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1 Introduction

A firm’s behavior depends on its beliefs about the actions of other firms in the same market. For

instance, the optimal price of a firm depends on its beliefs about the prices of its competitors;

or, in a procurement auction, a firm’s bid depends on its expectation about other firms’ bids.

Managers form their beliefs under uncertainty about demand, costs, and competitors’decisions.

For similar reasons as they are heterogeneous in their effi ciency to produce goods and services,

firms are different in their ability to collect and process information. As a result, we expect firms

to be heterogeneous in their expectations or beliefs, and this heterogeneity has implications on

their performance and on their survival in the market. For the same reasons as firms with different

productivity can survive in the same industry, they can coexist with different levels of accuracy or

bias in their beliefs.

The importance of firms’heterogeneity in their ability to form expectations – and the possibility

of biased or non-equilibrium beliefs – has been long recognized in economics, at least since the work

of Simon (1958, 1959). However, in most fields in economics, the status quo has been to assume

rational expectations. In empirical industrial organization (IO), some of the most commonly used

structural models of oligopoly competition assume complete information, perfect certainty, and

Nash equilibrium. For instance, this is the case in models of price competition with differentiated

product (Berry, Levinsohn, and Pakes, 1995; Berry and Haile, 2014), and in empirical games of

market entry (Bresnahan and Reiss, 1991; Ciliberto and Tamer, 2009). Though there is a substantial

literature on structural models of incomplete information in empirical IO, it is mostly concentrated

in auctions (Guerre, Perrigne, and Vuong, 2000; Athey and Haile, 2002), and in discrete choice

games, both static (Seim, 2006; Sweeting, 2009), and dynamic (Aguirregabiria and Mira, 2007;

Igami, 2017). Most empirical applications of games of incomplete information assume that firms

have homogeneous beliefs that correspond to a Bayesian Nash equilibrium.

Recent applications in empirical IO relax equilibrium assumptions and obtain evidence of het-

erogeneity and biases in firms’beliefs. As one would expect, biased beliefs are more likely in new

markets and after regulatory changes: for instance, after deregulation of the US telecommunication

industry (Goldfarb and Xiao, 2011), the UK electricity market (Doraszelski, Lewis, and Pakes,

2018), or the Washington State liquor market (Huang, Ellickson, and Lovett, 2018), and in the

early years of the fast-food restaurant industry in UK (Aguirregabiria and Magesan, 2019). These

empirical studies use different approaches to identify firms’beliefs.

This paper presents a systematic analysis of the joint identification of firms’beliefs and struc-
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tural parameters in a general class of empirical games of market competition. The main emphasis is

that – under weak restrictions – firms’observed behavior reveals information about their beliefs.

I consider a framework where firms have incomplete information. A firm’s beliefs about the

behavior of other firms are unrestricted —nonparametric —functions of a firm’s information. Beliefs

may be out of equilibrium. This framework includes – as particular cases – models of competition

in prices or quantities, auction models, and static and dynamic discrete choice games. I present

identification results under different scenarios on the data available to the researcher: from data

only on firms’choices and state variables, to situations where the researcher can identify the revenue

function, or even the cost function. The identification results vary substantially when the model of

competition is static or dynamic, so I present these two types of results.

Though I focus on the possibility of non-equilibrium beliefs, the results in this paper also apply

to the identification of collusive behavior under asymmetric information. As such, this paper relates

to the traditional literature on identification of the form or nature of competition, pioneered by

Bresnahan (1982, 1987) and Nevo (1998, 2001).

Section 2 presents a brief description of recent applications that provide evidence on firms’

biased beliefs and their important implications for market outcomes. In section 3, I present a

general framework that includes as particular cases almost every model of competition that we

find in empirical applications in IO. A key feature of this framework is that it allows for a very

flexible (nonparametric) specification of firms’probabilistic beliefs as functions of firms’information.

Section 4 presents the results on the identification of beliefs. I conclude in section 5 with a discussion

of different issues such as the direct measurement of firms’ beliefs from survey data, and the

implementation of counterfactual experiments in models with biased beliefs.

2 Empirical evidence on firms’biased beliefs

In this section, I briefly describe the empirical evidence in recent studies that find evidence on

firms’biased or non-equilibrium beliefs. All these studies estimate structural models of oligopoly

competition. Here, I first describe the reduced form evidence in each of these papers that motivates

relaxing the assumption of equilibrium.

Goldfarb and Xiao (2011) study entry decisions into local US telecommunication markets follow-

ing the deregulatory Telecommunications Act of 1996, which allowed free competition. The authors

present reduced-form evidence showing that, holding other market characteristics constant, more

experienced and better educated managers have a lower propensity to enter (and a lower propensity
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to exit after entry) into very competitive markets. This suggests that better-educated managers

are better at predicting competitors’behavior.

Aguirregabiria and Magesan (2019) study competition in store location between McDonalds

(MD) and Burger King (BK) during the early years of the fast-food restaurant industry in the UK.

Estimates of reduced form models for the decision of opening a new store show that the number

of own stores has a strong negative effect on the probability that BK opens a new store but the

effect of the competitor’s number of stores is negligible. In contrast, for MD, the decision to open

a new store is sensitive to BK’s existing number of stores in the market. Standard equilibrium

models of market entry – where firms compete and sell substitute products – cannot rationalize

this behavior.

Doraszelski, Lewis, and Pakes (2018) investigate firms’ learning about competitors’ bidding

behavior just after the deregulation of the UK electricity market. In the first months (year) after

deregulation, firms’bidding behavior was very heterogeneous and firms made frequent and sizable

adjustments in their bids. During the next year, there was a dramatic reduction in the range of

bids; and after three years, firms’bids became very stable. During these three phases, demand

and costs were very stable. The authors argue that the changes in firms’bidding strategies can be

attributed to strategic uncertainty and learning rather than changes in the environment.

Huang, Ellickson, and Lovett (2018) study firms’ price setting behavior in the Washington

State liquor market following the privatization of the market in 2012. After liberalization, grocery

chains newly entered the market. How did these new entrants learn about demand and learn to

price optimally over time? The authors document that there are large and heterogeneous price

movements in the first two years after the privatization. The authors present evidence that is

consistent with firms’ learning about the idiosyncratic and common components of the demand

shocks and about the time persistence of these shocks. The estimation of a structural model and

counterfactual experiments reveal a 13% loss in the profits of inexperienced sellers due to the

information frictions.

Hortaçsu and Puller (2008) analyze the bidding behavior of firms in the Texas electricity spot

market, where suppliers trade with each other. Their dataset contains detailed information not

only on firms’ bids but also on their marginal costs. Using these data on marginal costs, the

authors construct the equilibrium bids of the game and compare them to the actual observed bids.

They find statistically and economically very significant deviations between equilibrium and actual

bids. While large firms best-respond to other firms’behavior, small firms submit bid-functions that
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are excessively steep. Small firms supply little power even when it is ex-post profitable to do so.

Based on their interviews with traders in this market, Hortaçsu and Puller argue that this finding

is best explained by the relatively low strategic ability in the bidding departments of small firms.

Very interestingly, this suboptimal behavior by small firms leads to significant effi ciency losses in

the market. In fact, the ineffi ciency generated by the mistakes of smaller firms is larger than the

ineffi ciency generated by the market power of large firms.

