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Abstract

We consider a group of investors with heterogeneous risk preferences that determines

a firm’s investment policy, and each investor’s compensation function. The optimal in-

vestment policy is a time-varying weighted average of investors’ optimal policies and

converges to the policy of the least (most) risk averse investor in booms (busts), rec-

onciling the diversification of opinions hypothesis and the group shift hypothesis. The

most (least) risk averse investor receives a strictly concave (convex) claim on the firm’s

net worth. For intermediate risk preferences investors’ claim is S-shaped, resembling

preferred stock. We endogenize investors’ utility weights absent wealth redistribution,

and under social optimization.
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1 Introduction

This paper studies corporate policies and internal governance when decisions are made by a

group with heterogeneous risk preferences. Standard corporate finance models assume that

firms are run by an owner-manager, or by an agent (manager, CEO) who acts on behalf of

the principal (owner). However, corporate policies are often made by a group of managers

or investors (e.g. VC groups, partnerships, syndicates, fund management teams,...). As such

each group member exerts some influence.

Experimental studies show that group decisions are significantly di↵erent from individuals

when faced with identical information about uncertain outcomes. An experimental study by

Shupp and Williams (2007) reveals that the variance of risk preferences is generally smaller for

groups than individuals. Furthermore, the average group is more risk averse than the average

individual in high-risk situations, but groups tend to be less risk averse in low-risk situations.

An experimental study by Ambrus, Greiner, and Pathak (2015) finds that members have

di↵erent impact on the group decision making process with the median member, and those

closest to the median, having the most significant impact.

The literature o↵ers two competing hypotheses for group decisions. The group shift hy-

pothesis (e.g., Moscovici and Zavalloni (1969) ; Kerr (1992)) suggests that the opinion of

team members shifts towards the opinion of the dominant person in a team. As that per-

son typically holds very pronounced opinions, a team eventually gravitates towards extremes.

Consequently, teams make more extreme decisions than individuals do. In contrast, the di-

versification of opinions hypothesis suggests that the team opinion is the average opinion of

the team members (e.g., Sah and Stiglitz (1986, 1988)). Extreme opinions of members in

a team are averaged out and teams eventually make less extreme decisions than individuals

do. Although the diversifications of opinions hypothesis appears to enjoy strong empirical

support (see Bar, Kempf and Ruenzi (2010)), it struggles to explain the puzzling observation

that the average group is more (less) risk averse than the average individual in high (low) risk
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situations.

Chava and Purnanandam (2010) find that managerial risk-preferences influence corporate

decisions in significant ways, with CFOs exerting a stronger influence on some finer aspects of

corporate financial policy (such as the debt maturity choice and earnings smoothing through

accrual management) than CEOs. Graham, Harvey and Puri (2013) report that more risk-

tolerant CEOs make more acquisitions. They also find an empirical link between managerial

risk-aversion with compensation structure, and pay-performance sensitivity.

Despite the clear evidence that firm policies are the result of group decision making, there is

no theoretical model that explains this decision making process for groups with heterogeneous

risk preferences.1 Such a theory is also relevant for our understanding of venture capital

groups, partnerships, financing syndicates and fund management teams. As Rajan (2012)

points out, internal governance is an under-researched area in finance, and the debate regarding

the boundaries of the firm becomes more interesting when one considers the firm’s activities

involving many collaborators.

This paper develops a dynamic, open-horizon model of a firm’s investment, financing and

payout policies when these decisions are made by a group of investors (or managers) with

heterogeneous risk preferences. Investment in risky assets (projects) and payouts are made in

continuous time. Our model focuses on Pareto optimal policies, which implies that investors

maximize their joint, weighted life-time utility from the payout they receive from the firm.

The investors’ utility weights are endogenously determined when they start up the firm, and

depend on the capital contributed by each investor. The utility weights determine the firm’s

internal governance.

1Risk preferences are known to vary widely across the population (see for instance Robert B. Barsky et.
al. (1997) ). The most commonly accepted measures of the coe�cient of relative risk aversion lie between 1
and 3, but there is a wide range of estimates in the literature, from as low as 0.2 to 10 and higher (See Chetty
(2006) , Campo et al. (2011), among others).
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We consider a frictionless environment where there are no operational synergies from com-

bining assets (e.g. there are constant returns to scale), assets are perfectly divisible, and

individuals have the same investment opportunity set as groups. We assume that investors

must agree on one single investment policy and capital structure for the firm, but investors can

agree to tailor payouts (or compensations) to the preferences of individual group members.

In equilibrium, each investor receives a claim (or contract) that specifies the investor’s

payout as a function of the firm’s net worth. These compensation claims (as well as the

underlying investment policy) are time consistent because no learning takes place along the

way, and investors’ risk preferences and utility weights do not change over time.

We show that the optimal investment policy for the group is a weighted average of each

individual investor’s optimal policy, consistent with the diversification of opinions hypothesis.

However, the weights vary with the firm’s net worth. As net worth increases (decreases) in

good (bad) times increasingly more weight is put on the least (most) risk averse investor,

causing the group’s coe�cient of risk aversion -defined in terms of the group’s indirect utility

function- to converge to the lowest (highest) coe�cient of risk aversion in the group. This

is consistent with the group shift hypothesis. Consequently, the fraction of the firm’s net

worth invested in risky projects is not constant, but increases (decreases) in good (bad) times.

Leverage is procyclical as the firm’s net debt ratio rises in good times, and falls in bad times.

Firms dynamically delever towards lower net debt ratios as losses accumulate. Only when all

investors have the same coe�cient of risk aversion does the firm maintain a constant net debt

ratio. By dynamically rebalancing assets and liabilities in response to income shocks, debt is

kept safe at all times.

We find that the payout to the least (most) risk averse investor is a convex (concave)

function of the firm’s net worth. For investors with intermediate levels of risk aversion, payout

is S-shaped in net worth (i.e. convex for low levels of net worth, and concave for high levels).
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Payouts converge to a fixed cap as net worth increases, except for the least risk averse investor

whose payout becomes arbitrarily large as net worth goes to infinity. We show that the claim

on the firm’s assets of the least risk averse investor is similar to a common equity contract.

The claims of investors with higher levels of risk aversion resemble preferred stock with more

risk averse investors having a higher seniority but lower maximum payout. Only when all

investors have the same coe�cient of risk aversion do we obtain payouts and claims that are

linear in the firms assets and net worth, reflecting equity contracts in which each investor gets

a fixed proportion of the firm’s total payouts and owns a constant fraction of the firm’s net

worth. Our model shows that an investor’s payout and claim value depend not only on her

own risk preferences, but also on the risk preferences of her co-investors.

Our model implies that less risk averse investors (managers) opt for riskier income streams

(compensation packages) with higher upside potential but more downside risk. Furthermore,

less risk averse investors (or managers) exert more influence over corporate decision making

when the firm is doing well, whereas more risk averse investors (or managers) assume more

control when the firm is in trouble.

We show there exists a unique set of utility weights for which all investors are indi↵erent

between operating independently or as part of a group. Any other combination of weights

makes at least one investor worse o↵.2 Similar to the Negishi (1960) welfare weights, these are

the only weights that do not lead to redistribution. Under the chosen utility weights, investors

within the group receive the same payouts and accumulate the same wealth as if they were

operating on their own. Therefore, it does not matter whether and when they join the group.

This is an example of Coase theorem at work. Given there are no frictions nor operational

synergies from combining assets (assets are perfectly divisible and subject to constant returns

to scale), it does not matter whether or not an investor is part of a group. All investors have

2The utility weights are unique only in relative terms, not in absolute terms. In other words the weight of
one of the investors serves as a numeraire.
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access to the same investment opportunity set and are subject to the same shocks. There are

no diversification or risk sharing benefits from operating in a group compared to operating

alone. Therefore, we obtain a group irrelevance result. Note that within a group investors

“share risk” (regardless of the utility weights) in the sense that less risk averse investors absorb

most losses in bad times and capture most gains in good times.

We show that under voluntary participation an investor’s utility weight increases with

her capital contribution to the firm, and depends on her degree of risk aversion. Heteroge-

neous risk preferences generate skewed utility weighting as strongly risk averse investors are

under-represented relative to their capital contribution. With homogenous risk preferences,

increasing investors’ risk aversion leads to more concentrated (as measured by the Herfindahl

index) utility weights in favor of the largest contributors.

The utility weights under voluntary participation do not maximize the aggregate life-time

utility of the group as measured by the Utiliarian social welfare function. Aggregate utility

is maximized by giving all investors equal weight in the coalition. The increase in aggregate

utility arises from redistribution among investors. Social welfare optimization is not achieved

under voluntary participation, unless investors should be endowed with the socially optimal

level of capital to start with. Social optimization entails that more risk averse agents are

endowed with a larger amount of capital.3

Why are the optimal claim values and payouts for investors in a group (e.g. corporation)

non-linear in the firm’s net worth, whereas those for a sole proprietorship are linear in net

worth? Claims issued by the group are written on the firm’s total assets (or net worth).

Once investors join the group, their capital is pooled together and they receive a claim on

the firm as a whole. Given that group irrelevance applies, only non-linear contracts issued by

corporations can replicate the cashflows individual investors would get if they each operated

3Capital need not be financial in nature. Investors can contribute human capital, or “sweat equity” to the
startup by working below their opportunity wage.
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in a sole proprietorship. Since the net worth of standalone investors with heterogeneous risk

preferences grows at di↵erent rates, it has to be the case that the relative share and influence

of less risk averse investors within the group increases (decreases) during good (bad) times,

which in turn leads to non-linear payout functions.

