively, and finally on equilibrium housing prices. For
example, McCarthy and Peach (2002) observe that housing prices first rise over a short period
and then fall given a positive shock to the federal funds rate.1 Moreover, given a fixed housing
demand, a rising economic policy uncertainty could induce a more cautious response of hous-
ing supply due to an intrinsic irreversibility of residential fixed investment (Tsatsaronis and Zhu,
2004); at the same time, it also tends to depress investors’ intention of a house purchase given its
large transaction-to-whole-wealth ratio and an increasing role of risk aversion. Hence, a primary
research interest of this paper is to uncover the real macroeconomic impacts on equilibrium hous-
ing price determinations by identifying the distinct roles of macroeconomic variables through the
housing demand and supply channels, respectively.

At the same time, we make one fundamental assumption related to the systemic characteristic
of the macroeconomy-housing market interaction (in short, MH): not only each variable within
the system but also the system as a whole, can possess a long-memory (loosely representing the
ability of the system to remember shocks for a long time in the future). Through the perspec-
tive of information transmission, ‘memory’ describes a convergence speed to govern how fast
the impacts of past shocks/information on the current value of a target variable decay over time.
Governed by such a memory pattern, the system does not have to display as a white noise process
(with no memory), a covariance stationary process (with a short memory), or a unit root process
(with a perfect/permanent memory) as conventionally assumed.2 Instead, we relax the above as-
sumptions and expect our system to be featured with a long-memory that systemic shocks could

1A more detailed discussion is provided in Section 2.
2Conventional strategy defines statistical features and memory patterns of a given time series as shown in the above

sentence by assuming that the series integration order should be an integer. However, it neglects the case that the series
integration order actually can be a fraction, indicating a long-memory patterns. Detailed descriptions of the statistical
properties of the series with different integration orders and memory patterns are discussed in Section 3.
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decay hyperbolically and converge towards a steady-state mean in the long-run, i.e. a fractionally
integrated process. Importantly, a critical question emerges: Can shocks within a macroeconomy-
housing market interaction depict a long-memory pattern? It is a possibility and close to the
reality as the housing market is essentially governed by waves of buyer-induced or seller-driven
transactions that are relatively predictable.3

Surprisingly, established housing-related literature fails to underline the existence of long
memory shocks and their probable impacts on the co-evolutionary paths of macroeconomic vari-
ables and housing prices. Instead, by imposing a unit root assumption for variables in the inter-
active system, most of the extant literature conventionally employs a I(1)/I(0) framework and
accordingly draws empirical conclusions by simply using the transformed data with the poten-
tial unit root removed from the raw data. In our case, such a conventional strategy potentially
assumes the housing market efficiency indicating that the current housing price contains all avail-
able information from the past and its future dynamics cannot be predicted by using the past
information with its changes depicted as a white noise stochastic process.4 Moreover, in line with
Fama’s market efficient hypothesis (EMH), it further implies that shocks within such an ‘efficient’
system must exist permanently and never converge (i.e. a unit root process with a permanent
memory).

However, such an efficient market assumption potentially imposed in the conventional litera-
ture tends to be too strict to achieve as the permanently-existing impacts of past shocks over-time
characterized by an efficient market may not exist in reality. Instead, as researched by much re-
lated literature, the housing market could be characterized by inefficiencies (See, for example,
Case and Shiller, 1989, 1990; Hjalmarsson and Hjalmarsson, 2009; Larsen and Weum, 2008; Leung
et al., 2006, among others), indicating that the systemic shocks tend to be slowly-decayed over
time with their convergence speeds vary with different memory patterns.5 In addition, simply re-
moving the unit root by first differentiating the series in the conventional strategy would further
lead to a serious information loss of the raw data. Hence, it can be concluded that stochastic shocks
in an economic system could actually taper-off slowly towards a long-run constant mean, i.e. a
long memory pattern (Jones et al., 2014), a failure to account for the impacts of such long-memory
featured shocks in the conventional strategy (with an integer integration assumption, notably a
unit root assumption) would be unrealistic and very difficult to identify the real co-movement
structure between housing prices and macroeconomic variables, and therefore lead to an estima-

3A series tends to be more predictable with persistent volatility if its shocks can depict a long memory compared
with a less predictable one with short-memory shocks (Nguyen et al., 2019). According to Peter’s (1994) Fractal Market
Hypothesis (FMH), economic theories have long recognized that there exist the market frictions lasting for a relatively
long time period due to the existence of market irrationality and the non-linear price response to information governing
dynamics of systemic shocks. Thus, the shocks tend to vanish asymptotically rather than vanish exponentially or exist
permanently.

4As originally proposed by Fama (1970), informational efficiency is defined as a condition when prices can fully and
instantly reflect all relevant and available information. According to this concept, price dynamics in an efficient market
follow a martingale, or its special form, a random walk; price changes are completely random with no autoregressive
dependence known as a white noise process (Larsen and Weum, 2008).

5Although some literature produces empirical results in the favor of the housing market efficiency(Schulz and Wer-
watz, 2011), it is still too strict to impose the market efficiency assumption at the very beginning.
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tion bias. However, given the great importance, these have not yet been encapsulated in extant
literature. More so, far little has gone beyond a mere empirical exercise of testing for the presence
of long-memory and discusses its economic implications.

Furthermore, compelling evidence on both theoretical and empirical aspects has demonstrated
that there is a gradual adjustment process towards a housing market equilibrium rather than an
instant market clearing as conventionally assumed(See, for example, DiPasquale and Wheaton,
1994; Eubank Jr and Sirmans, 1979; Fair, 1972; Riddel, 2004, among others). Accordingly, to be
commensurate with the broad literature, we account for the slow market adjustment towards
the equilibrium by employing a long-memory cointegration framework, called fractionally coin-
tegrated vector autoregressive model (FCVAR). Overall, our paper aims to provide a thorough
quantitative assessment of the distinct impacts of macroeconomic fundamentals through the hous-
ing demand and supply channels on the equilibrium housing price determination by comprehen-
sively accounting for all possible memory patterns of shocks in the interactive system, especially
the long-memory featured shocks. Moreover, this paper considers the possibility that the housing
market could be inefficient, and provides a novel way to identify and measure the degree of mar-
ket inefficiency by allowing the existence of a slow-convergence of disequilibrium shocks (with
a long-memory feature) to a steady-state value.6 A possibility of a slow mean-converging shock
identified within a dynamic system, such as ours, can mimic real-life fluctuations of variables in
the macroeconomy-housing market interaction and quantify equilibrium housing price determi-
nations more accurately than conventional approaches/strategies that disregard the impact of the
system memory pattern.

The contributions of our paper are summarized as follows. First, our paper both theoreti-
cally and empirically identifies the distinct macroeconomic effect-transmission channels through
both the demand and supply sides, and finds that macroeconomic variables can affect equilib-
rium housing prices either exclusively through one side or simultaneously through both sides,
respectively. This provides a precise and policy-informative interpretation of housing market re-
sponses to macroeconomic interventions. Simply estimating a single price determination function
including both demand and supply factors altogether would otherwise mask the real macroe-
conomic effects, instead, only the aggregate effects are obtained. Second, this paper provides a
novel way to examine if the housing market is efficient and further compare the degree of market
(in)efficiency across markets through a measurement of memory patterns of target variables in
the macroeconomy - housing market interactions. Third, our paper employs an innovative long-
memory cointegration framework, i.e. FCVAR, to identify and quantify the role of ’memory’ in
affecting the dynamics of macroeconomy-housing market interactions. We find the mediating role
of memory, which ‘mediates’ magnitudes of true macroeconomic effects on equilibrium housing
price determinations through both the housing demand and supply functions.

Consistent with theoretical expectations discussed in our conceptual framework, using a quar-

6Our MH is essentially a memory-driven system, where due to varying degrees of path-dependence of each vari-
able within this system, impacts of different system shocks are not necessarily limited to converge as the same mean-
reverting process with the same variance.

4



terly data in the US (1975Q1-2016Q1), our FCVAR estimations demonstrate a gradual price adjust-
ment towards the housing market clearing, and capture the existence of long-memory featured
shocks in the macroeconomy - housing market interactions, indicating the housing market inef-
ficiency. By invoking a complex interplay of ‘memory’ within the interactive system and quan-
tifying the memory-driven macroeconomic impacts, we find that macroeconomic variables can
not only affect equilibrium housing prices through either the housing demand or supply channel
exclusively, but also through both these two channels simultaneously with a ‘dual’ role. An over-
all equilibrium housing price determination function reporting the aggregate effects of included
macroeconomic variables is eventually derived by manually solving the simultaneous demand
and supply functions in the equilibrium. Moreover, we find a significant bias of macroeconomic
estimations if the distinct demand and supply channels are failed to be identified, indicating that
separately estimating the two simultaneous functions can be more meaningful than estimating a
single and combined function (following conventional proposition) for equilibrium housing price
determinations. The five-year-ahead dynamics of the macroeconomy - housing market interac-
tions have been forecast, and the better predictive performance of our employed FCVAR model
against a naive CVAR model has been examined.

Our conclusions possess meaningful policy insights regarding an accurate comprehension of
equilibrium housing price dynamics determined by macroeconomic fundamentals through both
the strategies of identifying the distinct demand and supply channels and capturing the long-
memory featured shocks in the interactive system. In addition, featured with a long-memory, the
US housing market is checked to be inefficient. In our robustness exercise, we perform FCVAR
estimations with prior restrictions, which are imposed according to the statistical significance
of model equilibrium parameters. Our results provide robust evidence of the mediating role of
’memory’ in understanding true effects of macroeconomic variables on the US housing market.

The rest of paper is structured as follows. Section 2 reviews existing literature. Section 3
presents a conceptual framework in housing price determination identified through both the hous-
ing demand and supply channels. Section 4 presents methodology and discusses estimation is-
sues. Section 5 provides variable descriptions and corresponding data sources. Section 6 describes
procedures of data transformation and preliminary observations. Section 7 contains detailed dis-
cussions of our empirical estimations. Finally, Section 8 summarizes main findings of the paper
and discusses related policy implications.

2 Literature

Although recent research has made some headway regarding co-movement between housing
prices and macroeconomic fundamentals (Arestis and Gonzalez-Martinez, 2016; Duan et al., 2018a,b),
how the latter would influence demand and supply channels and finally the equilibrium housing
price, is yet to be rigorously determined. A failure to disentangle real macroeconomic impacts
from different channels may result in an imprecise interpretation of housing price movements.
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Existing literature, although thin, has started realizing this importance.
McCarthy and Peach (2002) find ‘puzzling’ housing price behaviours in the face of a monetary

policy shock in the US: after restructuring the housing finance system since the mid 1980s, tight-
ening monetary policy (a positive shock to the federal funds rate) first heightens housing prices
in the short-run, which decline in the long-run. They attribute such a short-run increase of hous-
ing prices to sellers’ willingness to sustain a high housing price to minimize loss particularly in a
downturn, which suggests a decreasing housing supply given a rising cost of construction finance.
On the other hand, buyers tend to expect a further fall in interest rates given a current monetary
tightening policy, thanks to an extensive availability of adjustable-rate mortgages. Thereby main-
taining a relatively strong housing demand, which also induces an increase of housing prices in
the short-run. However, in the long-run, housing prices will witness a gradual decline due to an
overwhelmingly negative impact of a slump in housing demand given an increasing mortgage
financing expenditure.

2.1 Housing demand effect channel

Undoubtedly, housing prices are determined by many demand-driven factors. Among others,
Muellbauer and Murphy (1997) focus on studying the dynamics of housing prices in the UK
through an inverted housing demand function, and point out a dominant role of housing demand
factors in the boom (in the late 1980s) and bust (in the 1990s) eras of housing prices. Our survey
of the broad literature leads us the following conclusions. First, along with many existing studies
(DiPasquale and Wheaton, 1994; Meen, 1996, 1990, 1993), they find an important role of individ-
uals’ financial constraints, which dampen both housing demand and housing prices. A failure to
account for this may overlook potential credit borrowing/down-payment limitations. Therefore,
it fails to precisely describe the dynamic behaviour of housing buyers and the shifts of the hous-
ing demand curve. Moreover, the study of Muellbauer and Murphy (1997) is also consistent with
Poterba (1984) who points out that a negative shock of user financing costs raises housing prices
given fixed housing stocks in the short-run. Afterwards, housing prices experience a gradual de-
cline in a market adjustment period along with increasing housing stocks until a new steady state
is reached.7

Second, regarding the effects of macroeconomic factors on housing prices, Muellbauer and
Murphy (1997) point out that income exerts a positive effect on housing prices by boosting hous-
ing demand. They also find that available housing stocks reveal the level of housing demand in
the market and assume that the latter is essentially proportional to the former. New housing com-
pletion reflects a specific component of buyers’ house needs that has already been incorporated
into the effective housing demand. This also represents the ability of the market’s effective supply
to meet demand although there remains what we call a ‘demand gap’ (Heath, 2014). Thus, current

7The importance of credit on housing price movements has also been embraced by much of the recent literature (See
representative studies among others, Abdallah and Lastrapes, 2013; Favara and Imbs, 2015; Gerlach and Peng, 2005;
Ling et al., 2016; Mian and Sufi, 2009).
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high housing stocks could indicate an upturn of housing demand leading to an acceleration of
housing prices given the backdrop of a strong demand.

McCarthy and Peach (2002) echo the above discussion and recognize the role of housing stocks
in determining the equilibrium housing prices through both demand and supply channels. Recent
studies, such as Arestis and Gonzalez-Martinez (2016); Duan et al. (2018a,b), build a conceptual
framework to attribute housing price dynamics to factors from both the demand and supply sides.
They find that demand factors involving personal disposable income, interest rates and credit
availability contribute theoretically expected effects to housing price changes. Other relevant
studies including Fitzpatrick and McQuinn (2007); Gerlach and Peng (2005); Hwang and Quigley
(2006); Senhadji and Collyns (2002) also discuss the determination of housing prices through the
demand channel. Third, the effect of uncertainty cannot be neglected (Baker et al., 2016; Muell-
bauer and Murphy, 1997). Along with Meen (1990, 1993), the existence of housing market uncer-
tainty can dampen individuals’ intentions of property purchase and then depress housing prices
(through the housing demand side), while it is also believed to affect housing prices through the
housing supply side (Tsatsaronis and Zhu, 2004).

To summarise, three main flaws characterise the existing demand-related research on housing
prices. First, although a gradual/slow price adjustment to market equilibrium has been widely
recognized (DiPasquale and Wheaton, 1994), the traditional assumption of a faster housing mar-
ket clearing is further away from reality. Second, extant literature does not account for the extent
to which supply-driven (production) factors affect housing prices. However, important predictive
power of factors governing housing production from the supply side cannot be ignored. Further-
more, although some research consider housing price determinants from both demand and supply
sides, their empirical investigation invariably concentrates on ’final’ equilibrium price determina-
tion, thus sidelining potentially important impacts of distinct macroeconomic factors separately
on demand and supply functions. In the next section, we discuss relevant literature focusing on
the supply side of the housing market.

2.2 Housing supply effect channel

Although literature that models macroeconomic effects of housing prices via demand channel is
comparatively large, there are few studies that enrich our understanding on the supply side. Some
prior research have underlined the following reasons on why the housing supply is hard to model.
Quigley (1979) points out that considerable quality variations of each housing unit and indefinite
dimensions of the housing quality evaluation inhibit accurate measurement of the total housing
supply and outputs. Second, available housing stocks in the market are provided by different
housing suppliers such as new housing builders and existing housing owners. It is nevertheless
difficult to capture their individual behaviours due to the paucity of such micro-level data. Third,
in addition to private sectors, the government can also exert a marked impact on shifting the
supply curve by its implementation of public housing provision and a property tax levy, further
raising uncertainty and fluctuations of the housing supply (DiPasquale, 1999).
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As mentioned in Section 2.1, one popular approach to model the equilibrium housing prices
using demand-driven factors and housing stocks is the stock-flow model. DiPasquale and Wheaton
(1994) introduce an error correction structure, and enhance the traditional model by allowing a
slow price adjustment towards a market clearing. Features of housing market operations are sum-
marized in their paper as follows. First, housing prices exert a strong positive autocorrelation,
denoting that future prices are moved with backward-looking expectations. This finding is quali-
tatively consistent with the feature of ‘lagged appreciation of current housing prices’ proposed by
Abraham and Hendershott (1996) and Muellbauer and Murphy (2008) and the feature of ‘forward-
looking’ of housing builders regarding current prices Murphy (2018). Second, the housing market
appears to behave as a serious disequilibrium given the excess demand and insufficient supply
in reality. Given a price shock, demand reacts more quickly and on a greater scale compared to
supply, which tends to be unresponsive, particularly in the short-run. This is also in line with
Poterba (1984) and Mankiw and Weil (1989).

