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Abstract

Little is known about the long run effects of the widely adopted ride hailing trans-
portation services such as Uber on our cities. This paper examines the long run gen-
eral equilibrium effects of this new type of transportation service on public transit
usage, traffic congestion, urban sprawl, and the environment using a spatial general
equilibrium simulation model of a monocentric city with multiple transport modes.
Households optimally choose a commuting mode to work: walking, taking public tran-
sit, driving, carpooling, taking Uber, or taking Uber to the nearby transit station to
take public transit. The simulation results show that the adoption of Uber reduces
traffic congestion, prevents urban sprawl, and lowers energy consumption and carbon
emissions. Its effects on the public transit usage depend on the quality of the existing
transit system. It complements public transit usage under a high quality transit sys-
tem while serves as a substitute under a low quality system. In addition, public transit
expansion has little effects on traffic congestion and the environment regardless of the
entry of Uber. Finally, the regulation imposed on Uber reduces its usage and makes it
less effective at complementing public transit and improving the environment.
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1 Introduction

Transportation services offered through online platforms and apps have attained immense

popularity across the world. It is predicted that the ride hailing services market will grow at

a compound annual growth rate of almost 19% by 2023.1 36% of U.S. adults have used a ride-

hailing service such as Uber or Lyft according to a survey conducted in 2018 by Pew Research

center. The increased reliance on these services will likely have important consequences for

urban development. How do ride hailing services affect traffic congestion, public transit, and

carbon emissions? Should cities impose regulations on ride hailing industries? These are the

relevant policy questions facing cities worldwide.

This paper estimates the long run general equilibrium effects of ride hailing services

on public transit, traffic congestion, and the environment. There is mixed evidence in the

literature on the effects of ride hailing services on public transit. Compared to public transit

with fixed routes and fixed time schedules, ride hailing services provide more flexibility with

regards to the commuting time and choice of route. Commuters use the ride booking apps to

specify the pick up location and destination at any time and then the apps match the rider

with an available nearby driver. The mobile applications are user-friendly and consumers are

able to easily book rides using mobile devices. The door-to-door service offered through ride

hailing industry could reduce public transit ridership by attracting commuters away from

public transit. Clewlow and Mishra (2017) find ride hailing reduces bus usage by 6% and

light rail transit usage by 3%. However, the flexibility and reliability of ride hailing services

could help overcome the first/last mile problem for public transit users by taking commuters

to the nearest transit station. Feigon and Murphy (2016) find ride hailing transportation

services complement public transit and increase urban mobility. Hall et al. (2018) find Uber

is a complement for public transit and increases public transit ridership by 5% after two

years by exploring the variation in Uber penetration and the timing of Uber entry across

different metro areas.

Similarly, there is little evidence in the literature on the effects of ride hailing services

on traffic congestion. Compared to driving, ride hailing services save riders’ the trouble of

finding parking because customers will be dropped off at the destination. Potentially, the

prevalence of ride hailing services could eliminate the need to own a car and to pay associated

parking costs. Li et al. (2016) show that Uber reduces traffic congestion and Feigon and

Murphy (2018) find that ride hailing services are associated with lower vehicle ownership

1See https://www.businesswire.com/news/home/20181212005667/en/Global-Ride-Hailing-Services-
Market-2019-2023-19
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and reduced solo driving. However, Henao and Marshall (2018) show that ride hailing leads

to approximately an 83.5% increase in vehicle miles traveled (VMT) and increased traffic

congestion.

The effects of ride-hailing services on energy consumption and carbon emissions are not

yet well understood. Overall, our knowledge and understanding of the effects of ride hailing

transportation services on cities is limited. This paper aims to broaden our understanding

of the long run effects of ride hailing services on public transit, traffic congestions, and the

environment. It is important to study the long run general equilibrium effects because it

takes time for ride hailing industry to fully penetrate the market. In the long run, the change

in the commuting cost caused by ride hailing services creates incentives for households to

relocate within the city. In equilibrium, the change in households’ mode choice and location

leads to the change in housing price, structure density, and city size. The current empirical

research with limited data from the ride hailing industry only provides a short term partial

equilibrium estimates of the ride hailing services. Furthermore, this paper offers new insights

regarding the long run effects of ride hailing service on urban sprawl, housing price, and

structure density that have not been addressed in the literature before. The long run general

equilibrium findings help to inform discussions about regulations on the ride hailing industry.

Due to the lack of data on ride hailing firms and the self-selection issues in survey data,

it is difficult to explore the long run effects of ride hailing services empirically. Alternatively,

this paper adopts the numerical simulation approach to investigate the long run general

equilibrium effects of ride hailing services on cities. The model structure in this paper is an

extension of the standard monocentric city model of Alonso (1964), Mills (1967), and Muth

(1969). More specifically, the current model framework is based on Larson et al. (2012),

which extends the monocentric city model to incorporate endogeneous traffic congestion,

energy use, and carbon emissions. The monocentric city model has been generalized and

used extensively to study different policies and new transportation technologies that affect

transportation costs, land use, and energy use.2 This model assumes that all employment

is located at the Central Business District (CBD). Households with identical preference

commute to the CBD via car for work. There is no public transit. Housing structure is not

durable. The static nature of the model enables a long term interpretation of the results

because it generates outcomes in the new equilibrium state after a policy change or a new

technology innovation. Overall, it provides an ideal framework to model and predict the

2See Larson and Zhao (2019), Larson and Zhao (2017), Rappaport (2016), Borck and Brueckner
(2018),Bertaud and Brueckner (2005), Wheaton (1998).
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long run general equilibrium effects of ride hailing services.

To address the effects of ride hailing services on public transit, the current model extends

the monocentric city model to include public transit and different travel modes. The simulta-

neous choice of residential location and travel modes has been explored by previous literature

such as Arnott and MacKinnon (1977), Anas and Moses (1979), LeRoy and Sonstelie (1983),

Sasaki (1989), and Sasaki (1990), and Xu et al. (2018). However, the previous models ignore

the spatial variation with the distance to transit lines and focus on bi-modal transportation

choice. The commuting cost for public transit or bus is solely based on the distance to the

CBD without taking into account that a fraction of workers do not live within the walking

distance to the public transit. The current model adds remarkably more realistic details.

The public transit system comprises identical transit lines that are evenly spaced across the

city. Before the entry of the ride hailing industry, households choose among different com-

muting modes to work: walking, taking public transit, driving, and carpooling. The entry of

ride railing industry increases households’ commuting options. It enables households to use

ride hailing services directly to work or to the nearest transit station to take public transit.

Households’ locations are based on the distance to the CBD as well as the public transit.

Commuting costs are determined by endogenous traffic congestion, mode choice, and the

distance to the CBD and transit lines. These extensions attempt to lay out a more realistic

spatial structure of the city with sufficient details by introducing multiple commuting modes

and the spatial variation based on the distance to transit lines.

Given the complexity of the model, it is impossible to derive analytic solutions. Therefore,

the model is first calibrated to Chicago before the entry of Uber. This paper uses Uber

because it is the prototypical ride hailing service. It is assumed that the cost structure of ride

hailing services follows Uber’s fare structure. Parameters in the model are either borrowed

from the literature or calibrated based on Chicago’s characteristics. Then the model is solved

numerically to achieve spatial equilibrium. Different parameters are altered to produce

different counterfactual experiments. In the first counterfactual, the increase in commuting

options due to the entry of Uber is simulated to study the long run general equilibrium

effects of Uber. The second and third counterfactures are conducted to study the effects of

Uber under different qualities of public transit systems. In the fourth counterfactual, the

number of public transit lines is increased to study whether the public transit expansion is

more beneficial with Uber. Lastly, the regulation imposed to restrict ride hailing market

is simulated to study the consequences of regulations. This numerical simulation approach

enables counter-factual experimentation and is able to generate rich insights that are difficult
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to test empirically.

The simulation results show that Uber is a complement to the public transit system under

the simulated Chicago transit system. Although trips made by walking to work and walking

to public transit stations are reduced after the introduction of Uber, public transit usage

increases because 24.1% of workers start to take Uber to public transit. Uber increases public

transit usage from 12.4% to 28.3%. This finding is consistent with Hall et al. (2018), who find

that Uber increases ridership by 5% after two years. The magnitude of the complementary

effect is larger in this paper because in the long run, the full penetration of Uber leads to a

more significant effect on public transit. By attracting workers away from solo driving, Uber

reduces highway traffic congestion. The reduction in traffic congestion creates incentives

for households to live further away from the CBD. However, because Uber makes public

transit more accessible and attractive, more households choose to live closer to the CBD

and public transit, which leads to the contraction of the city. The net effect is Uber reduces

urban sprawl and increases population density. This result is consistent with the findings in

Sasaki (1989) and Sasaki (1990), where a city with multiple travel modes may experience

contraction as a result of an improvement of the transportation system. This paper also

finds that Uber reduces energy consumption and carbon emissions due to the increase in

public transit usage and structure density.