In summary, our continuous-time, open-horizon model generates rich dynamics regarding

the firm’s investment, payout and financing policies, and investors’ control. Moreover, we

obtain tractable, closed-form solutions that capture the complex, dynamic nature of group

decision making and corporate financial policies. These dynamics allow us to reconcile the

diversification of opinions hypothesis and the group shift hypothesis, and explain empirical

features of group decision making (see section 8 for further details).

2 Literature Review

Our paper relates to a growing literature in corporate finance that jointly models a firm’s

investment, payout, and borrowing decisions in a dynamic framework. Recent continuous-time

papers in this strand include Gryglewicz (2011), Bolton, Chen, and Wang (2011), Décamps,

Mariotti, et al. (2011), Décamps, Gryglewicz, et al. (2016), and Lambrecht and Myers (2017).

In these papers the firm’s financial policies are set by a single decision maker.

Dynamic models of group decision making in corporate finance are very rare. A notable

exception is Garlappi, Giammarino and Lazrak (2017) who study a dynamic corporate invest-

ment problem by a group of agents holding heterogeneous beliefs and adopting a Utilitarian

aggregation mechanism. They show that group decisions are dynamically inconsistent due

to learning and that this may lead to underinvestment. Garlappi, Giammarino and Lazrak

(2019) study a real option model where the decisions to invest in and abandon a project are

made sequentially by a group of agents with heterogeneous beliefs who makes decisions based
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on majority voting. Voting leads to ine�cient underinvestment when group members’ beliefs

are polarized.4 Both papers do not consider optimal capital structure, payout structure, and

internal governance, and all agents have the same utility function (the focus is on hetero-

geneous beliefs). In our frictionless environment, heterogeneous preferences do not distort

investment.

For each group member, we derive the Pareto optimal payout (or compensation) as a

function of the firm’s net worth. As such the paper is also related to a growing literature on

optimal dynamic security design. Existing models are cast within a standard principal agent

setting, and focus on issues such as moral hazard and adverse selection. Dynamic continuous-

time principal agent models include Grenadier and Wang (2005) , DeMarzo and Sannikov

(2006), Biais, Mariotti, Plantin and Rochet (2007), DeMarzo, Fishman, He and Wang (2012),

DeMarzo and Sannikov (2016), Grenadier, Malenko and Malenko (2016), among others. These

papers do not consider teams of investors or agents, and are usually set in a risk neutral setting

to ensure tractability.

Our paper also relates to the literature on partnerships and syndicates that studies how

risk should be shared between partners (see e.g. Wilson (1968), Eliashberg and Winkler

(1981), Pratt and Zeckhauser (1989)). These static models solve cases where agents have

homogeneous (i.e. identical) hyperbolic absolute risk aversion (HARA), and show that each

partner’s e�cient consumption has a fixed component and a variable component that is linear

in the aggregate outcome, with the more risk tolerant partners bearing higher shares of risk

in the aggregate outcome. More recently, Mazzocco (2004) examines the savings behavior of

couples with homogenous HARA preferences. He finds that couples’ savings are a U-shaped

function of individual risk aversion and prudence. The static model by Hara, Huang and

Kuzmics (2007) shows that heterogeneity in the individual consumers’ risk attitudes tends to

4There is also a large literature on decisions and voting behavior by corporate boards (see e.g. Levit and
Malenko (2011) and Malenko (2014), Donaldson, Malenko and Piacentino (2019) among others).
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make the representative consumer’s absolute risk tolerance convex and relative risk aversion

decreasing. The sharing rule for the least (most) risk averse agent is convex (concave). The

sharing rules for the other agents are initially convex and eventually concave. We show

that this type of sharing rules can also be dynamically optimal. Whereas existing papers

focus on the consumption decision, our paper considers both payout and investment decisions

and shows how these corporate decisions are interrelated. We contribute to this literature by

modeling the dynamics of group decision making and group risk aversion, and by endogenizing

the group structure (i.e. utility weights). Payouts and investment dynamically depend on net

worth and on the coe�cient of risk aversion of all individuals. Investors’ share of payout and

their relative control over investment also vary over time, creating non-linearities in investors’

claims. We show explicitly how group policies relate to the individuals’ optimal policies and

how they are aggregated.

Finally, a large body of papers studies the e↵ect of heterogeneous agents on asset prices in

a market equilibrium framework. Some of the seminal papers include Constantinides (1982),

Constantinides and Du�e (1996), Wang (1996), Dumas, Uppal and Wang (2000), Chan and

Kogan (2002), and Garleanu and Panageas (2015) among others. This literature shows that

heterogeneous consumers with homogenous beliefs and time-additive utility functions with

linear risk tolerance (HARA utility) and with the same exponent can be replaced by one or

more homogenous consumers, allowing economic behavior to be modeled through a represen-

tative agent. For a review of this literature we refer to Du�e (2010). In the corporate finance

tradition, our paper focuses on firm level decisions (i.e. investment, financing and payout

policies) for a given ownership structure, not on market equilibrium prices, interest rates and

trade between agents. Furthermore, our paper does not restrict the types of contracts between

investors, whereas market setting contracts are constrained by the available set of marketed

securities. Consistent with the asset pricing literature, we find that if investors all have power
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utility but with di↵erent exponents then the utility of the group no longer displays constant

relative risk aversion.

3 The Model Setup

Consider a firm with n investors.5 The firm invests an amount At in risky assets (projects)

that generate an after-tax return given by the di↵usion process:

dAt

At

= µdt + �dBt (1)

whereBt is a Brownian motion. The drift and volatility of the process are µ and �, respectively.

We assume that assets are perfectly divisible, and subject to constant returns to scale. Without

loss of generality, we assume that there is only one risky asset. Our results hold for a framework

with multiple risky assets, provided that all investors have access to the same investment

opportunity set. In that case the risky asset can always be thought of as a composite asset

(mutual fund).6

The firm finances its assets with debt Dt and equity Wt. i.e At = Wt+Dt. Wt is the firm’s

net worth, and Dt is net debt. If Dt is negative then the firm has a net cash position. The

firm can borrow and save at the risk free rate, and continuously role over its net debt position

Dt.7 The instantaneous after-tax cost (return) of debt (cash) is r, i.e.

dDt

Dt

= rdt (2)

5Alternatively, our model can be reformulated for a corporation run by a team of n managers.
6Merton (1971) shows that when asset prices are lognormally distributed all investors hold a combination

of the risk-free asset and a mutual fund. The proportions of each asset held by the mutual fund only depend
on the price distribution parameters and are independent of individual preferences and wealth distribution.

7It turns out that debt is risk free under the firm’s optimal financial policies because asset returns follow
a di↵usion process (i.e. no jumps) and the amount of debt can be continuously rebalanced in response to
economic shocks.
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We define ⇠ ⌘ µ�r

�
as the Sharpe ratio associated with the risky assets.

At each instant t the investors receive payout at a rate cit (i = 1, ..., n), and invest an

amount At in risky projects, given the firm’s net worth Wt. The net worth process is therefore:

dWt = dAt � dDt �
 

nX

i=1

cit

!
dt =

"
(µ � r)At + rWt �

nX

i=1

cit

#
dt + �AtdBt (3)

Define !t ⌘ At
Wt

as the fraction of the firm’s net worth invested in risky projects. If !t > 1

then the firm invests all its net worth Wt in risky projects and borrows an amount (!t� 1)Wt

that is also invested in risky assets. The process for Wt is now

dWt =

"
(!t(µ � r) + r)Wt �

nX

i=1

cit

#
dt + � !t Wt dBt (4)

All investors have a power utility function and therefore constant relative risk aversion.

Investors can, however, have a di↵erent coe�cient of risk aversion �i, i.e. investor i’s utility

function is given by ui(cit) =
c
1��i
it � 1
1��i

=
c
⌘i
it � 1
⌘i

, where �i > 0 for i = 1, ..., n and where

lim�i!1 ui(cit) = ln(cit). Since �i > 0, all investors are strictly risk averse.8 All investors have

a subjective discount rate ⇢.

Each investor wants to maximize the expected life-time utility from her payouts. Investors

must, however, jointly agree on the payout policies cit ( i = 1, ..., n) and the investment policy

!t. We focus on Pareto e�cient payout policies among the n investors. That is, we identify

policies that are not dominated by any other contract when considered from the perspective of

all the investors as individuals. We know (see Du�e (2010), chapter 10) that a necessary and

su�cient condition for (c1t, ..., cnt) to be a Pareto e�cient allocation is that there exist non-

negative weights (�1,�2, ...,�n) such that (c1t, ..., cnt) and !t are the solution to the following

8Our model also holds if we are dealing with n classes of investors (rather than n single investors) with
investors having the same risk preference within each class.
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optimization problem:

J(Wt) = max
{c1t,...cnt;!t}

Et

"
nX

i=1

Z 1

t

e
�⇢(s� t)

�iui(cis) ds

#
(5)

subject to the intertemporal constraint (3) and the transversality condition limt!1 [e�⇢t
J(Wt)] =

0. Objective function (5) is known as the weighted-sum-of-utilities welfare function, a gener-

alization of the classical utilitarian welfare function.