Third, consistent with DiPasquale (1999), impacts of various (housing production) factor mar-
kets, particularly the land market, on the housing constructions are still elusive due to the data
limitation. Poterba (1984) suggests that a buoyant demand of production factors is able to heighten
the equilibrium housing prices due to a downward shift of supply curve induced by a rising sup-
ply expenditure. The author recognizes the importance of land, although it is neglected in the
paper due to data constraints. This is also embraced by Knoll et al. (2017), in which the land price
is found to be a key factor that determines the long-run housing price dynamics. In addition,
DiPasquale and Wheaton (1994) also provide an explanation about the impact of land value on
housing prices on the supply side. Given an initial housing price increase, it stimulates the rise of
housing stocks, which implies an increase of housing supply and a decline of land availability for
construction. Land value will then rise as a consequence, which tends to cause the housing supply
to further falter by absorbing excess returns generated from the initial housing price increase, and
further raise housing prices. Recent studies echo this viewpoint and find that the supply-driven
factors such as construction cost and land value demonstrate marked impacts on housing prices
(Glaeser et al., 2008; Green et al., 2005; Knoll et al., 2017; Saiz, 2010).

Although housing price drives housing stocks in a literature where ‘stock-flow model’ dom-
inates empirical formulation, the latter in turn exert an impact on the former. In addition to its
impact through the housing demand channel as discussed in Section 2.1, it is also able to affect
housing prices through housing supply channel. Muellbauer and Murphy (1997) point out that an
increase of available housing stocks is found to drive a slump in housing prices by positively shift-
ing the supply curve. Furthermore, studies using one aggregated housing price determination
function can indeed involve both demand and supply factors (Arestis and Gonzalez-Martinez,
2016; Duan et al., 2018a,b). However, although described theoretically, they nevertheless could
not empirically disentangle explanatory powers of specific variables, which have dual impacts
through both demand and supply functions, respectively. Instead, only aggregate effects of these
factors are reported, which could still give rise to confusing conclusions. For example, through
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a financing perspective in the housing market, it is possible that a positive shock to interest rates
decreases housing prices by depressing housing demand, while it can also raise housing prices by
a falling housing supply simultaneously. A similar mechanism is expected from other variables
with the dual roles such as credit, housing stocks and uncertainty.

We do not apply the traditional two-equation stock-flow model in this paper for the following
reasons. First, the model fails to account for impacts of supply-driven factors on housing prices
even though these factors can contribute to important explanatory powers. Instead, only total
housing stock is included to represent the housing supply in the price determination function.
Second, there is no precise way to quantify the housing stock. Its conventional proxy is the ag-
gregate housing supply, regardless of possible heterogeneous housing qualities and types (See,
among others, DiPasquale and Wheaton, 1994; Hwang and Quigley, 2006; Muellbauer and Mur-
phy, 1997), which is far from reality. Moreover, as explained in Section 2.1, the instant market
clearing assumed in the traditional model is far from reality. The approach of an aggregate de-
termination equation is not applicable to our research focus. Thus, to avoid these obstacles, we
construct simultaneous housing demand and supply function systems to separately model how
housing prices are determined through those two channels, and subsequently quantify which one
dominates the equilibrium housing price determination.

3 Theoretical Underpinning

Following market equilibrium theory, we build a theoretical construct to describe the ways that
macroeconomic fundamentals contribute to equilibrium housing prices. This incorporates both
demand and supply functions, both of which consider a gradual price adjustment process towards
a market clearing within a long-memory framework. We follow McCarthy and Peach (2002) and
formulate the long-run equilibrium housing price levels through both the functions, respectively.8

From housing demand perspective, demand can drive equilibrium housing prices (RHPD∗) to
clear the current stock of housing (HUC) (McCarthy and Peach, 2002). It in turn depends upon
variables such as individuals’ house purchase abilities (CD), purchase of financing cost (LIR), the
price level of the economy (DEF ), the current stock of housing (HUC), and (economic policy)
uncertainty (EPC). In a demand-driven equilibrium, DEF , LIR, and EPU are all expected to
exert a negative effect on RHPD∗, while the impacts of HUC and CD can be positive.

RHPD∗ = α1DEF
(−)

+ α2HUC
(+)

+ α3LIR
(−)

+ α4EPU
(−)

+ α5CD
(+)

(1)

Similarly, from the perspective of housing supply, assuming that there is a perfectly competi-
tive environment in which housing suppliers make a zero profit in the long-run, the supply func-
tion determines equilibrium housing prices (RHPS) that equates supply of housing to the effec-
tive buyers’ housing demand in the market (HUC) (McCarthy and Peach, 2002). The HUC, in

8Detailed explanations of signs of all incorporated demand- and supply-driven factors have been discussed in
Arestis and Gonzalez-Martinez (2016); Duan et al. (2018b).
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turn depends upon suppliers’ financing levels (CS), market value of land (RLV ), financing cost
of suppliers (LIR), the current stock of housing (HUC), and (economic policy) uncertainty (EPU ).
Therefore, in the supply-driven equilibrium,HUC and CS are expected to have a negative impact
on RHPS∗, while EPU , LIR, and RLV may exert a positive effect. The detailed definitions of all
variables and the corresponding data sources are summarized in Table 2 in Section 5.

RHPS∗ = λ1RLV
(+)

+ λ2HUC
(−)

+ λ3LIR
(+)

+ λ4EPU
(+)

+ λ5CS
(−)

(2)

Assuming that the housing market clears, we can directly estimate both demand and supply
functions simultaneously to arrive at the final housing market equilibrium: RHP ∗ = RHPD∗ =

RHPS∗. The assumption of market clearing depends crucially on how fast stochastic shocks
within the system taper-off: the faster decay offers smaller probability of interaction with external
shocks, whereas slow decay gives rise to higher probability of non-linear interaction with shocks.
Eventually, holding other things constant, a longer duration of shock convergence produces an
important feature: a gradual adjustment of housing prices towards equilibrium level. Very im-
portantly, there is heterogeneous adjustment behaviour of shocks depending on whether it is the
demand or supply channels. The final equilibrium, as we argue in this paper, is driven greatly
by distinct adjustment speed of shocks in either demand or supply channels. Indeed, it will be
wrong to assume that a stochastic shock will have a unique effect on housing price equilibrium.
Identification of the exact effect of that shock in demand and supply dynamics is very important
from a policy point of view as modelling of responses of demand and supply to respective shocks
helps in targeted policy design.9

Moreover, there exists overwhelming evidence in supporting the disequilibrium status in the
housing market particularly in the short-run due to aforementioned shocks. Thus, we explicitly
consider such slow adjustments by employing an error correction framework in both (1) and (2).
Specifically, we identify that a given shock to the equilibrium housing prices will generate wedges
between current price level and RHPD∗ as well as RHPS∗. Such a disequilibrium status in a
housing market implied by these wedges will dissipate slowly towards the equilibrium level if
there are no other shocks in the system.

Furthermore, there is compelling evidence in favour of persistent and slowly-converged shocks
in the macroeconomy-housing market interaction instead of a unit root process as conventionally
assumed. Thus, we identify a slow decay pattern (e.g. long-memory) of shocks in each target
series in demand and supply functions by allowing for the existence of fractional integration.10

Thus, demand- and supply-driven housing price determination functions are constructed as fol-

9(see McCarthy and Peach, 2002, for a summary of related literature).
10Detailed mathematical explanations are developed in Section 4.
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lows:

∆RHPt = ΠDLd1(RHPt−RHPD∗t )+β1∆HUCt+β2∆DEFt+β3∆LIRt+β4∆EPUt+β5∆CDt+εD

(3)

∆RHPt = ΠSLd2(RHPt−RHPS∗t )+γ1∆HUCt+γ2∆EPUt+γ3∆LIRt+γ4∆RLVt+γ5∆CSt+εS

(4)
where Ld1(RHPt − RHPD∗t ) and Ld2(RHPt − RHPS∗t ) represented in (3) and (4) denote error
correction processes towards the equilibrium housing prices through demand and supply effect-
transmission channels, respectively. Ld denotes the difference operator with an order d while d
can be any real number. ΠD and ΠS are parameter matrices that form the existing cointegrat-
ing relationships in the demand and supply functions, respectively. Furthermore, both short-run
disequilibrium corrections and long-run equilibrium relationships in the macroeconomy-housing
market interaction system can be explicitly investigated separately from both the channels, re-
spectively. Although our research emphasis is the determination of housing prices as modelled
by (3) and (4), we also recognize and allow for potential multi-directional interactions among tar-
get variables. Moreover, as earlier noted in Section 1, this theoretical setting enables us to quantify
effects of factors that impact exclusively through demand or supply functions, for instance, DEF
and CD on the demand function; and RLV and CS on the supply function.

More importantly, it also disentangles possible dual roles of specific factors, for instance,HUC,
LIR, and EPU , which can affect housing prices through both the functions. It is well known that
these specific variables can demonstrate two distinct effects on housing prices simultaneously by
shifting demand and supply curves, respectively. Thus, simply measuring their aggregate effects
in a single equation can not precisely investigate their real roles. Instead, through a micro perspec-
tive, our theoretical construct provides an effective way to separately gauge their dual impacts
and further study which one demonstrates a dominant role in determining housing prices. After
separately estimating both (3) and (4), we can eventually derive the overall equilibrium hous-
ing price determination function. In the next section, we will focus on discussing how to gauge
the fractional integration order implied in a target series, and how to identify the cointegrating
relationship(s) in both demand and supply functions in a long-memory framework.

4 Methodology

Rather than using the conventional methodology, which imposes an implausible assumption that
orders of integration and cointegration should be integer numbers (Engle and Granger, 1987), we
relax this assumption and employ the fractionally cointegrated vector autoregressive (FCVAR)
model. Following Johansen (2008) and Johansen and Nielsen (2012), the FCVAR model is able to
identify potential long-memory properties in our target series by allowing for fractional integra-
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tion orders, while it can further model both disequilibrium error corrections and cointegrating re-
lationship(s) among target variables in a long-memory context. In particular, a clear identification
of the long-memory shocks by using the FCVAR model is an innovative contribution in studying
interactions between housing prices and macroeconomic fundamentals. Discussions surrounding
both fractional integration and the FCVAR model are presented in this section.

4.1 Fractional integration

Given any time series, we start from a conventional expression of an integrated process of order d
as follows given that t = 1, . . . , T .

(1− L)dyt = ψ(L)εt (5)

where (1 − L)d is the difference operator of order d. For example, if d = 1, (1 − L)1yt = yt −
yt−1 = ∆yt. ψ(Lj) is the coefficient of the error term (ε) at each specific time period t − j with∑∞

j=0 |ψ(Lj)| < ∞, j = 0, 1, 2, . . . , and the error term (εt) is a white noise process with zero mean
and constant variance, viz. εt ∼ iid(0, σ2). Following Hamilton (1994), instead of abiding by the
conventional assumption that order d should be an integer, a fractional integrated process allows
a fractional value of d. Given that the inverse value of (1−L)d exists subject to d < 1/2, (5) can be
transformed into the following form.11

yt = (1− L)−dψ(L)εt (6)

Based on the technique of power series expansion, the operator (1−L)−d can be demonstrated
as

(1− L)−d =

∞∑
j=0

γjL
j (7)

where γ0 ≡ 1 and

γj =
(d+ j − 1)(d+ j − 2) · · · (d+ 2)(d+ 1)(d)

j!
(8)

where γj ∼= (j + 1)d−1 given that d < 1 and j is large. Thus, the fractionally integrated process
(6) can be re-formulated subject to (7) as a following infinite moving average (MA(∞)) represen-
tation.12

yt = (1− L)−dεt = γ0εt + γ1εt−1 + γ2εt−2 + · · · (9)

where impulse response coefficients of yt, γj , imply a slow decay pattern of shocks to the error

11As explained by Hamilton (1994), if d > 1/2, yt will no longer be stationary as the inverse of (1 − L)d approaches
infinity.

12We remove ψL in (9) and the coefficient of each Ljεt is now depicted by γj as defined in (8).
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terms of yt. Indeed, it can capture the potential ‘long-memory’ property of a time series (Granger
and Joyeux, 1980). In contrast, impulse response coefficients of a ‘short-memory’ time series decay
more quickly. For example, impulse response coefficients (ρi) of a covariance-stationary AR(1)
process, yt =

∑∞
i=0 ρ

iεt−i, decay geometrically.
To summarize, the series yt presented in (9) is a mean-reverting process when the superscript

d − 1 in γj ∼= (j + 1)d−1 is less than 0, i.e., d < 1. This indicates that the impacts of shocks from
past periods on yt will diminish gradually over time. Moreover, it can be also checked that yt can
have a finite variance only when d < 1/2, implying a square-summable error term coefficients in
(9). This indicates the stationarity of yt given that d < 1/2. Overall, Table 1 summarizes ‘memory
properties’ of a time series yt with different integration orders (d).

Table 1: Memory properties of yt with different d values
d Value Memory Stationarity Mean Variance Shock Duration
d < 0 Long Stationary Mean-reversion Finite Long-lived

d = 0 Short Stationary Mean-reversion Finite Short-lived

0 < d < 0.5 Long Stationary Mean-reversion Finite Long-lived

0.5 ≤ d < 1 Long Non-stationary Mean-reversion Infinite Long-lived

d = 1 Permanent Non-stationary, No Mean-Reversion Infinite Permanent
unit root process

d > 1 Permanent Non-stationary No Mean-Reversion Infinite Permanent, the effects
increase over time

4.2 Fractional cointegrated VAR model

It is widely recognized that a fractional integration order of a series is able to demonstrate its
long-memory property, while also providing an essential foundation when examining whether a
specific group of variables are fractionally cointegrated or not. To estimate the long-memory in a
system, we employ the fractionally cointegrated vector autoregressive (FCVAR) model developed
by Johansen (2008) and Johansen and Nielsen (2012). It enables us to capture both error corrections
and equilibrium relationship(s) in a system including specific target variables in a long-memory
cointegration framework.

The FCVAR model is derived from the cointegrated vector autoregressive (CVAR) model,
which only allows for an integer integration order, proposed by Johansen (1995). AssumingXt is a
K-dimensional I(1) time series with t = 1, 2, . . . , T , the CVAR model with p lags can be expressed
as

∆Xt = αβ
′
Xt−1 +

p∑
i=1

Γi∆Xt−i + εt = αβ
′
LXt +

p∑
i=1

Γi∆L
iXt + εt (10)

Based on (10), the FCVAR can be derived by replacing the difference operator (∆) and the lag
operator (L = 1 − ∆) by their fractional counterparts, which are ∆b = 1 − Lb = (1 − L)b and
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Lb = 1−∆b, respectively. Lb can be also re-expressed as: Lb = 1−∆b = 1− (1−L)b. In addition, b
should be positive to ensure that the order of target time series should not be affected by applying
the fractional lag operator (Lb) (Tschernig et al., 2013). Thus, the FCVAR model specification is
formulated as follows:

∆bXt = αβ
′
LbXt +

p∑
i=1

Γi∆
bLibXt + εt (11)

where the error term (εt) is a K-dimensional independent identically distributed time series with
zero mean and variance-covariance matrix (εt ∼ iid(0,Ω)) and Ω stands for a constant variance-
covariance matrix. Indeed, the FCVAR model allows multiple time series integrated with frac-
tional order d to be cointegrated to order d − b. We now assume that Xt is fractionally integrated
with an order b: (1−L)bXt = εt. When we apply Xt = ∆d−bYt, then (1−L)bXt = (1−L)b∆d−bYt =
(1−L)b(1−L)d−bYt = (1−L)dYt = εt. Thus, the FCVAR model shown in (11) can be re-formulated
as:

∆dYt = αβ
′
Lb∆

d−bYt +

p∑
i=1

Γi∆
dLibYt + εt (12)

Model parameters in the FCVAR have the same interpretations as those in the CVAR model.
Specifically, Π is a parameter that defines the cointegration relationship(s) and it can be further
identified as two sub-parameters, viz. Π = αβ′. α and β are K× r matrices given that r is the rank
of Yt and 0 ≤ r ≤ K. In addition, the value of r indicates the number of cointegration(s) in the
model. β identifies the cointegrating relationship(s) among variables in Yt, and α defines the ad-
justment speed towards the long-run equilibrium of each variable in Yt. Γi describes the short-run
dynamics of target variables. Overall, (12) implies that elements of Yt are fractionally integrated
to order d, and the model system is cointegrated to order d − b. The FCVAR model enables us
to capture the long-run equilibrium relationship, viz. β

′
Lb∆

d−bYt, the short-run adjustment pro-
cesses to deviations towards the equilibrium, and the short-run dynamics among variables in the
system. Moreover, the FCVAR model also allows us to evaluate the model fit (viz., if the asymp-
totic distribution assumption of the model parameters is achieved) by testing the residuals. In our
empirical research, we concentrate on the case when d = b to ensure that a linear combination of
variables depicted in cointegrating relationship(s) with a constant term δ tends to be stationary.
The FCVAR can be further expressed as:

∆dYt = α(β
′
LdYt + δ

′
) +

p∑
i=1

Γi∆
dLidYt + εt (13)

Our defined fractional integration is based on an infinite time series as shown in (9), while it is
hard to achieve in reality. Although an assumption that values of any a given time series are zero
before the start of our data sample allows us to measure the fractional difference, it is nevertheless
too strict to be rational in reality and will cause an estimation bias (Johansen and Nielsen, 2016).
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They point out that such bias can be corrected by introducing a drift term (ρ) that shifts each time
series in Yt by a constant value. Thus, the updated FCVAR model can be expressed as:

∆d(Yt − ρ) = αβ
′
Ld(Yt − ρ) +

p∑
i=1

Γi∆
dLid(Yt − ρ) + εt (14)

where β
′
ρ = −δ′ represents the constant mean value of stationary cointegrating relationships.