However, under a low quality transit system, Uber serves as a substitute to the pub-

lic transit system and increases energy consumption and carbon emissions. Although it

improves public transit’s accessibility, a low quality transit system remains too costly to

attract more riders. Uber becomes a more appealing alternative commuting option and 10%

of the population start to take it directly to work. In addition, the public transit expansion

by adding another new transit line has little effect on traffic congestion and the environment

both before and after the entry of Uber. The regulation limiting Uber’s operation leads to

higher fares, which reduces its usage. As a result, Uber becomes less effective at increasing

public transit usage and reducing energy consumption and carbon emissions.

The remainder of the paper is organized as follows. Section 2 describes the theoretical

framework and solution method in detail. Section 3 discusses the parameter calibration and

the simulation of the baseline model. Section 4 presents the simulation results of several

counterfactual scenarios. Section 5 concludes the paper.
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2 Model Structure

The baseline model produces solutions that represent a present-day city before ride railing

services are introduced. The model sets an exogenous wage rate and a fixed population size.

Utility is endogenous and allowed to vary under different policy scenarios. This is referred to

as a closed city model in the literature because no migration occurs between cities. The valid-

ity of the closed city assumption is based on the fact that Uber has been popular nationwide

and its introduction everywhere should not provide a stimulus for intercity migration.

2.1 Theoretical Framework

The city is monocentric and lies on a featureless plane without geological constraints and

housing regulations. It is assumed that the land is owned by absentee landlords. Firms are

located in the CBD and pay the same wage rate to identical workers. Workers, who commute

to the CBD to work every day, reside in the residential district between the CBD edge and

city boundary. The city boundary is determined by the reservation agricultural land rent.

Households’ location is characterized by the distance to the CBD and the nearby transit

stations. Land and housing prices vary across locations so that in equilibrium, households

are indifferent across all locations within the city. Housing producers use land and structure

inputs to maximize profit and receive zero economic profit at every location inside the city.

2.1.1 The Central Business District

All employment are concentrated in the CBD. Because this is a closed city model, total

employment in the CBD is unchanged and hence the size and extent of this area is constant

across simulations. For simplicity, this paper does not model the land market at the CBD and

the potential effects of ride hailing transportation services on parking and the formation of

employment sub centers. These simplified assumptions are necessary to facilitate simulation

analysis.

2.1.2 Land Use

Urban land use is divided among highways, residential streets, residential housing, and other

uses (public transit, park, school, etc.). It is assumed that a constant fraction θR of land

area is allocated to highway, θs of land area is allocated to residential streets, a fixed fraction

θ of land allocated for housing, and the remaining share (1 − θR − θs − θ) of land area
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devoted to other uses. The road system consists of radial highways and residential streets

arced along the circumference at each radius. The radial highway lines are identical and

evenly spaced. The length of residential streets is determined by each radius. The city

will expand until the residential sector is unable to outbid the agriculture sector. At the

city boundary k̄, residential land price pL(k̄) is equal to agricultural land price paL. These

exogenous assumptions on land use do not take into account the potential effects of ride

hailing industry on land use allocation, although in the long run, ride hailing services could

potentially reduce parking usage in the CBD and residential areas.

2.1.3 Housing Production

Housing H(k, j) at distance k from the CBD and distance j from the public transit, is

produced using structure S and land L as inputs under a constant returns to scale technology.

The production function takes a constant elasticity of substitution (CES) function form with

an elasticity of substitution equal to 1/(1− ρ).

H(k, j) = A [α1S(k, j)ρ + α2L(k, j)ρ]1/ρ , (1)

where H is housing production, S is structure inputs that are perfectly elastically supplied,

and L is land inputs.

Housing developers choose optimal structure and land inputs given structure price ps

and residential land price pL(k, j). Structure price is assumed exogenous and residential

land price is determined endogenously in equilibrium.

2.1.4 Households

Homogeneous households consume housing and a composite commodity to maximize the

CES utility function:

U = [β1y
η + β2h

η]1/η , (2)

where h is housing consumption, y represents numeraire good consumption, β1 and β2 are

consumption share parameters, and 1/(1−η) represents the constant elasticity of substitution

between housing and the numeraire good.

For households living at distance k from the CBD and distance j from the public transit,

income, W , is spent on the numeraire good, y(k, j), housing, h(k, j), and transportation,
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T (k, j). Housing expenditure depends on housing rental price r(k, j) and housing size h(k, j).

W = y(k, j) + r(k, j)h(k, j) + T (k, j). (3)

Households’ utility is identical at each distance, k, from the the CBD edge, and j from the

public transit.

The caveat of the homogeneous assumption imposed on households is that it fails to cap-

ture the heterogeneous effects of ride hailing transportation services across different income

groups. The survey results from Clewlow and Mishra (2017) show that affluent American

are more likely to adopt ride hailing services than lower income population.

2.1.5 Transportation Technology

Workers choose from different transportation modes to commute to work including walking,

public transit, driving, and carpooling. These four means of transportation are the main

commuting modes. According to the American Community Survey in 2010, 93.8% of U.S.

population commute through these four modes. Workers optimally choose one mode to

minimize transportation cost.

For households living at distance k from the CBD and distance j from the public transit

station, the transportation cost for walking is

Twalk(k, j) = τw ·W · (k/Vwalk), (4)

where the time cost of walking is a fraction τw of the wage rate, W . The speed of walking is

set at a constant pace Vwalk.

For workers who commute to the CBD via automobile, the annual transportation cost

only depends on the distance to the CBD. It includes the following: fixed costs of owning and

operating an automobile m0 (e.g. insurance, licensing), parking fee at the CBD parkingCBD,

costs proportional to distance traveled (e.g. vehicle depreciation, maintenance) m1, gasoline

costs, and time cost of commuting. The gasoline cost is determined by the fuel efficiency

of the car G and the price per gallon pg. The gasoline consumption per mile G−1 depends

on vehicle velocity, V . The velocity at each distance k is determined jointly by the number

of commuters and road capacity. The time-cost of commuting depends on the value of

time as a fraction, τ , of the wage rate, W and the travel time
∫ k
kCBD

1
V (κ)

dκ, where kCBD

represents the edge of the CBD. The highway network is assumed to be dense and next to

households’ location. This eliminates the need to model households’ commuting from home
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to the highway. In addition, to simplify, the model assumes parking is next to the office and

thus does not take into account the commuting from parking to the office. Taken together,

the total commuting cost is given by:

Tdrive(k, j) = m0 + parkingCBD +

[
m1k + pg

∫ k

kCBD

1

G(V (κ))
dκ+ τW

∫ k

kCBD

1

V (κ)
dκ

]
. (5)

Both fuel and commuting time are related to the velocity of the automobile at various

locations in the city. The velocity is a function of the ratio of traffic volume to roads.

Following Bureau of Public Roads specification, the function of velocity is

V (k) =
1

a+ bM(k)c
(6)

where M(k) =
−−−→
N(k)/R(k).

−−−→
N(k) represents the traffic volume passing through distance k,

which is a function of commuters living within distance k, N(k). R(k) represents the road

capacity. At each radius k, road capacity is a fixed fraction θR of the land area. a, b, and c

are congestion parameters.

If households choose to take public transit, they have to walk to the nearest public transit

station and then take the public transit. The rail lines are evenly distributed. Each rail line

offers a radial route that links the CBD with residential locations. It stops at each radius

to transport workers to the CBD. The model does not take into account the commuting

from the transit stops at the CBD to the office assuming the stops are next to the office.

Therefore, for households walking to the public transit, the transportation cost is

Twalkpub(k, j) = τw ·W · (j/Vwalk) + awt · τpub ·W + publicfare + τpub ·W · (k/Vmetro) , (7)

where the first term represents the time cost of walking to the nearby transit station. awt

is the average waiting time which depends on the frequency of the rail lines. The time cost

of waiting is measured as a fraction, τpub, of the wage rate, W . publicfare is the ticket cost.

Vmetro is the average speed of each transit line. Thus the average time riding the train from

distance k to the CBD is k/Vmetro. The last term represents the time cost of taking public

transit.

The bus system as a part of the public transit system is omitted from the modeling.

Although the bus system could be viewed as a slower version of the rail system and a faster

version of walking, this simplification fails to capture that buses take commuters to transit
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stations and complement the use of public transit.

Households living further away from the CBD as well as the public transit have more

incentives to carpool because parking fee, variable costs, and gasoline costs could shared

among riders to save long distance commuting cost. If workers choose to carpool, each

carpool has n riders. The shared parking cost is parkingCBD/n, the variable costs related to

distance traveled become m1/n per rider, and the shared gasoline price per gallon is pg/n.

It is assumed carpool does not affect or eliminate car ownership because people who carpool

still need automobiles for other purposes such as shopping or errands. Carpool incurs an

extra time cost for each rider because riders have to coordinate schedules and drivers have

to pick up and drop off each rider. This extra carpooling time is assumed to be fixed at

tcarpool. Thus the time cost of carpooling is τcarpool ·W · tcarpool, where τcarpool is the time cost

of carpooling as a fraction of wage rate. Therefore, the total commuting cost for workers

who carpool is

Tcarpool(k, j) = m0+τcarpool ·W ·tcarpool+parkingCBD/n+(m1/n)k+(pg/n)

∫ k

kCBD

1

G(V (κ))
dκ

+ τW

∫ k

kCBD

1

V (κ)
dκ. (8)

Each household chooses travel mode optimally to minimize commuting cost. As a result,

the transportation cost for households living at radius k and distance j from public transit

is the following:

T (k, j) = min
{
Twalk(k, j), Tdrive(k, j), Twalkpub(k, j), Tcarpool(k, j)

}
. (9)

.