3 Model

3.1 Static game

3.1.1 Basic framework

Consider N firms competing in a market. Firms are indexed by i. The profit function of firm i

is πi(ai,a−i, εi,x) where ai ∈ A is the action of firm i, a−i = (aj : j 6= i) ∈ AN−1 is the vector

with the actions of the other firms. This is a general model of market competition where a firm’s

decision variable —ai —can be either discrete or continuous, and it can represent —among other

possibilities —a firm’s level of output, its price, the binary indicator of entry in a market, the firm’s

number of stores, or its investment in R&D. The vector x ∈ X represents variables that are common

knowledge to all the players. The term εi ∈ E is private information of firm i. For instance, this

private information can be a component of the firm’s cost or a private signal about the state of the

demand. We denote εi as the ‘type’of firm i, which is privately known. Firms’types (ε1, ε2, ..., εN )

are drawn from a distribution with cumulative distribution function F (ε1, ε2, ..., εN | x).

Firms simultaneously decide their actions to maximize their respective expected profits. Under

the standard solution concept of Bayesian Nash Equilibrium (BNE), the primitives of the model —

that is π′s, A, X , E , and F —are assumed common knowledge —that is, every firm knows that every

firm knows ... these primitives. The model that I consider here does not impose this restriction.

This model only assumes that each firm knows its own profit function, the vector of variables x,

and its private information εi. For instance, some firms may not know the distribution function F

or the profit functions πi(.) of other firms. Furthermore, firms may not know that x is common

knowledge.

A firm does not know the private information of its competitors and therefore it does not know

their actions. Firms form probabilistic beliefs about the actions of competitors. Let Bi(a−i | εi,x)

be a probability density function that represents the belief of firm i. This is a probability function

in the space of the actions of firms other than i and conditional on firm i′s information. Given its
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beliefs, a firm’s expected profit is:

πei (ai, εi,x, Bi) =

∫
a−i

πi(ai,a−i, εi,x) Bi(a−i|εi,x) da−i, (1)

The integral is over the Lebesgue measure on AN−1, which can be either continuous or discrete.

A firm chooses its strategy function σi(εi,x, Bi) to maximize expected profits:

σi(εi,x, Bi) = arg max
ai∈A

πei (ai, εi,x, Bi). (2)

It is convenient to represent a firm’s strategy as a cumulative distribution function. Let Pi (ai|x)

be cumulative distribution of the choice variable ai conditional on x. We denote Pi (ai|x) as the

cumulative choice probability function. According to the model, this distribution comes from firm

i’s best response and satisfies the following equation. For any value a0 ∈ A,

Pi
(
a0|x

)
≡ Pr

(
σi(εi,x, Bi) ≤ a0 | x;Bi

)
=

∫
1
{
σi(εi,x, Bi) ≤ a0

}
dFi(εi|x) (3)

In this framework, the payoff functions {πi} and the distribution of private signals, F (.|x), are

primitives of the model. The predictions of the model are the choice probabilities. The belief

functions {Bi} are endogenous outcomes of the model. However, the model is incomplete in the

sense that it does not specifies how these beliefs are determined. Instead, it specifies a general

framework that includes as particular cases many different models for the determination of beliefs.

3.1.2 Characterization of best response functions

I focus in models where a firm’s action ai is a single variable that can be either continuous or discrete.

If the decision is discrete, then it is ordered, e.g., number of products, stores, etc. Note that any

binary choice (e.g., a market entry decision) can be considered a particular case of ordered discrete

choice variable. The framework also imposes some restrictions on the marginal profit function such

that a firm’s best response function is strictly monotonic in εi. The following paragraphs describe

these assumptions.

Let ∆πi(ai,a−i, εi,x) be the marginal profit function. Here the concept of marginal profit is

broad and depends on the decision variables ai. If the decision variable is continuous — such as

output or price —the marginal profit is at the intensive margin and it corresponds to the mathe-

matical concept of the derivative of a continuous and differentiable function: ∆πi(ai,a−i, εi,x) =

∂πi(ai,a−i, εi,x)/∂ai. If the decision variable is discrete —such as entry decision, number of stores,

or number of products —the marginal profit is at the extensive margin and it corresponds to the

difference function: ∆πi(ai,a−i, εi,x) = πi(ai,a−i, εi,x) −πi(ai − 1,a−i, εi,x).
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The first condition of optimality for the best response of firm i is: (i) for continuous choice

variable, ∆πei (ai, εi,x;Bi) = 0; and (ii) for discrete choice, ∆πei (ai, εi,x;Bi) ≥ 0 and ∆πei (ai +

1, εi,x;Bi) ≤ 0. Taking into account the definition of the expected profit, we can represent these

conditions as follows.

(i) Continuous choice variable (ai ∈ R):∫
a−i

∆πi(ai,a−i, εi,x) Bi(a−i|εi,x) da−i = 0 (4)

(ii) Ordered discrete choice variable (ai ∈ {0, 1, ..., J}):

ai = 0 ⇔
∑
a−i

∆πi(1,a−i, εi,x) Bi(a−i|εi,x) < 0

ai = j for 0 < j < J ⇔

∑
a−i

∆πi(j,a−i, εi,x) Bi(a−i|εi,x) ≥ 0

and
∑
a−i

∆πi(j + 1,a−i, εi,x) Bi(a−i|εi,x) < 0

ai = J ⇔
∑
a−i

∆πi(J,a−i, εi,x) Bi(a−i|εi,x) ≥ 0

(5)

The following assumptions provide suffi cient conditions for the strict monotonicity of a firm’s

best response function with respect to its type εi.

ASSUMPTION 1. For any value of (ai,a−i, εi,x), the marginal profit function ∆πi(ai,a−i, εi,x)

is: (A) strictly decreasing in the action variable ai; and (B) strictly monotonic —either increasing

or decreasing —in εi. �

Assumption 1 holds in most models of market competition. Suppose that we represent a firm’s

profit as revenue (Ri) minus cost (Ci) such that πi = Ri − Ci. For models of competition in price

or quantity, a downward sloping demand curve and non-decreasing marginal costs are suffi cient

conditions for the concavity of the profit function in ai. A suffi cient condition for assumption 1(B)

is that the type variable εi enters only in the cost function and the marginal cost is monotonic in

εi —e.g., a firm’s type captures cost effi ciency that is private information of the firm. Assumption

1 also holds in models of procurement auctions and in market entry models where the firm’s type

is a component of its cost.

A particular case of Assumption 1(B) is when the profit function is additive in εi. That is,

∆πi(ai,a−i, εi,x) = ∆π∗i (ai,a−i,x)− εi. (6)

This condition is stronger than Assumption 1(B) but it is useful to provide a simpler version of

some of the results in this paper.
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Assumption 2 establishes the restriction that firms’types are independently distributed — in-

dependent private values (IPV ). This restriction is stronger than what we need to characterize

best response functions and to obtain the identification results in this paper. However, it is con-

venient because it facilitates the derivations and proofs in this paper. I comment below on weaker

assumptions on the joint distribution of the private information variables.

ASSUMPTION 2. (A) The private information variables (ε1, ε2, ..., εN ) are independently distrib-

uted conditional on x: F (ε1, ε2, ..., εN |x) =
∏N
i=1Fi(εi|x). (B) Every firm i knows this indepen-

dence, and therefore knows that a−i and εi are independent conditional on x. �

Assumption 2 implies that εi is not an argument of the beliefs function Bi(a−i|εi,x). Every

firm is aware that —conditional on x —the actions of the other firms are independent of its own

type. Firms have beliefs that are consistent with this independence. For the rest of the paper, I

represent a belief function as Bi(a−i|εi,x).