(14) is the FCVAR model specification that we will employ in the empirical section. In terms of
the estimation technique, we follow Johansen and Nielsen (2012) and estimate the FCVAR model
by using the maximum likelihood (ML) estimation. They find that the ML estimators of model
parameters, such as d̂, α̂ and Γ̂i, follow an asymptotically normal distribution, while other model
parameters, viz. β̂ and δ̂, follow an asymptotically normal distribution when d < 1/2 and an
asymptotically mixed normal distribution when d > 1/2.

Importantly, these above properties imply that the asymptotic χ2 inference can be applied to
test the significance of parameters through the likelihood ratio (LR) tests. Although the asymptotic
distribution of the drift parameter, ρ̂, is still unknown, it is not that crucial for the estimation as
ρ̂ is only used to correct for the fact that all initial values of Yt are not observed (Jones et al.,
2014). In addition, the determination of the FCVAR model specification, its model estimation and
correspondingly its forecasting exercise are executed using a Matlab program proposed by Nielsen
and Popiel (2018), viz. FCVAR version 1.4.0a. It is also worth noting that identification problems
of the FCVAR system raised in Johansen and Nielsen (2010) and Carlini and de Magistris (2017)
have been considered and alleviated in the program.

Similar to the hypothesis testing in the CVAR model, the FCVAR model can also conduct a
series of hypothesis tests on model parameters (Jones et al., 2014). In particular, the theoretical
framework of hypothesis tests on β and α can be formulated below respectively.

β = ωλ (15)

α = τθ (16)

In terms of the hypothesis test on β as shown in (15), ω is a K × q matrix identifying imposed
restriction(s) on cointegrating relationship(s), and λ is a q× r matrix defining free varying param-
eter(s). K is the number of variables within the FCVAR system; q is the number of restriction(s)
associated with β-related hypothesis tests; and r denotes the number of rank(s) of Yt. In the case
that each cointegrating relationship is imposed with the same restriction, the degree of freedom
of the hypothesis test is equal to (K − q)r. If the number of cointegrating relationships is greater
than one, viz. r > 1, different restrictions could be imposed on different columns of β. β can be
then re-expressed as a row vector, i.e., β = (ω1λ1, ω2λ2, . . . , ωrλr). Each column of β is the product
between ωi and λi, where ωi is a K × qi matrix and defines the imposed restriction on the column
i of β; and λi is a qi× 1 matrix and defines the free varying parameter on the column i of β. In that
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case, the degree of freedom of the hypothesis test is
∑r

i=1(K − r − qi + 1).
In terms of the hypothesis test on α as shown in (16), τ is aK×lmatrix that defines restriction(s)

on error corrections towards equilibrium of target variables, while θ is a l × r matrix representing
free varying parameter(s) with l ≥ r where l stands for the number of restriction(s) associated
with α-related hypothesis tests. Its degree of freedom is equal to (K − l)r.

Identification and endogeneity

Given that our employed FCVAR model is constructed based on a vector autoregressive structure,
where the endogeneity issue becomes negligible as all target variables considered in the model
are assumed to be endogenous. Moreover, in the FCVAR model, whether the included variables
form the long-run equilibrium relationship and correct for short-run disequilibrium errors or not
can be separately tested. In specific, endogenous impacts of the variables in the sytem can be
well-identified by testing for zero restrictions on feedback coefficients in the α-matrix. If α coeffi-
cient of a given variable is restricted to be zero, the variable can be defined as weakly-exogenous,
indicating that it contributes to no adjustment to restore the long-run equilibrium after disequilib-
rium has occurred in the system. Conversely, endogenous impacts of the variables are tested to be
significant for error corrections.

Moreover, whether the variables in the system contribute to building the long-run cointegrat-
ing relationship(s) or not can be also well-identified by testing for zero restrictions on feedback
coefficients in the β-matrix. If β coefficient of a given variable is restricted to be zero, it indi-
cates that the variable would not enter the cointegrating relation(s). To summarize, thanks to
the FCAVR model specification, the endogeneity issue is well ameliorated, while impacts of the
included variables in the system both for the short-run disequilibrium error corrections and the
long-run equilibrium constructions can be all clearly identified. Finally, super-exogeneity refers to
the irrelevance of the Lucas critique of parameters depending on the policy regime.

4.3 Test of fractional cointegration

We now discuss how numbers of fractional cointegration ranks are tested through the likelihood
ratio (LR) test statistic, which enables us to build the trace test of the null hypothesis (H0): rank(Π)
= r against the alternative hypothesis (H1): rank(Π) = K. Based on the FCVAR model specified in
(14), let θ = (d, b, ρ) denote the model parameters set that numerically maximizes the likelihood of
making the given observations. Let L(d, b, r) be the profile likelihood function given a specified
rank r, where other model parameters, viz. α, β and Γ, have been concentrated out by regression
and reduced rank regression (Johansen and Nielsen, 2012). The LR test statistic can be calculated
when the profile likelihood function is maximized under both hypotheses H0 and H1 as

LRT (τ) = 2log
(L(θ̂K ,K)

L(θ̂r, r)

)
(17)
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where τ = K − r, L(θ̂K ,K) = max(L(θK ,K)) and L(θ̂r, r) = max(L(θr, r)). The asymptotic
distribution of LRT (τ) depends upon the parameter b. Thus, the cointegration is defined as ‘weak’
when 0 < b < 1/2 and LRT (τ) follows a standard asymptotic distribution (Johansen and Nielsen,
2012).

LRT (τ)→ χ2(τ2) (18)

Moreover, when 1/2 < b ≤ d, the cointegration is defined as ‘strong’, while the asymptotic
distribution is not standard (Nielsen and Popiel, 2018). It is then formulated as

LRT (τ)→ Tr
{∫ 1

0
dW (s)F (s)

′
(

∫ 1

0
F (s)F (s)

′
ds)−1)

∫ 1

0
F (s)dw(s)

′}
(19)

Following Nielsen and Popiel (2018), the vector process dW denotes the increment of ordinary
vector standard Brownian motion of dimension τ = K − r, and the vector process F relies on
the deterministics, which is similar to the mechanism in the CVAR model discussed in Johansen
(1995). Building the above LR cointegration rank test when d = b involves calculations of both
asymptotic critical values and corresponding P values. In our case, we measure both of them
by employing computer programs provided by MacKinnon and Nielsen (2014) in the empirical
section.

4.4 Forecasting from the FCVAR model

Following Nielsen and Shibaev (2018), we now focus on how to forecast our target series (Yt) and
obtained cointegrating relationships from the FCVAR model by using the best (minimum mean-
squared error) linear predictor. First, regarding a one-step-ahead forecast of Yt+1, we note that

∆d(Yt+1 − ρ) = Yt+1 − ρ− (Yt+1 − ρ) + ∆d(Yt+1 − ρ) = Yt+1 − ρ− Ld(Yt+1 − ρ) (20)

Based on (20), since Ld = 1 −∆d and d = b as earlier defined, the FCVAR model, (14), is then
re-formulated as:

Yt+1 = ρ+ Ld(Yt+1 − ρ) + αβ
′
Ld(Yt+1 − ρ) +

p∑
i=1

Γi∆
dLid(Yt+1 − ρ) + εt+1 (21)

This is the foundation of the FCVAR forecasting. Each item on the right hand side (RHS) of
(21) is known at time t for d > 0 and i ≥ 1. A conditional expectation of any variable Yt+1 given
an available information set at time t can be defined as: Ŷt+1|t = Et(Yt+1). Similarly, a conditional
expectation of the residuals εt+1 given available information at time t is ε̂t+1|t = Et(εt+1). Hence,
by substituting the estimated values of FCVAR model coefficients, viz. d̂, ρ̂, α̂, β̂, Γ̂i, which have
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been obtained through the ML method, we re-express (21) as:

Ŷt+1|t = ρ̂+ Ld̂(Yt+1 − ρ̂) + α̂β̂
′
Ld̂(Yt+1 − ρ̂) +

p∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt+1 − ρ̂) (22)

where (22) defines the model specification of a one-step-ahead forecasting of Yt+1 given available
information at time t. Then, a multi-period forecasting can be simply derived based on that. We
can similarly define a conditional expectation of Yt+j given an available information set at time t
as Ŷt+j|t = Et(Yt+j). Thus, a j-step ahead FCVAR forecasting can be formulated as:

Ŷt+j|t = ρ̂+ Ld̂(Ŷt+j|t − ρ̂) + α̂β̂
′
Ld̂(Ŷt+j|t − ρ̂) +

p∑
i=1

Γ̂i∆
d̂Li

d̂
(Ŷt+j|t − ρ̂) (23)

where Ŷz|t = Yz if z ≤ t. Recursively, the j-step-ahead forecasting, Yt+j|t, are calculated from (23)
for any a given j ≥ 1. As examined by Nielsen and Shibaev (2018), the FCVAR model performs a
minimised root-mean-squared forecast error, while its forecasting performance is superior to both
the univariate fractional model and the cointegrated VAR model. We will apply its j-step-ahead
forecasting in both our demand- and supply-driven determination functions.

Model forecasting performance evaluations

To evaluate the model forecasting performance and measure the improvement of forecasting accu-
racy of the FCVAR model over other model specifications, for instance, the CVAR model (a special
case of the FCVAR model when d = b = 1), we follow Nielsen and Shibaev (2018) and examine
the target model’s forecasting performance by calculating its root mean squared forecasting errors
(RMSFE). The specification of the RMSFE calculation is shown in (24).

RMSFE =

{
1

K

K∑
i=1

(Ŷi,t+h|t − Yi,t+h|t)2
}1/2

(24)

where Ŷi,t+h|t denotes forecasting values of variable Yi over the time period t+ 1 to t+h given
that an information set of Yi at time t is available. i indicates specific included variables in our
system, and i=1,· · · ,K. h denotes specified forecasting horizons. Overall, the above formula can
measure the RMSFE of the target multivariate model system, which is calculated as the averaged
value of the RMSFE for each incorporated series in the system. It can report magnitudes of fore-
casting errors produced by the whole model system.

5 Data

Our empirical study uses a quarterly dataset for the US spanning more than four decades (1975-
2016). Overall, a summarized data description of our target variables involving housing prices
and macroeconomic fundamentals is reported in Table 2 below. In this section, we introduce
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each of them in detail. Sequentially starting from the variable for bank credit, we discuss issues
surrounding what each variable’s definition is and how we choose a rational proxy to represent
each of them in the empirical analysis.

Table 2: Data Description
Variable Name and Abbreviation Detailed Series Time Period Data Source
Credit to the Housing Demand (CD) Mortgage debt outstanding for 1951Q3-2017Q2 Board of Governors of

the residence purchase the Federal Reserve System (US)

Credit to the Housing Supply (CS) Private residential fixed investment 1946Q4-2017Q2 US Bureau of Economic Analysis

Residential Land Value (RLV ) Aggregate market value of 1975Q1-2016Q1 Lincoln Institute of Land Policy
residential land

Long-term Interest Rate (LIR) 10-year treasury constant maturity rate 1954Q2-2017Q3 Board of Governors of
the Federal Reserve System

Inflation (DEF ) GDP deflator 1946Q4Q1-2017Q3 US Bureau of Economic Analysis

Residential Housing Stocks (HUC) New privately-owned housing units 1967Q4-2017Q4 US Bureau of Census &
completed US Department of Housing and

Urban Development

Economic Policy Uncertainty (EPU ) US historical news-based policy index 1940Q1-2017Q4 Baker et al. (2016)

Residential Housing Prices (RHP ) S&P/Case-Shiller US National 1975Q1-2017Q3 S&P Dow Jones Indices LLC
Home Price Index

Bank credit is defined as the net lending that is claimed by money issuers, while it also de-
notes the outstanding amounts that money borrowers are liable to repay. Money-issuing sectors
are formed by monetary financial institutions (MFIs), while bank credit can be obtained from the
asset side of MFIs’ consolidated balance sheets (Docker and Willoughby, 1999). MFIs are financial
institutions whose businesses are to receive deposits and grant credit on their own account to en-
tities other than MFIs (non-MFIs), such as households, non-profit institutions serving households,
private non-financial corporations and other financial corporations (OFCs).13 On the basis of def-
initions from the European Central Bank (ECB), the Bank of England (BOE), and the International
Monetary Fund (IMF), under the conceptual framework of the 2018 SNA (United Nations, 2008),
MFIs stand for depository corporations including central bank and other deposit-taking corpo-
rations, such as commercial banks, credit unions, saving institutions and money market mutual
funds, at the broadest level. In light of the definition of credit, we segregate bank credit to sep-
arately gauge how much credit is provided to the demand side (CD) and the supply side (CS),
respectively, in the residential real estate market.

In our paper, the amount of CD is represented by outstanding mortgage debts for the home
purchase (e.g. one- to four- family, and multifamily residences). It explicitly measures the amount
of money/credit used to finance the housing demand in a given economy, which also indicates
the households’ purchase power regarding the housing demand. It is collected from the Board of

13For simplicity, non-MFIs refer to private sectors in our paper. Moreover, according to United Nations (2008), OFCs
are financial corporations other than depository corporations. They include non-MMF (Money market funds) invest-
ment funds, other financial intermediaries except insurance corporations and pension funds, financial auxiliaries, cap-
tive financial institutions and money lenders, insurance corporations, and pension funds.
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Governors of the Federal Reserve System (US) covering the period 1951Q3-2017Q2. In terms of
credit to the housing supply side (CS), there is a lack of data that explicitly represent the credit
lending to each industry, including the real estate industry. Alternatively, we use the private res-
idential fixed investment (PRFI) as a proxy. Instead of focusing on how many loans are issued
by MFIs to the residential real estate market, as defined in the US National Income and Product
Accounts (NIPA) handbook, PRFI describes the money spending by private sectors (e.g. private
firms, households, and non-profit institutions serving households) for the construction and devel-
opment of residential properties, such as an improvement of existing houses, a creation of new
houses, and a replacement of worn out or obsolete houses, in the form of fixed investments. Thus,
PRFI enables us to gauge the amount of money provided by private sectors for the provision of
housing supply (CS). It is available from 1946Q4 to 2017Q2, and is provided by the US Bureau of
Economic Analysis.