After the ride hailing service is introduced, workers have the option to take it either

directly to work or to the nearby public transit stations. Pooled rides are omitted from

modeling because the majority of all ride hailing trips are non-pooled. Gehrke et al. (2018)

show that 80% of these trips are single customer services rather than a pooled option such

as UberPool. Given that trips via taxicab account for less than 1% of total commuting

according to ACS(2010), the model does not consider taxi services. Thus the competition

between taxi services and ride hailing services is omitted in this paper.

The current model focuses on commuting trips and does not take into account the non-

commuting trips using ride hailing services such as shopping trips or going to restaurants.
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It also ignores the empty trips made by ride hailing drivers getting to different destinations

without any passengers. Thus this paper does not capture the congestion created by non-

commuting trips.

Households benefit from ride hailing transportation services by avoiding parking fees,

lowering the time cost of commuting, and eliminating car ownership. Because Uber is the

major player in the ride hailing industry, this paper uses Uber to represent the ride hailing

transportation service. The cost structure of using ride hailing services follows the fare

structure of Uber, which consists of a fixed base fare, a cost varies with distance, and a cost

varies with time. The current model ignores the surge pricing scheme that Uber has adopted

during rush hours to match the supply with the demand of rides. The omission of the surge

pricing is based on the speculation that in the long run, after Uber has fully penetrated the

market, the supply of Uber drivers would fully meet the demand from consumers at the rush

hour. It is possible that in the long run, the Uber fare could decrease as the supply of Uber

drivers increase or the self driving technology matures. For simplicity, the model assumes

the fare structure is constant over time.

The cost of taking Uber to work includes the payment to Uber and the time cost of

traveling, given by:

Tuber(k, j) = f0 +f1 ·k+f2

∫ k

kCBD

1

V (κ)
dκ+awtuber ·τuber ·W +τuber ·W ·

∫ k

kCBD

1

V (κ)
dκ, (10)

where f0 represents the base fare, f1 represents cost per mile, f2 represents cost per hour,

and awtuber is the average waiting time for Uber drivers to arrive. To simplify, the fare

structure of taking Uber is set exogenously without modeling the supply and demand of the

services. The time cost of commuting is a fraction, τuber, of wage rate W . τuber is lower than

the time cost of driving τ , because workers do not need to drive and can spend time working

or other productive use. It ignores the commuting to the office after workers are dropped off

by drivers assuming drivers drop off workers next to their workplaces.

If workers choose to take Uber to the nearby transit station, the transportation cost is:

Tuberpub(k, j) = f0 + f1k + f2 · j/Vres + awtuber · τuber ·W + τuberW · j/Vres
+ awt · τpubW + publicfare + τpubW · k/Vmetro, (11)

where the first five terms represent the cost of talking Uber to the nearby transit station and

the last three terms represent the cost of taking public transit. Vres represents the driving
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speed through residential streets. Given the driving distance to transit stations is short, it

is assumed Uber drivers drive through residential streets to take riders to transit stations

without getting on the highway. Before Uber is introduced, workers do not need to commute

through residential streets and there is no traffic congestion. Residential streets are used

for other purposes such as shopping or errands besides commuting. However, after Uber is

adopted, trips made by Uber to nearby transit stations may lead to traffic congestion on

residential streets.

Traffic congestion on residential streets follows the same equation for highway traffic

congestion, where the commuting speed is based on the traffic volume and road capacity.

Vres =
1

ar + brM
cr
uber

, (12)

where Muber is the ratio of number of people taking Uber to the residential street capacity,

and ar, br, cr are congestion parameters.

With the introduction of ride hailing service, the transportation cost for households is

T (k, j) = min
{
Twalk(k, j), Tdrive(k, j), Tcarpool(k, j), Twalkpub(k, j), Tuber(k, j), Tuberpub(k, j)

}
.

(13)

2.2 Model Solution

To solve the model, the city is discretized into grids of uniform squares along each radius.

Each grid point corresponds to a distance k from the CBD and distance j from the public

transit station. Because all transit lines are evenly distributed within the city and households

choose to go to the nearest transit stop, each transit line has an equal market area. Due to

the city is radial uniform and symmetric with respect to identical rail lines, it is sufficient

to examine the half of the market area for one rail line as depicted in Figure 1. After the

solution for the half of the market area is obtained, it is aggregated cross all market areas

to generate the solution for the whole city.

Given the initial values for the housing price and the traffic volume at the CBD edge,

commuting cost for each mode, optimal mode choice, and population density at each location

are solved recursively. With the solutions for commuting cost and population density, housing

price, housing demand, land price, and structure density are derived.

In order to achieve spatial equilibrium, the following conditions must be met. First, all

households achieve the same utility level and all housing producers earn zero economic profit.
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Second, the land price at the edge of the city must be equal to the agricultural land rent

pL(k̄) = paL. This condition is used to determine the city boundary k̄ in equilibrium. The

city expands until the residential land price falls to the agricultural land rent.

Third, the total population must be housed within the city. Given the exogenous number

of households in the city N , the following population constraint condition must be met.

N =

∫ k̄

kCBD

∫ J(k)

0

θ ·D(k, j)djdk, (14)

where D(k, j) is the endogenous households density at distance k from the CBD edge and

distance j from the public transit, which is derived from H(k,j)/L(k,j)
h(k,j)

, θ is the fixed fraction

of land devoted to housing, k̄ is the city boundary which is determined endogenously in the

equilibrium, and J(k) is the maximum distance to the public transit at each radius k.

Fourth, at the carpooling boundary, commuting costs for solo drivers and carpools are

equal. This condition determines the endogenous fraction of population who choose to

carpool.

Lastly, the total number of cars on the highway determined by the population who choose

to drive or carpool is equal to the total traffic volume passing through the CBD edge. This

determines the endogenous traffic volume on highways.

If any one of these equilibrium conditions is not met, the simulation is re-initialized and

simulated until subsequent iterations achieve an equilibrium solution.

2.3 Energy Consumption and Carbon Emissions

Following Larson et al. (2012), the energy consumption is calculated based on the equilibrium

solutions. Total energy consumption at distance (k, j), E(k, j), is derived from the gasoline

consumption for driving, EC(k, j), electricity in public transit usage, EP (k, j), electricity in

dwellings, ED(k, j), and numeraire goods, which embodies all other forms of consumption,

EN(k, j).

E(k, j) = EC(k, j) + EP (k, j) + ED(k, j) + EN(k, j). (15)

Energy used in driving to the CBD by a household living at distance (k, j) is given by

EC(k, j) = Eg

∫ k

kCBD

1

G(V (k))
dk (16)

where Eg is the energy embodied in a gallon of gasoline in British thermal units (BTUs),
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which includes the base energy content of a gallon of 100% petroleum-based gasoline and

the additional energy needed during the process of production and distribution. Given the

base energy of a gallon of gasoline is 125,000 BTUs and the additional energy for produc-

tion is 25,602 BTUs, Eg = 150, 602 BTUs.3
∫ k
kCBD

1
G(V (k,j))

dk represents the total gasoline

consumption, where G(V (k))) represents gasoline consumption per mile as a function of the

velocity V (k) at each distance k.

The use of gasoline for driving depends on the velocity of traveling. The engineering

relationship between gasoline consumption and velocity is based on the estimation from

Larson et al. (2012).

G(V (k)) = .822 + 1.833V (k)− .0486V (k)2 + .000651V (k)3 − .00000372V (k)4. (17)

For public transit, the main energy source is electricity. According to transportation

energy data book (2012), the energy used for the transit system in Chicago is 2, 520 BTU

per passenger per mile. Therefore, energy used in commuting by public transit is given by

EP (k, j) = ep
∫ k

kCBD

∫ j

0

kNpub(k, j)djdk, (18)

where ep is energy consumption per passenger per mile, Npub(k, j) is the public transit

riders at distance k from the CBD and distance j from the public transit stations, and∫ k
0

∫ j
0
kNpub(k, j)djdk represents the total distance traveled by all passengers using public

transit.

There are three major factors determining dwelling energy consumption: the income of

the household, the square feet of interior space, and the structure type. Higher income, larger

housing size, and lower structure density lead to higher dwelling energy consumption. Larson

et al. (2012) find that the estimated elasticity of dwelling energy consumption with respect

to income is 0.07 and the estimated elasticity of dwelling energy consumption with respect

to interior space is 0.23. Buildings with higher structure density are more energy efficient.

Single family attached dwelling units consume 7% less energy than single family detached

units and multifamily units consume 31% less. The structure type, s, is determined by the

floor area ratio, q(k, j), which is the ratio of housing square footage over lot size. Given the

threshold values q1, q2, and q3, the structure type is single-family detached if q ∈ [0, q1], single-

family attached if q ∈ (q1, q2], 2-4 unit multifamily if q ∈ (q2, q3], and 5+ unit multifamily

3The data comes from the Federal Register (2000) published by the Energy Information Administration.
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when q is above q3. In order to simplify the calculation, it is assumed all energy consumed

in the dwelling is from electricity. Each kilowatt hour of electricity consists of 3,412 BTUs

of energy. After taking into account the energy embodied in production and distribution of

electricity, the electricity efficiency parameter Ee is 1/0.303. (Federal Register, 2000).