ASSUMPTION 3. The private information εi is a continuous random variable with support the

real line and with a cumulative distribution function conditional on x —Fi(εi|x) —that is strictly

increasing over the whole real line. �

Assumption 1(A) implies that the expected marginal profit —∆πei (ai, εi,x;Bi) — is strictly

decreasing in ai. By the Implicit Function Theorem, assumption 1(A) implies that equation

∆πei (ai, εi,x;Bi) = 0 is invertible with respect ai ∈ R. That is, for any value of (εi,x, Bi), there

is a unique value of ai ∈ R —that I denote as a∗i (εi,x,Bi) —such that ∆πei (ai, εi,x;Bi) = 0 if and

only if ai = a∗i (εi,x,Bi).

If the decision variable is continuous, then a∗i (εi,x,Bi) is the best response function of firm i —

that is, σi(εi,x,Bi) = a∗i (εi,x,Bi). If the decision variable is discrete, then in general a
∗
i (εi,x,Bi)

does not belong to the discrete choice set A such that a∗i (εi,x,Bi) is not the optimal decision

rule. However, by construction and by monotonicity of the profit function, the largest integer less

than or equal to a∗i (εi,x,Bi) is such that its expected profit is greater or equal than zero; and

the next larger integer has an expected profit smaller or equal than zero. Therefore, the optimal

decision rule is the floor function of a∗i (εi,x,Bi) — that is, σi(εi,x,Bi) = ba∗i (εi,x,Bi)c.1 Given

1Remember that the floor function bxc is defined as the largest integer less than or equal to x.
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that ∆πei (ai, εi,x;Bi) is strictly decreasing in ai, we have that ∆πei (ba∗i (εi,x,Bi)c, εi,x;Bi) ≥ 0

and ∆πei (ba∗i (εi,x,Bi)c+ 1, εi,x;Bi) ≤ 0 such that ba∗i (εi,x,Bi)c is the best response function.

As defined above, the cumulative choice probability function Pi
(
a0 | x;Bi

)
is the cumula-

tive distribution for ai implied by the best response function σi(εi,x,Bi) — that is, Pi(a0|x) =∫
1{σi(εi,x;Bi) ≤ a0} dFi(εi|x). Proposition 1 establishes that function a∗i (εi,x,Bi) is strictly

monotonic in εi and this implies a simple and convenient expression for the cumulative choice

probability function.

PROPOSITION 1. Under assumptions 1 to 3, function a∗i (εi,x,Bi) is strictly monotonic in εi —

say, strictly increasing, without loss of generality. This implies that, for any a0 ∈ A:

Pi(a
0|x) = Fi

(
e∗i (a

0,x, Bi) | x
)

(7)

where e∗i (a
0,x, Bi) is the inverse function that results from applying the inverse function theorem

to equation ∆πei (a
0, εi,x;Bi) = 0 with respect to εi. �

The following examples illustrate Proposition 1 using four different types of models of compe-

tition: Cournot, auctions, market entry, and number of stores, respectively.

EXAMPLE 1 (Cournot competition). Consider a game of quantity choice where the output of

firm i is ai ∈ R+. Suppose that the marginal profit function is additive in εi — e.g., εi is an

additive component of the marginal cost: that is, ∆πi(ai,a−i, εi,x) = ∆π∗i (ai,a−i,x)− εi. Then,

the expected marginal profit function is:

∆πei (ai, εi,x;Bi) =

∫
a−i

∆π∗i (ai,a−i,x) Bi(a−i|x) da−i − εi (8)

Therefore, by definition of function e∗i , we have that e
∗
i (a

0,x, Bi) =
∫
a−i

∆π∗i (a
0,a−i,x) Bi(a−i|x)

da−i, and the cumulative choice probability function has the following form:

Pi(a
0|x) = Fi

(∫
a−i

∆π∗i (a
0,a−i,x) Bi(a−i|x) da−i | x

)
. � (9)

EXAMPLE 2 (Procurement auction). Consider a procurement auction where ai ∈ R represents

firm i‘s bid. The profit function is πi(ai,a−i, εi,x) = (ai − ci(εi,x)) 1{aj > ai ∀j 6= i}, where
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ci(εi,x) is the cost function. The expected profit function is:

πei (ai, εi,x;Bi) = (ai − ci(εi,x))

∫
a−i

1{aj > ai ∀j 6= i} Bi(a−i|x) da−i

= (ai − ci(εi,x)) W (ai,x,Bi)

(10)

where W (ai,x,Bi) ≡
∫
a−i

1{aj > ai ∀j 6= i} Bi(a−i|x) da−i is firm i’s subjective probability of

wining the auction given its beliefs. Therefore, expected marginal profit function is:

∆πei (ai, εi,x;Bi) = W (ai,x,Bi) + (ai − ci(εi,x)) ∆W (ai,x,Bi), (11)

where ∆W (ai,x,Bi) represents the derivative of the subjective probability of winning with respect

to the own bid ai. Suppose that the cost function ci(εi,x) is additive in εi: that is, ci(εi,x) =

c∗i (x) + εi. Then, we have that

e∗i (a
0,x, Bi) = a0 − c∗i (x) +

W (a0,x,Bi)

∆W (a0,x,Bi)
(12)

And the cumulative choice probability function is:

Pi(a
0|x) = Fi

(
a0 − c∗i (x) +

W (a0,x,Bi)

∆W (a0,x,Bi)
| x
)
. � (13)

EXAMPLE 3 (Market entry game). Consider a game of market entry with ai ∈ {0, 1}. Suppose

that the profit function is additive in εi —e.g., εi is a component of the entry cost or fixed cost:

that is, ∆πi(1,a−i, εi,x) ≡ ∆π∗i (1,a−i,x)− εi. Then, the expected marginal profit function is:

∆πei (1, εi,x;Bi) =
∑
a−i

∆π∗i (1,a−i,x) Bi(a−i|x)− εi (14)

Therefore, by definition of function e∗i , we have that e
∗
i (1,x, Bi) =

∑
a−i

∆π∗i (1,a−i,x) Bi(a−i|x),

and the choice probability function is:

Pi(0|x) = 1− Fi
(∑

a−i
∆π∗i (1,a−i,x) Bi(a−i|x) | x

)
. � (15)

EXAMPLE 4 (Competition in number of stores or products). Consider a game of market entry

ai ∈ {0, 1, ..., J} represents the number of products that the firm has in the market. Suppose

that the marginal profit function is additive in εi —e.g., εi is a component of the marginal cost

of introducing a new product: that is, ∆πi(ai,a−i, εi,x) ≡ ∆π∗i (ai,a−i,x) − εi. Therefore, the

expected marginal profit function is ∆πei (ai, εi,x;Bi) =
∑
a−i

∆π∗i (ai,a−i,x) Bi(a−i|x) −εi, and

we have that e∗i (a
0,x, Bi) =

∑
a−i

∆π∗i (a
0,a−i,x) Bi(a−i|x). For 0 < a0 < J , the choice probability

function is:

Pi(a
0|x) = Fi

(∑
a−i

∆π∗i (a
0,a−i,x) Bi(a−i|x) | x

)
. � (16)
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3.1.3 Common equilibrium restrictions in empirical applications

The framework presented above contains as particular cases most of the games of competition with

incomplete information that have been considered in empirical applications in IO. The main differ-

ence is that in most empirical applications firms’beliefs are assumed to satisfy some equilibrium

restrictions. Different equilibrium concepts have been used in the literature. I present here the

equilibrium concepts that have received more attention in empirical applications in IO.

