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Abstract

Taking transaction costs into account in a mean-variance portfolio optimization

in FX markets significantly improves the achievable after costs Sharpe ratio out-of-

sample. The optimization reduces trading costs while the performance before costs is

unaffected. The price impact due to large buy and sell orders or market illiquidity can

turn popular currency trading strategies unprofitable, while our optimized portfolios

remain profitable. This is because our optimized strategy is trading less aggressively.

Rules-of-thumb to tackle transaction costs – such as (i) construct equally weighted

strategies instead of optimized portfolios, (ii) trade at a low frequency, (iii) restrict

trading to low cost assets, (iv) only rebalance if the current position is too far from

the desired position, or (v) use expected returns net of costs in the optimization –

are inefficient because there are adverse effects on the (before cost) performance which

dominate the savings in transaction costs.
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1 Introduction

There is mounting evidence in equity markets that transaction costs have a significant impact

on the profitability of trading strategies. Korajczyk and Sadka (2004) estimate that the price

impact of a fund with over $5 billion under management implies trading costs which exceed

the abnormal returns of momentum strategies. Lesmond et al. (2004), Novy-Marx and

Velikov (2016) and Chen and Velikov (2019) document that most of the abnormal returns

of 120 different stock anomalies are eroded by transaction costs (after accounting for the

post-publication bias).1

We analyze the implications of transaction costs on the profitability of trading strategies

in foreign exchange (FX) markets. We document that transaction costs can be large and

significantly affect the profitability of popular currency trading strategies. We further show

that a mean-variance optimization which accounts for trading costs in the optimization is able

to efficiently mitigate costs without any adverse implications on the before cost performance.

Our optimization ensures that the portfolio stays “close enough” to the optimal before cost

balance between expected return and risk, while minimizing turnover and trading costs. Our

optimization approach works well out-of-sample, to the extent that the impact of transaction

costs on the after cost performance becomes almost negligible. In contrast, common rules-

of-thumb to tackle transaction costs are inefficient. We document that rules-of-thumb lead

to a significant deterioration in the before cost profitability and this adverse effect outweighs

the savings in transaction costs.

Accordingly, the main insights of our research paper are twofold. First, despite the high

trading volume in FX markets transaction costs cannot be ignored. Costs can have a first

order effect on the profitability of trading strategies. Second, we provide an approach to

efficiently reduce the impact of costs on the after cost performance to a negligible amount

1Exceptions are Frazzini et al. (2015) and DeMiguel et al. (2019). Frazzini et al. (2015) argue that large
institutional investors face much smaller trading costs than what is estimated using publicly available data,
and thus, they estimate a break-even fund size that is more than an order of magnitude larger than suggested
by Korajczyk and Sadka (2004). DeMiguel et al. (2019) argue that in a portfolio of anomaly strategies trades
across anomalies are often offsetting, and thus, transaction costs for a portfolio of anomalies are significantly
lower than the sum of the costs of individual anomaly strategies.
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without a loss in the before cost profitability. Hence, it is important for investors to optimally

tackle transaction costs in the portfolio construction. However, once investors efficiently

mitigate costs, then from a macro perspective trading costs appear unimportant. Given

these insights we draw an analogy to the importance of idiosyncratic risks. Idiosyncratic

risks can be a first order component of an asset’s volatility. It is important for investors to

tackle idiosyncratic risks and construct a diversified portfolio. However, once idiosyncratic

risks are diversified away, then from a macro perspective they appear unimportant.2

Our paper further contributes to the theory literature on optimal portfolio choice subject

to transaction costs. First, we extend the model of Dybvig and Pezzo (2019) to account

for (i) directional costs, i.e., we allow costs for opening new positions to be different from

those of closing/reducing existing positions, and (ii) a price impact specification which is

less then linear in the size of the trades as in Frazzini et al. (2015). Second, we make a

technical contribution. The solution approach of Dybvig and Pezzo (2019) requires a full

rank covariance matrix. However, Maurer et al. (2018a,b) document that a robust estimate

of the covariance matrix based on a principal component analysis significantly improves

the out-of-sample performance of optimized currency portfolios. The principal component

analysis reduces the rank of the covariance matrix, and thus, we cannot readily use the

solution approach of Dybvig and Pezzo (2019). We introduce a transformation of the original

problem to deal with this technical difficulty.

In the following we provide a detailed preview of our analysis and results. We investigate

the profitability of a mean-variance optimized portfolio which ignores costs in its construction

(denoted by MV ), a mean-variance optimized portfolios which explicitly accounts for trading

costs in the optimization (denoted by MVTC), and characteristic sorted, equally weighted

long-short currency trading strategies. In our sample the most profitable equally weighted

strategy is the currency carry trade which equally borrows (lends) in currencies with low

(high) interest rates. MV is well-known to earn a significantly higher (and almost twice

2We acknowledge that idiosyncratic risk can be priced if perfect diversification is impossible (Merton,
1987). Moreover, we acknowledge that there is (puzzling) empirical evidence that idiosyncratic risk is
negatively related to expected returns (Ang et al., 2006).
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as high) Sharpe ratio before costs than the the carry trade (Baz et al., 2001; Della Corte

et al., 2009; Daniel et al., 2017; Ackermann et al., 2016; Maurer et al., 2018a,b). For this

reason most of our analysis focuses on the comparison between MVTC and MV , and to a

lesser extend on inferior equally weighted currency trading strategies. The problem with

MV is that it has fine tuned portfolio weights which are sensitive to time-series variation

in conditional expected returns and covariances which leads to a high turnover and trading

costs. We document that MV ’s turnover and costs are more than five times those of the

carry trade.

In contrast to MV , MVTC reduces its trading activity in the presence of transaction

costs. MVTC is trading off the costs of rebalancing against the desire to optimally balance

the before cost expected return and risk of the portfolio. If trading costs are high, MVTC

does not trade much and may end up holding a portfolio which is far away from the optimal

combination of expected return and risk. Since MV rebalances its portfolio weights at all

costs (to achieve the optimal combination of expected return and risk), it is intuitive to

expect that the before cost Sharpe ratio of MV dominates MVCT . Surprisingly, we do not

find evidence in the data to support this intuition. Out-of-sample the before cost Sharpe

ratio of MV and MVTC are statistically indistinguishable. MV has a before cost Sharp ratio

of 1.26 (0.96) while it is 1.27 (1.04) for MVTC for our data of 29 developed and emerging

(15 developed) currencies from 1976 to 2016.

As expected we find in the data that transaction costs are larger for MV than for MVTC .