In addition to disaggregate bank credit, this paper further includes a series of variables, viz.
residential land market value (RLV ), long-term interest rate (LIR), residential housing stock
(HUC), inflation (DEF ), and economic policy uncertainty (EPU ), combine to form the macroeco-
nomic fundamentals of the housing demand and supply sides. In terms of RLV , following Davis
and Heathcote (2007), we approximate it using the aggregate market value of residential land,
which is measured based on the S&P/Case-Shiller U.S. National Home Price Index. RLV is able
to describe the housing supply/construction expenditure through a land perspective, and data are
provided by the Lincoln Institute of Land Policy (1975Q1 to 2016Q1).14 In terms of long-run inter-
est rate (LIR), we approximate it using a 10-year treasury constant maturity rate. LIR measures
the cost level of both housing buyers and developers in financing the house purchase and con-
struction, respectively. The higher the LIR, the greater the borrowing costs are on both housing
demand and supply sides. Then, housing prices will subsequently increase/decrease depending
upon whether dominating shocks are from supply/demand sides. Its data are collected from the
Board of Governors of the Federal Reserve System (US) and range from 1953Q1 to 2017Q4.

In terms of inflation (DEF ), we employ the GDP deflator to describe the US price level of
all domestic-produced final goods and services in a given time period. It explicitly demonstrates
the inflationary and deflationary periods in the entire US economy, while its changes are directly
linked to the dynamics of asset prices, such as housing prices. The data are collected from the US
Bureau of Economic Analysis, and are from 1946Q4 to 2017Q3. In terms of residential housing
stock (HUC), we use a series named the completion of new privately-owned housing units to
approximate. This measures total amounts of completed residential properties that are currently
available in the US real estate market. Available housing stocks (HUC) represent amounts of hous-
ing units that are required by the housing buyers, while they also demonstrate the amounts that
are able to be provided by the housing suppliers. Thus, HUC can reflect and affect both housing
demand and supply dynamics, respectively, and then impact housing prices. Its data are available
from the US Bureau of Census and the US Department of Housing and Urban Development, and

14Data are available through http://datatoolkits.lincolninst.edu/subcenters/land-values/
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range from 1967Q4 to 2017Q4.
In terms of economic policy uncertainty (EPU ), it is an important indicator in depicting a

level of uncertainty in an economy. As explained in Baker et al. (2016), this index is constructed to
measure the uncertainty through three aspects, viz. newspaper coverage of policy and economic
related uncertainty, the number of federal tax code provisions set to expire in forthcoming years,
and the disagreement among economic forecasters. It is well known that the persistence of uncer-
tainty can impact housing prices through both channels of housing demand and supply. To ensure
a long time-series, we use the US historical news-based policy index as a proxy for uncertainty,
and it ranges from 1900Q1 to 2017Q4.15 Moreover, one key variable in the paper is residential
housing prices (RHP ). In order to be consistent with the housing price series used in the calcula-
tion of RLV , we employ the S&P/Case-Shiller US National Home Price Index to approximate the
US national residential real estate prices. Data are from S&P Dow Jones Indices LLC and range
from 1975Q1 to 2017Q3. In addition, except for RLV and EPU , all aforementioned time series are
retrieved from the Federal Reserve of St. Louis (FRED), US.

In addition to the above introduced variables, there exist some other variables, which also
could potentially determine housing demand and supply functions, such as GDP, aggregate money,
construction cost, and credit to other financial corporations (OFCs). However, we do not include
them in our empirical research because of the following concerns, viz. a multicollinearity prob-
lem, a usage of a better proxy, and a limitation of available data. Specifically, for example, although
GDP reflects the overall income level of domestic housing buyers, it is highly correlated with GDP
deflator (DEF ), which is a proxy for the inflation level of the entire economy and has already been
included. Moreover, the purchase power of the households in buying residences can be better de-
picted by outstanding mortgage debts (CD); similarly, a better approximation of credit to the
supply side is private residential fixed investment (CS) against credit to OFCs. Therefore, we de-
cide to use disaggregate credit, which can disentangle impacts of credit on housing prices through
demand and supply channels, respectively, rather than aggregate credit. In addition, although we
intend to include total residential construction costs, its data are nevertheless only available from
1993Q1, which is too short a period to form our empirical dataset. Instead, we consider alterna-
tives to measure the financing expenditure of the housing supply such as long-term interest rate
(LIR) and residential land value (RLV ).

6 Data transformation and preliminary observations

6.1 Seasonal adjustment

The presence of seasonal components, if left untreated, may obscure the true nature of persistence
in a time series. A report in (UK Office for National Statistics, 2007) argues that short-term distur-
bances in the form of seasonal effects can induce certain amount of volatility in the dynamics of
macroeconomic variables in the long-run . Thus, prior to our FCVAR estimation, we transform our

15Data are provided by Baker et al. (2016) and are available through www.policyuncertainty.com/index.html
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raw time series by first removing potential seasonal effects. Following convention, we employ the
popular X-13ARIMA-SEATS statistical package developed by the US Census Bureau to seasonally
adjust all target variables.

Figure 1 presents patterns of seasonal components in variables such as CD, RHP , RLV , and
LIR. It also explicitly describes short-run periodic fluctuations in those variables with a serrated
shape. Indeed, removal of seasonal effects unfolds the true dynamics of each variable in the long-
run. Other variables, such as CS, HUC and DEF have already been seasonally adjusted and
hence we leave them untransformed.16

6.2 Business cycles removal

As Lucas (1981) notes, repeated fluctuations also exist in the mid/long-run movements of many
aggregate economic variables, and are usually longer than a year. Such repeated dynamics within
variables’ growth patterns are defined as business cycles17 (Hodrick and Prescott, 1997). Thus,
to free our variables from an inherent cyclical movement, which may further put a layer over
identification of a true memory, we remove business cycles from each original series. Therefore, in
an attempt to identify true nature of memory in our time series, we remove periodic disturbances
in the short-run (seasonal effects) and the mid-/long-run (business cycles). For the latter, we
employ the recently developed Hamilton filter (Hamilton, 2017). In contrast to the traditional
Hodrick-Prescott (H-P) filter Hodrick and Prescott (1997), the Hamilton filter solves one of the
most fundamental problems with regard to replication of a true Data Generation Process (DGP).
Hamilton argues that due to the extra smoothness (the source of which depends on an a-theoretic
value of the smoothing parameter), the degree of integration order arrived at by H-P filter is
always higher.

The H-P filter decomposes a given series yt into a trend (gt) and a cyclical (ct) component.

yt = gt + ct (25)

where t = 1, . . . , T. The H-P filter aims to minimize then the following objective function

min
gt

{ T∑
t=1

(
yt − gt

)2
+ λ

T∑
t=1

[(
gt − gt−1

)
−
(
gt−1 − gt−2

)]2}
(26)

where
∑T

t=1

(
yt−gt

)2
denotes the sum of squares of ct.

∑T
t=1

[(
gt−gt−1

)
−
(
gt−1−gt−2

)]2
denotes

the sum of squares of the second difference of gt, which is used to model the smoothness of the
variation of gt. The larger the value of parameter λ, the smoother the growth of gt. In particular, the
value of parameter λ is suggested to be 1600 given a quarterly dataset in our empirical research.

16Comparative plots between non-seasonally adjusted (SA) and SA series of each variable can further depict the role
of the seasonal adjustment. They are available from the authors upon request.

17Specifically, business cycles describe periodic behaviours of a given variable that first start to increase/decrease
from a reference time point until a peak point/trough point, and then decreases/increases until the end of a down-
turn/upturn.
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In spite of a popularity of the H-P filter, its accuracy and rationale are still in dispute. The main
criticism lies in its assumption of a white noise cyclical component, which is too strict and far
from reality. More so, its decomposed cyclical term tends to demonstrate a strong autocorrelation
property, which is a feature imposed by the H-P method instead of that possessed by the true data
generating process (DGP).

The Hamilton filter (Hamilton, 2017) is able to avoid the weaknesses of the H-P filter. Given
a non-stationary series (yt), according to Hamilton, its cyclical component at time t+ h, viz. ct+h,
can be defined as the difference between the real value of y at time t+ h and its expected value at
time t conditional on the available information set prior to time t. ct+h is formulated in (27). Thus,
this method enables us to capture business cycles which encompass the shocks whose effects last
over time h, while they are still transient and tend to disappear in the long-run.

ct+h = yt+h − gt (27)

where h = 1, . . . , T − t. gt = E(yt+h | yt, yt−1, . . . , yt−p+1), and is defined as the trend component
of yt+h. In light of (27), yt+h can be expressed as

yt+h = β0 +

p∑
i=0

βj+1yt−i + ut+h (28)

where the residuals in (28) represent the cyclical component, viz. ut+h; and the difference between
yt+h and ut+h can be defined as the trend component. As suggested by Hamilton (2017), numbers
of lags (p) are selected to be four to both ensure the stationarity of ut+h and maximize available
observations of specific series; a two-year standard setting is employed to capture business cycles
indicating that h equals to 2, 8 and 24, for annual, quarterly, and monthly data, respectively. Thus,
the cyclical term describes shocks that last within two years, while are still ‘transient’. Overall,
in contrast to the H-P filter, which imposes a strict assumption to obtain a smooth-varying trend
term, the Hamilton’s filter ensures the stationarity of the cyclical component for any given non-
stationary series and better duplicates the real data generating process (DGP). Therefore we apply
Hamilton’s filter for business cycle removal in our empirical research.

Empirical identification of business cycles

In Figures 2 to 7, we present cyclical and trend components of each variable using both filtering
methods. In each figure, movements of business cycles are shown in the left-hand side of panels,
while both trend components and non-decomposed variables are depicted in the right-hand side
of panels. Each variable is demeaned to eliminate common characteristics and make observations
from each cumulative series comparable over time. Specifically, variables in levels are first used in
Figures 2 to 4, where both cyclical and trend components of each target series decomposed by H-P
and Hamilton’s filters can be observed, although movements of each component particularly at an
early period appear to be similar between both filters. Thus, to better illustrate and compare the
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results of business cycle removal by using these two filters, we further transform each target series
in a logarithmic format and multiply transformed variables by 100. Plots using corresponding
transformed variables are depicted in Figures 5 to 7. Moreover, this transformation is also able to
clearly demonstrate the growth of each variable, viz. a unit increase of a log-transformed variable
is equivalent to a 1% unit increase of the variable in levels. In addition, regarding Hamilton’s filter,
a suggested two-year setting is applied to identify business cycles.18

Indeed, we observe that H-P filtered trend series demonstrate a more smoothly moving pattern
compared with the ones filtered by the Hamilton’s method. On the other hand, movements of
business cycles obtained by the Hamilton’s filter tend to be more volatile, while it appears to be
a more sophisticated and precise way to replicate true DGP than the H-P filter, which artificially
imposes a ‘guarantee’ of a smooth-varying growth path (Hamilton, 2017). In addition, it can also
explain why de-cycled series filtered by the H-P method would express exceptional integration
orders, which are hard to explain both empirically and theoretically. Overall, all of these motivate
us to employ Hamilton’s filter to remove business cycles from our target variables preceding with
the further fractional cointegration VAR estimation.

To further observe notable disturbances of business cycles and to illustrate the excellent per-
formance of Hamilton’s filter, we carry out a comparison of autocorrelation function (ACF) plots
between decomposed (de-cycled) and non-decomposed (non-de-cycled) series. Specifically, Fig-
ures 8 and 9 report comparative ACF plots of selected variables including logged credit to the
housing demand, credit to the housing supply, land value and logged land value. All these vari-
ables are differenced once to remove potential non-stationary elements, following a conventional
unit root assumption, in order to better observe effects of business cycles.19 De-cycled and non-
de-cycled series are presented in the right- and left-hand side panels, respectively. Interestingly,
instead of behaving as a general stationary series, ACF movements of non-de-cycled variables be-
have like a sine or cosine function. They first witness a gradual decay until zero and keep sinking
negatively until a trough; then they turn to move back towards zero once again. Such periodic
dynamics occur repeatedly although the amplitudes reduce gradually over time and are expected
to eventually diminish towards zero in the long run. In contrast, the ACF movements of de-cycled
series move like a stationary process without the aforementioned periodic fluctuations. Thus, the
above comparisons further confirm that the Hamilton’s filter can better minimise disturbances
induced by business cycles in contrast to the H-P filter.

In light of existing studies related to the housing-macroeconomic cycles, durations of boom-
bust cycles of housing prices and macroeconomic variables are normally longer than a two-year
standard setting. Specifically, the duration of debt cycles is suggested to be five years (Hamilton,
2017). Cesa-Bianchi (2013) chooses five-year as the length of rolling window for the calculation

18We also use different time durations to capture business cycles, such as 5-, 8-, and 10-year settings. Qualitatively
similar dynamics of both components of each variable are obtained. These plots are available from the authors upon
request.

19We only plot the ACF for the variables that show the strongest periodic moving patterns. Corresponding compar-
isons for other variables are available from the authors upon request.
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of cross-country average correlations of real housing prices and real GDP in different sub-country
groups (e.g. advanced economies and emerging market economies.). Moreover, Igan and Loun-
gani (2012) measure the length of housing cycles as well as durations of downturn and upturn of
housing prices for different countries. They find that durations of housing cycles for the US are
different in different time periods, e.g. 5.25 years (Peak: 1973Q4; Trough: 1975Q3), 10.75 years
(Peak: 1979Q1; Trough: 1982Q4), and 17 years (Peak: 1989Q4; Trough: 1995Q3). In addition, given
empirical observations in European cross-country real estate markets, both Duan et al. (2018a)
and Duan et al. (2018b) suggest that cycles of housing prices and macroeconomic fundamentals
on housing demand and supply sides tend to last for 10 years.

Overall, according to relevant literature and data availability in our case, we generally select
10-years as the cycle duration for variables with a relatively long time series. On the other hand,
credit cycles for CD have been identified as five years following Hamilton (2017). Cycles of other
housing-related variables, e.g. RHP , HUC, and RLV , are set to have a five-year duration due to
their constrained data. Once periodic disturbances from both seasonal and cyclical components
have been removed from raw data series, the real long-run dynamics of target variables can then
be unfolded to guarantee a more precise empirical analysis. In addition, regarding the following
empirical study, whether a variable is added in levels or a logarithmic format depends upon which
one can better demonstrate the variable’s long-memory property. Our dataset has been trimmed
to be strongly balanced and runs from 1980Q1 to 2016Q1 for the FCVAR estimation. Next, we start
the empirical section by first testing the existence of a fractional integration in each target series.

7 Results and discussions

7.1 Long-memory in individual series

Before proceeding with the FCVAR estimation, a series of tests needs to be conducted to demon-
strate whether there exists a long-memory property in our target series. To do that, we apply three
univariate analyses discussed as follows.

(1) Visual evidence of a long memory

As implied by (8), a fractionally integrated series behaves with a long-memory property indicating
that its impulse response coefficients decay hyperbolically over time in contrast to a geometric de-
cay of a short-memory stationary series for example, a stationary AR(1) process. Following Jones
et al. (2014), the long memory can be checked by plotting the autocorrelation function (ACF) and
the spectral density. If a specific series has a long-memory, its autocorrelation values should decay
hyperbolically until zero in the long-run, in contrast to a geometric decay. In addition, evidence
of a long-memory can be also captured by examining the zero frequency of its spectral density
figure, where a fractionally integrated process will have mass densities near the zero frequency
which are proportional to f−2d. Parameter f stands for the frequency value.
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Figures 10 to 13 depict movements of both ACF and spectrum of each series. In terms of ACF
drawn until 100 lags, its values of each variable decay slowly towards zero by taking a long time
period. Such ACF moving patterns with long-memory implications are consistent with existing
applications (See for instance, Jones et al., 2014; Kumar and Okimoto, 2007; Tkacz, 2001, among
others). In particular, although the ACF value of residential housing stocks depicted in Figure 11
dwindles towards zero for a long time period, it appears to fluctuate periodically while such pat-
terns are less significant against its analogies with similar moving patterns presented in the left
panels of Figures 8 and 9. In addition, this comparison speaks in favour of the strong performance
of the Hamilton’s filter discussed in Section 6.2 regarding the removal of cyclical disturbances.
Interestingly, the positive ACF value of residential land value shown in Figure 13 first witnesses
a gradual decrease until zero for 40 lags, then it keeps decreasing beyond the zero line and moves
negatively throughout rest of the periods. Moreover, as demonstrated from the spectrum figures,
there exist mass values at around the zero frequency of each target variable, which provides fur-
ther visual evidence in favour of a long-memory property in our dataset. In addition, we continue
testing in the following subsections whether our target series are fractionally integrated or not.

