Information leakages, distribution of profits from informed trading, and last mover advantage

Andrey Pankratov∗

University of Lugano, Swiss Finance Institute

Abstract

I model a market in which an insider is subject to a careful scrutiny by another agent (follower) who immediately observes the insider’s trading decisions and mimics the insider while trading on his own behalf. The follower can be interpreted as a broker or a high-frequency trader.

I show that if the follower is sufficiently good at detecting the insider (noise is small), then the follower absorbs a dominant fraction of the expected profits coming from informed trading. My model is able to explain why dollar returns on the trades of insiders can be quite moderate.

Additionally, I provide an extension and explain a sudden upsurge of HFT activity during a five-year period 2004-2009.

∗email: andrey.pankratov@usi.ch
1 Research questions

- Why corporate insiders earn low dollar profits?
- Why the emergence of HFT was so abrupt?

2 Context: dissimulation of insider trades

Vast literature including Huddart, Hughes, and Levine (2001) is dedicated to mixed strategies or “bluffing”.

- Insider hides information from the follower;
- Insider randomizes his trading decisions;
- Dynamic setting: random behavior in the first period is offset by trading in the following periods.

3 Short-swing profit liability

This liability is imposed by section 16 of SEC (1934).

- Insiders have to compensate the gains from round-trip transactions accomplished within a six-month time span;
- Insiders cannot costlessly unwind the undesirable positions that they previously create because of randomization;
- Disincentive from trading randomly

4 Von Stackelberg approach

- Static model in terms of trading,
- Only one auction, no mixed strategies,
- Making decisions sequentially
5 Key implications

The better the follower at observing insider’s decisions:

• ⇒ the more aggressive the amplification (higher m),
• ⇒ the more conservative the insider (lower β),

Extreme cases:

• Uninformed follower ⇒ all profits are seized by insider,
• Highly informed follower ⇒ seizes almost all profits while insider only transmits the information, consistent with empirical findings of Cziraki and Gider (2019)

6 Model

I offer a model with asymmetric information based on Kyle (1985). There are four agents in the model:

• Insider
• Noise traders
• Follower
• Perfectly competitive market maker

6.1 Sequence of decisions

\[
d \leftarrow \xi \sim N(0, \sigma_\xi^2), \text{ where } \xi \in \{d, w, z\}.
\]

• $t = 1 - 2\varepsilon$

 – True value of the asset d is revealed to the insider;
 – The insider submits an order to buy/sell $x(d)$ shares;
 – The noise trader submits an order to buy/sell $x(d)$ shares;

• $t = 1 - \varepsilon$

 – The follower observes $x(d) + w$;
 – The follower submits an order to buy/sell $y [x(d) + w]$ shares;
 – The noise trader submits an order to buy/sell z shares;

• $t = 1$
- The market maker observes $x(d) + w + y \left[x(d) + w \right] + z$;
- The market maker sets the price and execute all the orders;

- $t = 2$: The true value d is paid out.

6.2 Price setting: semistrong efficient

If order flow $s \equiv x + w + y + z = \hat{s}$, then the price at time 1:

$$p \equiv p_1 = E \left\{ d | x(d) + w + y \left[x(d) + w \right] + z = \hat{s} \right\} =: g(\hat{s}),$$

$x(\cdot)$ and $g(\cdot)$ are the strategies of the two other players.

6.3 Optimal portfolio choices: leader

The insider (leader) knows that his trading choices affect the choices of the follower: additional price impact.

$$x(d) = \arg \max_x E \left[x \cdot (d - g(x + y(x + w))) \left| x(d) + w = \hat{x} \right. \right],$$

$y(\cdot)$ and $g(\cdot)$ are the strategies of the two other players.

6.4 Optimal portfolio choices: follower

By the moment when the follower is making his decision, the insider (leader) has already declared his choice: conditioning

$$y(\hat{x}) = \arg \max_y E \left[y \cdot (d - g(\hat{x} + y + z)) \left| x(d) + w = \hat{x} \right. \right],$$

$x(\cdot)$ and $g(\cdot)$ are the strategies of the two other players.

6.5 Equilibrium

Each player takes the strategies of the others as given. In equilibrium, the beliefs coincide with actual behavior.

Crucial remark: the leader does not assume that the order size of the follower is fixed, but instead the follower’s order size depends on his own order size.
7 Results

Only consider linear equilibria: $x = \beta d$, $y = m\hat{x}$, $p = \lambda\hat{s}$. There exists a unique linear equilibrium.

7.1 Equilibrium conditions

$$\beta = \frac{1}{2\lambda(1 + m)}.$$

$$m = \frac{1}{2} \left[\frac{1}{\lambda \left(\beta + \frac{\sigma_w^2}{\beta\sigma_d^2} \right)} - 1 \right],$$

$$\lambda = \frac{\beta(1 + m)\sigma_d^2}{\beta^2(1 + m)^2\sigma_d^2 + \sigma_z^2 + (1 + m)^2\sigma_w^2}.$$

These equations imply:

$$Q(m) := m(1 + m)^2 = \frac{\sigma_z^2}{2\sigma_w^2} =: \frac{F}{2},$$

where $Q(\cdot)$ is invertible in closed form (Cardano, 1545).

7.2 Solution

Step 1:

$$m = Q^{-1} \left(\frac{F}{2} \right).$$

Step 2:

$$\lambda = \sqrt{\frac{1 + F}{(1 + m)^2 + F}} \cdot \frac{\sigma_d}{2\sigma_w},$$

Step 3:

$$\beta = \frac{1}{2\lambda(1 + m)}.$$
Amplification coefficient m as a function of $\rho^2 := \frac{\sigma^2}{\sigma_n^2} = \frac{F}{F+1}$

8 Extension: innovation and HFT

- Follower is interpreted as a potential HFT;
- By default, follower has no informational advantage;
- Follower observes $x + n$;
- Follower can buy additional signal about x: $x + n^*$;
- Noise part n^* is independent of the noise n;
• Cost is proportional to the signal quality: $\Phi = \frac{\phi}{\text{Var}(n^*)}$.

$$x(d) + n \quad \uparrow \quad \begin{cases} \text{Insider noise} \\ \text{Exogenous noise} \end{cases} \quad \uparrow \quad y(x + n, x + n^*)$$

Observed by follower by default

Observed publicly and by the market maker

8.1 Technological progress and information-acquisition decisions

• Lower cost \Rightarrow acquire more information,

• Low technology level \Rightarrow acquire no information,

• Once technology reaches a certain level, a jump occurs in HFT activity: suddenly HFT finds it optimal to acquire considerable amount of information and to trade very actively;

• Consistent with observations of HFT trading volume

HFT volume in theory and in practice

Empirical data on HFT HFT volume, information quality (F) and amplification coefficient (m) depending on technology state

Break-down of profits depending on technology state

References