The difference is driven by a significant reduction in the trading activity and the turnover of

MVTC . Throughout most of our paper we use bid-ask spreads as a measure of transaction

costs. Using this measure of costs, MVTC pays 1.25% (0.85%) of the portfolio value per

year in transaction costs which is substantially less than the 5.13% (2.19%) paid by MV

for our set of 29 developed and emerging (15 developed) currencies. Combining this with

the finding about the before cost performance we find that MVTC outperforms MV after

transaction costs. MVTC has an after cost Sharpe ratio of 1.16 (0.95), while the Sharpe ratio

of MV is 0.78 (0.75) for our set of 29 developed and emerging (15 developed) currencies. The
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differences are statistically significant and economically meaningful. Note that these Sharpe

ratios are out-of-sample. Other moments of the return distributions are similar across the

two strategies, and if anything, MVTC has a smaller crash risk exposure.

In order to achieve the superior performance of MVTC , it is important to properly account

for correlations between assets. Our model suggests that if assets are positively correlated,

then the no trading region of MVTC is larger than the one of MVTC\Corr, a strategy which

accounts for transaction costs in the optimization but assumes that assets are uncorrelated

when constructing the no trading region. The construction of MVTC\Corr is in the same

spirit as Liu (2004) who derives an exact solution for the optimal portfolio in a continuous-

time model with transaction costs for multiple uncorrelated assets. Indeed, we confirm our

theoretical insight in the data that the no trading region of MVTC is larger than the one

of MVTC\Corr and we show that this is empirically relevant. MVTC incurs lower trading

costs and achieves a significantly higher after cost Sharpe ratio than MVTC\Corr. This is an

important contribution to the literature because it demonstrates that we should not make the

assumption that assets are uncorrelated in order to simplify the optimization problem. This

is unfortunate because the model of Liu (2004) is the only continuous-time (multi period)

portfolio choice problem with many risky assets and subject to direct transaction costs for

which we have an exact solution.3

We further investigate whether the issue of transaction costs can be mitigated if we (i)

construct equally weighted long-short strategies instead of an optimized portfolio, (ii) trade

at a low frequency, (iii) remove assets with relatively high transaction costs from the set

of admissible assets, (iv) only rebalance if the current position is too far from the desired

position, or (v) use expected returns net of costs in the optimization. First, if there is

time-series variation in the investment opportunity set, it is reasonable to expect that an

equally weighted long-short strategy has a lower turnover and trading costs than a mean-

3Garleanu and Pedersen (2013, 2016) solve dynamic problems in the presence of an arbitrary covariance
structure but restrict costs to the price impact, i.e., they do not consider proportional costs from a bid-ask
spread, for instance.
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variance optimized portfolio with fine tuned weights.4 Second, we expect that trading at a

lower frequency will reduce trading activities and costs. Third, we expect that transaction

costs decrease if we restrict trading to assets with relatively low costs. Fourth, if we only

rebalance when the current position is too far from the desired position then we mechanically

trade less frequently and reduce costs. Finally, if we use expected returns net of costs in

the optimization we take less extreme positions, which should reduce turnover and trading

costs.

We confirm in our data that these four intuitive rules-of-thumb reduce the turnover and

transaction costs. Nevertheless, we find that they are inefficient because the performance

significantly worsens if we deviate from the optimal expected return-risk tradeoff, decrease

the trading frequency, or restrict the asset universe. That is, all four rules-of-thumb have

large unintended adverse implications on the performance, which dominate the intended

savings in trading costs. Overall, our findings advise against the use of intuitive rules-of-

thumb to mitigate transaction costs. The out-of-sample performance is significantly better

if we invest in a fully optimized portfolio which accounts for costs in the optimization. This

is an interesting contribution because the empirical finance literature often relies on such

rules-of-thumb to argue that costs are of second order importance. Our findings also provide

important guidance for practitioners.

In the last section of the paper we explore the additional implications of a price impact.

Large trading orders or low liquidity move the execution price outside the current bid-ask

spread, and thus, potentially increase trading costs. We do not have data to accurately

estimate the price impact of trading. Therefore, we investigate its implications in a sensitivity

analysis. Our goal is to explore how large the price impact has to be for trading strategies

to become unprofitable. We show that MVTC performs well after costs even if an investor

4To illustrate this point compare a mean-variance optimized portfolio to an equally weighted portfolio
which sorts assets according to expected returns and buys the top and sells the bottom quintiles. A time-
series variation in the covariance matrix will only affect the portfolio weights of the optimized portfolio while
the weights in the equally weighted portfolio remain constant. Moreover, small changes in expected returns
will likely leave the allocation of the equally weighted portfolio unchanged while the weights of the optimized
portfolio may substantially change. In these scenarios the optimized portfolio has more turnover and higher
costs than the equally weighted strategy.
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has a large portfolio size and executes large buy and sell orders or FX markets are illiquid

and the price impact of trading is severe. In contrast, the returns of MV and many equally

weighted currency trading strategies are quickly eroded by trading costs if an investor faces

a severe price impact. Furthermore, we show that on average it is optimal to trade less in the

presence of proportional costs and price impact than if there were only proportional costs.

This is an important contribution in that the theory is silent on the size and direction of the

optimal trades in the presence of a price impact (since they crucially depend on the price

impact parameters). Hence, to the best of our knowledge, we are the first to empirically

document the average behavior of the optimal mean-variance strategy in the presence of

proportional costs and a price impact.

A limitation of our optimized portfolio MVTC is that it is derived in a single period model.

Thus, it is myopic and in general it is suboptimal in a multi-period setting. In Appendix

A.6 we discuss heuristic adjustments to account for this shortcoming. We find it difficult

to improve the outstanding performance of MVTC even if we allow for adjustments which

feature a look ahead bias. Therefore, we conclude that the myopic feature of MVTC does

not seem to be a first order problem and MVTC is the best strategy that we know to address

transaction costs.

Transaction costs are decreasing over time and larger among emerging currencies. Traders

who specialize in more developed currencies may be tempted to ignore such costs when

constructing mean-variance efficient portfolios. In Appendix A.2 we show how our cost-

optimized strategies still remain considerably better even if we start the implementation after

the introduction of the Euro. Moreover even when transaction costs are low during normal

times, they can substantially increase during crises and become relevant (Mancini et al.,

2013; Karnaukh et al., 2015). Many currency traders have shifted their focus to emerging

and frontier markets because exchange rate forward discounts (and expected returns) among

developed currencies are close to zero in the past decade (see Figure 1). Transaction costs in

emerging and frontier markets are larger than the costs considered in our analysis. Hence,

the implications of transaction costs on the optimal portfolio choice are even more important
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for these traders than what we report. More generally, FX markets are more liquid and have

a higher trading volume than stock and other asset markets. Thus, we expect that our

empirical findings set a lower bound for the importance to optimize over transaction costs

for traders in other asset markets. Moreover, carry trade strategies are known to outperform

stock markets over the past four decades. Therefore, FX markets do not only provide a

useful environment to study mean-variance efficient portfolios but they are also among the

most important markets to investors.