All these equilibrium concepts assume that firms choose their best response strategies given

their beliefs: that is, they impose the best response conditions described above. In addition, they

restrict beliefs to satisfy some additional equilibrium restrictions. I describe below these additional

restrictions.

(a) Bayesian Nash Equilibrium (BNE) with independent private values. This is the

most commonly used solution concept in games of incomplete information in IO. It has received

particular attention in auction games (e.g., Guerre, Perrigne, and Vuong, 2000; Athey and Haile,

2002), and in discrete choice games (e.g., Seim, 2006; Sweeting, 2009). It has been used also in

empirical applications of Cournot competition models with incomplete information (Armantier and

Richard, 2003; Aryal and Zicenko, 2019).

A BNE can be described as N cumulative choice probability functions — {Pi(ai|x) : i =

1, 2, ..., N} — satisfying the following conditions: (i) [best responses] Pi(ai|x) satisfies the best

response condition given beliefs Bi; and (ii) [rational beliefs] the beliefs function Bi is equal to the

actual probability distribution of the choices of the other firms conditional on x:

Bi(a−i|x) =
∏
j 6=i

∆Pj (aj |x) (17)

where ∆Pj (aj |x) represents the density probability function associated to the cumulative distrib-

ution function Pj(aj | x).

(b) Cognitive Hierarchy (CH) and Level-K models. These models propose equilibrium

concepts where firms have biased beliefs, that is, Bi(a−i | x) 6=
∏
j 6=i∆Pj (aj |x). They are based

on the following ideas. Firms are heterogeneous in their beliefs and there is a finite number of

belief types: that is, Bi(a−i|x) belongs to a finite family of K belief functions, {B(k)(a−i|x) :

k = 1, 2, ...,K}. Each of member of this family is a ‘belief type’. Belief types correspond to

different levels of strategic sophistication and are determined by a hierarchical structure.
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A firm type-0 has arbitrary believes B(0). In the Level-k model, a type-k firm believes that all

the other firms are type-(k-1). Therefore, a type-k firm has beliefs:

B(k)(a−i|x) =
∏
j 6=i

∆Fj

(
e∗j (aj ,x, B

(k−1)) | x
)

(18)

This recursive equation defines the belief functions for every type k between 1 and K. Note that

the only unrestricted function is the beliefs function for type-0: the rest of the belief functions are

known functions of B(0) and the primitives of the model.

The CH model is more flexible than the Level-k model. In the CH model, a type-k firm believes

that the other firms come from a probability distribution over types 0 to (k-1).

These models allows for some flexibility in beliefs. However, they still impose important restric-

tions. More specifically, they do not include BNE or rational beliefs as a particular case; and there

is a small number of belief types —K is smaller than N , and typically 2 or 3 in actual applications.

(c) Rationalizability (Bernheim, 1984; Pearce, 1984). The concept of rationalizability imposes

two simple restrictions on firms’beliefs and behavior. First, every firm maximizes its own expected

profit given beliefs. And second, this rationality is common knowledge, i.e., every firms knows that

every firm knows ... that all the firms are rational. The set of outcomes of the game that satisfy

these conditions — the set of rationalizable outcomes — includes all the Bayesian Nash equilibria

of the game. In a game with multiple equilibria, the solution concept of Rationalizability allows

for biased beliefs. Each firm has beliefs that are consistent with a BNE, but these beliefs may not

correspond to the same BNE.

In general, the set of rationalizable beliefs is substantially smaller than the set of all the possible

beliefs. Therefore, condition (ii) of common knowledge rationality imposes non trivial restrictions

with respect to the model that I consider in this paper. In section 4, I show that these additional

restrictions are testable.

(d) Correlated Bayesian Nash Equilibrium. In recent work, Bergemann and Morris (2013,

2016) have introduced the Bayesian Correlated Equilibrium (BCE) as a solution concept which is

more robust, in the sense that it delivers all predictions compatible with Bayesian Nash equilibria

for any information structure within a wide class. Magnolfi and Roncoroni (2017) study inference

based on the BCE solution concept. Their goal is to identify only the payoff parameters, and their

work illustrates a trade-off between robustness to assumptions about information structures and

the ability to achieve point identification.
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In section 4, I present conditions for the identification of firms’ beliefs functions given the

framework in section 3.1 and under very weak restrictions on the primitives. Given the identification

of beliefs, it is possible to test the additional equilibrium restrictions imposed by the models (a) to

(d) described above.

3.2 Dynamic games

In this section, I extend the previous framework to a dynamic game. Time is discrete and indexed

by t. Now, πit(ait,a−it, εit,xt) represents the profit function of firm i at period t. The arguments

of this function have the same interpretation as before. Firms choose their actions at every period

t to maximize their expected and discounted profits Et(
∑T−t
s=0β

s πit+s), where β is the discount

factor and T is the time horizon that can be finite or infinite.

I introduce two additional assumptions. First, the common knowledge state variables follow

a controlled Markov process with transition probability density function fxt (xt+1 | ait, a−it, xt).

Second, the private information variables ε′its are independently distributed over time.

The restriction that the private information variables are not serially correlated is far of being

innocuous. It rules out the possibility of firms using the history of other firms’decisions to learn

about these firms’ type. This type of learning is the focus of the Experience-Based equilibrium

concept in Fershtman and Pakes (2012). In section 4.5, I explain how to extend the framework in

this paper to incorporate serially correlated private information.

Every period t, firms select simultaneously their actions to maximize their respective intertem-

poral values. A firm’s value at period t depends on the actions of other firms at period and in

the future. A firm does not know the private information of its competitors, now or in the future,

and therefore it does not know their actions. Firms form probabilistic beliefs about the actions of

competitors, now and in the future.

Let B(t)it+s(a−i,t+s | xt+s) be a probability density function, in the space of the actions of firms

other than i, that represents the beliefs of firm i at period t about the behavior of other players at

period t + s. This representation of beliefs is very general and allows for general forms of beliefs

updating. According to this notation, B(t+1)it+s −B
(t)
it+s represents the change (or update) from period

t to period t+ 1 in the beliefs that firm i has about behavior at period t+ s.

Given a firm’s beliefs at period t, B(t)i = {B(t)i,t+s : s ≥ 0}, its best response at period t is the

solution of a single-agent dynamic programming (DP) problem. We can represent this DP problem

12



using Bellman’s principle. Let V
B
(t)
i

it (xt, εit) be the value function. Then,

V
B
(t)
i

it (xt, εit) = max
ait∈A

{∫
a−it

[
πit(ait,a−it, εit,xt) + v

B
(t)
i

it (ait,a−it,xt)

]
B
(t)
it (a−it|xt) da−it

}
(19)

where v
B
(t)
i

it (ait,a−it,xt) is the continuation value:

β

∫
V
B
(t)
i

it+1 (xt+1, εit+1) fxt(xt+1|ait,a−it,xt) dxt+1 dFi(εit+1|xt) (20)

Given its beliefs, a firm chooses its strategy function σit(εit,xt,B
(t)
i ) to maximize its expected

value:

σit(εit,xt,B
(t)
i ) = arg max

ait∈A

{∫
a−it

[
πit(ait,a−it, εit,xt) + v

B
(t)
i

it (ait,a−it,xt)

]
B
(t)
it (a−it|xt) da−it

}
(21)