Therefore, the function for dwelling electricity demand is

ED(k, j) = Ee exp [γ1 + γ2 ln I + γ3 ln pe + γ4 lnh(k, j) + s(q(k, j))′Γ] , (19)

where I represents income, pe is the price of electricity, h(k, j) represents housing consump-

tion, and s(q(k, j)) represents the vector of structure type as a function of floor area ratio

q(k, j).

Energy consumption embodied in the numeraire good is estimated using the following

equation:

EN(k, j) = EN
(
w − pgEC(k, j)/Eg − peED(k, j)/Ee − P p

eE
P (k, j)

)
, (20)

where EN is the the energy embodied in $1 of numeraire good consumption, which is set at

7,470 BTUs (Energy Information Administration, 2011). pgE
C(k, j) represents the gasoline

expenditure from driving, Uber, or carpooling. peE
D(k, j) represents residential electricity

cost, P p
e is the electricity price for public transit sector, and P p

eE
P (k, j) represents the

electricity cost for taking public transit which is paid as part of the ticket price.

To calculate greenhouse gas emissions, each type of energy consumption is multiplied

by a carbon dioxide (CO2) emissions coefficient reported by the Energy Information Ad-

ministration. This paper only considers CO2 emissions because other types of greenhouse

gases account for less than 5% of all greenhouse gas emissions from gasoline and electric-

ity consumption. Based on the data from the Energy Information Administration in 2016,

the combustion of gasoline results in 157 pounds of CO2 per million BTUs and electricity

consumption leads to 115 pounds of CO2 per million BTUs on average. The CO2 emis-

sions coefficient for numeraire energy consumption is assumed to be the same as for dwelling

energy consumption.

3 Baseline Calibration and Simulation

The calibration of the numerical urban simulation model is evaluated by comparing the

simulation outputs to the characteristics of Chicago in year 2010 before the entry of Uber.
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Uber entered Chicago in year 2011. The Chicago urbanized area is selected as calibration

target due to its city size and substantial rail transit system. The population in Chicago

urbanized area is over 8 millions and the number of occupied housing units is 3, 012, 005

in year 2010. A large city is selected because of the popularity of public transit and Uber

users. In 2010, according to American Community Survey (ACS), for Chicago urbanized

area, 12.4% of commuters take public transit, 69.4% drive alone, 3.3% walk, 8.7% carpool,

and 6.2% use other means. In addition, according to Gyourko et al. (2008), Chicago has

relatively low regulatory barriers. This characteristic is used to match the assumption of

zero zoning regulations in the theoretical model as closely as possible.

Figure 2a shows the rapid transit system in Chicago. The total route length is 102.8 miles

with 8 rail lines. The route length for each line ranges from 5.1 miles to 26.9 miles. In the

simulation, it is assumed there are 7 lines with equal route length of 15 miles. These 7 lines

divide the city into 6 pieces equally. To facilitate analysis, it is assumed that transit stops are

built at each radius along each radial transit line. The simulated city geometry and public

transit system is shown in Figure 2b. The simulated city has a CBD, a residential district,

and an agricultural hinterland, which occupies 60% of the circular area. It is consistent

with the data from Saiz (2010) where only 60% of city area is available for development in

Chicago due to the geographical constraint imposed by Lake Michigan

Parameter calibration is performed following the literature on numerical urban simula-

tions. These parameter values are shown in Table 1. For housing production function, the

elasticity of substitution between structure and land inputs is set at 0.75 following Larson

et al. (2012) and others. The distribution parameter for structure input is normalized to

one. The technology parameter and the distribution parameter for land input are calibrated

to match the data on median unit size and median lot size. The median unit size, 2, 000

square feet, and the median lot size for 1 unit structure, 0.17 acre, are from the data of

American housing survey in year 2009 for Chicago metro area due to the lack of data in year

2010 for Chicago urbanized area. The city radius is measured from the map of the Chicago

urbanized area using the boundaries defined in year 2000 from the Census. The radius is

about 33 miles, which generates a land are of 2, 123 square miles that are consistent with

the data from the ACS (2010).

For utility function, the elasticity of substitution between housing and consumption goods

is 0.75 which has been commonly used in the literature. The share parameter for composite

goods is normalized to one. From the consumer expenditure survey conducted by Bureau of

Labor Statistics in year 2010, the income share of housing expenditure is 27% and transporta-
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tion expenditure accounts for 11% of income. According to ACS (2010), the median income

in Chicago is $56, 069. Using these data, the share parameter for housing consumption is

calculated using the following equation derived from the consumer optimization problem.

β2 = r

[
h

1− T − rh

]1−η

(21)

This approach is consistent with Muth (1975), Altmann and DeSalvo (1981), and Larson

et al. (2012).

Given the lack of data in land use for Chicago urbanized area in year 2010, various data

sources are combined to approximate the land use allocation in Chicago. According to Over-

man et al. (2008), there are 980 square miles of land area used for residential purpose in

Chicago area in year 1992. It implies 46% of land is for residential use based on Chicago’s

urban area 2, 221 square mile. Chicago has 34, 800 miles of local streets and 19, 800 miles of

highways in 1990s according to the documentation from Encyclopedia of Chicago.4. There-

fore, local streets account for 64% and highways account for 36% of the land area used for

roads. Based on the report from American Society of planning officials using 1940 census,

about 20% of land area is allocated to roads. Thus, approximately, 15% of the land is used

for residential streets and 10% is devoted to highways. These values for land share are close

to those used in Muth (1975) and Altmann and DeSalvo (1981).

The average farmland value with an average quality at Illinois is 4, 624 in year 2010 based

on the report from the Illinois Society of Professional Farm Managers and Rural Appraisers

(2018). This yields an agricultural rental price per acre per year of $231.7 assuming a 5%

discount rate.

The commonly used value for the time cost of driving is between 30% and 50% of wage

rate. In this paper, the value of driving time is set at 30% of the wage rate. The time cost

of other commuting modes is calibrated to match the fraction of population using different

transportation means to commute. The time cost of taking public transit, τpub, is 50%

of the wage rate. For walking, the time cost τw is 1.1 times of the wage rate. The time

cost of coordinating carpool is 76.7% of the wage rate. The fixed and marginal commuting

costs for driving and congestion parameter c are borrowed from Larson et al. (2012). The

congestion parameters b and c are calculated based on equation 6. The maximum speed on

the highway, vhigh, is set at 45 mph when there is no traffic. Therefore, vhigh = 1/b, which

implies that b = 1/vhigh.The minimum speed assumed as 5 mph occurs at the CBD edge

4http://www.encyclopedia.chicagohistory.org/pages/1209.html
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with heaviest traffic when all workers drive to the CBD. Based on equation 6, it implies that

vlow = 1
a+b(N/R(CBD))c

, which is used to back out b given population N and road capacity at

the CBD, R(CBD). For the parking fee at the CBD, it is set at 8 dollar per day based on

the Google search for Chicago downtown.

To avoid high dimensionality problem in the simulation, the traffic through residential

streets at each distance from the transit stations is not calculated. Instead, the commuting

speed is based on the average traveling speed on local streets which is determined endoge-

nously. The average traveling speed is determined by total traffic volume on residential

streets which is solved in equilibrium and local road capacity. It is derived from equation 12.

The congestion parameter cr takes the same value as c. The calibration for ar and br follows

the same approach used for calibrating a and b based on the assumption that the maximum

speed on residential streets is 30 mph and the minimum is 1 mph.

The critical value of q for each structure type is calibrated to match the average fraction

of housing units for each structure type in Chicago. The structure type is single-family

detached if q ∈ [0, 0.53], single-family attached if q ∈ [0.53, 0.61], 2-4 unit multifamily if

q ∈ [0.61, 0.79], and 5+ unit multifamily when q is above 0.79.

Results from simulating the calibrated model are shown in the final column of Table

2. Overall, the simulated baseline city matches the average characteristics of Chicago quite

well. The simulated average commute time to work is 24.19 minutes, which is lower than

the 30.7 minutes reported in the American Housing Survey (2010). This discrepancy is due

to this model does not take into account the commuting from parking or public transit to

workplace or from home to highways.

The solid lines in Figure 3 show that median housing price, median land price, and

median structure to land ratio which is the floor area ratio decrease with the distance from

the CBD, while median housing demand increases with the distance from the CBD. The

solid lines in Figure 4 show the change in median housing price, housing demand, land price,

and structure to land ratio by the distance from the nearby public transit stations. Median

housing price, land price, and structure density decrease with the distance from the nearest

public transit station, while housing consumption increases with the distance from the public

transit. These results are consistent with that in the literature.
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4 Counterfactual Scenarios and Simulation Results

To simulate the long run effects of Uber, in the first counterfactual design, workers have the

option to take Uber to work or take Uber to a nearby public transit station. The simulation

results from this counterfactual city are compared to the baseline.