(2) Stationarity and unit root tests

In theory, a fractionally integrated time series should reject the null hypotheses of both stationary
test and unit root test. That is to say, if a given series is non-stationary while it does not have a unit
root, it can be defined as a fractionally integrated series with a long-memory property. Thus, we
carry out the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and the Augmented Dickey-Fuller
(ADF) test to examine the stationarity and the unit root of each series, respectively. Corresponding
results are reported in Table 3.

All series reject the null hypothesis of the KPSS test, implying the existence of a non-stationary
feature at the 5% significance level expect for the residential land value (RLV ) with a 10% signif-
icance level. In terms of the ADF test, except for credit to the housing demand side (LCD) and
inflation (LDEF ), all the other variables significantly reject the null hypothesis, implying no unit
root. Thus, variables that reject both null hypotheses indicate a fractional integration, while both
LCD and LDEF appear to have a unit root. In the next step, we estimate the integration order (d)
of each series through different estimate techniques.

Table 3: The Stationarity and Unit Root Tests
LCD LCS RHP LHUC LIR LDEF RLV EPU

KPSS Test 0.201** 0.154** 0.255*** 0.165** 0.694*** 0.222*** 0.129* 1.260***
ADF Test -1.313 -3.785** -4.032*** -3.959** -3.247* 1.798 -3.242* -3.722**

Note: (i) * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level; (ii) the logarithmic
variables begin with a prefix ‘L’; (iii) numbers of lags for both tests are selected based on the information criteria (IC).
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7.2 Estimates of memory pattern (d): Static and dynamic procedures

(1) Static estimates

We further proceed with univariate d estimates for each series in our macroeconomy-housing
market system using a variety of estimates, viz. ‘LW’, ‘2ELW’, and ‘2ELWdm’. Specifically, ‘LW’
denotes the local Whittle estimator (Kuensch, 1987; Robinson, 1995); ‘2ELW’ denotes the two-step
exact local Whittle estimator (Shimotsu, 2010; Shimotsu et al., 2005); and ‘2ELWdm’ denotes the
two-step exact local Whittle estimator with demeaning and detrending procedures. Univariate d
estimates are executed using both static and dynamic types, respectively.

Table 4 reports results of the static estimates with different bandwidth values (B) from 0.4 to 0.8
with a 0.05 increment. Overall, d estimates with different bandwidths overwhelmingly support
fractional integration in all series except for LCD and LDEF ; their d values range between 0.5
and 1, viz. 0.5 < d < 1. Interestingly, LCD displays 1 < d < 2, except when the bandwidth (B)
is very small or large. It helps explain the unit root conclusion of LCD as earlier suggested by
the result of its ADF test. Indeed, a unit root assumption in the ADF test tends to be irrational
due to its assumption of an integer value rather than a fractional value for the integration order.
Overall, in light of all of these, LCD is assumed to be fractionally integrated with 1 < d < 2, while
it should contain a unit root.

Moreover, LDEF is also also found to be fractionally integrated (0.5 < d < 1) with most
moderate bandwidths (B), although its d values are approaching to 1. Its d values tend to equal
to or greater than 1 and less than 2 when B is very small or large. Thus, this also helps explain
the unit root conclusion in LDEF by the ADF test. In addition, it is also worth noting that our d
estimates of LIR are consistent with the empirical findings in Tkacz (2001) and Jones et al. (2014).
Specifically, as shown in Table 4, except for a unit root suggestion when B = 0.40, all its d values
range from 0.5 to 1. In the case of both USA and Canada, Jones et al. (2014) find that d estimates
of LIR are close to 1 when B is small, viz. B = 0.4, while its values witness a gradual decrease
with an increase of B. In particular, the estimated d of LIR with B = 0.6 that Jones et al. (2014)
calculate using the Geweke and Porter-Hudak (GPH) estimator is 0.886, and its value is roughly
equal to our d estimates with the same B by using ELW, 2ELW, and 2ELWdm, which are 0.825,
0.833, and 0.837, respectively. Overall, the static d estimates confirm the existence of a fractional
integration and indicate a long-memory property in our target series.

(2) Dynamic estimates

In addition to the static d estimates, we further proceed with the dynamic univariate d estimates
in a 10-year rolling-window setting.20 We start estimating d by using the first 10-year data of each
variable, while data are then updated with a four-quarter (equivalent to one-year) increment, and
d is accordingly re-estimated using an updated window until approaching the end of data sam-

20We also calculate the dynamic estimates with different rolling windows, e.g. 5- and 15-year, and qualitatively
consistent results are obtained. These results are available from the authors upon request.
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Table 4: The Univariate ’d’ Estimates
Bandwidth B = 0.40 B = 0.45 B = 0.50

Variable LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD
LCD 0.444 0.900 1.466 0.167 0.723 1.446 1.434 0.146 1.146 1.546 1.518 0.127
LCS 0.490 0.945 0.537 0.167 0.510 0.890 0.511 0.146 0.600 0.890 0.575 0.127
RHP 0.751 0.845 0.749 0.148 0.669 0.803 0.653 0.127 0.588 0.729 0.578 0.109

LHUC -0.037 0.200 -0.011 0.177 0.054 0.242 0.062 0.156 0.356 0.458 0.346 0.137
LIR 1.048 1.043 1.047 0.137 0.759 0.759 0.771 0.116 0.783 0.785 0.794 0.099

LDEF 1.108 1.186 1.154 0.167 0.994 0.995 0.871 1.146 0.929 0.977 0.846 0.127
RLV 0.760 1.293 1.320 0.186 1.237 1.336 1.362 0.164 1.190 1.328 1.349 0.145
EPU 0.668 0.841 0.809 0.131 0.787 0.858 0.838 0.111 0.713 0.763 0.734 0.094

Bandwidth B = 0.55 B = 0.60 B = 0.65
Variable LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD

LCD 1.183 1.576 1.498 0.111 1.183 1.584 1.510 0.096 0.988 1.244 1.246 0.084
LCS 0.830 0.945 0.714 0.111 1.117 1.079 1.043 0.097 1.081 1.222 1.223 0.084
RHP 0.471 0.671 0.471 0.094 0.575 0.703 0.575 0.080 0.768 0.813 0.772 0.069

LHUC 0.444 0.544 0.464 0.120 0.590 0.647 0.624 0.106 0.532 0.592 0.568 0.093
LIR 0.821 0.823 0.829 0.084 0.825 0.833 0.837 0.071 0.750 0.758 0.762 0.061

LDEF 0.722 0.929 0.784 0.111 0.642 0.912 0.797 0.096 0.744 0.950 0.877 0.084
RLV 0.837 1.061 1.078 0.128 0.722 0.933 0.939 0.114 0.718 0.838 0.829 0.100
EPU 0.661 0.684 0.606 0.079 0.677 0.671 0.627 0.067 0.763 0.748 0.733 0.057

Bandwidth B = 0.70 B = 0.75 B = 0.80
Variable LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD LW 2ELW 2ELWdm SD

LCD 1.016 1.189 1.205 0.073 1.020 1.175 1.182 0.064 0.886 1.015 1.050 0.057
LCS 0.921 1.019 0.989 0.073 0.823 0.937 0.874 0.064 0.684 0.870 0.780 0.058
RHP 0.756 0.801 0.774 0.059 0.850 0.896 0.889 0.051 0.833 0.913 0.909 0.044

LHUC 0.507 0.580 0.558 0.082 0.623 0.698 0.697 0.072 0.745 0.859 0.859 0.063
LIR 0.664 0.676 0.680 0.052 0.689 0.712 0.715 0.044 0.745 0.791 0.792 0.037

LDEF 0.816 1.031 1.000 0.073 0.915 1.169 1.165 0.064 0.922 1.257 1.258 0.056
RLV 0.661 0.766 0.752 0.088 0.590 0.729 0.713 0.078 0.608 0.717 0.697 0.069
EPU 0.659 0.633 0.623 0.048 0.736 0.710 0.700 0.040 0.788 0.787 0.782 0.034

Note: (i) the logarithmic transformed variables begin with a prefix ‘L’; (ii) ‘LW’ stands for the local Whittle estimator,
‘2ELW’ stands for the two-step ELW estimator, ‘2ELWdm’ stands for the two-step ELW estimator used for the demeaned
and detrended variable; (iii) stand errors of the estimates with different bandwidths (B) are saved in columns named
‘SD’. SD is calculated as (4ψ)−1/2, ψ = NB . N is the number of observations and B represents the value of estimation
bandwidth.

ple. A same rolling window setting is also employed in Kumar and Okimoto (2007). Through the
dynamic estimates, we aim to confirm the long-memory property of our target series, test the sen-
sitivity of static d estimates with the changing data sample, and study how the integration order
of each variable evolves over time. As earlier applied in the static estimates, the same estimators,
i.e. LW, 2ELW and 2ELWdm, are also employed in the rolling-window estimates. Corresponding
results of each series with different B are illustrated in Figures 14 to 19.

Overall, in light of above overwhelming evidence from both static and dynamic d estimates,
we confirm the existence of fractional integration in our target variables. In particular, some key
patterns from the dynamic estimates emerge. First, the estimated d with a lower bandwidth,
particularly when B = 0.4 and B = 0.5, tend to be more volatile and striking in contrast to
the ones with a higher B, and this is in line with Kumar and Okimoto (2007). It implies that
moderate bandwidth values, such as 0.6 and 0.7, appear to be more rational in our empirical case.
Second, in terms of inflation, its persistence witnessed a gradual decline after the 1990s with many
small fluctuations across the period. This finding is consistent with many existing studies (Cogley
and Sargent, 2001, 2005; Kumar and Okimoto, 2007; Taylor, 2000). In addition, in terms of LCD,
although its estimated d fluctuates over the unit root line (d = 1), its values mainly behave as
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greater than 1 with different rolling-window periods and bandwidths.
In the next section, we proceed with the FCVAR estimation of both housing demand and sup-

ply functions involving the calculation of fractional cointegration order of the system, the deter-
mination of model specifications, the investigation of the long-run equilibriums between housing
prices and macroeconomic factors through both the functions.

7.3 FCVAR estimation results

Given that the dynamics of housing prices are determined by macroeconomic shocks on both
housing demand and supply sides, a fundamental assumption of the paper is that a macroeco-
nomic determinant of housing prices can impact through the channel of either demand or supply;
or both of them. For example, the shocks of economic policy uncertainty can depress both house
buyers’ purchase intentions and house constructors’ development intentions, implying a simulta-
neous fall of both housing demand and supply, and then, depending upon which one is dominant,
housing prices could shift negatively or positively. Thus, without a clear identification of the dis-
tinct channels of housing price determination on demand and supply sides, the real effects of our
target variables, which could impact on both the sides, would not be disentangled but instead
remain intertwined.

Overall, both housing demand- and supply-driven housing price determination functions are
constructed, respectively, by using the FCVAR model. The estimates of both functions are pre-
sented in the following subsections. As assumed earlier in Section 4.2, d = b. It implies that the
fractional order (d) of the group of our target variables is cointegrated to zero. That is to say, any
long-run cointegrating relationship(s) among our target variables tends to be a short-memory sta-
tionary process. In addition, to both remove common unchanged characteristics and minimize
non-stationary deterministic elements induced by ‘the continued and inertial movements’ over
time, we further demean and detrend each target variable by using Shimotsu’s (2010) method
after the data transformation.

Furthermore, after the FCVAR estimations, a five-year-ahead forecasting of the future move-
ments of both variables and obtained cointegrating relationship(s) from demand and supply func-
tions are respectively executed to examine the validation of model estimates. Finally, by solving
the simultaneous equilibrium relationships in these two functions, an overall housing determina-
tion equation involving macroeconomic factors from both the functions can be eventually derived.
In addition, in light of the significance test of the cointegrating parameters (α and β) of each target
variable, a robustness check by employing rational restricted FCVAR estimates further confirms
our conclusions.

7.3.1 Determination of model specification

After selecting variables to form both demand and supply functions, the primary issue then is to
determine the FCVAR model specification by choosing the optimal model parameters, such as the
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lag order and the number of ranks, in the FCVAR system for each function. First of all, we need to
gauge the highest lag order (p) to form the short-run corrections. We follow Jones et al. (2014) and
select the optimal lag order by a series of Likelihood Ratio (LR) tests through a ‘general to specific’
strategy. The LR test starts from a very generous lag order, viz. p = 8, by assuming that potential
short-run interdependence among target variables exists within eight quarters (equivalent to two
years).

For each LR test, the null hypothesis is that the coefficient of the highest lag order (p) is not
significant (H0 : Γp = 0), in contrast to the alternative hypothesis in favour of the significance
of Γp (H1 : Γp 6= 0). If the null hypothesis is accepted, the highest lag order (p) should then be
dropped and the model will be re-estimated until it can be significantly rejected. Within each LR
test, we also perform a white noise test through the Ljung-Box Q-test to examine if the residuals
are autocorrelated.21 If its null hypothesis of no autocorrelation is rejected, we have to drop that
specified highest lag order and move one step back in the determination of model specification.
Another important question is how to confirm the highest lag order (p) that we choose is the best
among all qualified candidates, which all can significantly reject the H0 and have no autocorre-
lation in the residuals of their LR tests. We can answer this question and eventually determine
the optimal lag order through the information criteria (IC) technique, such as the Akaike informa-
tion criteria (AIC) and the Bayesian information criteria (BIC), whose values with different p are
reported during each LR test. The optimal order should have a minimum value of the IC.

Once the optimal p has been decided, we move on to determine the number of ranks (rank)
in the FCVAR system, i.e. the number of the long-run cointegrating relationships. To do this,
we follow Johansen (1995) and identify rank through a series of the Likelihood Ratio (LR) tests.
The sequential constructed null hypotheses are H0 : rank = k for k = 0, 1, . . . ,K against the
same alternative hypothesis implying the full rank, i.e. H1 : rank = K where K is the number of
variables and equals to the full rank in the system. Finally, the selected rank order is the one that
first accepts its corresponding null hypothesis. It represents the number of long-run equilibrium
relationships among target variables. Once both lag orders and ranks of the FCVAR system are
determined, we can then move forward to proceed with the FCVAR model estimation.

Furthermore, as pointed out by Johansen (1995), the parameters of cointegrating relation-
ship(s), viz. α and β, cannot be separately identified without additional restrictions of the matrix
normalization for Π in (14). Thus, in the following estimations, we impose an identification re-
striction that normalizes β regarding housing prices (RHP ). The second variable selected to do
the β normalization is residential housing stocks (HUC) but only in the case when model ranks
are greater than one. This normalization setting is meaningful for the paper because it enables us
to resolve our key research questions regarding how equilibrium housing prices are determined
by and interact with macroeconomic factors from demand and supply sides, respectively.

21The number of lags in the test is chosen as 12 in the following estimations; we also tried other lag orders such as 4,
8, and 16, and the test results are qualitatively the same.
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7.3.2 The demand-driven determination function of housing prices

The group of demand-driven factors includes residential housing stocks (LHUC), inflation (LDEF ),
long interest rate (LIR), credit to the housing demand (LCD), and economic policy uncertainty
(EPU ). They are either exclusive demand variables, which affect housing prices only on the de-
mand side, viz. LDEF and LCD, or dual-impact variables, which can impact on both demand
and supply sides, viz. LHUC, LIR, and EPU . The target explanatory variable of the demand
function is housing prices (RHPD), where its superscript (D) indicates that it is the specific hous-
ing prices determined by the demand function instead of the supply function. In particular, in
light of the discussions in Section 7.1, we further differentiate both LDEF and LCD to remove
their potential unit root and conveniently capture all target variables’ long-memory properties in
the specified FCVAR system.

Table 5: Lag-order Selection - FCVAR (Demand Function)
p K d̂ LogL LR P -value AIC BIC PmvQ
8 6 1.404 -2138.50 63.21 0.003 4938.99 5915.03 1.00
7 6 1.508 -2170.10 40.31 0.285 4930.20 5800.08 1.00
6 6 1.401 -2190.25 71.70 0.000 4898.51 5662.24 1.00
5 6 1.294 -2226.10 50.18 0.059 4898.21 5555.78 1.00
4 6 0.624 -2251.19 87.40 0.000 4876.38* 5427.80 0.98
3 6 1.224 -2294.89 87.11 0.000 4891.78 5337.04 1.00
2 6 1.209 -2338.45 83.69 0.000 4906.89 5246.00 0.40
1 6 0.856 -2380.29 86.39 0.000 4918.58 5151.53 0.00
0 6 0.784 -2423.48 0.00 0.000 4932.96 5059.76* 0.00

Note: (i) number of observations (T) in sample is 141; (ii) order of the white noise test is 12.