As in the static game, it is convenient to represent a firm’s strategy as a cumulative distribution

function. Let Pit (ait|xt) be the cumulative distribution of the choice variable ait conditional on xt
that we denote as the cumulative choice probability function. For any value a0 ∈ A,

Pit
(
a0|xt

)
≡
∫

1
{
σit(εit,xt,B

(t)
i ) ≤ a0

}
dFi(εit|xt)

EXAMPLE 5 (Continuous decision variable). Consider a dynamic game where the decision variable

ait is continuous. Suppose that the marginal profit function is additive in εit: ∆πit(ait,a−it, εit,xt) =

∆π∗it(ait,a−it,xt) − εit. In this model, the cumulative choice probability function satisfies the fol-

lowing equation:

Pit(a
0|xt) = Fi

( ∫
a−it

[
∆π∗it(a

0,a−it,xt) + ∆v
B
(t)
i

it (ait,a−it,xt)

]
B
(t)
it (a−it|xt) da−it | x

)
(22)

where ∆v
B
(t)
i

it (ait,a−it,xt) is the marginal continuation value with respect to ait. �

EXAMPLE 6 (Binary decision variable). Consider a dynamic game of market entry and exit with

ait ∈ {0, 1}. Suppose that the marginal profit function is additive in εit: ∆πit(1,a−it, εit,xt) =

∆π∗it(1,a−it,xt)−εit. In this model, the choice probability function satisfies the following equation:

Pit(0|xt) = 1− Fi

∑
a−it

[
∆π∗it(1,a−it,xt) + ∆v

B
(t)
i

it (1,a−it,xt)

]
B
(t)
it (a−it|xt) | x

 (23)
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where∆v
B
(t)
i

it (1,a−it,xt) is the marginal continuation value v
B
(t)
i

it (1,a−it,xt)−v
B
(t)
i

it (0,a−it,xt). �

In this framework, the sequence of beliefs B(t)i =
{
B
(t)
i,t+s : s ≥ 0

}
is completely unrestricted.

This framework contains as particular cases most solution concepts in dynamics games of compe-

tition with incomplete information. We present here several cases.

(a) Markov Perfect Equilibrium (MPE). This is the most commonly used solution concept in

applications of dynamic games in empirical IO. Here we consider a version of MPE that includes the

possibility of non-stationary MPE when the time horizon T is finite or/and the primitive functions

πit and fxt vary over time.

AMPE can be described asN sequences of cumulative choice probability functions —{Pit(ait|xt) :

i = 1, 2, ..., N ; t ≥ 1} —satisfying the following conditions: (i) [best responses] Pit(ait|xt) satisfies

the best response condition given beliefs B(t)i ; and (ii) [rational beliefs] beliefs B
(t)
i are equal to the

actual probability distribution of the choices of the other firms: for any t ≥ 1, s ≥ 0, a−i ∈ AN−1,

and x ∈ X ,

B
(t)
i,t+s(a−i|x) =

∏
j 6=i

∆Pj,t+s (aj |x) (24)

where ∆Pjt (aj |x) is the density probability function associated to the cumulative distribution

Pjt(aj | x).

(b) Dynamic equilibrium with Learning. Bayesian, Adaptive, or other forms of learning. All

these equilibrium concepts impose some restrictions on beliefs: both on the heterogeneity of firms’

beliefs and on the evolution of beliefs over time. They are restricted versions of this general model.

4 Identification

4.1 Data

This section presents results on the identification of beliefs in the previous general framework and

under different types of data which are common in empirical applications in IO. I distinguish three

possible scenarios for the data available to the researcher.

(a) Only firms’choice data. The researcher has a sample of M local markets, indexed by m,
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where she observes firms’actions and state variables:

Data = {aimt, xmt : i = 1, 2, ..., N ; t = 1, 2, ..., T data}

This is typically described as firms’choice data. In empirical applications of market entry models,

it is often the case that the researcher has only choice data —e.g., firms’entry/exit decision —and

there is no direct information on firms’revenues or costs.

(b) Choice data + revenue function. In addition to data on firms’choices, the researcher

may have data on some components of the profit function. In many IO applications, the researcher

observes prices and quantities and can estimate the demand system. Given the demand system,

the researcher knows the revenue function, and therefore the marginal revenue function.

(c) Choice data + revenue function + cost function. Data on firms’marginal costs is rare

but it is sometimes available (Hortaçsu and Puller, 2008; Hortaçsu et al., 2019). Marginal costs can

be also obtained from the estimation of a production function if the dataset contains information

on firms’output and inputs, and input prices.

To incorporate in our framework the data that the researcher has on the revenue or cost func-

tions, we distinguish these two components in the profit function. A firm’s profit is equal to revenue

minus cost: πi = ri − ci. Accordingly, the marginal profit is equal to the marginal revenue minus

the marginal cost: ∆πi = ∆ri − ∆ci. As explained above, this marginal revenue and marginal

cost should be interpreted in a broad sense because they depend on the particular decision variable

of the model that can be continuous —e.g., quantity, price, investment —or discrete —e.g., entry,

number of products.

For the identification analysis below, I consider that the researcher has a random sample with

infinite markets: M → ∞. This is quite standard in the literature on identification. Given this

infinite sample, the cumulative choice probability functions Pi(a0|x0) are identify at every value

(a0,x0) in the support A×X and for every firm i. More precisely, we have that

Pi(a
0|x0) = E

(
1
{
aim ≤ a0

}
| xm = x0

)
(25)

and the expectation E
(
1
{
aim ≤ a0

}
| xm = x0

)
is identified from our sample. For the rest of this

section, I treat Pi as a known function.
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4.2 The identification problem

Consider the static game in section 3.1. Proposition 1 establishes that, for any a0 ∈ A:

Pi(a
0|x) = Fi

(
e∗i (a

0,x, Bi) | x
)

(26)

where e∗i (a
0,x, Bi) is the function that results from solving for εi in equation ∆πei (a

0, εi, x;Bi) = 0.

For notational simplicity, I concentrate in the case where the private information εi enters additively

in the marginal profit:

∆πi(ai,a−i, εi,x) = ∆ri(ai,a−i,x)−∆ci(ai,a−i,x)− εi (27)

Under this condition, we have that function e∗i (a
0,x, Bi) is equal to the expected marginal profit:

e∗i (a
0,x, Bi) =

∫
[∆ri(ai,a−i,x) − ∆ci(ai,a−i,x)] Bi(a−i|x) da−i. Therefore, the best response

conditions of the model can be written as:

Pi(a
0|x) = Fi

(
∆rei (a

0,x, Bi)−∆cei (a
0,x, Bi) | x

)
(28)

where ∆rei (a
0,x, Bi) ≡

∫
∆ri(ai,a−i,x) Bi(a−i|x) da−i and ∆cei (a

0,x, Bi) ≡
∫

∆ci(ai,a−i,x)

Bi(a−i|x) da−i are the (subjective) expected marginal revenue and expected marginal cost, re-

spectively.

Here we are particularly interested in the identification of the belief functions {Bi(a−i|x)}. I

consider identification results that do not rely on parametric assumptions, neither on beliefs nor

on the marginal revenue and cost functions, or the distributions of the private information, Fi.

Equation (28) summarizes all the restrictions that the model imposes on the distribution func-

tion Pi. The left-hand-side of this equation — the distribution Pi — is known to the researcher.