Besides the aforementioned literature our paper is related to the literature on portfolio

optimization in the presence of transaction costs. Due to the complexity of the problem most

of the literature solves frameworks with only two or three assets, either directly (Taksar et al.,

1988; Davis and Norman, 1990; Dumas and Luciano, 1991; Shreve and Soner, 1994; Balduzzi

and Lynch, 1999, 2000; Liu and Loewenstein, 2004; Abel et al., 2013; Campanale et al.,

2015; Buss and Dumas, 2017), through the indirect martingale approach (Goodman and

Ostrov (2010) and Schachermayer (2017) for a comprehensive summary of this approach), or

approximately (Leland, 2000; Donohue and Yip, 2003; Muthuraman and Kumar, 2006; Irle

and Prelle, 2008; Myers, 2009; Lynch and Tan, 2009). In the case of many assets Liu (2004)

provides an exact solution in a continuous time model under the strong assumption that

assets are uncorrelated, Garleanu and Pedersen (2013) and Garleanu and Pedersen (2016)

find closed form solutions in discrete and continuous time settings in the presence of return

predictability but only consider costs in terms of a price impact. Dybvig and Pezzo (2019)

and Brandt et al. (2009) exactly solve one period models in the presence of an arbitrary

covariance structure and number of risky assets.5 DeMiguel et al. (2019), building on the

setup of Brandt et al. (2009), also provide a myopic mean-variance setup. They solve for

optimal deviations from a benchmark by investing in a small number of assets (portfolios of

stock characteristics). We build on the setup of Dybvig and Pezzo (2019) since it does not

require a sophisticated calibration in a pre-sample, directly chooses the optimal weights in

5The setup of Brandt et al. (2009) faces a “curse of dimensionality” problem if the set of assets to be
used is too large.
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the assets we want to trade in, adapts to the actual asset-specific cost structure of the FX

markets, and scale up nicely with the number of assets.

2 Theory

Following Dybvig and Pezzo (2019) we work with a single period model. We ignore poten-

tially interesting implications of a dynamic model to keep the solution exact and tractable.

Therefore, our strategy is myopic which in general leads to a suboptimal outcome. However,

we show that our myopic strategy has a strong out-of-sample performance in the data.

The investment opportunity set at time t consists of one risk-free asset with risk-free rate

of return rf,t and Nt risky assets with conditional expected excess returns over the risk-free

rate µe
t and conditional covariance matrix Vt. If there are no transaction costs, then a myopic

investor with mean-variance preferences with risk aversion λ selects the Nt-vector of risky

asset portfolio weights θMV
t = arg max{θt∈RN}

¶
θt
′µe

t − λ
2
θt
′Vtθt

©
to maximize her 1-period

utility at time t. The optimal investment in the Nt risky assets is θMV
t = 1

λ
Vt
−1µe

t and the

investment in the risk-free asset is θMV
0,t = 1− 1′{N×1}θ

MV
t where 1{Nt×1} is a Nt-vector with

all elements equal to 1 (Markowitz, 1952). We denote this strategy by MV .

In what follows we describe the strategies that take into account transaction costs in the

mean-variance optimization. We defer to Appendix B.1 for the required proofs of existence

and uniqueness of solutions and to Appendix B.3 for the description of the algorithm to

implement them.

2.1 Baseline Model

We denote the mean-variance strategy where the investor takes into account transaction

costs by MVTC . Let θ0
t be the Nt-vector of initial weights before trading. The investor has

to choose by how much to increase (∆P+
t ≥ 0) or decrease (∆S+

t ≥ 0) open long positions

(positive weights in θ0
t ), and by how much to increase (∆S−

t ≥ 0) or decrease (∆P−
t ≥ 0)
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open short positions (negative weights in θ0
t ). The allocation after trading at time t is given

by the weight vector θt = θ0
t + ∆P+

t + ∆P−
t − ∆S+

t − ∆S−
t . Increasing a long position

in asset i at time t by ∆P+
i,t entails a cost of CP+

i,t ∆P+
i,t , where CP+

i,t is the per dollar or

proportional cost associated to a trade of size ∆P+
i,t . CP+

i,t and ∆P+
i,t are the i-th elements

of the Nt-vectors CP+
t and ∆P+

t . Thus, CP+
t
′
∆P+

t captures the costs to open new long

positions across all assets. Similarly, CS+
t
′
∆S+

t describes the costs to close long positions,

and CS−
t
′
∆S−

t respectively CP−
t
′
∆P−

t the costs to open respectively close short positions.

Costs are asset-specific and proportional to the size and direction of the trades reducing

the portfolio return by
∑
z∈{P+,P−,S+,S−}∆

z
t
′Cz

t . All transaction costs are functions of the

sizes of the directional trades (∆P+
t ,∆P−

t ,∆S+
t ,∆S−

t ) and we assume that there are no fixed

costs.

Our baseline setting is a straightforward extension of the case studied by Dybvig and

Pezzo (2019) where costs to adjust long and short positions are identical, that is, CP+
t =

CP−
t ,CS+

t = CS−
t . The optimization problem is:

Problem 1 (Strategy MVTC baseline)

max
{∆P+

t ,∆P−
t ,∆S+

t ,∆S−
t }

θt
′µe

t −
λ

2
θt
′Vtθt −

∑
z∈{P+,P−,S+,S−}

∆z
t
′Cz

t


s.t. θt = θ0

t + ∆P+
t + ∆P−

t −∆S+
t −∆S−

t

0 ≤ ∆P+
t ,

0 ≤ ∆P−
i,t ≤ −min(θ0i,t, 0) for every asset i,

0 ≤ ∆S+
i,t ≤ max(θ0i,t, 0) for every asset i,

0 ≤ ∆S−
t .

In our data CP−
t ≤ CP+

t and CS+
t ≤ CS−

t (element by element). This implies that whenever

it is optimal to buy more of asset i (either to close currently open short positions ∆P−
i,t > 0

or to open new long positions ∆P+
i,t > 0), the investor first closes the open short positions
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(if any) and then opens new long positions. Similarly, when it is optimal to sell more of the

asset the investor first closes open long positions (if any) and then opens new short positions.