Whether Uber is a complement or substitute to the public transit depends on the quality

of transit systems. Although Uber could help transport workers from their home to transit

stops, a low quality transit system remains costly and fails to attract more transit users with

the entry of Uber. In contrast, with a high quality transit system, Uber makes public transit

more accessible and attracts more transit users. To investigate the long run effects of Uber

under different public transit systems with different qualities, parameters on public transit

speed and average waiting time are altered to simulate both high quality and low quality

transit systems.

Furthermore, the impact of public transportation investment on traffic congestion and

the environment is a major debate in the literature. Anderson (2014) finds evidence that

public transit relives traffic congestion while Winston and Maheshri (2007) show that urban

rail transit system is not socially desirable. Will it be more beneficial to expand public transit

with the entry of Uber? Will public transit expansion augment Uber’s complementary effects

on public transit? To simulate the interplay between Uber and public transit expansion, the

number of transit lines is increased to represent the expansion.

Chicago has attempted to regulate ride hailing industry. In 2018, the city has been urged

to impose a cap on Uber and Lyft cars.5 This regulation is similar to those enacted in New

York City in 2018. To predict the consequences of imposing regulations on Uber, the last

experiment is conducted where the city imposes a regulation that limits the number of Uber

drivers.

4.1 The Long Run General Equilibrium Effects of Uber

In this counterfactual, Uber enters into the Chicago transportation system. Workers have

the option to use the app to book rides to work or a nearby public transit station. After a

short period of waiting, which is assumed as 5 minutes in the simulation, Uber drivers arrive

and pick up the workers. It is assumed Uber drivers drive through residential streets to the

nearby public transit stations. If workers book rides to the CBD, Uber drivers have to drive

5https://www.chicagotribune.com/business/ct-biz-chicago-taxi-ride-share-drivers-limit-20181030-
story.html
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through the highway, which potentially adds highway traffic congestion. The commuting

cost for Uber is based on the current Uber fare structure with a base fare of $3.64 per trip, a

cost per mile of $0.81, and a cost per minute of $0.28. Because workers could relax and work

during Uber rides, the time cost of taking Uber is assumed to be 20% lower than driving

solo.

Locations that are further away from transit stations and unaccessible through walking

now become accessible by taking Uber to transit stations. As a result, Uber improves the

accessibility of public transit. Table 3 shows that it increases public transit usage from

12.42% to 28.32%6. While the fraction of population walking to public transit is reduced

by 31%, 24.1% of the population start to take Uber to transit stations. The improved

accessibility of the public transit creates incentives for households to move closer to the

transit stations and the CBD, which increases the housing price and land price near the

transit stations and the CBD. Figure 3 shows that the introduction of Uber steepens the

housing price and land price gradients. Figure 4 shows that the adoption of Uber increases

housing price and land price for areas closer to the public transit stations. As a result, the

structure densities near the CBD and the transit stations increase. Table 3 shows that Uber

increases median housing price by 0.9%, median land price by 6.26%, and median structure

land ratio by 3.96%.

Furthermore, it reduces solo driving by 26.57% and carpooling by 13.41%. 6.39% of the

population start to take Uber directly to work. The net effect is that it reduces traffic volume

on the highway and increases the commuting speed by 4.66%7. Figure 5 shows that Uber

effectively reduces highway traffic congestion at each distance from the CBD.

The reduction in highway traffic congestion creates incentives for households to live fur-

ther away from the CBD, which tends to lead to urban sprawl. However, the improved

public transit accessibility attracts workers to live closer to the CBD and transit stations,

which tends to lead to city contraction. The net effect is city contraction as shown in Table

3, where the city radius is reduced by 2.79%.

In addition, the commuting energy consumption is decreased by 9.95% and the dwelling

energy consumption is reduced by 1.09%. The total energy consumption per household

decreases by 0.73%. While the carbon emissions from public transit are more than doubled

due to the increased number of passengers, the carbon emissions from driving are reduced

6Because this paper does not consider the complementary effect of bus on public transit and the congestion
created by non-commuting trips, the estimates could be viewed as a upper bound.

7This estimate could be interpreted as a upper bound because the model does not take into account the
congestion created by non-commuting Uber trips.
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by 14.64%. Overall, the carbon emissions from commuting are reduced by 11.66% and the

total carbon emissions per household are decreased by 1.19%.

The aggregate welfare analysis follows Sullivan (1985) and Borck and Brueckner (2016).

The entry of Uber leads to a 0.61% increase in each household’s utility. The welfare gain

experienced by households as a result of the adoption of Uber is calculated based on the

compensation variation (CV) associated with the entry of Uber. It is measured by the

fall in income required to achieve the same utility level as before Uber is introduced. The

model is re-simulated to compute the compensation variation holding households’ utility

level constant. After Uber is adopted, the compensation variation per household is $55,756,

which is $312 less than original wage rate $56,069. Landowners also experience welfare gain

due to the adoption of Uber. The welfare gain experienced by landowners is measured by

the increase in aggregate land rent. By holding aggregate land area used for the city and

agriculture constant with 40 miles radius, aggregated land rent is increased by 6.58%. In

addition, externalities generated from carbon emissions is measured by the social cost of

carbon emissions. According to Environmental Protection Agency (EPA) in 2015, under a

3% discount rate, the social cost of carbon emissions is $36 per ton. The adoption of Uber

reduces externalities by 1.19%. In aggregate, Uber generates a net welfare gain of $1,016

million.

4.2 Low Quality Public Transit Services and Uber

With infrequent trains, delays, and breakdowns, a low quality transit system does not provide

reliable services. It is simulated with infrequent services and a slower speed. The average

waiting time is increased from the baseline value of 7.5 minutes to 20 minutes and the train

speed is decreased from 20 mph to 15 mph.

Compared to the unreliable transit services, Uber has the advantage of being more pre-

dictable and flexible to meet consumers’ demand. The first three columns in Table 4 show

that Uber serves as a substitute to the low quality public transit system. The public transit

usage is reduced by 40%. Although Uber could help transport commuters to nearby transit

stations, the low quality system remains too costly to attract any workers to take Uber

to transit stations. However, taking Uber to work becomes a more appealing commuting

option. 9.99% of the population start to use it to work. For traffic congestion, Uber has a

negligible effect. The average commuting speed is increased by only 0.61%. Overall, Uber

makes public transit less attractive and does not provide any incentives for households to

live close to the transit stations or the CBD. It leads to urban sprawl and the city radius is
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increased by 2.15%.

The reduction in public transit usage and the rise in Uber usage to work increase com-

muting energy consumption and carbon emissions. Energy consumption increases by 0.61%

and carbon emissions rise by 0.15%. Under a low quality transit system, Uber has a small

impact on social welfare. The aggregate welfare is only $80.49 millions.

4.3 High Quality Public Transit Services and Uber

High quality public transit services are reliable, frequent, and fast. European and Asian

countries such as China have public transit systems with high speed trains and greater

schedule frequency. What if the US were to improve the quality of public transit system? To

address the effects of Uber under a high quality public transit system, the average waiting

time is decreased from 7.5 minutes to 2 minutes and train speed is increased from 20 mph

to 30 mph.

The last three columns in table 4 show that Uber functions as a complement to the public

transit. The public transit usage is doubled and increases from 23.68% to 46.18%. 40.5% of

the population start to take Uber to nearby transit stations. Only 5.67% of the population

take Uber directly to work. The fraction of the population who drive solo decreases from

66.39% to 40.86%. This effectively relieves the traffic congestion on the highway by 6.24%.

In addition, under a higher quality transit system, Uber becomes more effective at pre-

venting urban sprawl and increasing density. The city radius is reduced by 1.26% and the

average residential density is increased by 2.57%. Furthermore, it has larger impacts on

the environment and carbon emissions. It reduces energy consumption by 1.18% and low-

ers carbon emissions by 1.9%. The city experiences a significant welfare gain with $1, 711

millions.

These results have implications for the heterogeneous effects of Uber on transit usage

during weekdays and weekends. When public transit is more frequent during weekdays, Uber

helps to attract transit users, while during weekends, when transit service is less reliable and

less frequent, Uber attracts commuters away from the public transit.

Overall, under a low quality transit system, Uber reduces public transit trips, while under

a high quality transit system, Uber increases public transit riderships. In order to avoid

losing transit riders after Uber is adopted, the government needs to improve the quality of

the public transit system.
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4.4 Public Transit Expansion and Uber

Public transit has been advocated as a way to reduce traffic congestion, although the evidence

for the effects of public transit on congestion is mixed in the literature. Public transit

investment has been used to improve transit services and attract transit users. Chicago

transit authority has proposed several projects to expand public transit services.8 In this

scenario, the public transit investment is used to increase the number of transit lines from 7

to 8.

Table 5 shows that before the entry of Uber, the public transit expansion has little effect

on traffic congestion and the environment, although the public transit usage is increased

from 12.42% to 14.27%. The average speed on highways is increased by only 0.55%. Total

energy consumption is reduced by only 0.09% and carbon emissions is lowered by 0.15% on

average. The negligible effect of public transit expansion on traffic congestion is consistent

with the findings in Winston and Maheshri (2007), Rubin et al. (1999), Stopher (2004), and

Small (2005).