Table 6: Rank Tests - FCVAR (Demand Function)
Rank d̂ LogL LRstatistic P -value

0 0.77 -2316.228 130.073 0
1 0.687 -2288.641 74.899 0.001
2 0.68 -2271.028 39.672 0.045
3 0.641 -2254.864 7.344 0.926
4 0.616 -2252.225 2.067 0.945
5 0.625 -2251.194 0.004 0.998
6 0.624 -2251.192 —- —-

Note: (i) number of observations (T) in sample is 141; (ii) order of lags is 4.

Following procedures discussed in Section 7.3.1, to determine the model specification, we first
perform the lag order selection with the corresponding results presented in Table 5. Each LR test
with different highest lag orders (p) ranging from 0 to 8 demonstrates the significance of p at either
the 5% or 1% significance levels except when p = 5 and p = 7. Meanwhile, for the autocorrelation
check of the residuals in each LR test, it suggests no autocorrelation except when p = 0 and p = 1.
In light of these results, the optimal p has thus been chosen as 4 due to its lowest AIC value.22

In addition, the estimated d of the FCVAR system equals to 0.624 when p = 4, which supports a
fractional co-integration order of the group of demand-driven variables.

22We do not follow the BIC in selecting the optimal p. This is because the residuals with the BIS’s suggested p do not
pass the white noise test, while its suggestion (p = 0) of no short-run corrections is counter-factual and hard to explain
in reality.
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In terms of the selection of ranks, we conduct a series of LR tests. Corresponding results with
different null hypotheses are presented in Table 6. Specifically, the first two null hypotheses of
rank = 0 and rank = 1 are respectively rejected against the alternative hypothesis of rank = 6,
viz. the full rank, given that both P values are less than the 1% significance level. Then the updated
null hypotheses continue to be tested with higher rank numbers. Given that our main research
focus is the impacts of demand factors on housing price dynamics, we would like to retain as
many factors as possible in the cointegrating relationship with β normalized by housing prices
(RHP ). Thus, we eventually accept the following null hypothesis of rank = 2 with P = 0.045 at
the 1% significance level. It implies that there exist two cointegrating relationships (rank = 2) in
the demand function. Overall, in terms of the demand-driven FCVAR function, lag augmentations
of its short-run terms are 4 and rank numbers are equal to 2.

Thus, based on the general FCVAR specification shown in (14), the estimated demand-driven
function is presented in (29) following by two stationary cointegrating relations shown in (30) and
(31). With regard to (29), both Yt−ρ on the left hand side and α on the right hand side are expanded
in matrix form with corresponding estimated values; column vector νt stands for β′Ld(Yt − ρ) in
(14); the highest lag order of the short-run dynamics is 4. Moreover, estimated d of the demand
function (29) is 0.680 with standard error of 0.039, implying a factional co-integration order. It is
also consistent with the obtained d value in Table 5 when p = 4, which is 0.624. The P value of the
Ljung-Box Q-test with 12 lags is 0.996 shown in the parenthesis below the test statistic, denoting
that the residuals in (29) are well-behaved with no signs of autocorrelation.

Estimated Unrestricted FCVAR model:

∆d̂
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LDEF

LIR

EPU

LCD


−



3.709
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−11.004

−20.442

−31.173




= Ld̂



−0.142 2.161

0.036 −3.117

−0.143 0.788

0.148 −0.192

0.074 1.838

−0.056 2.335


[
ν1t

ν2t

]
+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (29)

d̂ = 0.680
(0.039)

, Qε(12) = 358.611
(0.996)

, LogL = −2271.028

The Demand-driven Equilibrium Relationships (long-run):

RHPD∗t = −2.4548− 14.238× LDEFt − 2.415× LIRt − 0.865× EPUt + 1.280× LCDt + ν1t

(30)

LHUCD∗t = 0.0837− 0.279× LDEFt − 0.024× LIRt − 0.002× EPUt + 0.012× LCDt + ν2t

(31)

With regard to (30) and (31), these two cointegrating relationships are built with β normalized
by residential housing prices (RHPD) and residential housing stocks (LHUC), respectively. Re-
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ferring to Section 3,RHPD∗ andLHUCD∗ respectively denote the level of housing prices (RHPD)
and residential housing stocks (LHUC) in the equilibrium condition achieved through the hous-
ing demand side. Regarding the demand function, the first relation shown in (30) demonstrates
how housing demand factors drive the equilibrium housing prices given that ν1t = 0; the second
one shown in (31) describes how these factors determine the equilibrium level of housing stock
provisions given that ν2t = 0.

The cointegrating relationships derived from the demand function are consistent with theoret-
ical expectations. As shown in (30), housing demand factors such as inflation (LDEF ), long inter-
est rate (LIR), and economic policy uncertainty (EPU ) negatively affectRHPD∗, while the money
supply to the housing demand side (LCD) exerts a positive impact on RHPD∗. Specifically, a 1%
unit change of the growth of DEF induces a 14.238 unit decline of RHPD∗; the downward im-
pact of LIR on RHPD∗ is greater than that of EPU , which are -2.415 and -0.865 respectively; and
LCD positively affects RHPD∗ (1.280). In terms of the second relation in (31), similar to the first
relation regarding signs of the effect, LDEF , LIR, and EPU negatively affect LHUCD∗, while
LCD provides a positive effect (0.012). In comparison between (30) and (31), impacts of demand
factors on LHUCD∗ are much smaller than their counterparts on RHPD∗.

In theory, on the housing demand side, the stationary equilibrium relation (30) explains to
what extent demand-driven factors determine the equilibrium housing prices, and the results are
consistent with our theoretical expectations in light of the market equilibrium theory. Specifically,
in an overheated economy with high inflation, interest rate tends to experience an upward pres-
sure, implying an increasing cost of borrowing money. This depresses housing demand leading to
a fall in housing prices. Similarly, an increase in the interest rate leads to a fall of housing prices by
depressing the housing demand. In addition, the existence of high uncertainty in the economy po-
tentially unnerves investors and subdues their intentions of consumption/investment; therefore
housing prices tend to fall given that housing demand witnesses a downturn. More importantly,
understanding the impact of money/credit supply in the long-run is one of our main focuses.
Credit provided to the housing buyers, which is measured by using mortgage debt outstanding
for the residential properties, can exert a positive impact on determining housing prices. The more
money that housing buyers own, the greater their purchasing capabilities/powers should be.

Moreover, the second equilibrium equation demonstrates the long-run relation between avail-
able housing stocks and other demand-driven factors. As theoretically expected, their nexuses
can be interpreted in detail through the housing demand channel. First, the appreciation of infla-
tion depresses the housing demand by increasing the interest rate, while the intention of housing
supply also dwindles, all of which indicate a decrease of both house buyers’ required housing
stocks and house suppliers’ provision intentions. Eventually, available amounts of housing stock
completion in the real estate market tend to decrease. A similar effect mechanism is also applied
to other demand factors on housing stocks. An increase of long-term interest rates will similarly
depress housing demand and then decrease available housing stock. Moreover, an exposure of
the economy to a high-level of uncertainty stagnates housing demand by depressing house buy-
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ers’ purchase intentions, therefore the number of housing stocks for sale will decrease. Besides, a
tightened constraint of credit supply will also restrict housing stocks by depressing the housing
demand.

To evaluate the reliability of the above reported FCVAR estimation results and corresponding
theoretical explanations, this chapter further conducts forecasting evaluation exercises to assess
the predictive accuracy of the employed FCVAR model, while its predictive improvement over
the traditional vector error correction model with strict assumption of integer integration order,
i.e. CVAR model, is also examined accordingly. Following (24), the model forecasting performance
is measured through the calculation of RMSFE. Based on the forecasting algorithms as discussed
in Subsection 4.4, we conduct nine out-of-sample forecasting with h-step/h

4 -year ahead where
h = 1, 5, 10, 15, 20, 25, 30, 35, 40 for the price determination function on the housing demand side
estimated by using the FCVAR and CVAR models, respectively.

Table 7: RMSFE calculations (Demand Function)
Model Forecast horizon (h)

1 step 5 step 10 step 15 step 20 step 25 step 30 step 35 step 40 step

(a) The magnitudes of RMSFE values
FCVAR 0.0069 0.0059 0.0148 0.0256 0.0302 0.0617 0.0466 0.0321 0.0184
CVAR 0.0046 0.0067 0.0284 0.0630 0.2075 0.1743 0.0633 0.2514 0.1449

(b) Percentage change in RMSFE values
FCVAR versus CVAR 50.2906 -12.2085 -47.7410 -59.3619 -85.4452 -64.5979 -26.3334 -87.2188 -87.3032

Note: (i) forecasting performance of the overall demand-driven model system is measured by the RMSFE values. (ii)
Section (a) reports the values of RMSFE for the multivariate model system of the FCVAR and CVAR. (iii) Section (b)
reports the comparisons of RMSFE values between the FCVAR and CVAR; negative reported values favour the FCVAR
model.

The magnitudes of RMSFE values for each h-step ahead until 40-step/10-year for both the
two models are reported in Section (a) in Table 7. Specifically, it is clear that the FCVAR model
outperforms the CVAR model throughout all nine forecasting evaluations with smaller RMSFE
values except at the one-step ahead forecast horizon where the RMSFE values for both models
are quite similar and the one from the CVAR is slightly greatly than that from the FCVAR. The
forecasting accuracy of the FCVAR model is increasingly much higher than that of the CVAR
model with the increase of forecast horizons.

Furthermore, the improvement degree of forecasting accuracy of the FCVAR model over the
CVAR model can be measured by reporting the percentage change in RMSFE values of the FCVAR
model relative to the CVAR model following

100×
{
RMSFEFCV AR
RMSFECV AR

− 1

}
(32)

where its reported negative results favour the superiority of the FCVAR model while positive
results favour the superiority of the CVAR model in terms of the model predictive performance.
Relevant results are accordingly reported in Section (b) in Table 7 and show that the RMSFE of the
FCVAR model can be as much lower as 87% than that of the CVAR model. Overall, the results in
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Section (a) are broadly consistent with that in Section (b), and both demonstrate that the FCVAR
model behaves smaller FMSFE values than that of the CVAR model except at the one-step ahead
forecast horizon where FMSFE values of both models are similar. We can finally conclude that
the forecasting performance of the FCVAR model is checked to be more accurate than that of the
CVAR model in the case of the demand-driven housing price determination function.

In the next, we carry out a five-year-ahead forecasting exercise for the incorporated series and
its estimated equilibrium relationships. Their predictions can be clearly observed in Figure 20
in Appendix C. To summarize, the in-sample dynamics of each series fluctuate frequently over
the zero line, while the out-of-sample forecast broadly predicts a consistent movement where
each series gradually converges to the zero line. In particular, variables such as RHP , LCD and
EPU witnessed a more striking movement from 2008 onwards probably due to the outbreak of
the global financial crisis. They particularly experienced a significant decrease after 2010; their
downward momentums are then expected to be curbed from 2016 while they start to recover
gradually towards the zero point. In terms of the cointegrating relationships, the one normalized
by RHP has a more volatile movement than the one normalized by LHUC, while both are also
expected to converge towards zero in the forecast.

7.3.3 The supply-driven determination function of housing prices

The group of supply-driven factors includes variables such as residential housing stocks (LHUC),
economic policy uncertainty (EPU ), long interest rates (LIR), residential land value (RLV ), and
credit to the housing supply (LCS). They are either exclusive supply variables, which affect hous-
ing prices only on the supply side, viz. RLV and LCS, or dual-impact variables, which affect
housing prices on both demand and supply sides, viz. LHUC, LIR, and EPU . The target ex-
planatory variable is housing prices (RHPS), where its superscript (S) indicates that it is deter-
mined by the supply function instead of the demand function. In addition, we decide to not
include inflation (LDEF ); otherwise there would be a multicollinearity problem in the supply-
driven function as LDEF is highly correlated with LCS.23

Table 8: Lag-order Selection - FCVAR (Housing Supply)
p K d̂ LogL LR P -value AIC BIC PmvQ
8 6 1.577 -2162.43 52.12 0.040 4986.86 5965.24 1.00
7 6 1.070 -2188.49 88.47 0.000 4966.98 5838.95 1.00
6 6 1.340 -2232.73 50.71 0.053 4983.45 5749.01 1.00
5 6 0.876 -2258.08 91.94 0.000 4962.16* 5621.31 1.00
4 6 1.129 -2304.05 98.29 0.000 4982.10 5534.84 0.96
3 6 0.927 -2353.19 37.52 0.399 5008.38 5454.71 0.59
2 6 0.010 -2371.95 125.13 0.000 4973.90 5313.82 0.00
1 6 0.066 -2434.52 220.35 0.000 5027.04 5260.55* 0.00
0 6 0.860 -2544.69 0.000 0.000 5175.39 5302.49 0.00

Note: (i) number of observations (T) in sample is 142; (ii) order for the white noise test is 12.

23LDEF is approximated by the GDP deflater, which is calculated based on the nominal GDP, while parts of GDP
form the private residential fixed investment, which proxies LCS. Therefore, both tend to be highly correlated.
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Table 9: Rank Tests - FCVAR (Housing Supply)
Rank d̂ LogL LRstatistic P -value

0 0.873 -2305.240 94.318 0.040
1 0.872 -2287.005 57.849 0.263
2 0.907 -2274.238 32.313 0.676
3 0.827 -2263.226 10.290 0.962
4 0.874 -2259.783 3.404 0.984
5 0.877 -2258.085 0.007 1.000
6 0.876 -2258.081 —- —-

Note: (i) number of observations (T) in sample is 142; (ii) order of lags is 5.

Similar to Section 7.3.2, we start the FCVAR estimation by first determining the model spec-
ification. In terms of the optimal highest lag order (p), it should be selected based on a series of
tests including LR test, corresponding white noise test, and information criteria. As indicated in
Table 8, we prefer the optimal p = 5 due to its minimum AIC value, while it also passes both the
LR test and corresponding white noise test. In addition, the fractional order d with p = 5 equals
to 0.876, implying the long-memory property in the group of supply-driven factors. In terms of
the rank number, as shown in Table 9, the first null hypothesis of rank = 0 is rejected while the
second one of rank = 1 is accepted against the same alternative hypothesis of rank = 6, viz. the
full rank. Thus, it implies one cointegrating relationship among supply-driven factors. To sum up,
regarding the FCVAR system of the supply function, its short-run correction terms are up to order
5, while its rank is equal to 1. In light of this, we then proceed with the FCVAR estimation and
produce the results shown as follows.

Estimated Unrestricted FCVAR model:

∆d̂





RHPS

LHUC

EPU

LIR

RLV

LCS


−



6.234

−1.509

−14.985

−9.547

3.446

−19.121




= Ld̂



−0.020

−0.259

0.509

0.811

0.271

−0.719


νt +
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Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (33)

d̂ = 0.872
(0.025)

, Qε(12) = 347.802
(0.999)

, LogL = −2287.005

The Supply-driven Equilibrium Relationship (long-run):

RHPS∗t = −0.5229− 0.827× LHUCt + 0.065× EPUt + 0.143× LIRt + 1.312×RLVt
−0.174× LCSt + νt

(34)

With regard to the estimated FCVAR supply function presented in (33), both estimated drift
term (ρ) and short-term adjustment speed parameter (α) have been shown on the left and right
hand sides, respectively. The parameter, νt, viz. β′Ld(Yt − ρ), is expanded in (34), which demon-
strates the long-run cointegrating relationship between housing prices (RHPS) and supply-driven
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variables given that νt = 0, and it is normalized by RHPS . Key parameters of the FCVAR esti-
mation are presented below (33). The fractional integration order (d) of the system is 0.872. The
statistic of the Ljung-Box Q-test is 347.802 with P value = 0.999, implying a strong indication of
no autocorrelation in the residuals. Moreover, the long-run cointegrating relationship between
housing prices and supply-driven factors is shown in (34).

Referring to Section 3, RHPS∗ denotes the level of housing prices in the equilibrium condition
that is achieved on the housing supply side. Specifically, residential housing stocks (LHUC) and
credit to the housing supply (LCS) negatively affect housing prices (RHPS∗), while economic
policy uncertainty (EPU ), long interest rates (LIR), and residential land value (RLV ) positively
affect RHPS∗. A 1% unit change of HUC and CS can induce a 0.827 unit and a 0.174 unit change
of RHPS∗ in the opposite direction, respectively; the positive effects of EPU , LIR, and RLV on
RHPS∗ are 0.065, 0.143, and 1.312, respectively.