The mean-variance setup without transaction costs (
∑
z∈{P+,P−,S+,S−}C

z
t
′∆z

t = 0) is

a special case of Problem 1. The portfolio of strategy MV is independent of the initial

position θ0
t , and it is always optimal to trade all the way to θMV

t . In contrast, if there are

transaction costs (
∑
z∈{P+,P−,S+,S−}C

z
t
′∆z

t > 0), then θMVTC
t crucially depends on the origin

θ0
t . Intuitively, there is a trade-off between paying transaction costs and utility gains when

moving towards θMV
t . If the initial allocation θ0

t is close enough to θMV
t , it is optimal not

to trade at all since the marginal cost required to move towards θMV
t is higher than the

marginal utility. Thus, there is a no trading region around θMV
t . If the initial allocation θ0

t

is far enough from θMV
t (i.e., outside of the no trading region), then it is optimal to move

towards θMV
t but only until θMVTC

t . This is because the marginal utility of moving towards

θMV
t is diminishing, and at the boundary of the no trading region, where θMVTC

t is located,

the marginal utility is equal to the relevant entries of the marginal costs CP+
t ,CP−

t ,CS+
t and

CS−
t .

Without loss of generality, Figure 3 illustrates the optimal solution to Problem 1 in a

simplified setting with two risky assets (and one risk-free asset) and CP+
t = CP−

t = CS+
t =

CS−
t > 0.6 The horizontal axis describes the weight placed on asset 1 and the vertical axis

the weight on asset 2. The weight on the risk-free asset is 1 minus the sum of the weights on

the two risky assets. The green rectangle represents the optimal portfolio θMV
t if there were

no transaction costs. The blue parallelogram surrounding θMV
t defines the no trading region

when the two assets are positively correlated. If the initial allocation θ0
t is inside the no

trading region (i.e., within the blue parallelogram), then there is no trade and θMVTC
t = θ0

t ,

because the marginal cost to trade towards θMV
t exceeds the marginal utility.

If the initial portfolio θ0
t lies outside of the no trading region, then the investor wants

to move towards θMV
t but stops trading once she reaches the boundary of the no trading

6In Appendix B.2 we refine this example by allowing directional proportional costs CP+
t 6= CP−

t and
CS+

t 6= CS−
t .
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region. The arrows indicate the direction of trade and the arrow heads show how far to

trade. Purple, brown or orange colors of the arrows indicate that only asset 1, 2 or both

assets are traded.

If we start anywhere beyond the corners of the no trading region it is optimal to trade

in both assets (red arrows) until we reach the closest corner. The optimal portfolio θMVTC
t

is exactly at one of the corners of the no trading region. For example, if θ0
t lies beyond the

bottom, right corner we are under-weighted in asset 2 and over-weighted in asset 1. It is

optimal to buy some units of asset 2 (∆P
2,t > 0) and sell some units of asset 1 (∆S

1,t > 0)

until we reach the bottom, right corner of the blue no trading region.7

If we start anywhere else outside the no trading region it is optimal to trade only one

asset at a time. For example, if θ0
t lies in the area labeled “sell 1” we are over-weighted in

asset 1 and thus it is optimal to reduce our position buy selling units of that asset (along

the dark red arrows) until we reach the closest boundary of the blue no trading region.

Finally, if we construct the no trading region around MV ignoring the correlation between

the assets, then it reduces to the yellow square. For instance, Liu (2004) assumes uncorrelated

assets to derive an exact solution for the optimal dynamic trading strategy. We denote this

approximate solution by MVTC\Corr and provide details about the formal problem in Section

2.4.

If the two assets are positively correlated, then the no trading region of MVTC is larger

along the −45◦ line than the one of MVTC\Corr. This is because the two assets are substitutes

if they are positively correlated, while they are not substitutable if they are uncorrelated.

Note that if the two assets were perfect substitutes (i.e. a correlation equal to 1 and identical

volatilities), then selling asset 1 and at the same time buying asset 2 would leave our risk

exposure unaffected. In the same spirit, if the two assets are imperfect substitutes (i.e.

correlation between 0 and 1), then there is less benefit in selling one and at the same time

buying the other asset than if they are not substitutable at all (i.e. correlation equal to

7Since CP+
t = CP−

t in our simplified example we only have one type of purchase cost, which we define
as CP

t , and one type of buy trade, which we define as ∆P
t . Similarly, since CS+

t = CS−
t we only have one

type of sale cost, which we define as CS
t , and one type of sell trade, which we define as ∆S

t .
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0). Since an initial position θ0
t close to the −45◦ line requires the investor to buy one and

sell the other asset, the marginal utility from trading towards θMV
t is smaller and the no

trading region larger if the two assets are positively correlated than if they are uncorrelated.

Conversely, a similar argument can be applied to the case of a negative correlation, and the

no trading region of MVTC is smaller along the −45◦ line than the one of MVTC\Corr.

2.2 Price Impact

When trades are large enough to distort prices, which is possible for a large institutional

trader like BlackRock, the optimization problem should take into account the price im-

pact of the chosen trades. In order to capture this effect, for each type of trade z ∈

{P+, P−, S+, S−} we add the price impact component 1
2
PIt(z,∆

z
t)∆z

t to the proportional

cost Cz
t
′∆z

t .8 Following the price impact literature we use two parametric functional forms:

the linear price impact function

1

2
PIt(z,∆

z
t) ≡ 1

2
PILt (z,∆z

t) =
1

2
∆z

t
′Πz,L

t

as in (Novy-Marx and Velikov, 2016; Garleanu and Pedersen, 2013), and the square-root

price impact function

1

2
PIt(z,∆

z
t) ≡ 1

2

√
PI t(z,∆

z
t) =

1

2

»
∆z

t

′
Πz,SR

t

as in (Frazzini et al., 2015). Πz,L
t and Πz,SR

t are positive definite diagonal matrices containing

the asset-specific price impact parameters. 1
2
PIt(z,∆

z
t)∆z

t measures the extra cost to the

investor due to price movements induced by the submitted order ∆z
i,t. For example, an

order to open ∆P+
i,t new long positions puts upward pressure on the ask price, and thus, the

per dollar costs to open new long positions in asset i increases by 1
2
PIt(P+,∆P+

t )i, either

8Pre-multiplying by 1
2 makes the units comparable with the other terms in the mean-variance utility

function. Also the number 2 cancels out in the first order condition when the price impact is a linear
function of the size of the trades as defined below.
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linearly if PIt = PILt , or less than linearly if PIt =
√
PI t. The price impact parameter

πP+
ii,t is inversely related to the liquidity and depth of the market and positively related to

the investor’s portfolio size and buy and sell order amounts.9 A large (small) portfolio size

implies that changes in the portfolio allocation entail large (small) buy and sell orders, which

will have a large (small) effect on the execution prices.