The last three columns in Table 5 show that with the entry of Uber, the effects of

increasing transit lines on traffic congestion and environment remain small. The traffic

speed is increased by 0.36%, energy consumption is reduced by 0.06%, and carbon emissions

is decreased by 0.1%.

Although the expansion does improve the accessibility of public transit, the increase in

public transit usage is not significant, which is less than 2%. Overall, the effects of public

transit expansion on traffic congestion and the environment is negligible regardless of the

presence of Uber. In addition, the expansion does not significantly improve welfare and the

welfare gain is smaller with the entry of Uber.

4.5 Imposing Regulation on Uber

Given that several cities such as Chicago have been attempting to regulate Uber, the revelant

police questions are: should Uber be regulated? What will be the long run consequences

after Uber is regulated? In this counterfactual, the regulation imposes a cap on the number

of drivers who can drive for Uber. This is a supply shock to the market of ride hailing

transportation services. The reduction in the supply of Uber service eventually leads to an

increase in Uber fare. In the simulation, the base fare, cost per minute, and cost per mile

increase by 50%.

8https://www.transitchicago.com/planning/
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Table 6 demonstrates that after the regulation is imposed, due to the increased Uber

fare, less people take it to transit stations or workplaces. The public transit usage increases

by 105.8% with regulation, compared to 128% increase without any regulation.

Uber becomes less effective at relieving traffic congestion, reducing energy consumption,

and lowering carbon emissions. With regulation, traffic congestion decreases by 3.61%, en-

ergy consumption is reduced by 0.5%, and carbon emissions is lowered by 0.84%. In compar-

ison, without any regulation, Uber reduces commuting speed by 4.66%, energy consumption

by 0.73%, and carbon emissions by 1.19%.

In addition, the aggregate welfare gain, $726 millions, is lower under the regulation than

that without any regulation.

5 Conclusion

This paper offers new insights on the long run general equilibrium effects of Uber on our

cities by incorporating the new transportation service provided by ride hailing companies, i.e.

Uber, and multiple commuting modes into the monocentric city model. Different counter-

factual experiments are designed to answer the following policy relevant research questions:

how do ride hailing transportation services affect public transit usage and traffic congestion?

Will they lead to urban sprawl? How do they affect energy use and carbon emissions? Should

cities impose regulations?

The simulation results show that the effects of this new transportation service on the

public transit usage depend on the quality of the existing public transit system. Uber in-

creases public transit usage under a high quality transit system while lowers transit ridership

under a low quality transit system. It has the potential to reduce urban sprawl, make the

city denser, decrease energy consumption and carbon emissions, and enhance welfare. Public

transit expansion has little effects on traffic congestion and energy consumption regardless

of the entry of Uber. The regulation restricting the supply of ride hailing services increases

the commuting cost using Uber, reduces its usage, and limits its beneficial effects.

In addition to offer new insights on the effects of Uber, this paper provides theoretical

contributions to the literature. This is the first paper to model households’ location based on

the distance to the CBD as well as the public transit. It incorporates six different commuting

modes with the entry of Uber. The modeling adds remarkable realistic details to describe

transportation network and households’ commuting choice.

However, several simplification assumptions fail to take into account the effects of ride
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hailing services on parking usage, the potential endogenous change in the cost structure

of taking Uber and surge pricing scheme, the heterogeneous effects of Uber across income

groups, and the effects of non-commuting Uber trips on traffic congestion and carbon emis-

sions. All of these assumptions could be relaxed to address different policy questions in the

future research.

25



References

Alonso, W. (1964). Location and land use: toward a general theory of land rent. Harvard
University Press.

Altmann, J. L. and DeSalvo, J. S. (1981). Tests and extensions of the mills-muth simulation
model of urban residential land use. Journal of Regional Science, 21(1):1–21.

Anas, A. and Moses, L. N. (1979). Mode choice, transport structure and urban land use.
Journal of Urban Economics, 6(2):228–246.

Anderson, M. L. (2014). Subways, strikes, and slowdowns: The impacts of public transit on
traffic congestion. American Economic Review, 104(9):2763–96.

Arnott, R. J. and MacKinnon, J. G. (1977). The effects of urban transportation changes: a
general equilibrium simulation. Journal of Public Economics, 8(1):19–36.

Bertaud, A. and Brueckner, J. K. (2005). Analyzing building-height restrictions: predicted
impacts and welfare costs. Regional Science and Urban Economics, 35(2):109–125.

Borck, R. and Brueckner, J. K. (2018). Optimal energy taxation in cities. Journal of the
Association of Environmental and Resource Economists, 5(2):481–516.

Clewlow, R. R. and Mishra, G. S. (2017). Disruptive transportation: the adoption, utiliza-
tion, and impacts of ride-hailing in the united states. University of California, Davis,
Institute of Transportation Studies, Davis, CA, Research Report UCD-ITS-RR-17-07.

Feigon, S. and Murphy, C. (2016). Shared mobility and the transformation of public transit.
Number Project J-11, Task 21.

Feigon, S. and Murphy, C. (2018). Broadening understanding of the interplay among public
transit, shared mobility, and personal automobiles. Technical report.

Gehrke, S., Felix, A., and Reardon, T. (2018). Fare choices: A survey of ride-hailing passen-
gers in metro boston. Metropolitan Area Planning Council.

Gyourko, J., Saiz, A., and Summers, A. (2008). A new measure of the local regulatory
environment for housing markets: The wharton residential land use regulatory index.
Urban Studies, 45(3):693–729.

Hall, J. D., Palsson, C., and Price, J. (2018). Is uber a substitute or complement for public
transit? Journal of Urban Economics, 108:36–50.

Henao, A. and Marshall, W. E. (2018). The impact of ride-hailing on vehicle miles traveled.
Transportation, pages 1–22.

Larson, W., Liu, F., and Yezer, A. (2012). Energy footprint of the city: Effects of urban
land use and transportation policies. Journal of Urban Economics, 72(2-3):147–159.

26



Larson, W. and Zhao, W. (2017). Telework: Urban form, energy consumption, and green-
house gas implications. Economic Inquiry, 55(2):714–735.

Larson, W. D. and Zhao, W. (2019). Self-driving cars and the city: Long-run effects on land
use, welfare, and the environment. Forthcoming at Regional Science and Urban Economics.

LeRoy, S. F. and Sonstelie, J. (1983). Paradise lost and regained: Transportation innovation,
income, and residential location. Journal of Urban Economics, 13(1):67–89.

Li, Z., Hong, Y., and Zhang, Z. (2016). Do ride-sharing services affect traffic congestion? an
empirical study of uber entry. Social Science Research Network, 2002:1–29.

Mills, E. S. (1967). An aggregative model of resource allocation in a metropolitan area. The
American Economic Review, 57(2):197 –210.

Muth, R. (1969). Cities and housing: the spatial pattern of urban residential land use.
University of Chicago Press.

Muth, R. F. (1975). Numerical solution of urban residential land-use models. Journal of
Urban Economics, 2(4):307 – 332.

Overman, H. G., Puga, D., and Turner, M. A. (2008). Decomposing the growth in residential
land in the united states. Regional science and urban economics, 38(5):487–497.

Rappaport, J. (2016). Productivity, congested commuting, and metro size. Federal Reserve
Bank of Kansas City Working Paper No. RWP, pages 16–03.

Rubin, T. A., Moore II, J. E., and Lee, S. (1999). Ten myths about us urban rail systems.
Transport Policy, 6(1):57–73.

Saiz, A. (2010). The geographic determinants of housing supply. The Quarterly Journal of
Economics, 125(3):1253–1296.

Sasaki, K. (1989). Transportation system change and urban structure in two-transport mode
setting. Journal of Urban Economics, 25(3):346–367.

Sasaki, K. (1990). Income class, modal choice, and urban spatial structure. Journal of Urban
Economics, 27(3):322–343.

Small, K. (2005). Road pricing and public transit: Unnoticed lessons from london. Access,
26(3):10–15.

Stopher, P. R. (2004). Reducing road congestion: a reality check. Transport Policy,
11(2):117–131.

Wheaton, W. C. (1998). Land use and density in cities with congestion. Journal of urban
economics, 43(2):258–272.

27



Winston, C. and Maheshri, V. (2007). On the social desirability of urban rail transit systems.
Journal of urban economics, 62(2):362–382.

Xu, S.-X., Liu, T.-L., Huang, H.-J., and Liu, R. (2018). Mode choice and railway subsidy
in a congested monocentric city with endogenous population distribution. Transportation
Research Part A: Policy and Practice, 116:413–433.