For the moment we take the utility weights �i as exogenously given. Apart from the

weights being non-negative, we do not impose any other constraints on them. We endogenize

the weights in section 5. Each investor’s utility weight in the firm will depend on the net

worth she contributes at the firm’s start-up.

4 Optimal Financial Policies

The below proposition presents the solution to optimization problem (5).

Proposition 1 The firm’s optimal investment policy !
⇤
t
and payout c

⇤
it
to investors are:

!
⇤
t
=

✓
At

Wt

◆⇤

=
⇠

�

W
0
(z)

W (z)
=

nX

i=1

!it(z)
⇠

��i
=

nX

i=1

c
⇤
it

Wt
ai

⇠

��i
⌘

nX

i=1

c
⇤
it

c
S

it

!
S

i
(6)

c
⇤
it
= �

1
�i
i
e

z
�i = !it

Wt

ai
for i = 1..n (7)

where z is the solution to

W (z) =
nX

i=1

Gie
z
�i (8)

and where

!it(z) =
Gie

z
�i

P
n

i=1 Gie
z
�i

and

nX

i=1

!it(z) = 1 and !
S

i
=

⇠

��i
(9)
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Gi =
�
2
i
�

1
�i
i

r�
2
i
+ (⇢+ ⇠2

2 � r)�i � ⇠2

2

⌘ ai�

1
�i
i

(10)

Investors’ joint weighted life-time utility, J(W ), is given by:

J(W (z)) =
nX

i=1

Ji(z) =
nX

i=1


Gi

1 � �i
e

(1� �i)z
�i � 1

⇢

�i

1 � �i

�
(11)

The investment and payout policies, and the firm’s weighted claim value are not explicitly

expressed as a function of its total net worth Wt but as a function of an auxiliary variable zt.

Net worth is, however, a continuous, monotonically increasing function of z as expressed by

equation (8). As z ranges from �1 to +1, W varies from 0 to +1, i.e. limz!�1 W (z) = 0

and limz!+1 W (z) = +1.

For every value of zt, there is a unique corresponding value for Wt. For expositional

purposes it will be easier to express our result in terms of z, rather than W . z can be

interpreted as some kind of “normalized” wealth variable.

4.1 Investment policy and control weights

From Merton (1969, 1971) we know that the optimal investment and payout policy of a single

investor i with wealth Wt are, respectively, given by !
S

i
= ⇠/(��i) and c

S

it
= Wt/ai. We find

that the optimal investment policy !
⇤
t
of a coalition of investors is a weighted average of the

optimal investment policies !S

i
of the individual investors. The weight !it reflects investor i’s

influence or “control” over the investment policy. The optimal control weights !it are given by

the ratio c
⇤
it
/c

S

it
of the individuals’ payout c⇤

it
and her optimal payout cS

it
if she ran the whole

firm alone. An increase in an investors’ cashflow rights c
⇤
it
, all else equal, coincides with an

increase in her influence over the investment policy. Importantly, the control weights !it are

time varying as they depend on the firm’s net worth W through the auxiliary variable z.
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Corollary 1 The firm’s risky asset to net worth ratio, !
⇤
t
, increases in the firm’s net worth,

i.e.
@!

⇤
t

@Wt
� 0

The corollary implies that the firm invests more aggressively in risky assets (i.e. projects) in

good times, and reduces its weight in risky assets during bad times.9 Consider the n-investor

case where agent 1 (n) is least (most) risk averse (i.e. �1  �2  ...  �n ). In that case,

lim
z!+1

!
⇤(z) =

⇠

��1
and lim

z!�1
!
⇤(z) =

⇠

��n

As the firm accumulates (loses) more wealth, its investment policy converges towards the

one of the least (most) risk averse partner. !
⇤(z) is an S-shaped function situated between

the asymptotes ⇠

��1
and ⇠

��n
. !

⇤(z) is constant for the knife edge case of homogenous risk

preferences.

Although investor i’s control is increasing in her utility weight, i.e. @!it
@�i

> 0, the relation

is highly non-linear as can be inferred from the ratio of investors’ control weights:

!jt

!it

=
aj �j

1
�j

ai �i

1
�i

e
z

✓
1
�j

� 1
�i

◆

=
aj

ai

c
⇤
jt

c
⇤
it

(12)

More (less) risk averse investors exert relatively more control in bad (good) times as z ! �1

(z ! +1). More control goes together with a relatively higher payout as reflected by the

ratio c
⇤
jt
/c

⇤
it
in equation (12). The following corollary results at once from equation (12).

Corollary 2 Investors’ balance of power is constant over time if and only if all investors have

the same risk preferences. Investors’ control (!it) is strictly proportional to the utility weights

(�i) if and only if all investors have logarithmic utility.

Finally, for the special case where all investors have the same degree of risk aversion �, the

9The proofs of the corollaries are in Internet Appendix A.
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investment policy becomes independent of time, and is given by the standard Merton (1969)

ratio: ! = ⇠/(��).

4.2 Payout policy

The payout (in dollars) to each partner is increasing in the firm’s net worth. Unlike Merton

(1969), where payout is linear in wealth, payout is non-linear in total net worth if investors

have di↵erent levels of risk aversion. Since c⇤
it
= !it Wt/ai (see Equation (7)), the non-linearity

is driven by the time-varying control weight !it. For the n-investor case one can prove the

following proposition:

Proposition 2 Payout is a convex (concave) increasing function of the firm’s total net worth

W for the least (most) risk averse investor. For investors with an intermediate level of risk

aversion, there exists a critical wealth level W
⇤
i
(i = 2, 3, ..., n� 1) such that payout is convex

in wealth for low levels of wealth (i.e. W  W
⇤
i
) and concave in wealth for high levels of wealth

(i.e. W � W
⇤
i
). Furthermore, cit(z = �1) = 0 for i = 1, ..., n, and

lim
z!+1

@c1t

@Wt

=
1

a1
and lim

z!+1

@cjt

@Wt

= 0 for j = 2, 3, ..., n

Payout is linear in net worth if investors have homogeneous risk preferences:

@
2
c
⇤
it

@W 2
= 0 and cit =

�

1
�

i
Wt

ai

P
n

j=1 �

1
�

j

=
�

1
�

i
Wt

a
P

n

j=1 �

1
�

j

for i=1,...,n , �1 = ... = �n = � (13)

It is Pareto optimal for the least (most) risk averse agent to have a convex (concave) payout

function. Since all payouts are zero for Wt = 0, it follows that, among all investors, the

most risk averse investor is paid the most for very low levels of net worth, whereas the least

risk-averse investor gets paid the most for very high levels of net worth. The least risk averse
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investor is the residual claimant who gets the upside potential in good times, but is heavily

exposed in bad times. All other risk averse investors are less exposed in downturns, but their

payout in good times is capped. Each investor’s payout is non-linear in total net worth, except

if all investors have the same coe�cient of risk aversion. These findings are also reflected in

investors’ relative cash flow rights:

cjt

cit
=

�j

1
�j

�i

1
�i

e
z

✓
1
�j

� 1
�i

◆

(14)

Equations (13) and (14) lead to the following corollary.

Corollary 3 Each investor receives a constant fraction of total payout if and only if all in-

vestors have the same risk preferences. An investor’s payout is strictly proportional to her

utility weight �i if and only if all investors have logarithmic utility.

Consider next the firm’s payout yield c
⇤
t
/Wt. It follows from proposition 1 that:

c
⇤
t

Wt

=
nX

i=1

c
⇤
it

Wt

=
nX

i=1

!it

ai
(15)

The payout yield or average propensity to consume, c
⇤
t
/Wt, is time-varying, except if all

investors have the same coe�cient of risk aversion � (and therefore ai = a for all i):

c
⇤
t

Wt

=

P
n

i=1 �

1
�

i
e

z
�

P
n

i=1 a�

1
�

i
e

z
�

=
1

a
=

⇢

�
� r(1 � �)

�
� ⇠

2(1� �)

2�2
if �i = � for all i (16)

This is the same average propensity to consume out of wealth as in Merton (1969, Eq. (40)).

Since
@

c⇤t
Wt

@W

@W

@z
=

@
c⇤t
Wt
@z

and since @W

@z
> 0, it folows that

@
c⇤t
Wt

@W
and

@
c⇤t
Wt
@z

have the same sign.

In general, the sign of
@

c⇤t
Wt

@W
is hard to determine as it depends on both the weights �i and

the coe�cient of risk aversion �i. However, one can show (proof available upon request) for
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the two-investors case that the payout yield increases in the firm’s net worth if the least risk

averse investor is su�ciently risk averse.

4.3 Debt policy

The firm’s net debt level is given by Dt = (!⇤
t
� 1)Wt. If Dt < 0 then the firm’s cash-holdings

exceed its debt, so that the firm has a net cash surplus (or negative debt). The below corollary

states the firm’s net debt ratio under the optimal investment and payout policy. With negative

debt, the traditional net debt ratio (NDR) is hard to interpret. Lambrecht and Pawlina (2013)

provide an economic rationale for using NDR as defined below:

Proposition 3 Define the firm’s net debt ratio as NDRt ⌘ Dt
Wt+ Dt

where  = 1 if Dt � 0

and  = 0 if Dt < 0. The NDR is time varying, procyclical, and given by

⇠

��n
� 1

1 + ( ⇠

��n
� 1) 

< NDRt =
!
⇤
t
� 1

1 + (!⇤
t � 1) 

<

⇠

��1
� 1

1 + ( ⇠

��1
� 1) 

(17)

The firm’s leverage is procyclical. In good times, the NDR rises and converges to the optimal

NDR of the least risk averse investor. In bad times, as net worth shrinks, the firm rebalances

by selling risky assets or shutting down risky projects, and using the proceeds to pay o↵ debt.