Estimating the price impact is difficult and there is no definite answer on whether or not

larger trades have less price impact per dollar traded. This is why in our analysis we use the

two different functional forms to model the price impact. The new optimization problem is:

Problem 2 (Strategy MVTC with price impact)

max
{∆P+

t ,∆P−
t ,∆S+

t ,∆S−
t }

θt
′µe

t −
λ

2
θt
′Vtθt −

∑
z∈{P+,P−,S+,S−}

Ç
∆z

t
′Cz

t +
1

2
PIt(z,∆

z
t)∆z

t

å
s.t. θt = θ0

t + ∆P+
t + ∆P−

t −∆S+
t −∆S−

t

0 ≤ ∆P+
t ,

0 ≤ ∆P−
i,t ≤ −min(θ0i,t, 0) for every asset i,

0 ≤ ∆S+
i,t ≤ max(θ0i,t, 0) for every asset i,

0 ≤ ∆S−
t .

Note that Problem 2 is a generalization of Problem 1. If we set ΠP+
t = ΠP−

t = ΠS+
t =

ΠS−
t = 0 in Problem 2 then we recover Problem 1. The economics of the new model are

similar to the one in the baseline model. There is still a no trading region around θMV
t , which

is the same as the one implied by Problem 1, but the optimal trades starting outside of it

will never reach its borders (see Dybvig and Pezzo (2019) Theorem 5). This is because the

marginal utility of trading has now an additional component which only cancels when it is

optimal not to trade. Thus, at the border of the no trading region the marginal utility is the

same as in Problem 1 and equals the relevant entries of the marginal costs CP+
t ,CP−

t ,CS+
t

9Remember that ∆z
t is the change in the asset weight as a percentage of the portfolio value.
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and CS−
t . However, if θ0

t lies outside of the no trading region the additional component due

to the price impact does not cancel out, making the marginal costs a function of the price

impact parameters. Thus, the starting point θ0
t and the price impact parameters, Πz,L

t or

Πz,SR
t , will determine the size and the direction of the optimal trades.

2.3 A Robust Estimator of the Covariance Matrix

Maurer et al. (2018a,b) show that eliminating the principal components of Vt that explain

less than 1% of the common variation of the currency returns substantially increases the

out-of-sample performance of MV . They define the robust version of the covariance matrix

as Ṽt = W̃tΛ̃tW̃
′
t where W̃t is the matrix of eigenvectors and Λ̃t is the diagonal matrix

of eigenvalues after removing eigenvectors and eigenvalues which explain less than 1% of

the common variation of the returns. The problem is that Ṽt is not full rank. Since the

algorithm developed by Dybvig and Pezzo (2019) requires the covariance matrix Vt to be

full rank, we need to re-write Problem 2 in a slightly more general form as:

Problem 3 (Strategy MVTC with price impact and PCA)

max
{∆P+

t ,∆P−
t ,∆S+

t ,∆S−
t }


1
2
µe

t

′
θ̃MV

t − λ
2
(θt − θ̃MV

t )′Vt(θt − θ̃MV
t )

−∑z∈{P+,P−,S+,S−}
Ä
∆z

t
′Cz

t + 1
2
PIt(z,∆

z
t)∆z

t

ä
s.t. θt = θ0

t + ∆P+
t + ∆P−

t −∆S+
t −∆S−

t

0 ≤ ∆P+
t ,

0 ≤ ∆P−
i,t ≤ −min(θ0i,t, 0) for every asset i,

0 ≤ ∆S+
i,t ≤ max(θ0i,t, 0) for every asset i,

0 ≤ ∆S−
t ,

where θ̃MV
t = 1

λ
Ṽ−1

t µe
t and Ṽ−1

t = W̃tΛ̃
−1
t W̃′

t. When Ṽt = Vt, then θ̃MV
t = θMV

t and the

problem to solve is exactly Problem 2. This is because the objective function of Problem

3 in this case is just an algebraic re-arrangement of that of Problem 2 and we have not
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changed any constraint. More generally, by using θ̃MV
t instead of θMV

t , we are constructing

the no trading region using the original full rank covariance Vt around θ̃MV
t , the optimal

mean-variance strategy of Maurer et al. (2018a,b). Using this transformation we retain the

feasibility of the Dybvig and Pezzo (2019) setup while exploiting the superior performance of

θ̃MV
t . The MV and MVTC strategies that we study and present in the rest of the paper use

θ̃MV
t and are the solution of Problem 3 (the baseline setup is thus considered to be Problem

3 with Πz,L
t = Πz,SR

t = 0).

2.4 Disregarding Asset Correlations when Forming the No Trad-

ing Region

Liu (2004) shows that in a continuous-time model the assumption of uncorrelated assets

greatly reduces the complexity to dynamically optimize a portfolio subject to transaction

costs. This is because with uncorrelated assets we can solve Nt independent problems each

one associated with only one asset. The optimal solution is a rectangular no trading region

(or its multidimensional analog) surrounding the solution in the setting without transaction

costs.

We re-create the same insights in our myopic framework to construct MVTC\Corr. That

is, we build a rectangular no trading region (or its multidimensional analog) around MV .10

As a consequence, the optimal portfolio θ
MV \Corr
t is the solution to Problem 3 with diagonal

matrix Vd
t in place of Vt, where the diagonal elements are equal to the diagonal elements

of Vt.

2.5 Model Predictions and Limitations

Our models leaves us with four theoretical predictions. First, we expect MV to outperform

MVTC if the performance is measured in returns before transaction costs. This is because,

10As in the example in Figure 13 the actual no trading region might have some edges cut when CP+
t 6= CP−

t

or CS+
t 6= CS−

t and the point (0, 0) is inside the no trading region.
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by definition, MV is the optimal portfolio when evaluated before transaction costs (in the

single period model). Second, we expect transaction costs to be larger for MV than for

MVTC . Third, we expect MVTC to outperform MV after transaction costs. Moreover, the

size of these differences between MV and MVTC are expected to depend on the size of the

no trading region of MVTC . In turn, the no trading region is expected to be increasing

in the size of the transaction costs. Fourth, if assets are correlated, then we expect that

the no trading region of MVTC is larger than that of MVTC\Corr. Thus, we expect MVTC

to outperform MVTC\Corr. We quantify and assess the empirical importance of these four

predictions and compare the performances of MV , MVTC and MVTC\Corr for our baseline

setup in Section 4.1 and conduct a separate analysis for the price impact in Section 4.3.