28



Figure 1: The Market Area for Each Transit Line
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Figure 2: Chicago public transit system, Actual and Simulated
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Figure 3: Baseline and Uber Adoption-Urban Form (by Distance from the CBD)
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Figure 4: Baseline and Uber Adoption - Urban Form (by Distance from the Public Transit)
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Figure 5: Baseline and Uber Adoption - Traffic Congestion
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Table 1: Simulation Parameters

Parameter Baseline Description Source
Value

City Income and Size
W 56,069 Annual earnings American Community Survey(2010)
N 3,012,005 Households American Community Survey(2010)

Housing Production
1/(1− ρ) 0.75 Elasticity of substitution Altmann and DeSalvo (1981)
α1 1 Structure share Muth (1975); Altmann and DeSalvo (1981)
α2 0.117 Land share Calibrated
A 0.265 Technology parameter Calibrated

Household Utility
1/(1− η) 0.75 Elasticity of substitution Larson et al. (2012)
β1 1 Numeraire share Numeraire
β2 0.168 Housing share Bureau of Labor Statistics (2010), Calculated

Land Use
θ 0.46 Fraction of land used for housing Overman et al. (2008)
kCBD 2.5 Radius of the CBD Boundaries for the CBD from the City of Chicago Dataset
paL 231.7 Reservation agricultural land rent per acre 2018 Illinois Land Values and Lease Trends

Transportation
vlow 5 Minimum commuting speed Larson et al. (2012)
vhigh 45 Maximum commuting speed Larson et al. (2012)
c 1.75 Parameter in speed function Larson et al. (2012)

CBDparking 8 Daily parking fee in dollar Web search
τ 0.3 Commuting time cost of driving Muth (1975)
pg 2.5 Gasoline price (USD) per gallon Energy Information Administration
m0 2,654 Fixed cost of commuting American Automobile Association
m1 0.222 USD per mile of depreciation American Automobile Association
Vc 0.822 Miles per gallon constant term in polynomial American Automobile Association, Larson et al. (2012)

publicfare 2.5 Metro ticket per trip Chicago Transit Authority
Vmetro 20 Average metro speed per hour Chicago Transit Authority
Vwalk 2.5 Average walking speed Assumed
awt 7.5 Average waiting time in minutes at the transit station Chicago Transit Authority
Vmax
res 30 Driving speed limit on residential streets Statutory speed limit in Chicago
Vmin
res 1 Minimum average speed on residential streets Assumed
f0 3.64 Uber basefare Uber
f1 0.81 Uber cost per mile Uber
f2 0.28 Uber cost per minute Uber
τuber 0.24 Time cost of commuting using Uber Calibrated
τw 1.11 Time cost of walking Calibrated
τpub 0.5 Time cost of taking public transit Calibrated
τcarpool 0.767 Time cost of coordinating carpool Calibrated
tcarpool 15 Time cost of coordinating carpool in minutes Calibrated
Energy consumption
pe 11.9 cents Residential electricity price per Kwh Energy Information Administration (2010)
ppe 4.84 cents Electricity price per passenger mile per Kwh for public transit Energy Information Administration (2010)
ep 2,520 Btu Energy consumption of public transit per passenger mile Transportation Energy data book (2012)
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Table 2: Calibration Simulation

City characteristics Chicago urbanized area Simulated characteristics
Total Occupied Units1 3,012,005 3,012,589
Median Income1 56,069 56,069
Median Lot Size (Acres, 1 unit structure)2 0.17 0.15
Median Unit Size2 2,000 1997.25
City Radius (miles)1 33.56 32.30
Land area (square miles)1 2122.8 1954.4
Time to work (Residential Avgerage)1 30.7 24.19
Fraction housed in 1 unit structures1 58.8% 58.72%
Fraction housed in 2-4 unit structures1 14.6% 15.35%
Fraction housed in 5+ unit structures1 26.6% 25.93%
Means of transportation to work1

Walked 3.30% 3.06%
Public transportation 12.40% 12.42%
Drove alone 69.40% 75.95%
Carpooled 8.70% 8.57%
Other (Bicycle, motorcycle, taxicab,
other means, or worked at home)

6.2% 0.00%

1 Source: American Community Survey 1 year estimates (2010)
2 Source: American Housing Survey (2009)
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Table 3: The Long Run General Equilibrium Effects of Uber

Scenario Baseline Uber %∆

Urban Form

Total Occupied Units 3012589 3011645
Median Lot Size (acre) – I unit structure 0.15 0.16 1.42%
Median Unit Size (square feet) – All Units 1997.25 1999.99 0.14%
City Area (sq. miles) 1954.40 1846.67 -5.51%
City Radius (assuming circle) 32.30 31.40 -2.79%
Meidan House Price per Sq. Ft. 7.10 7.17 0.90%
Meidan Land Price per Acre 23427.78 24895.13 6.26%
Median Residential Struct./Land ratio 0.52 0.54 3.96%
Residential Density (hh per sq. mile) 1541.14 1630.82 5.82%
Average Commuting Time to work 24.19 25.16 4.01%
Fraction housed in 1 unit structures 58.72% 56.21% -4.28%
Fraction housed in 2-4 unit structures 15.35% 13.49% -12.12%
Fraction housed in 5+ unit structures 25.93% 30.30% 16.88%

Fraction of population by Commuting Mode

Walking 3.06% 2.11% -31.09%
Public transit 12.42% 28.32% 128.00%
Walking to public transit 12.42% 4.21% -66.07%
Taking Uber to public transit 0.00% 24.10%
Solo driving 75.95% 55.76% -26.57%
Carpooling 8.57% 7.42% -13.41%
Taking Uber to work 0.00% 6.39%

Traffic Congestion

Average speed on highways 38.14 39.91 4.66%
Average speed on residential streets 30.00 12.97 -56.77%

Energy Consumption per Household (million BTUs)

Total 573.91 569.74 -0.73%
Commuting 34.04 30.65 -9.95%
Dwelling 135.97 134.49 -1.09%
Numeraire 403.90 404.59 0.17%

Carbon Emissions per Household (tons)

Total 29.28 28.93 -1.19%
Commuting 2.64 2.34 -11.66%
Driving 2.59 2.21 -14.64%
Public transit 0.05 0.12 139.15%
Residential 6.71 6.63 -1.09%
Numeraire 19.92 19.96 0.17%

Welfare

Wage rate 56069.00 56069.00 0.00%
Utility 11351.77 11420.87 0.61%

Aggregate Welfare Analysis

Aggregate residential land rent (millions) 313.95 325.26 3.60%
Agriculture land rent (millions) 262.35 288.98 10.15%
Aggregate land rent (millions) 576.31 614.24 6.58%
Compensation variation per household 56069.00 55756.67 -0.56%
Social cost of carbon emissions (millions) 3174.59 3136.95 -1.19%
Aggregate welfare gain (millions) 1016.32
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Table 4: Public Transit Systems with Different Qualities and Uber

Scenario Baseline Uber %∆ Baseline Uber %∆

Low Quality High Quality

Public transit: average waiting time (mins) 20.00 20.00 2.00 2.00
Public transit: speed (mph) 15.00 15.00 30.00 30.00

Urban Form

Total Occupied Units 3011436 3011689 3012594 3012117
Median Lot Size (acre) – I unit structure 0.15 0.15 0.32% 0.16 0.16 4.62%
Median Unit Size (square feet) – All Units 1994.23 1996.70 0.12% 1991.97 1978.24 -0.69%
City Area (sq. miles) 1978.75 2065.18 4.37% 1882.24 1834.89 -2.52%
City Radius (assuming circle) 32.50 33.20 2.15% 31.70 31.30 -1.26%
Meidan House Price per Sq. Ft. 7.06 7.06 -0.05% 7.22 7.46 3.32%
Meidan Land Price per Acre 22529 22457 -0.32% 26261 32488 23.71%
Median Residential Struct./Land ratio 0.50 0.50 -0.21% 0.56 0.64 14.47%
Residential Density (hh per sq. mile) 1521.54 1457.81 -4.19% 1600.41 1641.58 2.57%
Average Commuting Time to work 24.92 24.93 0.05% 21.83 22.84 4.66%
Fraction housed in 1 unit structures 60.93% 60.62% -0.52% 54.53% 47.94% -12.08%
Fraction housed in 2-4 unit structures 16.42% 16.20% -1.36% 13.90% 12.56% -9.64%
Fraction housed in 5+ unit structures 22.64% 23.18% 2.37% 31.57% 39.50% 25.11%

Fraction of population by Commuting Mode

Walking 3.61% 2.38% -33.90% 2.64% 1.75% -33.79%
Public transit 1.60% 0.96% -40.11% 23.68% 46.18% 95.00%
Walking to public transit 1.60% 0.96% -40.11% 23.68% 5.64% -76.20%
Taking Uber to public transit 0.00% 0.00% 0.00% 40.54%
Solo driving 85.43% 77.29% -9.53% 66.39% 40.86% -38.45%
Carpooling 9.36% 9.38% 0.17% 7.28% 5.53% -24.01%
Taking Uber to work 0.00% 9.99% 0.00% 5.67%

Traffic Congestion

Average speed on highways 36.96 37.19 0.61% 39.30 41.76 6.24%
Average speed on residential streets 30.00 30.00 0.00% 30.00 8.28 -72.40%

Energy Consumption per Household (million BTUs)

Total 577.39 577.95 0.10% 569.16 562.44 -1.18%
Commuting 36.83 37.41 1.57% 30.83 26.01 -15.62%
Dwelling 137.12 136.93 -0.14% 133.84 130.95 -2.16%
Numeraire 403.44 403.62 0.04% 404.49 405.48 0.25%

Carbon Emissions per Household (tons)