As W ! 0 (or z ! �1), the NDR converges towards the most risk-averse investor’s optimal

NDR.

As investor n becomes infinitely risk averse (�n ! +1), the lower bound for the NDR

converges to -1, which represents an all equity-financed firm that invests in the safe asset (cash)

only. As investor 1 moves towards risk neutrality (�1 ! 0), the upper bound for the NDR

converges to +1, which represents a near 100% debt-financed firm that invests in risky assets

or projects only. Therefore, if the most and least risk averse agents have highly divergent
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risk preferences, then the intertemporal variation in the firm’s NDR across the business cycle

could be large.

4.4 Group risk aversion and financial policies

Corollary 4 The group’s level of relative risk aversion is endogenous and can be defined in

terms of the value function as:

RRAG ⌘ �W (z)
JWW

JW
=

W (z)

W 0(z)
=

⇠

� !
⇤
t

(18)

Using our comparative statics for !⇤
t
(see section 4.1), it follows that:

@RRAG

@Wt

 0 and lim
z!+1

RRAG = �1 and lim
z!�1

RRAG = �n (19)

Hence, the group’s level of relative risk aversion decreases in its net worth, and converges to

the level of the least (most) risk averse investor as net worth goes to infinity (zero). This

explains the earlier described behavior of the firm’s investment and financing policy. More

generally, it may also help explain why investors in financial markets are very bullish during

stock market booms and extremely risk averse during market crashes. Finally, RRAG = � if

all investors have the same coe�cient of risk aversion �.

5 Claim Values and Utility Weights

In this section we endogenize investors’ utility weights �i when the firm is set up. Next,

we derive the monetary certainty equivalent value of each investor’s claim. We conclude the

section with a few examples and a discussion of the results.
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5.1 Endogenous utility weights

Given that assets are perfectly divisible and subject to constant returns to scale, it is possible

for each investor to run a firm on her own as a sole proprietorship. Assuming that investor i

is endowed with wealth Wi0, the life-time utility she can generate from the sole proprietorship

is given by the Merton (1969) solution.

Ii(Wit) = max
{cit;!t}

Et

Z 1

t

e
�⇢(s�t)

ui(cis)ds

�
= a

�i
i

W
1��i
it

1� �i
� 1

⇢

1

1� �i
, (20)

where ai was defined in equation (10).

Investor i joins a group with multiple investors if doing so makes her at least as well o↵

as operating on her own. The life-time utility investor i generates from joining the group is

given by

Ji(Wit)

�i

=
ai

1 � �i
�

1� �i
�i

i
e

zt(1� �i)
�i � 1

⇢

1

1� �i
(21)

Therefore, investor i’s participation constraint is satisfied if:

Ji(Wi0)

�i

� Ii(Wi0) , ai�

1
�i
i
e

z0
�i � Wi0 (22)

Combining investors’ participation constraints gives:

nX

i=1

ai�

1
�i
i
e

z0
�i �

nX

i=1

Wi0 = W0 (23)

We know, however, from proposition 1 (Eq. 8) that the above constraint is always satisfied as

an equality. Consequently, each investor’s individual participation constraint must be binding.

In other words, each investor is indi↵erent between joining the group or going it alone. As a
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result:

ai (�ie
z0)

1
�i = Wi0 for i = 1, ..., n (24)

This leads to the following corollary:

Corollary 5 The utility weights �i that ensure each investor’s voluntary participation to the

group without redistributing initial wealth are:

�i =

✓
Wi0

ai

◆�i

e
�z0 with

u
0
i
(c⇤

i0)
dIi(Wi0)
dWi0

= 1 for i = 1, ..., n (25)

With these weights, joining the group is a zero NPV decision for each investor. The factor e�z0

implies that the corollary only uniquely defines the weights in relative terms, not in absolute

terms. E.g. for n = 2, we get that

�2

�1
=

⇣
W20
a2

⌘�2

⇣
W10
a1

⌘�1

Under voluntary participation, investors’ utility weights are clearly not proportional to the

amounts they invest. Heterogeneity in risk preferences generates a skewed utility weighting as

more risk averse agents tend to be underweighted (see section 6.3 for a numerical example).

From Equation (25) it follows that the weighting normalizes the utility function by the

investor’s shadow price of wealth so that each investor’s marginal utility of consumption for

the rescaled utility equals 1. As such, our endogenous utility weights are similar to the

Negishi (1960) welfare weights which have the unique feature of preserving the initial wealth

distribution.10 By dividing each agents’ utility by their marginal utility of wealth at the

10Of the social welfare functions consistent with Pareto optimality only weighted combinations of individual
utilities with Negishi weights replicate market outcomes for given initial resource allocations. The Negishi
(1960) weights are equal to the inverse of the marginal utility of wealth for each individual evaluated at the
maximizing (equilibrium) resource allocation (see also equation (39)). Negishi weights have the unique feature
of preserving the initial wealth distribution, and have been used in integrated assessment models of economic
growth and climate change (e.g. Kyoto Protocol). In the context of climate models, Negishi weights have
been defended as describing the outcome in a scenario in which missing spot and futures markets for carbon
are completed, conditional on the current global distribution of wealth (see Yang and Nordhaus (2006)).
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optimum (a value that is smaller for wealthier agents than for otherwise identical poorer

agents) Negishi weights cause the marginal utility of consumption for relatively wealthy agents

to be less at the maximum than for relatively poor agents.

For the case of homogenous risk preferences, we obtain the following simpler rule, and the

subsequent corollary:

�i

�1
=

✓
Wi0

W10

◆�

if �1 = �2 = ... = �n ⌘ �

Corollary 6 Investors’ utility weights are proportional to the capital they invest if and only

if all investors have logarithmic utility (i.e. � = 1).

The following proposition shows how risk aversion a↵ects the concentration of the utility

weights.

Proposition 4 Suppose all investors have homogenous risk aversion and that the utility

weights add up to 1. A higher (lower) level of risk aversion leads to more (less) concen-

trated utility weighting as measured by the Herfindahl index H =
P

n

j=1 �
2
j
. I.e.

@H

@�
> 0 if

�1 = ... = �n = �. Furthermore 0 < H < 1.

As all investors approach risk neutrality, the utility weights become uniform, i.e. lim�!0 H =

1/n. On the other hand, as all investors become increasingly risk averse, small di↵erences

in capital contribution lead to large di↵erences in utility weights. For extreme risk aversion

(� ! 1), (almost) all utility weight is concentrated on the largest capital contributor, i.e.

lim�!1 H = 1.11 Although the Herfindahl index is still between 0 and 1 (i.e. 0 < H < 1) if

investors have heterogeneous risk preferences, the comparative statics forH become ambiguous

as they depend on the distribution of investors’ initial capital contribution.

11If investors have homogenous risk preferences and contribute the same amount of capital (i.e. W10 =
W20 ... = Wn0) then the concentration index equals H = 1/n for all values of �.
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5.2 Investors’ claim values

Using corollary 5, which pins down the utility weights �i, and equation (7) for c⇤
it
, we can now

state the monetary certainty equivalent value Wit of each investor’s claim.

Corollary 7 At each moment in time t, investor i is indi↵erent between remaining in the

firm, or quitting the firm in return for a dollar amount Wit given by:

Wit = ai�

1
�i
i
e

zt
�i = ai c

⇤
it

= !it Wt (26)

Wit corresponds to investor i’s certainty equivalent wealth. It is the dollar amount required by

investor i to give up her stake in the firm. This amount Wit may di↵er from Wi0, the amount

invested at time 0. Wit will be larger (smaller) than Wi0 if the firm has increased (decreased)

its total net worth Wt. Wit depends on the investor’s coe�cient of risk aversion �i. From

Equation (26) it follows that investors’ control weights !it also correspond to their e↵ective

ownership share in the firm’s net worth. Investors’ e↵ective ownership share is time-varying.

The following corollary describes investors’ certainty equivalent value as a function of the

firm’s net worth.12 Since this value is a constant multiple of payout (i.e. Wit = aic
⇤
it
(W (z)))

the corollary mirrors the results we obtained in proposition 2 for investors’ payout policies cit.

Corollary 8 The claim value of the most (least) risk averse investor is a convex (concave)

function of the firm’s total net worth Wt. The claim of investors with intermediate levels of

12The corollary can be reformulated to describe claim values as a function of the firm’s holding in risky
assets At. The results are very similar.
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risk aversion is S-shaped in net worth. Moreover, limz!�1 Wit = 0 for i = 1, ..., n, and

lim
z!+1

@W1t

@Wt

= 1 and lim
z!+1

@Wit

@Wt

= 0 for i = 2, ..., n (27)

lim
z!�1

@Wnt

@Wt

= 1 and lim
z!�1

@Wit

@Wt

= 0 for i = 1, ..., n� 1 (28)

Finally, 9W ⇤
i
such that

@
2
Wit

@W
2
t

� () 0 , Wt  (�)W ⇤
i
for i = 2, .., n� 1.

As the firm becomes very wealthy, an additional dollar of net worth is almost entirely to the

benefit of the least risk averse investor (i.e limz!+1
@W1t
@Wt

= 1), whereas the other investors’

claims converge to a fixed value. Conversely, for a firm with little or no wealth, the marginal

dollar accrues almost entirely to the most risk averse investor (i.e limz!�1
@Wnt
@Wt

= 1).