Finally, as explained earlier our theory model assumes a single investment period. A

multi-period model is complex for two reasons. First, changes in the investment opportunity

set lead to a hedging demand (Merton, 1971). Second, since the optimal portfolio crucially

depends on the initial portfolio θ0t , in a multi-period model an investor should take into

account how the portfolio at time t will affect the initial position at time t + 1, which

leads to a non-trivial adjustment of the no trading region. We are not aware of a tractable

solution to solve the second problem, unless we make additional strong assumptions such as

imposing that all assets are uncorrelated as in Liu (2004) or restricting costs to be purely

quadratic as in Garleanu and Pedersen (2013, 2016). Our empirical results suggest that our

myopic solution performs well in the data and in Appendix A.6 we argue that multi-period

adjustments do not seem of first order importance.

3 FX Markets

The investment strategies MV (ignoring transaction costs in the optimization), MVTC (tak-

ing into account costs in the optimization) and MVTC\Corr (taking into account costs in the

optimization but constructing the no trading region assuming uncorrelated assets) are based

on the mean-variance optimization outlined in Section 2. In order to construct mean-variance
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efficient portfolios that perform well out-of-sample, we need sensible estimates of conditional

expected returns and the covariance matrix. Estimation errors are a well-known problem in

the portfolio optimization literature and can lead to a bad out-of-sample performance of op-

timized portfolios (Brandt, 2005). For instance, DeMiguel et al. (2009) show that in the US

stock market an equally weighted portfolio outperforms mean-variance optimized portfolios

out-of-sample due to estimation errors.

FX markets are special. First, forward discounts are good proxies for conditional expected

excess returns of currency trades because exchange rate growths are well-described by a

random walk (Meese and Rogoff, 1983). Second, there is a strong factor structure to describe

the covariance matrix (Lustig et al., 2011). This is helpful to reduce estimation errors. These

properties are exploited in several recent papers and mean-variance optimized portfolios in

FX markets are shown to be very profitable in out-of-sample analyses (Baz et al., 2001; Della

Corte et al., 2009; Daniel et al., 2017; Ackermann et al., 2016; Maurer et al., 2018a,b). We

follow this literature and implement MV , MVTC and MVTC\Corr in FX markets to quantify

the importance of accounting for transaction costs in the construction of mean-variance

optimized portfolios.

3.1 Investment Opportunity Set in FX Markets

We denote spot and 1-month forward exchange rates as USD (US-dollar) per unit of currency

i at time t by Xi,t and Fi,t. Following the literature, we define the 1-month realized currency

return between currency i and the USD (denominated in USD) by

ri,t+1 ≡ ln

Ç
Xi,t+1

Fi,t

å
= fdi,t + ∆xi,t+1,

where fdi,t = ln
(
Xi,t
Fi,t

)
(known at time t) is the forward discount, and ∆xi,t+1 = ln

(
Xi,t+1

Xi,t

)
(realized at time t+ 1) is the exchange rate growth. ri,t+1 is the excess return (over the risk-

free rate in USD) of entering an uncovered long position in the 1-month forward exchange
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rate contract.11

We use currency returns for Nt currencies (against the USD) as our universe of Nt risky

assets. Due to data availability the number of currencies Nt changes through time. The

excess returns from time t to t + 1 of strategies MV , MVTC and MVTC\Corr are r′t+1θ
MV
t ,

r′t+1θ
MVTC
t and r′t+1θ

MVTC\Corr

t , where rt+1 is the vector of excess returns of all Nt currency

returns.

We set the initial weight of asset i at time t equal to the optimal portfolio at time t−1 plus

any changes due to realized returns. That is, for generic strategy j, θ0,j
i,t = θj

t−1,i + θj
t−1,iri,t,

where θjt−1,i is the optimal weight of asset i in the portfolio at time t−1 according to strategy

j and ri,t is the realized return of asset i from time t− 1 to t.

The constructions of MV , MVTC and MVTC\Corr require estimates of conditional ex-

pected excess returns µe
t and the covariance matrix Vt. We follow the literature and use

the current forward discount fdi,t as a proxy for conditional expected excess return µe
i,t (Baz

et al., 2001; Della Corte et al., 2009; Daniel et al., 2017; Ackermann et al., 2016; Maurer

et al., 2018a,b). This is motivated by the empirical finding that exchange rate changes are

difficult to predict over a short horizon, i.e., Et [∆xi,t+1] ≈ 0 (Meese and Rogoff, 1983).

To estimate the conditional covariance matrix Vt we follow Maurer et al. (2018a,b).

We refer to their work for details about the estimation. First, we estimate Vt using an

exponentially weighted moving average estimator for the covariance of daily returns. We

use a decay factor of 0.97 and a 9 month window preceding month t such that our estimate

uses only information available prior to t and the subsequent portfolio construction is out-of-

sample. Second, as explained in Section 2.3, we apply a spectral decomposition to Vt, and

remove eigenvectors and eigenvalues which explain less than 1% of the common variation in

returns.

11Under the premise of the covered interest rate parity (CIP), the forward discount is equal to the interest

rate differential fdi,t = ln
Ä
Ri,t

RUS,t

ä
where RUS,t(= erf,t) and Ri,t are 1-month risk-free interest rates in the

USD and currency i, and the carry trade return is equivalent to borrow 1
RUS,t

USD and lend 1
RUS,tXi,t

units

of currency i. Note that we do not require the CIP to hold for the construction of our portfolios or the
out-of-sample performance analysis. We implement all carry trade returns using forward and spot exchange
rates and do not need information about interest rates.

18



The constructions of MVTC and MVTC\Corr further require estimates of transaction costs.