In terms of theoretical explanations, through the housing supply channel, our estimated long-
run equilibrium relationship between housing prices and supply-driven factors shown in (34) is
consistent with the theoretical expectations. Specifically, the excess provision of housing stocks
implies the excess housing supply in circulation; this will directly discourage housing builders’
intention of further housing supply, while housing prices then tend to slump. Moreover, the
exposure of high-level economic policy uncertainty will depress not only the housing demand
but also the housing supply, which further affects housing prices. An increasing uncertainty level
indicates a heightening uncertainty of the investment return for the real estate construction; it will
depress the housing supply and subsequently increase housing prices. In particular, regarding
the dual effects of uncertainty on housing prices in our empirical estimation, its positive effect
through the supply channel is much less than its negative impact through the demand channel.
This suggests that the overall effects of uncertainty tend to be negative on housing prices.

Similarly, long interest rates also exert dual effects on housing prices through the demand and
supply sides. Regarded as a proxy for levels of borrowing costs/expenditures for the housing
construction/development, the larger the costs are, the much greater the constraints will be on
housing supply; then housing prices will rise correspondingly. Thus, in light of its stronger neg-
ative effect on the demand side versus its relatively less negative effect on the supply side, the
aggregate effect of long interest rates on housing prices tends to be negative. Indeed, our elabo-
rations of specific factors with dual impacts, such as uncertainty and interest rates, offer a precise
way to disentangle their real effects on housing prices. In terms of residential land (market) value,
its increase enlarges the housing production costs and then dwindles the housing supply, there-
fore housing prices will then witness a rise. In addition, an increase in available money/credit
provided to housing suppliers, which is represented by the levels of residential investment for the
housing construction, can stimulate a rise in housing suppliers’ intention in developing housing
units. Therefore, the housing supply will increase while housing prices tend to decline.

In the next, to demonstrate the reliability of above-reported FCVAR estimations and the model
validation, similar to the forecasting performance evaluation process conducted in previous sec-
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tion regarding the demand-driven function, in the case of housing price determination function
on the supply side, we follow (24) to calculate RMSFE values of the FCVAR model. Then its cal-
culated RMSFE values are compared with that of the CVAR model. Through this, the forecasting
accuracy of the FCVAR model can be well examined.

Corresponding results in Section (a) in Table 10 report that the RMSFE values of the FCVAR
model are checked to be greater than that of the CVAR model except at 25-step and 30-step ahead
forecast horizons where the two models possess similar RMSFE values. Moreover, as depicted
in Section (b) in Table 10 and calculated based on (32), the improvement degree of forecasting
accuracy of the FCVAR model can be as much as 99% compared with the CVAR model, while
the results obtained from both Sections (a) and (b) are consistent. Overall, in the case of housing
supply-driven function, we can conclude that the FCVAR model outperform the traditional model
of vector error corrections with the assumption of integer integration order, i.e. CVAR model.

Table 10: RMSFE calculations (Supply Function)
Model Forecast horizon (h)

1 step 5 step 10 step 15 step 20 step 25 step 30 step 35 step 40 step

(a) The magnitudes of RMSFE values
FCVAR 0.0073 0.0084 0.0261 0.0532 0.0269 0.0900 0.0421 0.0273 0.0129
CVAR 0.0091 0.0227 0.0667 0.0579 0.0300 0.0457 0.0346 0.1552 1.5336

(b) Percentage change in RMSFE values
FCVAR versus CVAR -19.9531 -63.1356 -60.9260 -8.0968 -10.1478 96.7783 21.5241 -82.3900 -99.1620

Note: (i) forecasting performance of the overall supply-driven model system is measured by the RMSFE values. (ii)
Section (a) reports the values of RMSFE for the multivariate model system of the FCVAR and CVAR. (iii) Section (b)
reports the comparisons of RMSFE values between the FCVAR and CVAR; negative reported values favour the FCVAR
model.

Finally, by using the FCVAR model, we carry out forecasting exercises to predict the future 5-
year movements of the incorporated variables and the obtained cointegrating relationship in the
housing supply-driven function. The corresponding results are acorrdingly plotted in Figure 21
in Appendix C. Overall, the in-sample movements of variables in the supply function tend to be
similar to the ones in the demand function that fluctuate frequently across the zero line. The out-
break of financial crisis markedly affects their dynamics, which induced a plunge after 2010. Their
movements tend to gradually become stable during the out-of-sample forecast, while the forecast
of dual-effect factors, such as LHUC, EPU and LIR, behave consistently in both demand and
supply functions as observed in Figures 20 and 21, respectively. With regard to the cointegrating
relationship, it witnessed a striking fluctuation after the financial crisis, and is expected to taper
off and converge to zero during the forecast.

7.3.4 The manually-derived overall determination function of equilibrium housing prices

Thus far, we conclude that there exist factors that exclusively affect housing prices through de-
mand or supply sides, and dual-effect factors that can impact on both sides. The equilibrium
housing prices tend to be determined as a trade-off between impacts from distinct housing de-
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mand and supply effect channels. According to Sections 7.3.2 and 7.3.3, we have gauged the
extent of impacts that factors from both demand and supply channels separately exert in con-
tributing to the equilibrium housing price determination. Indeed, as theoretically elaborated, the
equilibrium housing prices can be achieved only when both demand and supply functions reach
a level of market clearing. In that state, demand and supply curves intersect, viz. demand and
supply are equal in the real estate market: that is, RHP ∗ = RHPD∗ = RHPS∗.

Next, we investigate what aggregate impacts macroeconomic fundamentals can exert on the
equilibrium housing price determination, having considered the two distinct demand and sup-
ply channels. The above question can be answered by manually solving the two simultaneous
equilibrium relations as shown in (30) and (34), which are obtained from these two channels, re-
spectively. In specific, the results from (30) and (34) are reported in the first and second rows in
Table 11, where we can clearly compare between impacts from the demand and supply sides, par-
ticularly for the dual effect factors, on equilibrium housing price determinations. Then by solving
the simultaneous (30) and (34), aggregated impacts of each of the included variables are measured
and reported in the third row of Table 11. Eventually, an overall determination function reporting
these aggregated impacts is derived and presented in (35).

Table 11: Summary of estimates in demand- and supply-driven determination functions
Impacts Dual effect Exclusive demand Exclusive supply

LIR EPU LHUC LCD LDEF RLV LCS
Demand -2.415 -0.865 - 1.280 -14.238

Supply 0.143 0.065 -0.827 1.312 -0.174

Aggregate -1.136 -0.400 -0.4135 0.640 -7.119 0.656 -0.087

Note: (i) the variable estimates are from the previously-reported demand- and supply-driven housing price determi-
nation functions; (ii) LHUC is not included in the demand-driven function due to the identification requirement for
its second cointegration relationship where LHUC is the variable for normalization; (iii) LIR, EPU , and LHUC are
dual effect factors; LCD and LDEF are exclusive factors that impact only through the demand side; RLV , and LCS
are exclusive factors that impact only through the supply side.

The Equilibrium Relationship of the Overall Determination Function:

RHP ∗t = −1.48885− 7.119× LDEFt + 0.640× LCDt − 0.4135× LHUCt − 0.087× LCSt+

0.656×RLVt − 0.400× EPUt − 1.136× LIRt + ν∗t
(35)

where ν∗t = (ν1t + νt)/2 = 0 in equilibrium. Following (35), with regard to factors with a dual-
impact, such as economic policy uncertainty (EPU ) and long interest rates (LIR), their aggregate
impacts on housing prices are negative at -0.400 and -1.136, respectively. This is because both
of their much stronger negative effects from the housing demand channel offset their relatively
smaller positive impacts from the housing supply channel. It is noteworthy that dual-effect fac-
tors (e.g. EPU and LIR) in our case demonstrate negative aggregate impacts, which are smaller
than their effects obtained from the demand channel while being greater than the counterparts
exerted from the supply channel in absolute value. Hence, it is concluded that impacts of both
EPU and LIR are driven by the housing demand side. In addition, due to the identification re-
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quirement of cointegrating relationships in the demand function, the specific dual-effect factor,
residential housing stocks (LHUC), does not enter the demand-driven equilibrium. Thus, its ag-
gregate impact reported in (35) is actually from the supply channel, which is -0.4135.

At the same time, regarding the exclusive factors that impact housing prices only through ei-
ther the demand channel, viz. LDEF and LCD, or the supply channel, viz. LCS and RLV , their
aggregate impacts from the overall determination function tend to be smaller than that from their
individual effect channels in absolute value, due to the calculation mechanism of the simultaneous
equation system. Specifically, impacts of the variables estimated from the demand/supply func-
tion could be adjusted and offset directly through the same variables (for the variables with dual
impacts) or indirectly through other variables (for the variables with exclusive impacts) from the
supply/demand function. Hence, the significance of considering housing price determinations
respectively though the demand and supply functions is well tested, having recognized obvious
evidence from Table 11. Indeed, real impacts of macroeconomic factors would be distorted when
being estimated directly through an overall determination function, while the construction of a
simultaneous demand and supply function system can nevertheless help avoid this distortion.

Estimation of a single equilibrium housing price determination function

So far, by respectively estimating the simultaneous demand- and supply-driven functions for equi-
librium housing price determinations, impacts of macroeconomic fundamentals including dual-
effect factors, exclusive demand- and supply-driven factors have been well gauged. Moreover, as
described in the above part of this section, an overall determination function including all incor-
porated macroeconomic variables from both the demand and supply channels has been manually
derived by solving the simultaneous demand- and supply-driven functions.

Next, although the confirmed superiority of a simultaneous function system to a single and
combined function for equilibrium housing price determinations, we nevertheless directly esti-
mate the latter as a benchmark model, which together includes both demand and supply vari-
ables, by using the FCVAR method. Through this, impact estimates of the incorporated variables
obtained from the previously-built simultaneous function system can be well compared with that
of the combined function, which specification has been widely employed in much housing-related
literature to date. To determine the FCVAR model specification of the combined function, both the
lag order selection test and the rank test are conducted. According to the corresponding results
shown in Tables 12 and 13, the combined equilibrium housing price determination function is
constructed with 5 system lags and 2 ranks. Moreover, estimated by the FCVAR method, co-
efficient estimates of the combined function in both the short- and long-runs are reported from
equations (36) to (38). In particular, (37) reports the long-run relationship between housing prices
and demand/supply factors. In other words, equilibrium housing price determinations through
a combined function including both demand and supply factors (‘Aggregate1’). The significance
of both the fractional integration order of the function system and the long-run parameters, viz. α
and β, of all incorporated variables are confirmed. Corresponding descriptions and results of all
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the hypothesis tests shown in Tables 14 and 15.

Table 12: Lag-order Selection - FCVAR (Combined Function)
p K d̂ LogL LR P -value AIC BIC PmvQ
8 8 1.621 -2634.29 165.27 0.000 6438.58 8167.74 1.00
7 8 1.578 -2716.93 128.41 0.000 6475.86 8015.84 1.00
6 8 1.447 -2781.13 -12.93 1.000 6476.26 7827.08 1.00
5 8 0.631 -2774.67 266.59 0.000 6335.33* 7496.97 0.96
4 8 1.211 -2907.96 135.04 0.000 6473.92 7446.39 0.95
3 8 1.087 -2975.48 188.96 0.000 6480.96 7264.25 0.82
2 8 1.109 -3069.96 57.78 0.695 6541.92 7136.04 0.07
1 8 0.010 -3098.85 312.55 0.000 6471.7 6876.65 0.00
0 8 1.023 -3255.12 0.00 0.000 6656.24 6872.02* 0.00

Note: (i) number of observations (T) in sample is 142; (ii) order for the white noise test is 12.

Table 13: Rank Tests - FCVAR (Combined Function)
Rank d̂ LogL LRstatistic P -value

0 0.838 -2920.30 291.261 0.000
1 1.197 -2947.66 345.989 0.000
2 0.419 -2792.389 35.446 0.495
3 0.398 -2761.531 -26.269 1.000
4 0.010 -2540.755 -467.822 1.000
5 0.010 -2520.217 -508.897 1.000
6 0.603 -2772.635 -4.062 —-
7 0.624 -2773.491 -2.350 —-
8 0.631 -2774.666 —- —-

Note: (i) number of observations (T) in sample is 142; (ii) order of lags is 5.

Estimated Unrestricted FCVAR model:

∆d̂





RHP

LHUC

EPU

LIR

RLV

LCS

LCD

LDEF


−



5.897

−5.203

−21.814

−7.792

2.960

−20.432

−28.364

−27.210




= Ld̂



−13.326 2.380

5.507 4.061

−51.436 −4.583

6.172 1.013

−1.451 10.400

−20.611 −7.099

7.995 19.151

9.166 −1.008



[
νat

νbt

]
+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Yt − ρ̂) + ε̂t (36)

d̂ = 0.419
(0.040)

, Qε(12) = 726.438
(0.856)

, LogL = −2792.389

The Equilibrium Relationships (long-run) of the Combined Determination Function:

RHPt = 4.3679− 0.530× EPUt − 0.001× LIRt + 1.322×RLVt − 0.485× LCSt
+0.305× LCDt + 0.238× LDEFt + νbt

(37)

LHUCt = −2.3277 + 0.406× EPUt − 0.349× LIRt + 0.326×RLVt − 0.155× LCSt
+0.261× LCDt − 0.069× LDEFt + νbt

(38)

Moreover, as shown in the first and second rows of Table 16, we compare coefficient estimates
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Table 14: Hypothesis Tests
Hd
D The fractional order, d, equals to one. Hα

D1 RHP is weakly exogenous.
Hβ
D1 RHP and LHUC do not enter the cointegrating relationships. Hα

D2 LHUC is weakly exogenous.

Hβ
D2 EPU does not enter the cointegrating relationships. Hα

D3 EPU is weakly exogenous.

Hβ
D3 LIR does not enter the cointegrating relationships. Hα

D4 LIR is weakly exogenous.

Hβ
D4 RLV does not enter the cointegrating relationships. Hα

D5 RLV is weakly exogenous.

Hβ
D5 LCS does not enter the cointegrating relationships. Hα

D6 LCS is weakly exogenous.

Hβ
D6 LCD does not enter the cointegrating relationships. Hα

D7 LCD is weakly exogenous.

Hβ
D7 LDEF does not enter the cointegrating relationships. Hα

D8 LDEF is weakly exogenous.

Table 15: Hypothesis Test Results
Hd
D Hβ

D1 Hβ
D2 Hβ

D3 Hβ
D4 Hβ

D5 Hβ
D6 Hβ

D7
df 1 4 2 2 2 2 2 2

LR Statistic 187.910 29.488 583.383 435.384 566.184 511.349 459.583 514.855
P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hα
D1 Hα

D2 Hα
D3 Hα

D4 Hα
D5 Hα

D6 Hα
D7 Hα

D8
df 2 2 2 2 2 2 2 2

LR Statistic 521.734 426.986 438.975 516.672 497.818 509.056 440.17 509.443
P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: (i) *: significant at the 10% level, **: significant at the 5% level, ***: significant at 1% level; (ii) df denotes the
degree of freedom; (iii) LR is the abbreviation for the Likelihood Ratio test.

Table 16: Comparison of estimates between the simultaneous function system and the com-
bined function

Impacts Dual effect Exclusive demand Exclusive supply
LIR EPU LHUC LCD LDEF RLV LCS

Aggregate -1.136 -0.400 -0.4135 0.640 -7.119 0.656 -0.087
Aggregate1 -0.001 -0.530 - 0.305 0.238 1.322 -0.485
Difference -1.135 0.13 - 0.335 -7.357 -0.666 0.398

Note: (i) ‘aggregate’ refers to the overall price determination function, which estimates are obtained by manually
solving the demand- and supply-driven functions; ‘aggregate1’ refers to the combined determination function, which
includes both demand and supply factors and is directly estimated using the FCVAR method; (ii) LHUC is not in-
cluded in ‘aggregate1’ as it is used to for the identification purpose of the second cointegrating relationship obtained
in ‘aggregate1’; (iii) LIR, EPU , and LHUC are dual effect factors; LCD and LDEF are exclusive factors that impact
only through the demand side; RLV , and LCS are exclusive factors that impact only through the supply side.

of the previously-reported overall function (viz. ‘Aggregate’ depicted in (35)), which is manually
derived from the simultaneous function system, with the combined function (viz. ‘Aggregate1’
depicted in (37)) for equilibrium housing price determinations. Then, estimates of each consid-
ered variable are further differenced between the two functions with results shown in the third
row (‘Difference’) of Table 16. It can be clearly observed that magnitudes of the macroeconomic
impacts would be seriously mis-quantified when directly estimating the combined function where
the specific effect-transmission channels of each macroeconomic variable are failed to be identi-
fied, although signs of the macroeconomic impacts are all shown to be consistent between the two
functions except for LDEF .