The strictly convex claim of the least risk averse investor (i = 1) is unbounded and

resembles a common stock contract. The claims of investors 2 to n� 1 are convex (concave)

for low (high) values of net worth, with each claim converging towards a maximum value and

resembling a preferred stock contract. Preferred stocks are widely used in venture capital

financing. They have also become a more popular source of financing with corporations

(especially financial institutions) over the past decade. Preferred stock contracts are senior

to common stock in that dividends may not be paid to common stock, unless the dividend

is paid on all preferred stock. The dividend rate on preferred stock is usually fixed at the

time of issue. Unlike debt contracts, the firm is not in default when it suspends dividends to

preferred stockholders.13 The preferred stock is junior to the debt claim Dt. In simple terms,

one could view preferred stock as a debt instrument when dividends are not in arrears, and

as an equity instrument when dividends are getting significantly in arrears. This is consistent

with the claim value being convex and concave for, respectively, low and high values of net

worth Wt.

13With cumulative preferred stock, unpaid dividends accumulate and have to be paid before regular divi-
dends can be resumed. With non-cumulative preferred stock, unpaid dividends do not accumulate.
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Preferred stocks usually do not carry voting rights in corporations. However, a frequent

provision allows preferred shareholders to vote as a separate class whenever dividends have

been in arrears for a specific period of time (normally four quarters) and to elect a specific

number of directors. Preferred stockholders almost always have significant voting and control

rights in venture capital partnerships.

The claim of the most risk averse investor (i = n) is strictly concave in Wt, and resembles

a preferred stock contract. For the lowest levels of net worth, an extra dollar for the firm

accrues almost entirely to the most risk averse investor. As the firm accumulates more net

worth, other preferred stock holders start sharing more in the payouts. The claims of the other

investors resemble preferred stock contracts for which the level of seniority increases in the

degree of risk aversion, and for which the face value of the contract (achieved as Wt ! +1)

decreases in the degree of risk aversion. The maximum value of each preferred stock contract

is determined by the maximum payout rate cit as Wt ! +1.

As we pointed out before, in our model risk averse investors exert very little influence on

the firm’s investment and capital structure decision in good times. However, as the firm’s net

worth declines, their control increases. This is similar to what happens with some classes of

preferred stock that grant increased control in bad times.

The variation in the shapes of the claim values is entirely driven by di↵erences in investors’

coe�cient of risk aversion, as illustrated by the following corollary:

Corollary 9 If all investors have the same coe�cient of risk aversion (�1 = �2 = ... = �n),

then the investors’ claim values are linear in the firm’s total net worth, i.e.

Wit =
�

1
�

i

P
n

i=1 �

1
�

i

Wt for i = 1, 2, ..., n (29)
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If all investors have the same coe�cient of risk aversion, then they share profits according to

fixed proportions. This gives rise to common stock contracts that are linear in net worth. If

all investors have log utility (�i = 1 for i = 1, .., n) and the utility weights sum to one then

each investor’s certainty equivalent claim value is proportional to her utility weight �i since

Wit = �i Wt.

5.3 Examples and discussion

Figure 1 numerically evaluates the firm’s optimal payout and financing policies. The firm has

4 investors (or 4 classes of investors) with coe�cients of relative risk aversion �1 = 0.5, �2 =

0.6, �3 = 3, �4 = 9, and with initial endowments W10 = 15,W20 = 25,W30 = 15, and W40 =

15.14

Panel A of Figure 1 plots investors’ payouts as a function of the firm’s net worth. For very

low (high) net worth levels payout is increasing (decreasing) in investors’ coe�cient of risk

aversion. In bad times, the more risk averse agents enjoy a higher payout level at the expense

of less risk averse agents who take the hit. In good times, the least risk averse agent enjoys the

upside, whereas all other agents’ payout is capped. The cap decreases with agents’ coe�cient

of risk aversion. The little windows within the figure shows that the payout function for each

investor, except for the least risk averse one (represented by the dotted line), converges to a

cap as wealth becomes large. One can verify that the payout function for the least (most)

risk averse agents is strictly convex (concave). For the other agents, the payout function is

initially convex up to some inflection point, and concave thereafter.

Panel B plots the firm’s NDR as a function of net worth (thick solid line). Recall that

a negative NDR (Dt < 0) corresponds to a firm with a net cash position. The NDR in-

14Empirical estimates for the coe�cient of RRA range from 0.2 to 10 and higher (see footnote 1). Our
parameter values for �i fall within this range.
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creases in the firm’s net worth when investors have heterogeneous risk preferences. Leverage

is pro-cyclical and converges towards 35.71% as Wt ! +1. The firm delevers in economic

downturns, reduces its holdings in risky assets and, in doing so, keeps debt risk free. The NDR

approaches -0.91 as Wt ! 0. A negative NDR of -0.9136 means that the firm’s net worth

is invested for 91.36% in cash and the remainder in risky assets. In line with proposition 3

the firm’s NDR is bounded below and above by the optimal NDR for the most and least risk

averse investor, respectively. Therefore, our model generates a large amount of inter-temporal

variation in leverage if investors’ risk preferences are widely dispersed.

The NDR is constant over time for a sole proprietorship (or when all investors have the

same coe�cient of risk aversion). For a single investor with coe�cient of risk aversion equal

to 0.5, 0.6, 3 or 9, the sole proprietorship adopts a constant net debt ratio of, respectively,

0.3571, 0.2286, -0.7407 and -0.9136.

Panel C plots the payout yields as a function of net worth. The optimal payout yield

is constant when investors operate on their own (or all have the same coe�cient of risk

aversion). The four constant, horizontal lines represent the optimal payout yield for each sole

proprietorship, which can either be calculated using the Merton (1969) model, or be obtained

by calculating the ratio of the investor’s payout c⇤
it
in the group and her certainty equivalent

claim Wit in the firm (c⇤
it
/Wit). Both calculations yield the same result. The payout yield for

sole proprietorships is not monotonic in the coe�cient of risk aversion. The optimal payout

yield is highest for investor 2 (i.e. �2 = 0.6), not for investor 1 (�1 = 0.5). The payout yield of

the group (ct/Wt is given by the thick solid line) increases in net worth because investors are

su�ciently risk averse. As Wt goes to infinity the payout yield converges to the optimal yield

of investor 1 (�1 = 0.5), which in this particular case is below the optimal yield for investor 2.

Panel D plots investors’ certainty equivalent claim value as a function of total net worth.

When the firm was set up (t = 0), three investors contributed 15 in net worth, whereas
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investor 2 contributed 25 (i.e W20 = 25). The claim value for the most risk averse agent (solid

line; �4 = 9) is strictly concave, the value of which converges to 27.43 as total net worth

becomes very large. The claim value of the least risk averse agent (dotted line; �1 = 0.5) is

strictly convex. The claim value for investors with intermediate risk aversion (long dashed

line for �3 = 3; short dashed lined for �2 = 0.6 ) are first convex and then concave. Except

for the claim held by the least risk averse investor, all other claims converge to a bounded

value as Wt ! +1. Even for investor 2, who is relatively less risk averse, the claim converges

to a finite level (as can be noted from the little window furthest to the right that plots the

claim values for very high levels of net worth). The bounded claims resemble preferred stock

claims.15 In our model, preferred stocks can have di↵erent payout rate caps stacked in an

echelon style fashion: investors with a higher level of risk aversion have a lower payout rate

cap that is reached for lower levels of net worth.

Panel E plots investors’ control weights !it. As net worth increases less risk averse investors

tend to exert more influence over the firm’s investment and financing policy. This relation can,

however, be non-monotonic as illustrated by investor 2’s control weight which first increases

and then decreases in the firm’s net worth. This highlights the complicated and non-trivial

interactions in group decision making. For intermediate net worth levels (“normal” times)

the members around the median level of risk aversion (investors 2 and 3) exert most influence

(consistent with the findings of the experimental study by Ambrus et al. (2013)).

Panel F plots the group’s level of relative risk aversion, RRAG. Group risk aversion is

fairly low (around 0.51) for most levels of net worth, but spikes up dramatically once net worth

drops below 50, converging to 9 as Wt goes to zero. During busts the group’s risk aversion

and financial policies are determined (almost) entirely by the most risk averse investor.

15For example, the preferred stock valuation model by Emanuel (1983) produces claim values for cumulative
preferred stock and non-cumulative preferred stock that are graphically very similar to ours (see figures 3 and
4 on pages 1148-1149 in Emanuel (1983)), even though his valuation formulas are very di↵erent.
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6 Investors’ Welfare

In this section we study investors’ welfare under voluntary participation and under social

optimization. We explore whether groups make individual investors better o↵. We conclude

with a numerical example.