We compute currency returns before and after transaction costs. We use mid exchange

rate quotes for Xi,t and Fi,t to compute returns before transaction costs. To account for

proportional transaction costs we use bid-ask quotes, indicated by superscripts b and a. Since

it is relatively cheap to roll a contract over from month to month, the literature typically

assumes no roll-over fees and only accounts for transaction costs if there is a change in a

position (Menkhoff et al., 2012; Della Corte et al., 2016; Maurer et al., 2018a). Our estimates

of the per dollar transaction costs to open new long positions (CP+
i,t ), close existing long

positions (CS+
i,t ), open new short positions (CS−

i,t ) and close existing short positions (CP−
i,t )

are

CP+
i,t ≡ ln

Ç
Xi,t+t

Fi,t

å
− ln

(
Xi,t+1

F a
i,t

)
= ln

Ç
F a
i,t

Fi,t

å
CS+

i,t ≡ ln

Ç
Xi,t

Fi,t−1

å
− ln

(
Xb
i,t

Fi,t−1

)
= ln

(
Xi,t

Xb
i,t

)

CS−
i,t ≡ − ln

Ç
Xi,t+1

Fi,t

å
+ ln

(
Xi,t+1

F b
i,t

)
= ln

(
Fi,t
F b
i,t

)

CP−
i,t ≡ − ln

Ç
Xi,t

Fi,t−1

å
+ ln

Ç
Xa
i,t

Fi,t−1

å
= ln

Ç
Xa
i,t

Xi,t

å
.

In Appendix A.5 we implement our analysis using full round-trip costs (i.e. assume that

a position is completely closed and re-opened every month) and show that this leads to

substantially larger transaction costs and a quantitatively larger effect of our results. Full

round-trip costs are considered too conservative and larger than the trading costs paid in

practice. Thus, we consider the robustness results presented in Appendix A.5 less relevant.

It is more difficult to obtain an estimate for the price impact parameters Πz,L
t and Πz,SR

t

for z ∈ {P+, P−, S+, S−}. Mancini et al. (2013) and Karnaukh et al. (2015) study liquidity

in FX markets. They show that the linear price impact of trading is important and there

is a substantial variation in the cross-section and the time-series. They have access to a

proprietary dataset from Electronic Broking Services, which contains second-by-second bid

and ask quotes, volume and information on the direction of trades for seven major currencies
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between January 2007 and December 2009. Unfortunately, this data is not available to us.

Moreover, it covers only spot (but not forward) exchange rates and only a small subset of

the currencies and the time horizon which we consider in our analysis. While we assume that

there is no price impact in our baseline analysis, following the setup developed in Section

2.2, we investigate in Section 4.3 the implications of a wide range of values for Πz,L
t and

Πz,SR
t on the performance of our trading strategies.

Figure 4 plots the time-series of the cross-sectional average of annualized costs (as a per-

centage of the portfolio value; not including price impact costs) for a set of 29 developed and

emerging currencies (black solid line), a subsets of 14 emerging currencies (blue dashed line),

and a subset of 15 developed currencies (red dotted line).12 As expected, transaction costs

to trade emerging currencies are substantially larger than developed currencies. Transaction

costs generally decrease over time, except during FX market crises, which do not necessarily

coincide with NBER recessions (grey shaded areas). The costs reach low levels between

0.04% and 0.06% of the portfolio value in the final year of our sample. In Appendix A.2 we

show that MVTC continues to outperform MV even in the period after the introduction of

the Euro in January 1999.

Traders who specialize in developed currencies may be tempted to ignore transaction

costs when constructing mean-variance efficient portfolios. However, even if transaction

costs are low during normal times, they can substantially increase during crises and become

relevant (Mancini et al., 2013; Karnaukh et al., 2015). Moreover, many currency traders

have shifted their focus to emerging and frontier markets because exchange rate forward

discounts (or expected returns) among developed currencies are close to zero in the past

decade. Figure 1 illustrates the decline in the average (across currencies) of absolute forward

discounts. Transaction costs in emerging and frontier markets are generally larger than

the costs considered in our analysis, and thus, the implications of transaction costs on the

optimal portfolio choice are even more important for these traders. In addition, FX markets

12The cross-sectional average of costs is computed as 1
4×Nt

∑Nt
i=1

Ä
ĈP

t + ĈP−
t + ĈS+

t + ĈS−
t

ä
, where Nt

is the number of exchange rates for which we have data available at time t and the average is taken over the
time t cross sectional median of each type of cost Ĉz

t for z ∈ {P+, P − S+, S−}.
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are more liquid and have lower transaction costs than most other asset markets. Therefore,

if we generalize our finding and consider the implications for other markets, we expect that

our results can be viewed as a lower bound.

All baseline strategies (MV , MVTC , MVTC\Corr) use information (i.e. estimates for µe
t ,

Vt, Cz
i,t ∀z ∈ {P+, S+, P−, S−}) available at the end of month t to construct a portfolio

which we then hold until the end of the subsequent month t + 1. Thus, all returns are

out-of-sample and none of the trading strategies suffers from a look-ahead bias.

Finally, we set the risk aversion coefficient λ = 50 in our portfolio optimizations. We

follow Maurer et al. (2018a) who choose this value so that the mean-variance efficient port-

folio has an unconditional volatility comparable to typical currency trading strategies. In

Appendix A.4 we show that our results are empirically and theoretically unaffected by the

choice of λ.

3.2 Data

We collect daily spot and 1-month forward bid, ask and mid exchange rates from Barclays

Bank International and Reuters via Datastream. We use quotes of the last day of the

month to compute monthly returns ri,t+1. A concern with currencies of emerging countries

is that there are capital controls and major trading frictions. Menkhoff et al. (2012) and

Della Corte et al. (2016) suggest to exclude countries with a negative score on the capital

account openness index of Chinn and Ito (2006).13 Following this literature, we include

currencies of 29 countries in our analysis. According to Lustig et al. (2011) 15 of them are

classified as developed, while the remaining 14 are “emerging” countries. The 15 developed

countries are: Australia, Belgium, Canada, Denmark, Euro Area, France, Germany, Italy,

Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom. The 14

13We further exclude a currency at time t if it is pegged to another currency, more than 20% of its daily
exchange rate changes are missing over the past 9 months, or if the absolute value of the annualized forward
discount 12×|fdi,t| is larger than 25%. Forward discounts of more than 25% are rare and we believe that such
large values likely indicate non-tradable outliers in the data, the presence of severe trading frictions, sizable
sovereign default risk or an extraordinary large expected currency devaluation. Under these conditions, a
currency trader is likely not able or willing to consider a currency as part of the investment opportunity set.
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emerging countries are: Brazil, Czech Republic, Greece, Hungary, Iceland, Ireland, Mexico,

Poland, Portugal, Singapore, South Africa, South Korea, Spain, Taiwan. The Euro was

introduced in January 1999 and we exclude all countries which have joined the Euro after

that date and only keep the Euro as a currency.

Exchange rates of all 29 currencies are quoted against the USD for the sample starting

on October 11th, 1983 and ending on March 2nd, 2016. We are able to extend our sample

further back to January 2nd, 1976 for the following subset of 14 countries with exchange

rates quoted against the GBP (Great British Pound): Belgium, Canada, Denmark, France,

Germany, Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,

USA. For the period from January 2nd, 1976 to October 11th, 1983 we convert all data

to exchange rates quoted against the USD using mid exchange rate quotes of USD/GBP.