The right-hand-side depends on the model primitives —the structural functions Fi, ∆ri, and ∆ci

—and on beliefs Bi. The identification problem consists in obtaining firms’beliefs, marginal rev-

enue, marginal cost, and the distribution of private information given the available data and the

restrictions in (28).

It is clear that the model is strongly under-identified. While the number of restrictions —the

dimension of the distribution Pi —is |A|N−1 |X |, we have that only the dimension of the beliefs

function Bi is |A|N−1 |X | which is obviously larger than |A| |X |. When Fi, ∆ri, and ∆ci are

unknown to the researcher, the under-identification is stronger. Despite the under-identification

of the model, I show below that it possible to identify a function that only depends of beliefs.

The identification of this "beliefs object" can be used to test the validity of different equilibrium

concepts and restrictions on beliefs.
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For the sake of simplicity, I first illustrate the identification results in a simple model of competi-

tion: a binary choice game with two firms. Furthermore, I assume that the probability distribution

Fi is known to the researcher. Then, in section 4.4, I extend the identification results to: (i) more

than two players; (ii) multinomial and continuous choice models; (iii) nonparametric specification

Fi; and (iv) dynamic games.

4.3 Two-firms binary choice game

Consider a binary choice game of price competition between two firms: ai = 0 represents the

choice of the low price (promotion price) and ai = 1 represents the choice of high price (regular

price). Let qi = di(ai, a−i,x) be the demand function for the product of firm i —i.e., quantity as a

function of prices; and let Ci(qi,x) be the cost of a firm as a function of its own output. Therefore,

using our notation, the revenue function is ri(ai, a−i,x) = ai di(ai, a−i,x), and the cost function is

ri(ai, a−i,x) = Ci(di(ai, a−i,x),x).2

Let Pi(0|x) —or in short Pi(x) —be the probability that firm i chooses the low price. And let

Bi(0|x) —or in short Bi(x) —be this firm’s belief about the probability that the competitor chooses

the low price. The marginal profit function is ∆πi(a−i,x) ≡ πi(1, a−i,x) − πi(0, a−i,x), that is,

the difference between the profit with high price and with low price. Marginal profit is equal to

marginal revenue minus marginal cost: ∆πi(a−i,x) = ∆ri(a−i,x)−∆ci(a−i,x).

The model can be described in terms of the best response equation:

Pi(x) = Fi (∆πi(0,x) +Bi(x) [∆πi(1,x)−∆πi(0,x)]) (29)

Define the quantile function Qi(x) ≡ F−1i (Pi(x)). Under the assumption that the distribution of

the private information, Fi, is known to the researcher, the quantile function Qi(x) is also known,

and we can represent the restrictions of the model using the following equation:

Qi(x) = ∆πi(0,x) +Bi(x) [∆πi(1,x)−∆πi(0,x)] (30)

Given that Qi(x) is known, we are interested in the identification of marginal profits ∆πi(0,x)

and ∆πi(1,x), and the beliefs function Bi(x). We are particularly interested in the identification

of the beliefs function Bi(x), or at least on the identification of an object or parameter that only

depends on this belief function.

2Even if a firm’s cost depends only on its own output, the cost as a function of prices depends both on the own
price and competitors’prices. This is simply because the quantity produced and sold by a firm depends on all the
prices. In contrast, in a Cournot game where ai represents a firm’s output, the cost function ci(ai, a−i,x) does not
depend on a−i.
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Without further restrictions, it is clear that the model is under-identified. More specifically, the

order condition for identification does not hold: for each value of x, there is only one restriction —

i.e., one value of Qi(x) —but three unknowns, ∆πi(0,x), ∆πi(1,x), and Bi(x). I now describe how

it is possible to make some progress on identification.

4.3.1 Identification with revenue and cost data

Suppose that researcher knows the revenue function and the cost function. For instance, the

dataset includes information on prices and quantities of inputs and outputs —as well as exogenous

variables —that can be used to identify demand and cost functions. This implies that the marginal

profits ∆πi(0,x) and ∆πi(1,x) are known to the researcher. Therefore, under the condition that

∆πi(1,x)−∆πi(0,x) 6= 0, the beliefs function is fully identified:

Bi(x) =
Qi(x)−∆πi(0,x)

∆πi(1,x)−∆πi(0,x)
(31)

The identification condition ∆πi(1,x)−∆πi(0,x) 6= 0 is quite intuitive: a firm’s observed behavior

reveals information about the firm’s beliefs only if beliefs have an effect on behavior, and this is

the case only if other firms’actions affect the firm’s profit, i.e., only if ∆πi(1,x)−∆πi(0,x) 6= 0.

Given the identification of firms’beliefs, the researcher can test the validity of different types

of restrictions on beliefs.

(a) Testing for unbiased beliefs. We say that firm i has unbiased beliefs about the behavior of the

other firm if Bi(x) − P−i(x) = 0 for every value of x. Given the identification of Bi(x) and that

P−i(x) is known to the researcher, we can test the null hypothesis of a firm’s unbiased beliefs.

(b) Testing for BNE. The concept of BNE imposes the restrictions that all the firms play best

responses and have unbiased beliefs. Therefore, given the identification of firms’belief functions

B1(x) and B2(x) —which come from the best response equations —testing the null hypothesis of

BNE is equivalent to test the joint restrictions B1(x)−P2(x) = 0 and B2(x)−P1(x) = 0 for every

value of x.

(c) Testing for Rationalizabilitty. Given that the researcher knows the profit functions, she can

construct the set of rationalizable beliefs, and then test if the identified beliefs —B1(x) and B2(x)

—belong to this set. To construct the set of rationalizable beliefs we can use a simple iterative

procedure as in Aradillas-Lopez and Tamer (2008). This iterative procedure exploits the property
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that the best response probability function Fi(∆πi(0,x)+ Bi(x) [∆πi(1,x) −∆πi(0,x)]) is strictly

monotonic in the beliefs function Bi(x). Suppose that ∆πi(1,x)−∆πi(0,x) > 0 such that in this

game of price competition there is strategic complementarity between the prices of the two firms.

At iteration k, the set of level-k rationalizable beliefs for firm 1 is [L
(k)
1 (x), U (1)1 (x)] with

L
(k)
1 (x) = F2(∆π2(0,x) + L

(k−1)
2 (x) [∆π2(1,x)−∆π2(0,x)])

U
(k)
1 (x) = F2(∆π2(0,x) + U

(k−1)
2 (x) [∆π2(1,x)−∆π2(0,x)])

(32)

And we have the symmetric expression for the set of level-k rationalizable beliefs for firm 2.

4.3.2 Identification with revenue but not cost data

Suppose that the researcher has data that identifies the demand system and therefore the revenue

function ri(ai, a−i,x). The cost function is unknown. We have the best response equation:

Qi(x) = ∆ri(0,x)−∆ci(0,x) +Bi(x) [∆ri(1,x)−∆ri(0,x) + ∆ci(1,x)−∆ci(0,x)] (33)

where Qi(x), ∆ri(0,x), and ∆ri(1,x) are known, and Bi(x), ∆ci(1,x), and ∆ci(0,x) are unknown.

It is clear that this restriction cannot identify beliefs and cost functions. For any possible value of

Bi(x), there exists a value of ∆ci(1,x)−∆ci(0,x) such that the best response equation holds.

This identification problem is closely related to the identification of collusion — or for that

matter, any form of competition —when the researcher does not have information on marginal

costs (Breshnahan, 1982). Almost any observed behavior can be justified as one with "non-collusive

beliefs" if we select the appropriate marginal cost function.