It is explainable regarding the seemingly contradictory estimates of LDEF : negative in ‘Ag-
gregate’ versus positive in ‘Aggregate1’. As previously discussed in the theoretical section, the
inflation level, viz. LDEF , has a dual role. LDEF tends to decline the housing demand and then
housing prices; at the same time, it can also increase housing prices by decreasing the housing
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supply. However, as LDEF is not included in the supply channel of the simultaneous function
system, therefore its negative impacts shown in the ‘Aggregate’ function are actually from the
demand channel. In contrast, the positive estimate of LDEF reported from ‘Aggregate1’ is an ag-
gregated impact, which is measured by considering the impacts from both the demand and supply
channels, and it indicates that the positive effects of LDEF from the supply side are greater than
its negative counterpart from the demand side. Overall, the above empirical analysis re-confirms
the accuracy of our theoretical arguments regarding the importance of identifying both the de-
mand and supply channels respectively. The impacts of macroeconomic fundamentals on equi-
librium housing price determinations could be mis-estimated (either over- or under-estimated) if
their potential effect-transmission channels are failed to be distinctly identified.

7.4 Robustness exercises: Sensitivity of unrestricted FCVAR results to restrictions

To examine the robustness of both unrestricted demand- and supply-driven FCVAR estimations
presented in Subsections 7.3.2 and 7.3.3, respectively, we re-estimate both unrestricted functions
with reasonable imposed restrictions that consider the significance of their cointegrating parame-
ters, viz. β and α. To do that, we first conduct a series of hypothesis tests based on (15) and (16)
by using the Likelihood Ratio (LR) test. In theory, if a given null hypothesis for β is rejected, the
tested variable(s) can enter and form the long-run cointegrating relationship(s). If a given null hy-
pothesis for α is rejected, the tested variable(s) can contribute to the adjustments/error corrections
towards the equilibrium; if not, then it is long-run weakly exogenous. The null hypothesis of each
test in demand and supply functions can be seen in Tables 17 and 19, respectively. Corresponding
test results are depicted in Tables 18 and 20, respectively.

Specifically, results of the hypothesis testing are summarized as follows. First, the significant
rejections of Hd

D and Hd
S indicates the validity of fractional integration setting in modelling both

the demand- and supply-driven functions. In terms of the demand-driven function, β of EPU
is restricted to be zero in favour of the result of Hβ

D5 in Table 18. In terms of the supply-driven
function, α of RLV is restricted to be zero in favour of the result of Hα

S5 in Table 20. In addition,
it is worth noting that while the P value for the hypothesis test Hα

D1 that RHP is weakly exoge-
nous is 0.192, we do not impose this restriction in the demand function. This is because RHP is
the key variable of this paper, therefore both its short-run corrections and long-run equilibrium
behaviours cannot be ignored in both the housing demand and supply functions, respectively.
Similarly, we also do not impose the restriction described in Hβ

S3 that support for LHUC does
not enter the cointegrating relationship in the supply function. Overall, the estimation results
and obtained cointegrating relationships of restricted demand- and supply-driven functions are
demonstrated in (39)-(43), respectively.

Overall, the results of both restricted demand- and supply-driven functions are highly consis-
tent with their unrestricted counterparts, respectively, with regard to both the signs and magni-
tudes. That is to say, regarding both the housing demand and supply functions, restricted and
unrestricted FCVAR estimations give rise to qualitatively the same conclusions. Particularly, in
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terms of the restricted estimations, the specific variable with a dual role, e.g. LIR, demonstrates a
negative impact on RHP through the demand channel in contrast to its far smaller positive effect
through the supply channel. Speaking in favour of the unrestricted estimations, it implies that
the aggregate effect of LIR on RHP should be negative. Thus, the robustness of our unrestricted
FCVAR estimates can be explicitly and conveniently checked.

8 Conclusions

Understanding the real impacts of macroeconomic interventions on housing prices is very impor-
tant, especially in the current global environment with persistent economic and policy uncertainty.
Although there is a rapid rise in empirical work in this regard, a data-driven inference on the sub-
ject appears to neglect the crucial role of memory patterns of shocks in interpreting dynamics of
the macroeconomy - housing market interactions. More so, the innately-existing distinct housing
demand and supply channels through which macroeconomic impacts are transmitted to equilib-
rium housing price determinations are also failed to be clearly identified in extant literature. This
paper addresses these practical issues and broadens our understanding of the inherent dynamic
mechanism involved in the interactions.

To summarize, this paper sheds new light on investigating the real macroeconomic impacts
on the equilibrium housing price determination through a clear identification of the distinct hous-
ing demand and supply effect-transmission channels, respectively. The paper finds a gradual
disequilibrium error-correcting process while demonstrating a long-memory feature of variable
dynamics in the interactive system, indicating the inefficient housing market in the US. Moreover,
short-run error corrections and long-run equilibrium relationships between housing prices and
macroeconomic variables on both the demand and supply channels have been separately gauged.
The significance of cointegrating parameters in both the housing demand and supply functions
has been accordingly examined. In addition, a five-year-ahead forecasting exercise was further
conducted to forecast future movements of incorporated variables and obtained cointegrating re-
lationship(s), and the predictive power of the FCVAR model has been checked to be stronger than
that of its naive specification, i.e. traditional CVAR model.

Our FCVAR estimates are consistent with theoretical expectations. This paper not only mea-
sures impacts of the factors that affect housing prices exclusively through a demand or supply
channel, but also provides a novel strategy in interpreting what real impacts the dual-effect factors
could exert from both the two channels, respectively. In line with related literature, we find that the
aggregate impacts of specific macroeconomic variables with ‘a dual-effect’, such as economic pol-
icy uncertainty and long-run interest rates, are negative, which are calculated by aggregating their
much stronger negative impacts from the demand channel and relatively smaller positive impacts
from the supply channel. A failure to identify these effect channels (on the demand and/or sup-
ply sides) through which macroeconomic impacts are transmitted to equilibrium housing price
determinations would lead to an estimation bias of their real impacts. In addition, estimations
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obtained from the restricted FCVAR models reassure our conclusions.

Policy implications

What policy insights are implied in light of our main findings? Since aggregate estimates of
macroeconomic effects would result in confusing and unreliable conclusions, policy-makers could
gain a clearer picture about the real macroeconomic impacts on the determination of housing price
dynamics through a precise identification of the separate housing demand and supply effect-
transmission channels. Thus, a major implication of our work is that policy-makers are able to
minimize the micro-level information loss by recognizing the potentially-existing different roles
of macroeconomic variables in altering the housing demand and supply curves, respectively.

Moreover, an accurate interpretation of the memory pattern of target variables in the macroeconomy-
housing market interaction is also of great importance for meaningful policy implications. Specifi-
cally, if a given variable in the interactive system demonstrates a long memory, indicating a strong
persistence and slow convergence of its movements (either increasing or decreasing), an effective
policy implementations to control for its current moving tendencies could be achieved only when
policymakers employ a radical regulatory strategy rather than a moderate one. At the same time,
a relatively moderate strategy should be employed when regulating dynamics of a short-memory
featured variable, which tends to move with a rather low persistence. In particular, given that
housing price dynamics in the US are governed by a long-memory feature, therefore policymak-
ers should implement a relatively radical policy strategy when they perceive that current housing
prices may be either rising or dropping too fast and would like to accordingly regulate/control
the ‘abnormal’ price changes.

In addition, policymakers can clearly understand if the market is efficient or not by measuring
the memory pattern of the market price. In our case, existence of long-memory featured shocks
in the interaction implies informational inefficiency in the housing market, indicating that past
information can not be entirely and instantly reflected on the current housing price. This fur-
ther demonstrates a predictive possibility of future dynamics of the interaction by using its past
information.
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Table 17: Hypothesis Tests of the Demand Function
Hd
D The fractional order, d, equals to one. Hα

D1 RHP is weakly exogenous.

Hβ
D1 HPI and LHUC do not enter the cointegrating relationships. Hα

D2 LHUC is weakly exogenous.

Hβ
D2 All demand-driven variables except HUC do not enter Hα

D3 LDEF is weakly exogenous.
the cointegrating relationships.

Hβ
D3 LDEF does not enter the cointegrating relationships. Hα

D4 LIR is weakly exogenous.

Hβ
D4 LIR does not enter the cointegrating relationships. Hα

D5 EPU is weakly exogenous.

Hβ
D5 EPU does not enter the cointegrating relationships. Hα

D6 LCD is weakly exogenous.

Hβ
D6 LCD does not enter the cointegrating relationships.

Table 18: Hypothesis Test Results of the Demand Function
Hd
D Hβ

D1 Hβ
D2 Hβ

D3 Hβ
D4 Hβ

D5 Hβ
D6

df 1 4 8 2 2 2 2
LR Statistic 35.228 38.878 19.136 8.136 38.037 3.751 107.991

P-Value 0.000*** 0.000*** 0.014** 0.017** 0.000*** 0.153 0.000***
Hα
D1 Hα

D2 Hα
D3 Hα

D4 Hα
D5 Hα

D6
df 2 2 2 2 2 2

LR Statistic 6.098 108.636 16.580 228.568 278.629 192.560
P-Value 0.192 0.000*** 0.002*** 0.000*** 0.000*** 0.000***

Note: (i) *: significant at the 10% level, **: significant at the 5% level, ***: significant at 1% level; (ii) df denotes the
degree of freedom; (iii) LR is the abbreviation for the Likelihood Ratio test.

Estimated Restricted Demand-driven FCVAR model:

∆d̂





RHPD

LHUC

LDEF

LIR

EPU

LCD


−



2.948

0.135

−0.307

−9.655

−21.971

−30.672




= Ld̂



−0.032 2.056

0.053 −2.868

−0.049 1.103

0.039 −0.615

0.002 0.860

−0.018 2.054


[
ν1t

ν2t

]
+

4∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − ρ̂) + ε̂t (39)

d̂ = 0.693
(0.037)

, Qε(12) = 351.949
(0.998)

, LogL = −2272.903

The Demand-driven Equilibrium Relationships (long-run):

RHPD∗t = −3.130− 61.142× LDEFt − 8.219× LIRt + 3.001× LCDt + ν1t (40)

LHUCD∗t = 0.069− 1.074× LDEFt − 0.122× LIRt + 0.047× LCDt + ν2t (41)
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Table 19: Hypothesis Tests of the Supply Function
Hd
S The fractional order, d, equals to one. Hα

S1 RHP is weakly exogenous.

Hβ
S1 RHP does not enter the cointegrating relationship. Hα

S2 LHUC is weakly exogenous.

Hβ
S2 All supply-driven variables do not enter the Hα

S3 EPU is weakly exogenous.
cointegrating relationship.

Hβ
S3 LHUC does not enter the cointegrating relationship. Hα

S4 LIR is weakly exogenous.

Hβ
S4 EPU does not enter the cointegrating relationship. Hα

S5 RLV is weakly exogenous.

Hβ
S5 LIR does not enter the cointegrating relationship. Hα

S6 LCS is weakly exogenous.

Hβ
S6 RLV does not enter the cointegrating relationship.

Hβ
S7 LCS does not enter the cointegrating relationship.

Table 20: Hypothesis Test Results of the Supply Function
Hd
S Hβ

S1 Hβ
S2 Hβ

S3 Hβ
S4 Hβ

S5 Hβ
S6 Hβ

S7
df 1 5 1 1 1 1 1 1

LR Statistic 16.757 3.053 24.124 2.418 43.997 68.836 70.016 118.443
P-Value 0.000*** 0.081* 0.000*** 0.120 0.000*** 0.000*** 0.000*** 0.000***

Hα
S1 Hα

S2 Hα
S3 Hα

S4 Hα
S5 Hα

S6
df 1 1 1 1 1 1

LR Statistic 18.736 6.961 37.494 18.479 2.635 38.463
P-Value 0.000*** 0.031** 0.000*** 0.000*** 0.268 0.000***

Note: (i) *: significant at the 10% level, **: significant at the 5% level, ***: significant at 1% level; (ii) df denotes the
degree of freedom; (iii) LR is the abbreviation for the Likelihood Ratio test;

Estimated Restricted Supply-driven FCVAR model:

∆d̂





RHPS

LHUC

EPU

LIR

RLV

LCS


−



6.273

−1.558

−15.197

−9.981

3.584

−18.961




= Ld̂



−0.204

−0.288

0.506

0.811

0.000

−0.672


νt +

5∑
i=1

Γ̂i∆
d̂Li

d̂
(Xt − ρ̂) + ε̂t (42)

d̂ = 0.868
(0.025)

, Qε(12) = 350.796
(0.998)

, LogL = −2288.045

The Supply-driven Equilibrium Relationship (long-run):

RHPS∗t = −0.631− 0.816× LHUCt + 0.060× EPUt + 0.156× LIRt + 1.282×RLVt
−0.184× LCSt + νt

(43)
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Figure 1: The Seasonal Effects of Variables in the US

(a) Credit to the housing demand (b) Residential Housing Prices

(c) Residential land value (d) Long-run interest rate

(e) Economic Policy Uncertainty
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Figure 2: Cycles and Trends of Variables in the US (1)

(a) Credit to the housing demand

(b) Credit to the housing supply

(c) Residential housing prices
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Figure 3: Cycles and Trends of Variables in the US (2)

(a) Residential housing stocks

(b) Long-term interest rate

(c) Inflation
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Figure 4: Cycles and Trends of Variables in the US (3)

(a) Residential land value

(b) Economic policy uncertainty
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Figure 5: Cycles and Trends of Log-transformed Variables in the US (1)

(a) Credit to the housing demand

(b) Credit to the housing supply

(c) Residential housing prices
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Figure 6: Cycles and Trends of Log-transformed Variables in the US (2)

(a) Residential housing stocks

(b) Long-term interest rate

(c) Inflation
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Figure 7: Cycles and Trends of Log-transformed Variables in the US (3)

(a) Residential land value

(b) Economic policy uncertainty
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Figure 8: The Comparison between De-cycled and Non De-cycled Variables (1)

(a) Credit to the housing demand

(b) Credit to the housing supply

Figure 9: The Comparison between De-cycled and Non De-cycled Variables (2)

(a) Residential land market value

(b) Logged residential land market value
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Figure 10: ACF and Spectral Figures (1)

(a) Credit to the demand side

(b) Credit to the supply side

Figure 11: ACF and Spectral Figures (2)

(a) Residential housing prices

(b) Residential housing stocks
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Figure 12: ACF and Spectral Figures (3)

(a) Long interest rate

(b) Inflation

Figure 13: ACF and Spectral Figures (4)

(a) Residential land value

(b) Economic policy uncertainty

62



Figure 14: The Rolling-Window Univariate d Estimates-LW (1)
(a) Credit to the housing demand (b) Credit to the housing supply

(c) Residential housing prices (d) Residential housing stocks

Figure 15: The Rolling-Window Univariate d Estimates-LW (2)
(a) Long-run interest rate (b) Inflation

(c) Residential land value (d) Economic policy uncertainty
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Figure 16: The Rolling-Window Univariate d Estimates-2ELW (1)
(a) Credit to the housing demand (b) Credit to the housing supply

(c) Residential housing prices (d) Residential housing stocks

Figure 17: The Rolling-Window Univariate d Estimates-2ELW (2)
(a) Long-run interest rate (b) Inflation

(c) Residential land value (d) Economic policy uncertainty
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Figure 18: The Rolling-Window Univariate d Estimates-2ELWdm (1)
(a) Credit to the housing demand (b) Credit to the housing supply

(c) Residential housing prices (d) Residential housing stocks

Figure 19: The Rolling-Window Univariate d Estimates-2ELWdm (2)
(a) Long-run interest rate (b) Inflation

(c) Residential land value (d) Economic policy uncertainty
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Figure 20: 5-year Ahead Forecasts from Demand Function

Figure 21: 5-year Ahead Forecasts from Supply Function
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