Total 29.56 29.60 0.15% 28.91 28.36 -1.90%
Commuting 2.89 2.94 1.58% 2.35 1.89 -19.40%
Driving 2.89 2.94 1.60% 2.23 1.64 -26.32%
Public transit 0.00 0.00 -20.23% 0.12 0.25 105.43%
Residential 6.76 6.75 -0.14% 6.60 6.46 -2.16%
Numeraire 19.90 19.91 0.04% 19.95 20.00 0.25%

Welfare

Wage rate 56069 56069.00 0.00% 56069.00 56069.00 0.00%
Utility 11300.79 11311.99 0.10% 11422.62 11539.30 1.02%

Aggregate Welfare Analysis

Aggregate residential land rent (millions) 305.20 308.32 1.02% 330.14 346.51 4.96%
Agriculture land rent (millions) 256.34 234.98 -8.33% 280.19 291.89 4.18%
Aggregate land rent (millions) 561.54 543.30 -3.25% 610.32 638.40 4.60%
Compensation variation per household 56069.00 56034.60 -0.06% 56069.00 55529.91 -0.96%
Social cost of carbon emissions (millions) 3205.17 3210.05 0.15% 3134.35 3074.76 -1.90%
Aggregate welfare gain (millions) 80.49 1711.40

37



Table 5: Public Transit Expansion and Uber

Scenario Baseline Baseline %∆ Uber Uber %∆

Number of Public transit lines 7.00 8.00 7.00 8.00

Urban Form

Total Occupied Units 3012589 3012585.72 3011645 3012161.20
Median Lot Size (acre) – I unit structure 0.154 0.15 -0.68% 0.16 0.15 -0.84%

Median Unit Size (square feet) – All Units 1997.25 1997.59 0.02% 1999.99 1999.50 -0.02%
City Area (sq. miles) 1954.40 1954.40 0.00% 1846.67 1858.49 0.64%

City Radius (assuming circle) 32.30 32.30 0.00% 31.40 31.50 0.32%
Meidan House Price per Sq. Ft. 7.10 7.11 0.12% 7.17 7.18 0.14%

Meidan Land Price per Acre 23427.78 23616.21 0.80% 24895.13 25131.04 0.95%
Median Residential Struct./Land ratio 0.52 0.52 0.51% 0.54 0.54 0.60%

Residential Density (hh per sq. mile) 1541.14 1541.14 0.00% 1630.82 1620.69 -0.62%
Average Commuting Time to work 24.19 24.12 -0.30% 25.16 25.22 0.24%

Fraction housed in 1 unit structures 58.72% 58.67% -0.09% 56.21% 56.29% 0.15%
Fraction housed in 2-4 unit structures 15.35% 15.13% -1.42% 13.49% 13.24% -1.86%
Fraction housed in 5+ unit structures 25.93% 26.20% 1.04% 30.30% 30.47% 0.55%

Fraction of population by Commuting Mode

Walking 3.06% 3.04% -0.73% 2.11% 2.15% 1.96%
Public transit 12.42% 14.27% 14.87% 28.32% 29.44% 3.98%

Walking to public transit 12.42% 14.27% 14.87% 4.21% 4.88% 15.91%
Taking Uber to public transit 0.00% 0.00% 24.10% 24.56% 1.89%

Solo driving 75.95% 74.22% -2.28% 55.76% 54.87% -1.60%
Carpooling 8.57% 8.47% -1.13% 7.42% 7.41% -0.20%

Taking Uber to work 0.00% 0.00% 6.39% 6.13% -4.07%

Traffic Congestion

Average speed on highways 38.14 38.35 0.55% 39.91 40.05 0.36%
Average speed on residential streets 30.00 30.00 0.00% 12.97 12.03 -7.23%

Energy Consumption per Household (million BTUs)

Total 573.91 573.39 -0.09% 569.74 569.41 -0.06%
Commuting 34.04 33.57 -1.37% 30.65 30.36 -0.96%

Dwelling 135.97 135.85 -0.09% 134.49 134.43 -0.05%
Numeraire 403.90 403.97 0.02% 404.59 404.63 0.01%

Carbon Emissions per Household (tons)

Total 29.28 29.23 -0.15% 28.93 28.90 -0.10%
Commuting 2.64 2.60 -1.56% 2.34 2.31 -1.12%

Driving 2.59 2.55 -1.87% 2.21 2.18 -1.41%
Public transit 0.05 0.06 14.50% 0.12 0.13 4.19%

Residential 6.71 6.70 -0.09% 6.63 6.63 -0.05%
Numeraire 19.92 19.93 0.02% 19.96 19.96 0.01%

Welfare

Wage rate 56069.00 56069.00 56069.00 56069.00
Utility 11351.77 11360.74 0.08% 11420.87 11426.41 0.05%

Aggregate Welfare Analysis

Aggregate residential land rent (millions) 313.95 270.28 -13.91% 325.26 279.41 -14.10%
Agriculture land rent (millions) 262.35 262.35 0.00% 288.98 286.06 -1.01%

Aggregate land rent (millions) 576.31 532.64 -7.58% 614.24 565.46 -7.94%
Compensation variation per household 56069.00 56028.00 -0.07% 56069.00 56041.76 -0.05%

Social cost of carbon emissions (millions) 3174.59 3169.84 -0.15% 3136.95 3133.96 -0.10%
Aggregate welfare gain (millions) 84.58 36.27
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Table 6: The Long Run General Equilibrium Effects of Uber Regulations

Scenario Baseline Uber %∆ Uber %∆

Unregulated Uber regulation: increases Uber fare

Uber fare: Base fare 3.64 3.64 3.64 5.46 5.46
Uber fare: cost per min 0.28 0.28 0.28 0.42 0.42
Uber fare: cost per mile 0.81 0.81 0.81 1.22 1.22

Urban Form

Total Occupied Units 3012589 3011645 3012130
Median Lot Size (acre) – I unit structure 0.15 0.16 1.42% 0.16 1.09%

Median Unit Size (square feet) – All Units 1997.25 1999.99 0.14% 2000.23 0.15%
City Area (sq. miles) 1954.40 1846.67 -5.51% 1966.56 0.62%

City Radius (assuming circle) 32.30 31.40 -2.79% 32.40 0.31%
Meidan House Price per Sq. Ft. 7.10 7.17 0.90% 7.14 0.50%

Meidan Land Price per Acre 23427.78 24895.13 6.26% 24244.39 3.49%
Median Residential Struct./Land ratio 0.52 0.54 3.96% 0.53 2.22%

Residential Density (hh per sq. mile) 1541.14 1630.82 5.82% 1531.36 -0.64%
Average Commuting Time to work 24.19 25.16 4.01% 24.99 3.31%

Fraction housed in 1 unit structures 58.72% 56.21% -4.28% 57.57% -1.96%
Fraction housed in 2-4 unit structures 15.35% 13.49% -12.12% 14.22% -7.37%
Fraction housed in 5+ unit structures 25.93% 30.30% 16.88% 28.21% 8.81%

Fraction of population by Commuting Mode

Walking 3.06% 2.11% -31.09% 2.58% -15.85%
Public transit 12.42% 28.32% 128.00% 25.56% 105.81%

Walking to public transit 12.42% 4.21% -66.07% 4.32% -65.20%
Taking Uber to public transit 0.00% 24.10% 21.24%

Solo driving 75.95% 55.76% -26.57% 63.75% -16.06%
Carpooling 8.57% 7.42% -13.41% 8.11% -5.37%

Taking Uber to work 0.00% 6.39% 0.00%

Traffic Congestion

Average speed on highways 38.14 39.91 4.66% 39.52 3.61%
Average speed on residential streets 30.00 12.97 -56.77% 13.91 -53.65%

Energy Consumption per Household (million BTUs)

Total 573.91 569.74 -0.73% 571.02 -0.50%
Commuting 34.04 30.65 -9.95% 31.45 -7.61%

Dwelling 135.97 134.49 -1.09% 135.28 -0.51%
Numeraire 403.90 404.59 0.17% 404.29 0.10%

Carbon Emissions per Household (tons)

Total 29.28 28.93 -1.19% 29.03 -0.84%
Commuting 2.64 2.34 -11.66% 2.41 -8.78%

Driving 2.59 2.21 -14.64% 2.31 -10.82%
Public transit 0.05 0.12 139.15% 0.10 94.53%

Residential 6.71 6.63 -1.09% 6.67 -0.51%
Numeraire 19.92 19.96 0.17% 19.94 0.10%

Welfare

Wage rate 56069.00 56069.00 0.00% 56069.00 0.00%
Utility 11351.7744 11420.87 0.61% 11398.79 0.41%

Aggregate Welfare Analysis

Aggregate residential land rent (millions) 313.95 325.26 3.60% 319.20 1.67%
Agriculture land rent (millions) 262.35 288.98 10.15% 259.35 -1.15%

Aggregate land rent (millions) 576.31 614.24 6.58% 578.55 0.39%
Compensation variation per household 56069.00 55756.67 -0.56% 55837.57 -0.41%

Social cost of carbon emissions (millions) 3174.59 3136.95 -1.19% 3147.82 -0.84%
Aggregate welfare gain (millions) 1016.32 726.09
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