Firms’beliefs and conjectural variations In an influential paper, Breshnahan (1982) studies

the identification of the form (or nature) of competition in a model with complete information. In

a complete information game, the nature of competition can be described as a conjectural variation

(CV) parameter. This CV parameter has similarities with our beliefs function, but there are also

substantial differences between them. Our beliefs function is an endogenous object that varies

with all the exogenous characteristics in the vector x affecting demand and costs. CV parameters

are typically interpreted as exogenously given and do not vary when demand or costs change.

As I explain below, this has important implications of the identification of beliefs relative to the

identification of CV parameters.

The best response equation in Bresnahan (1982) is similar as equation (33) but replacing the

beliefs function Bi(x) with a parameter CVi that is assumed invariant with x. After the identi-

fication of demand equation and the marginal revenue function, Bresnahan proposes an exclusion
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restriction that implies the identification of the parameter CVi. I first describe this identification

result using our notation, and then I show this assumption cannot provide identification of beliefs

in our model.

Suppose that the vector of exogenous variables x has two components (x̃, z) where z is a

variable that satisfies two conditions: (i) it affects the marginal revenue function, or more precisely

the function ∆ri(1,x)−∆ri(0,x) —it "rotates" the demand curve; and (ii) it does not enter in the

marginal cost function.

Consider the best response equation (33) but where the beliefs function Bi(x) is replaced with

the parameter CVi. Let z1 and z2 be two different values of the special variable that "rotates" the

demand curve. Consider the best response equation evaluated at two different points, (x̃, z1) and

(x̃, z2), and obtain the difference between these two equations. We get:

Qi(x̃, z
1)−Qi(x̃, z2) = ∆ri(0, x̃, z

1)−∆ri(0, x̃, z
2)

+ CVi
[
∆ri(1, x̃, z

1)−∆ri(0, x̃, z
1)−∆ri(1, x̃, z

2) + ∆ri(0, x̃, z
2)
]
(34)

Everything in this equation except parameter CVi is known to the researcher. Furthermore,

the identification assumption (ii) above implies that ∆ri(1, x̃, z
1) −∆ri(0, x̃, z

1) −∆ri(1, x̃, z
2) +

∆ri(0, x̃, z
2) is different to zero. Therefore, we can solve for CVi to identify this parameter.

However, this exclusion restriction does not work for the identification of beliefs. In general, the

beliefs function Bi(x) depends on all the exogenous variables affecting demand or costs. Therefore,

under the identification assumptions (i) and (ii) above, we have that right-hand-side of equation

(34) becomes:

∆ri(0, x̃, z
1)−∆ri(0, x̃, z

2) +
[
Bi(x̃, z

1)−Bi(x̃, z2)
]

[∆ci(1, x̃)−∆ci(0, x̃)]

+Bi(x̃, z
1)
[
∆ri(1, x̃, z

1)−∆ri(0, x̃, z
1)
]
−Bi(x̃, z2)

[
∆ri(1, x̃, z

2)−∆ri(0, x̃, z
2)
] (35)

This expression depends both on beliefs and costs and it cannot be used to separately identify one

from the other.

An identifying restriction Suppose that the vector x contains a firm-specific variable that

affects the marginal cost of a firm but not the marginal cost of its competitors. For instance, input

prices —wages, prices of intermediate inputs —can have firm specific variation because long-term

contracts, bargaining, internal labor markets, etc. Formally, the vector x has three components

(x̃, zi, z−i) where x̃ can affect the marginal revenue and marginal costs of the two firms in an

unrestricted way, and the variables zi and z−i satisfy the following conditions.
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(A) Firms’marginal revenues do not depend on (zi, z−i): ∆ri(a−i,x) = ∆ri(a−i, x̃).

(B) The marginal cost of firm i depends on zi but not on z−i: ∆ci(a−i,x) =

∆ci(a−i, x̃, zi).

Under conditions (A) and (B), there is identification of an object that depends only on beliefs.

The term Qi(x̃, zi, z
1
−i) −Qi(x̃, zi, z1−i) captures the change in the behavior of firm i when z−i

changes from z1−i to z
2
−i: that is, the change in the probability that firm i charges a low price when

the competitor’s wage rate changes. Since variable z−i does not affect firm i’s marginal revenue

or marginal cost, it is clear that the change the observed change in the pricing behavior in firm

i should be because a change in its beliefs. It turns out that this shift identifies a function that

depends only on beliefs.

The difference between the best-response equation at points (x̃, zi, z
1
−i) and (x̃, zi, z

2
−i) is:

Qi(x̃, zi, z
1
−i)−Qi(x̃, zi, z2−i) =

[
Bi(x̃, zi, z

1
−i)−Bi(x̃, zi, z2−i)

]
[∆πi(1, x̃, zi)−∆πi(0, x̃, zi)] (36)

This difference is not suffi cient to identify the beliefs parameter Bi(x̃, zi, z1−i) − Bi(x̃, zi, z
2
−i).

The reason, is that ∆πi(1, x̃, zi) − ∆πi(0, x̃, zi) depends on unknown marginal costs through the

term ∆ci(1, x̃, zi) − ∆ci(0, x̃, zi). However, we can also obtain the difference between the best-

response equation at points (x̃, zi, z
1
−i) and (x̃, zi, z

3
−i) to get:

Qi(x̃, zi, z
1
−i)−Qi(x̃, zi, z3−i) =

[
Bi(x̃, zi, z

1
−i)−Bi(x̃, zi, z3−i)

]
[∆πi(1, x̃, zi)−∆πi(0, x̃, zi)] (37)

Note that the term ∆πi(1, x̃, zi)−∆πi(0, x̃, zi) is common between these equations. Therefore, we

can cancel this unknown common term by obtaining the ratio between these two equations, and

identify the following beliefs parameter:

Bi(x̃, zi, z
1
−i)−Bi(x̃, zi, z2−i)

Bi(x̃, zi, z1−i)−Bi(x̃, zi, z3−i)
=
Qi(x̃, zi, z

1
−i)−Qi(x̃, zi, z2−i)

Qi(x̃, zi, z1−i)−Qi(x̃, zi, z3−i)
(38)

Equation (38) shows that the observed variation in the pricing behavior of firm i —when the

competitor’s input prices change —reveals information about this firm’s beliefs. We can separate

beliefs from the primitives in the profit function.

In some models, the cost function of a firm does not depend on the action of other firms. For

instance, this is the case in Cournot models of quantity competition or in the entry games because, in

these models, the cost function ci is a "pure" cost function and not the composition of the true cost

function and the demand function. In these models, we have that ∆ci(1, x̃, zi)−∆ci(0, x̃, zi) = 0
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such that ∆πi(1, x̃, zi) − ∆πi(0, x̃, zi) = ∆ri(1, x̃) − ∆ri(0, x̃) that is known to the researcher.

Therefore, we can identify the following beliefs parameter:

Bi(x̃, zi, z
1
−i)−Bi(x̃, zi, z2−i) =

Qi(x̃, zi, z
1
−i)−Qi(x̃, zi, z2−i)

∆ri(1, x̃)−∆ri(0, x̃)
(39)

Given the identification of these beliefs objects, we can implement tests for the null hypotheses

of unbiased beliefs and BNE in a similar way as I have described above at the end of section 4.3.1.