6.1 Investors’ welfare under voluntary participation

So far we took the time at which investors set up the firm as exogenously given. One might

wonder whether it matters when investors join the firm. Consider therefore the scenario where

investors do not join the firm at time 0, but at some future time t. Assume that during the

interval [0, t] each single investor operates on her own as a sole proprietorship. We know from

Merton (1969) that the net worth of each single individual investor, denoted by W
s

it
, evolves

as:

dW
s

it
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
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One can then prove the following proposition:

Proposition 5 Assume each investor can operate as a sole proprietorship during the interval

[0, t]. Whether investors join the group at time zero, or at some later time t, they join under

the same relative utility weights. In particular:
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This result may come as a surprise. How come the relative utility weights remain the same even

though the net worth of less risk averse sole proprietors grows on average at a faster rate than

the net worth of their more risk averse counterparts? The reason is that the utility weights

are adjusted for investors’ degree of risk aversion as illustrated by the following corollary:

Corollary 10 The evolution of investors’ sole proprietors’ net worth satisfies the following

condition:

✓
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s

it
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, or equivalently (33)
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Equation (34) shows, after simplifying, that the left and right side of equation (33) do not

depend on �i and �j, respectively. Even if investor i is less risk averse (�i < �j) and her

wealth grows on average at a faster rate than investor j’s outside the group, the formula for

the group’s utility weights “penalizes” the less risk averse investor in such a way that both

investors join the group under the same terms at time t as at time 0. No investor can therefore

improve his or her utility weight in the group by joining later.

The question remains whether any investor enjoys a di↵erent payout flow while being

outside the group compared to what she would get inside the group.

Proposition 6 If the utility weights are set as in corollary 5, then the payout flow to each

investor is the same whether she operates on her own, or whether she is part of a group of

n investors with heterogeneous risk preferences, i.e. cit = c
s

it
for all t. Each investor’s net

worth stake within the partnership, Wit, equals at all times the wealth W
s

it
the investor would

accumulate on her own, i.e. Wit = W
s

it
for all t.

We obtain a group irrelevance result: in an ideal frictionless world, it does not matter whether
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investors operate on their own, or as part of a group of n investors. Since all investors are

subject to the same source of uncertainty, there are no benefits from diversification. Neither

are there (dis)economies of scale from running a larger firm. Should we conclude that groups

are useless and cannot enhance welfare in this ideal environment? We show in section 6.2 that

the answer is no. The irrelevance result only holds if all utility weights satisfy condition (32),

or equivalently if there is no redistribution.

Let us consider next the aggregate utility of a group if investors voluntarily join. We know

that if each investor i is part of a group of n investors then:

J(Wt) = max
{c1t,...cnt;!t}
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The life-time utility to investor i from joining the group is Vi = Ji(z)/�i. The aggregate utility

for the group, VG, is therefore

VG =
nX

i=1

Vi(z) =
nX

i=1

Ji(z)

�i

(36)

In contrast, the aggregate utility generated by n sole proprietorships is given by:

I(W1t, ...,W2t) =
nX
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Ii(Wit) =
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W
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� 1
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The following corollary gives the relation between the aggregate utility of the group VG, and

the aggregate utility I(W1, ..,Wn) of the n sole proprietorships.

Corollary 11 The aggregate life-time utility of n sole proprietorships with given endowments

Wi0 (i = 1..n) equals the aggregate utility of the corresponding n-investor group with voluntary
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participation:
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(38)

The marginal utility (shadow price) to the group of an additional dollar contributed by member

i is given by:

@VG

@Wi0
=

✓
ai

Wi0

◆�i

=
1

�ie
z0

=
dVi(z)

dWi0
(39)

The corollary states that the aggregate utility achieved by a group with n voluntary investors

is the same as the aggregate utility by n sole proprietorships. This is a logical consequence of

the group irrelevance result stated in proposition 6.

As to be expected, the shadow price of an extra dollar of net worth, declines with the

group’s total net worth already in place (as captured by the transformed net worth variable

z). Less standard is the result that the shadow price depends on which investor contributes

the extra dollar. In particular a dollar contributed by the investor with the smallest (largest)

weight is most (least) valuable. The reason for this is that the utility weights �i agreed

by the investors do not maximize the group’s aggregate utility VG. We show below that

aggregate utility is maximized by allocating all investors equal weight (i.e. �i = � for all i).

Therefore, contributions from the smallest (highest) investor are the most (least) valuable.

Equal weights do not lead in general to voluntary participation because the �i that ensure

investors’ participation depend on their coe�cient of risk aversion and wealth contribution,

both of which may vary arbitrarily across investors.
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6.2 Investors’ welfare under social optimization

If investors’ participation can be enforced by a social planner then aggregate utility can be

improved through a group, but this will come at the expense of at least one investor being

worse o↵. The socially optimal utility weights are the solution to the maximization problem:

V
o

G
= max

{�1,...,�n}
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The first-order conditions are given by:
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Solving the system of first order conditions gives the following proposition:

Proposition 7 It is socially optimal to give investors equal weight in the firm (i.e �i = �
o

i
= �

for i = 1, ..., n).

The socially optimal weighting scheme is not unique but, in absolute terms, only determined

up to a scalar. Only �e
z is uniquely determined. This can be inferred from equation (40)

for V o

G
. Setting �i = � (for all i) in equation (40), it follows that � and e

z can no longer be

separately identified since VG is a function of the variable y ⌘ �e
z, which is the inverse of the

shadow price of the group’s net worth, i.e. � = 1/y. To pin down a unique value for �, one

can impose that the utility weights sum to 1, in which case � = 1/n.

Corollary 12 The aggregate utility of the group under the socially optimal weighting scheme

is given by:
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At the social optimum, the marginal utility (shadow price) of an additional dollar does not
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depend on which group member contributes the money, i.e.:
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The socially optimal utility weights are such that the marginal utility of consumption is

equalized across investors. If that were not the case, then aggregate utility could be improved

by increasing the weight of the investor with the highest marginal utility.

Unless investors agree to equal weights, utility will be lost compared to the outcome

achieved by a social optimizer. The ine�ciency of voluntary participation results from a

“governance overhang” created when the group is set up. Di↵erences in the investors’ risk

aversion �i and net worth contribution Wi require unequal utility weights to ensure that all

investors participate. Once these weights are fixed, it is not in any group member’s interest

to reduce her weight relative to other members’ even though this would increase the group’s

overall value. The value lost from this governance overhang is
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Finally, consider a social planner that optimally allocates funding to n sole proprietorships.

The aggregate utility of the n sole proprietorships is given by:
P

n

i=1 Ii(Wit) ⌘ I(W1t, ...,W2t).

The social planner solves the following optimization problem:

I
o = max

W10,W20,...,Wn0

I(W10, ...,Wn0) subject to

nX

i=1

Wi0 = W0 (45)

32



Collecting the first-order conditions gives the following proposition.

Proposition 8 A social planner optimally allocates wealth across n sole proprietorships as

follows:
✓
W

o
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◆�1

=
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◆�2

= ... =
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W

o
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nX
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i0 = W0 (46)

This is also the wealth allocation that enables all investors voluntary to join a socially optimal

group in which each investor has equal weight.

We know from corollary 5 that the utility weights under voluntary participation are given

by equation (25). Combining equation (25) with equation (46), it follows that the socially

optimal wealth allocation across investors also enables a group that is socially optimal under

voluntary participation. Social welfare optimization is achieved by allocating more resources

to more risk averse investors, as we show in the below numerical example.

6.3 A numerical example

We conclude this section by providing a numerical example that compares investors’ life-time

utility under social optimization with their life-time utility under voluntary participation (i.e.

no redistribution) assuming in the latter case that all investors are endowed with the same

amount of initial wealth.

Table 1 considers 10 investors with di↵erent coe�cients of risk aversion ranging from

�1 = 0.5 to �10 = 9. Investors have a combined initial wealth of W0 = 100. In the socially

optimal firm (see case 2 in Table 1) all investors have equal utility weight (i.e. �i = 0.1

for i = 1, ..., 10), irrespective of their initial net worth contribution. Equivalently, the social

planner can endow investors with the amount of initial wealth that induces the socially optimal

utility weights under voluntary participation (see case 1 in Table 1). The socially optimal
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wealth allocation W
o

i
follows from proposition 8 and is given in column 3. The social planner

allocates the largest (lowest) amount of wealth 15.72 (2.13) to the most (least) risk averse

agent in order to level the playing field in terms of utility weight. Under the socially optimal

allocation investor 10 and 2 achieve the highest (-3.10) and lowest (-10.73) life-time utility I
o

i
,

respectively. The combined life-time utility for the ten investors, Io, is -66.94 utils.16

Consider next the utility weights under voluntary participation (case 3 in Table 1), and

assume all investors have the same initial endowment (i.e. Wi0 = 10 for i = 1, .., n). This

gives investor 10 (�1 = 9) and investor 2 (�2 = 0.6) the lowest (0.2%) and highest (23.6%)

utility weight, respectively. More generally, the utility weights are highly skewed with the

four least risk averse investors taking more than 80% of the total weight, leaving the other six

investors with the remainder. Less risk averse investors clearly get more “bang for their buck”.

The disparity in life-time utility is as significant, with investor 10 and investor 1 achieving

the lowest (-160.80) and highest (0.46) utility Vi. Investors’ life-time utility ranking has been

turned upside down compared to the socially optimal outcome. The potential welfare gain

from social optimization to investor 10 is large (+157.69), whereas the welfare loss to investor

1 is relatively modest (-11.01). Total combined life-time utility for the firm has increased from

-297.66 to -66.94, an aggregate gain in utility of 230.72.

7 Investors with Exponential Utility

Exponential utility has been the workhorse utility function in the existing literature on group

decision making. Exponential utility implies constant absolute risk aversion (CARA) and

leads to simple, tractable solutions. To compare and contrast the solutions in this paper with

16Since Ui(ci) = (c1��i
i � 1)/(1 � �i), coe�cients of risk aversion above 1 generate negative utility levels.

However, the utility function is well behaved in that it is monotonic, continuous and di↵erentiable in �i for all
�i � 0. Life-time time utility is negative for �1 = 0.5 and �2 = 0.6 due to the constant term �1/(⇢(1� �i)) in
the life-time utility function.
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those in the existing literature, we briefly revisit our model for investors with heterogeneous

CARA preferences. If ui(cit) = � 1
⌘i
exp(�⌘icit), where ⌘i > 0 for all i = 1..n then investors’

payout and investment policies are (see Internet Appendix B for a proof):
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The solution for c⇤
it
and !

⇤
t
collapses to the Merton (1969, Equations (64) and (65)) solution

for the single investor case (n = 1). The main addition to the multiple investor case is the

term in square brackets in equation (47), which reflects side payments from more risk averse

investors with low utility weight (�i) to relatively less risk averse investors with a larger utility

weight. One can verify that these side payments net out across investors since

nX
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c
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= rW +

⇢ + 1
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r

nX
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1
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The group’s investment (48) and consumption policy (49) policies show that the aggregation

theorem applies in a straightforward fashion for investors with exponential utility. As is well

known, the problem for the group can be reformulated as one of a single representative investor

with CARA utility and coe�cient of risk aversion
P

n

i=1
1
⌘i
.

Payout is linear in net worth with CARA utility, whereas our model with CRRA utility

can generate a rich variety of non-linear compensation schemes. The absolute dollar amount

invested in risky assets (At) remains constant with CARA. Therefore, as net worth increases

the proportion of net worth invested in risky assets falls. In contrast, the ratio of risky assets

to net worth increases (is constant) in Wt for investors with heterogeneous (homogenous)

CRRA preferences. We do not discuss the CARA solution in further detail as its properties

are well known. Furthermore, this class of utility functions and its solutions are behaviorally
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less plausible.

8 Empirical Implications and Conclusions

Our paper provides empirical implications and conclusions that are relevant for a variety of

literatures in financial economics.

8.1 Risk aversion and group decision making

The literature o↵ers two competing hypotheses for group decisions. The group shift hypothesis

(e.g., Moscovici and Zavalloni (1969) ; Kerr (1992)) and the diversification of opinions hypoth-

esis (e.g., Sah and Stiglitz (1986, 1988)). Although the diversifications of opinions hypothesis

appears to enjoy strong empirical support (see Bar, Kempf and Ruenzi (2010)), it struggles

to explain the puzzling observation that the average group is more (less) risk averse than the

average individual in high (low) risk situations. Our model provides a possible explanation

by showing that group decisions are not merely a weighted average of individuals’ preferred

decisions but, crucially, the weights vary with the state of the economy. In our model, more

weight shifts towards the least risk averse agent during booms, whereas in busts increased

weight shifts towards the most risk averse agent. The group’s risk aversion is determined

primarily by the most risk averse agent when net worth falls to critically low levels. During

“normal” times the member with the median level of risk aversion exerts most influence (con-

sistent with the findings of the experimental study by Ambrus et al. (2013)). As such our

model reconciles the diversification of opinions hypothesis with the group shift hypothesis.
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8.2 Corporate capital structure

Adrian and Shin (2010), among others, provide empirical evidence that leverage is procyclical

for banks and other financial intermediaries - that is, leverage is high during booms and low

during busts. They argue that procyclical leverage can be seen as a consequence of the active

management of Value-at-Risk (VaR) by financial intermediaries through adjustments of their

balance sheets. Our model is the first to show that heterogeneity in managers’ risk preferences

can also lead to procyclical leverage, and be a significant source of intertemporal variation in

a firm’s debt ratio.

Chava and Purnanandam (2010) show that CEOs risk preferences a↵ect leverage and cash-

holding policies, whereas CFOs risk preferences are relatively more important in explaining

debt maturity structure and accrual decisions. They conclude that “closer attention should

be paid to the risk preferences and attitudes of managers to better understand the corporate

financial decision making”. Our model explicitly links a firm’s investment and financing

decisions to individual managers’ risk preferences.

8.3 Payout and compensation

Our model predicts that executive compensation will be tailored to managers’ risk preferences,

with the less (more) risk averse executives having claims that tend to be relatively more convex

(concave) in the firm’s net worth. Importantly, a manager’s optimal compensation contract

not only depends on her own level of risk aversion, but also on the risk preferences of the

other decision makers. An executive may opt for a contract that is relatively performance

sensitive when matched with more risk averse executives, and choose a contract that is rela-

tively performance insensitive when matched with less risk averse co-workers. These findings

generate new empirical hypotheses regarding relative compensation within firms and internal
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governance more generally.

We show that contracts resembling preferred stock are an e�cient way to compensate

a group of investors with heterogeneous risk preferences. The contracts we derive cap the

payout of more risk averse investors at lower levels in good times, but gives the more risk

averse investors priority in terms of payout in bad times. This novel rationale for using

preferred stock may help explain the huge variety of preferred stock contracts that we observe

in the venture capital sector.

Graham et al. (2013) provide empirical evidence that pay performance sensitivity de-

creases with risk aversion. They find that risk averse CEOs are significantly more likely to be

compensated by salary and less likely to be compensated with performance related packages

such as stock, options and bonuses. They also find that female CEOs, on average, are less

likely to accept riskier pay packages.

8.4 Governance and control

Our model shows that increasing heterogeneity in investors’ risk preferences leads, all else

equal, to higher utility weight concentration, with less risk averse investors having the larger

utility weights. As a result, investors who start ex ante with equal wealth endowments may

ex post end up with highly unequal say or influence on the firm’s decision making. Utility

weights, control rights and cash flow rights are proportional to the amount of capital invested

if and only if all investors have logarithmic utility (� = 1). With homogenous risk preferences,

the Herfindahl index for the utility weights of n investors converges to 1/n or 1, if all investors

become risk neutral or infinitely risk averse, respectively. In the latter case (almost) all utility

weight is concentrated in the hands of the firm’s largest capital contributor. Our model shows

that an individual investor’s control over the group’s financial policies is time-varying and
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potentially non-monotonic in the firm’s net worth.

The utility weights we obtain under voluntary participation are not socially optimal. They

are, however, the only weights that preserve investors’ initial wealth distribution. Aggregate

utility can be increased by giving equal weight to all investors. Since investors cannot directly

transfer utility, this would require a redistribution of investors’ initial wealth.

Appendix

Proof of Proposition 1

The Hamilton–Jacobi–Bellman (HJB) equation for the optimization problem (5) derived

by the method of dynamic programming described in Dixit and Pindyck (1994) is
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The first order conditions are
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Substituing the first order conditions into the HJB yields
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We omit the time index t from now. The non-linear ordinary di↵erential equation cannot be

solved analytically in terms of W . However, tractable results are made possible by introducing

an auxiliary state variable z ⌘ � ln(J 0(W )), which is similar to the method introduced by

Sethi, Taksar and Presman (1992). By the definition of z, we have J
0(W ) = e

�z and
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Di↵erentiating the transformed ODE with respect to z, and then dividing both sides by e
�z

yields the following second-order linear inhomogeneous ODE in z
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The solution to the above ODE has two components, a particular solution Wp and a com-

plementary solution Wc, i.e W = Wp + Wc. One can verify the following for the particular

solution
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The complementary solution is of the form Wc(z) = H1e
b+z + H2e

b�z, where H1 and H2

are constants to be determined and b± =
(⇢+ 1
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p
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. It can be shown that

b+ > 0 and b� < �1.

The particular solution captures the expected lifetime utility under a particular payout and

investment policy. The complementary solution captures the value from growth options and

abandonment/outside options, which investors do not have. Therefore, the complementary

part must be zero, i.e. H1 = H2 = 0, as otherwise a bubble component would be added that

explodes for the negative root when z ! �1 (W ! 0 ), and for the positive root when

z ! +1 (W ! +1 ). Therefore,

W (z) =
nX
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�i (56)
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where Gi is defined as in (10). A solution to the optimization problem needs to satisfy the

transversality condition and feasibility condition. These conditions are satisfied if
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This is an analog of the condition (equation(40)) shown in Merton (1969). Substituting W (z)

into equation (53) gives equation (11), while substituting into the first order conditions (51)

gives equation (6) and (7).

Define the right side of equation (50) as �(W ). One could then verify the second order

conditions by showing that
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Proof of Proposition 2
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The second derivative of the payout policy with respect to total net worth is
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For i = 1 and i = n we have, respectively:
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For i = 2, ..., n� 1, the first term in the bracket of (60), which is negative, will be dominated

by the positive second term initially. However, as z increases, the first term will start to

dominate as �j < �i < �k, which makes the payout functions for intermediate risk averse

investors first convex and then concave as total net worth increases. Moreover, the inflexion

point decreases as the degree of risk aversion increases.