Define the following functions: qi(x̃, zi, z1−i, z
2
−i, z

3
−i) ≡ [Qi(x̃, zi, z

1
−i)−Qi(x̃, zi, z2−i)]/ [Qi(x̃, zi, z

1
−i)

−Qi(x̃, zi, z3−i)]; and p−i(x̃, zi, z1−i, z2−i, z3−i) ≡ [P−i(x̃, zi, z1−i)−P−i(x̃, zi, z2−i)]/ [P−i(x̃, zi, z1−i)−P−i(x̃, zi, z3−i)].

To shorten the notation, we use qi and p−i, respectively, to represent these functions.

(a) Testing for unbiased beliefs. We can test the null hypothesis of firm i’s unbiased beliefs by

testing the restrictions: qi −p−i.

(b) Testing for BNE. We can test the null hypothesis of BNE by testing the restrictions: q1− p2 =

0 and q2 − p1 = 0.

4.3.3 Identification using only firms’choice data

The previous exclusion restriction can be applied to the identification of beliefs also when the

researcher has not identified the revenue function. Now, we need that the variable that shifts the

marginal cost of the competitor has at least three points of support. We can derive equation (38)

exactly in the same way as described above. Similarly, we can use the identified beliefs parameters

to test the null hypotheses of unbiased beliefs and BNE.

4.4 Extensions

4.4.1 Identification of beliefs with nonparametric distribution of private information

When the decision variable ai is continuous or discrete but ordered variable with more than two

values, it is possible to obtain identification of a function of beliefs that does not depend on the

assumption that the distribution Fi is known to the researcher.

Remember that the general model can be described in terms of the following restrictions: for

any value a0 > 0:

F−1i
[
Pr(ai ≥ a0 | x)

]
= rBii (a0,x)− ci(a0,x) (40)
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Let z1−i and z
2
−i be two values for the shifter of the opponent’s marginal cost. Suppose that there

are two values for the price ai, say a1 and a2 such that:

Pr(ai ≥ a1 | w, zi, z1−i) = Pr(ai ≥ a2 | w, zi, z2−i) (41)

**** EXPLAIN THE CONDITIONS UNDER WHICH THESE VALUES a1 and a2 ALWAYS

EXIST ***

This implies that F−1i
[
Pr(ai ≥ a1 | w, zi, z1−i)

]
= F−1i

[
Pr(ai ≥ a2 | w, zi, z2−i)

]
. Therefore, we

can take the difference between the best responses for Pr(ai ≥ a1 | w, zi, z1−i) and for Pr(ai ≥ a2

| w, zi, z2−i) and obtain an expression that does not depend on the distribution of the private

information.

rBii (a1,w, zi, z
1
−i)− rBii (a2,w, zi, z

2
−i)− ci(a1, zi) + ci(a

2, zi) = 0 (42)

Or,
ri(a

1
i , 0,w) +

∑
a−i>0

Bi(a−i|x1)
[
ri(a

1, a−i,w)− ri(a1, 0,w)
]
− ci(a1, zi)

= ri(a
2, 0,w) +

∑
a−i>0

Bi(a−i|x2)
[
ri(a

2, a−i,w)− ri(a2, 0,w)
]
− ci(a2, zi)

*** EXPLAIN DOUBLE DIFFERENCE: ....

4.4.2 More than two players

Let’s continue with the binary choice game, but now consider that there are N > 2 firms. The best

response function can be written as:

Qi(x) = ri(0,x) +
∑
a−i 6=0

Bi(a−i | x) [ri(a−i,x)− ri(0,x)]− ci(x)

For instance, with N = 3 players:

Qi(x) = −ci(x) + ri([0, 0],x) +Bi([0, 1] | x) [ri([0, 1],x)− ri([0, 0],x)]

+ Bi([1, 0] | x) [ri([1, 0],x)− ri([0, 0],x)] +Bi([1, 1] | x) [ri([1, 1],x)− ri([0, 0],x)]

Even if the researcher knows the marginal revenue function and the cost function, there may be

infinite values of Bi([0, 0] | x), Bi([0, 1] | x), and Bi([1, 1] | x) that can rationalize the observed

behavior Qi(x).

However, the exclusion restriction of a firm-specific cost shifter still implies identification of

beliefs even when the cost function or the revenue function are not known to the researcher. The

identification result that is simpler to describe is the one the cost function is not known but the

revenue function is known. The space of the possible actions a−i 6= 0 has 2N − 1 values. Consider

2N − 1 different values for z−i, this is feasible even in the cost shifter of each firm can take only
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two values. Let’s consider the system of best response functions associated with this 2N − 1 values.

In vector form:

Qi(w, zi, .)−Qi(w, zi, z1−i) = diag {[ri(.,w)− ri(0,w)]}
[
Bi(. | w, zi, .)−Bi(. | w, zi, z1−i)

]
and this implies that Bi(. | w, zi, .) is identified as:

Bi(. | w, zi, .)−Bi(. | w, zi, z1−i) = diag {[ri(.,w)− ri(0,w)]}−1
[
Qi(w, zi, .)−Qi(w, zi, z1−i)

]
Therefore, the exclusion restriction provides identification of beliefsBi(. |w, zi, .)−Bi(. |w, zi, z1−i).

Without knowledge of the revenue function, it is possible to show identification of [Bi(. |

w, zi, .)−Bi(. | w, zi, z1i )] [Bi(. | w, zi, .)−Bi(. | w, zi, z2i )]−1.

4.4.3 Dynamic game

We have:

Qit(xt) = rit(0,xt)− cit(xt) + ∆V
B
(t)
i,t+1

it (0,xt)

+ B
(t)
it (xt)

[
rit(1,xt)− rit(0,xt) + ∆V

B
(t)
i,t+1

it (1,xt)−∆V
B
(t)
i,t+1

it (0,xt)

]
A firm-specific cost shifter that provides identification of beliefs in the dynamic game is one

that does not enter in the continuation value.

Fortunately, this type of cost shifter often appears in dynamic games of oligopoly competition:

the decision variable at previous period (t-1) in a model with adjustment costs.

For instance, in the model of price competition, suppose that there is cost of changing the price.

A menu cost or a price adjustment cost. This implies that a firm’s price at period t-1 affects its

marginal cost at period t. However, given the price at period t, the price at t-1 does not have

any effect on the continuation value. Therefore, we can use variation in the lagged price of the

competitors(s) to differentiate out the continuation value, as well as the own cost function, and

revenue function, and identify beliefs.

Let xt = (wt, zit, z−it) with the same properties as above, and the additional properties that

the continuation values do not depend on (zit, z−it). Remember that the cost function may depend

on different variables which are not this cost shifter. The key condition is that the competitor’s

cost shifter does not affect the firm’s own marginal revenue, marginal cost, and continuation value.

Let z1−i, z
2
−i, and z

2
−i be three different values of this shifter. Then, we have that:

B
(t)
it (w, zi, z

2
−i)−B

(t)
it (w, zi, z

1
−i)

B
(t)
it (w, zi, z3−i)−B

(t)
it (w, zi, z1−i)

=
Qit(w, zi, z

2
−i)−Qit(w, zi, z1−i)

Qit(w, zi, z3−i)−Qit(w, zi, z1−i)
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Note that we can identify the sequence of over the sample period of beliefs at period t about the

opponents’contemporaneous behavior at period t. We cannot identify beliefs about the opponent’s

behavior in the future. However, identification of the evolution of these contemporaneous beliefs is

enough for testing almost any model of learning and beliefs formation.

5 Conclusions

TBW
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