Lastly, setting �1 = ... = �n = � shows @
2
cit

@W
2
t
= 0 and cit =

�

1
�
i Wt

a
Pn

j=1 �

1
�
j

. ⌅

Proof of Proposition 3

As shown in equation (6) in proposition 1,

!
⇤
t
=

⇠

�

nX

i=1

1

�i
!i(z) =

⇠

�

"
1

�1
!1(z) +

n�1X

i=2

1

�i
!i(z) +

1

�n
!n(z)

#
(63)

and for each !i, we could rewrite it as

!i =
Gie

z
�i

P
n

j=1 Gje

z
�j

=
1

1 +
P

j 6=i

aj�

1
�j
j

ai�

1
�i
i

e
z

✓
1
�j

� 1
�i

◆ ⌘ 1

1 +
P

j 6=i
kj(z)

(64)
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If �i > (<) �j, limz!+1 kj(z) = +1 (0) and limz!�1 kj(z) = 0 (+1), which implies

lim
z!+1

!1(z) = 1; lim
z!�1

!1(z) = 0 (65)

lim
z!+1

!n(z) = 0; lim
z!�1

!n(z) = 1 (66)

lim
z!+1

!i(z) = 0; lim
z!�1

!i(z) = 0 for i = 2, ..., n� 1 (67)

Aggregating into group shows

lim
z!+1

!(z) =
⇠

�

1

�1
and lim

z!�1
!(z) =

⇠

�

1

�n
(68)

The inequality (17) regarding NDRt follows directly from (68), the monotonicity of !⇤
t
with

respect to z (see corollary (1)) and the monotonicity of NDRt with respect to !
⇤
t
. ⌅

Proof of Proposition 4

Suppose that �1 = ... = �n = � and arrange Wi0 such that W10 � W20 � ..... � Wn0. By

the assumption that the utility weights add up to 1, we can show that

�i =

⇣
Wi0
W0

⌘�

P
n

j=1

⇣
Wj0

W0

⌘� (69)

The level of concentration measured by the Herfindahl index can then be written as

H =
nX

i=1

�
2
i
=

P
n

i=1

⇣
Wi0
W0

⌘2�

hP
n

j=1

⇣
Wj0
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⌘�i2 (70)

0 < H < 1 follows immediately from the Cauchy-Schwarz inequality. Moreover, H = 1
n
if
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� = 1. We could further show that
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=

2
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(71)

as Wi0 � Wj0 for all j > i. ⌅

Proof of Proposition 5

The first equality follows directly from corollary 5. We prove the second equality by raising

both sides of equation (31) by the power of �i, i.e.
⇣

W
s
it

W
s
i0

⌘�i
= e

�i


(↵i �

�2
i
2 )t+�iBt

�

for i = 1, ..., n.

Further simplification shows that the exponential power is indeed independent of risk aversion:
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(72)

⌅

Proof of Proposition 6

Since cit = (�ie
z)

1
�i = Wit

ai
and c

s

it
= W

s
it

ai
, it is enough to show that Wit and W

s

it
are two

identical processes. By substituting the optimal investment and payout policy (equation (6)

and (7)) into equation (4), one can get

dWt =

"
⇠
2
W

0
t
(z) + rWt(z) �

nX
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(�ie
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1
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Applying Itô’s Lemma to z(W ) gives

dz =

"
⇠
2
W

0
t
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P
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In the sole proprietorship, the net worth process for each investor, W s

it
, evolves according

to equation (30). We would like to compare the two claim value processes Wit and W
s

it
to

see whether joining a partnership with the weight �i =
⇣

Wi0
ai

⌘�i
e
�z0 can create value for

individuals. Applying Itô’s lemma to Wit = ai�

1
�i
i
e

z
�i shows that
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�z

�i
dB (75)

All we need to check is the following: µz

�i
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2
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. The second

equality is satisfied as �z = ⇠. The first equality also holds as
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Given that the initial values are the same, i.e. Wi0 = W
s

i0, we can conclude that Wit and W
s

it

are indeed two identical processes, that is, Wit = W
s

it
for all t and i = 1, ..., n. Similarly, we

could also conclude that cit and c
s

it
are also two identical processes given ci0 = c

s

i0. ⌅

Proof of Proposition 7

The optimization consists of the objective function (40) and the intertemporal constraint

(8), which gives

L
o = max

{�1,...,�n}

nX
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where � is the Langrange multiplier (shadow price). Di↵erentiating equation (8) with respect
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to �i gives
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W 0(z) . Substituting this into the first-order conditions (41) yields
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As a result, we have �1 = �2 =, ...,= �n = �.

To check the second order conditions, note that @
2
L
o

@�2
= 0, and @

2
L
o

@�i@�j
= 0 for i 6= j.

With equal weighting scheme, we also have @
2
L
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< 0. These imply the determinants of the principle matries for the Bor-

dered Hessian are of the following form: det(Ho
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2
L
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< 0, the sequence of leading principle minors

starts with det(Ho

1) < 0 and alternates in signs afterwards, which indicates that the equal

weighting scheme is indeed optimal. ⌅

Proof of Proposition 8

The optimization problem (45) can be rewritten into the following Lagrangian function:

L
o =

nX

i=1

a
�i
i

W
1��i
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1� �i
� 

 
nX
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where  is the Langrange multiplier. With the Euler conditions:
⇣

ai
W

o
i0

⌘�i
=  for all i, we

complete the proof. ⌅
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Figure 1: Corporate policies and claim values
The parameter values for the graphs are risk free rate (r) = 0.05, subjective discount rate (⇢) = 0.1, drift

(µ) = 0.12, volatility (�) = 0.3 and the correponding Sharpe ratio (⇠) = 0.233. In this figure, we consider

a group of 4 investors with heterogeneous risk aversion (�1 = 0.5, �2 = 0.6, �3 = 3, and �4 = 9) and

exogenous initial endowments (W10 = 15,W20 = 25,W30 = 15,W40 = 15). Panels A, B, C, D, E and F

plot, respectively investors’ individual payout, the firm’s Net Debt Ratio, the firm’s payout yield, investors’

certainty equivalent claim values, investors’ control weights and the group’s level of relative risk aversion

as a function of the firm’s net worth Wt. In panels B and C, the thick solid lines represent the NDR and

payout yield based on group decision making, whereas the other lines represent an individual investor’s

optimal policy.
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Internet Appendix for “Financial Policies and

Internal Governance with Heterogeneous Risk

Preferences”

A Appendix: Proofs of Corollaries

Proof of Corollary 1

Di↵erentiate equation (6) with respect to Wt shows
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(A.1)

which means that if �1 = ... = �n = �, @!⇤
t

@Wt
= 0. Otherwise @!⇤

t
@Wt

> 0. ⌅

Proof of Corollary 2

The first part of the corollary follows directly from equation (12) . For the second half, the

control over investment defined in equation (9) suggests that strict proportional to �i implies

�i = 1 for all i. When all investors have the same level of risk aversion, equation (8) becomes
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Substituting the above into equation (9) shows that !it =
�

1
�
i

Pn
j=1 �

1
�
j

. Proportional control
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result follows if we further assume all investors have log utility (� = 1). ⌅

Proof of Corollary 3

This follows directly from equation (13) and (14).

Proof of Corollary 4

The group’s level of relative risk aversion is defined in (18) can be simplified as
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⌅

Proof of Corollary 5

The first equality follows immediately from equation (24). Based on the utility function

and equation (20), one could show that for i = 1, ..., n
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Proof of Corollary 6
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Substituting equation (A.2) into (25) shows that
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Proportionality requires � = 1. If � = 1, we have �iPn
j=1 �j

= Wi0
W0

. ⌅

Proof of Corollary 7

Substituting equation (25) from corollary 5 into (8) shows the first equality. The second

equality follows from equation (7). ⌅

Proof of Corollary 8

From corollary 7, we know that Wit = aicit. Scaling by ai does not change the curvature,

i.e the concavity and convexity property. Similar to the proof of p proposition 2 and 3 one

could show that
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and as a result,
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The remaining of the corollary follows directly from above and proposition 2. ⌅

Proof of Corollary 9

Suppose �1 = ... = �n = �, then

Wit

Wt
=

a�
1
�

i e
z
�

Pn
j=1 a�

1
�

j e
z
�

=
�

1
�

i
Pn

j=1 �
1
�

j

(A.9)

which completes the proof. ⌅
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Proof of Corollary 10

See the proof for proposition 5. ⌅

Proof of Corollary 11

Equation (38) is derived by substituting �i (25) into (36). Di↵erentiating VG with respect

to Wi0 gives the required shadow price. ⌅

Proof of Corollary 12

Equation (42) is derived by substituting �1 = ... = �n = � into Equation (40). For

i, k = 1, ..., n, the shadow price follows immediately as
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B Appendix: CARA Utility

Suppose all investors have an exponential utility function and therefore constant absolute risk

aversion. However, investors have di↵erent coe�cient of absolute risk aversion ⌘i, i.e. investor

i’s utility function is given by Ui(cit) = � 1
⌘i
exp(�⌘icit), where ⌘i > 0 for all i.

The Hamilton-Jacobi-Bellman equation remains the same as shown in the proof of propo-

sition 1, which is
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with the first order conditions being
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Substitute the conjecture J(Wt) = � b
a exp(�aWt) into the first order conditions above shows
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Further simplification pins down the constant b as
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Substituting the results into the FOCs shows that
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J(Wt) = � b

a
exp(�aWt) (B.10)

where a and b are as in equation (B.5) and (B.7). Moreover, one could sum up all the payout
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These suggest that the optimal payout c⇤it is linear in net worth, where the first term is the

regular interest payment, the second term is compensation for risk aversion while the terms in

the square bracket consist of the side payment among investors. The side payments will net

out across investors when we sum up the payout over all individuals. The group will invest

a constant absolute amount of net worth into the risky portfolio, i.e. !itWit stays constant,

which makes the representatitve agent having the same form of indirect value function.
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