Because the data quoted against the GBP is less reliable, in Appendix A.3 we restrict our

analysis to a subsample starting in October 11th, 1983. We show that our results are robust

in this subsample.

4 Results

In section 4.1 we show that the out-of-sample performance after transaction costs of mean-

variance efficient portfolios improves if transaction costs are taken into account in the baseline

optimization (i.e., Problem 3 without price impact). The outperformance after transaction

costs of MVTC over MV is due to a significant reduction in the trading activity, which

reduces its implementation costs. In addition, we show that it is important to properly

account for correlations between assets for the superior performance of MVTC . This is an

important contribution to the literature because it demonstrates that we should not make

the assumption of Liu (2004) that assets are uncorrelated.

In section 4.2 we use the baseline setup to investigate whether the issue of transaction

costs can be mitigated if we (i) construct equally weighted long-short strategies instead

of an optimized portfolio, (ii) trade at a low frequency, (iii) remove assets with relatively
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high transaction costs from the set of admissible assets, (iv) only rebalance if the current

position is too far from the desired position, or (v) use expected returns net of costs in the

optimization.

While we confirm that these four intuitive rules-of-thumb reduce transaction costs, we

find that they are not efficient because the (before and after cost) performance significantly

worsens if we deviate from the optimal tradeoff between expected returns and risk, decrease

the trading frequency, or restrict the asset universe. Overall, our findings advise against the

use of an intuitive rule-of-thumb to mitigate transaction costs. The out-of-sample perfor-

mance is significantly better if we invest in a fully optimized portfolio which accounts for

costs in the optimization.

In section 4.3 we analyze how a price impact of trading affects the performance of our

strategies in addition to effects of proportional costs. That is, we implement the version of

Problem 3, letting Πz,L
t = Πz,SR

t 6= 0. MVTC still remain the best choice. No matter the

functional form of the price impact or the set of currencies, minimizing over costs in the

optimization is crucial if the price impact is not infinitesimal. MVTC and MVTC\Corr are

the only strategies that consistently perform well after costs. Moreover, the two strategies

remain profitable even if an investor has a large portfolio size and executes large dollar

amount buy and sell orders or FX markets are illiquid and the price impact of trading is

extremely severe. In contrast, MV and many popular equally weighted currency trading

strategies in the literature significantly underperform, even if the price impact is moderate.

Transaction costs quickly erode the returns if there is a price impact and several strategies

turn unprofitable. Furthermore, we find that on average is optimal to trade less in the

presence of proportional costs and price impact that what it would be optimal if costs were

only proportional. This is interesting because the theory is silent on the size and direction

of the optimal trades in the presence of price impact as they depend on the price impact

parameters (see Section 2.2). Thus, to the best of our knowledge, we are the first to document

the empirical behavior of the optimal mean-variance trades in the presence of proportional

costs and price impact.
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Appendix A contains additional results which illustrate the robustness of our findings.

Sections A.1, A.2 and A.3 provide robustness results in subsamples considering NBER vs

non-NBER time periods, samples before vs after the introduction of the Euro, and a shorter

sample excluding (arguably less reliable) data before November 1983. Section A.4 provides

robustness results showing that our results are indistinguishable across for various choices

of the risk aversion coefficient λ. Section A.5 shows that our main results are quantitatively

even more important if we consider full round-trip transaction costs. In section A.6 we

discuss heuristic adjustments to MVTC to account for its shortcoming as a myopic strategy.

We find it difficult to improve the performance of MVTC even if we allow for adjustments

which feature a look ahead bias. We conclude that the myopic feature of MVTC does not

seem to be a first order problem and MVTC is the best strategy that we know to address

transaction costs.

4.1 Comparison of MVTC, MVTC\Corr and MV

Performance Before Transaction Costs

From our model we get the following theoretical result in a single period model:

Prediction 1: MV is expected to outperform MVTC if the performance is measured in

returns before transaction costs.

Table 1 quantifies the difference between MV and MVTC (computed solving Problem 3

in the absence of price impact) and summarizes the monthly out-of-sample excess returns

of both strategies for our full set of 29 currencies (columns 1 and 2) and the subset of 15

developed currencies (columns 3 and 4) from January 1976 to February 2016. The first

panel of Table 1 reports the Sharpe ratios (SR) and average excess returns (Mean) before

transaction costs. Interestingly, the annualized Sharpe ratios of MV and MVTC are almost

identical for the set of 29 currencies, 1.26 and 1.27, while MVTC , with a Sharpe ratio of 1.04,

actually outperforms MV , with a Sharpe ratio of 0.96, for the set of 15 developed currencies.

However, the differences in Sharpe ratios between MV and MVTC are not significant (neither
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in the set of all 29 nor the 15 developed currencies). The average annual return before

transaction costs of MVTC is 1.41% and 0.69% lower than the average return of MV (denoted

by ∆Mean in Table 1) when measured with respect to the 29 and the 15 developed currencies

respectively, but the volatility (Vol) of MVTC is proportionally lower only for the set of 29

currencies while much lower for the set of the 15 developed currencies, which implies almost

identical Sharpe ratios before costs across the two strategies in the former case and an higher

Sharpe ratio for MVTC in the latter case.

The top panel of Figure 5 displays the cumulative returns of MV (black dashed line) and

MVTC (red solid line) before transaction costs for our full set of 29 currencies (left panel)

and for the set of 15 developed currencies (right panel). For the set of 29 currencies the two

time-series closely track each other and the returns of the two strategies are almost identical

at every point in time. For the case of the 15 developed currencies the cumulative returns of

MVTC are almost always superior to the ones of MV with the gap between the two becoming

sensibly noticeable right after the 1981-1982 NBER recession.

To conclude, we do not find a significant difference in the performance before transaction

costs between MV and MVTC . Although MVTC trades less actively than MV due to the no

trading region and theoretically holds an ex-ante “suboptimal” position14, the out-of-sample

performance before transaction costs is almost identical for the case of the 29 currencies,

and economically, albeit not statistically, better for the case of the 15 developed currencies.

Therefore, the theoretical prediction 1 is at best empirically irrelevant.

Transaction Costs

Our second model implication (from the baseline setup) is:

Prediction 2: The transaction costs of MV are expected to be higher than MVTC.

We first investigate how much MVTC is trading compared to MV to quantify the size

of the no trading region. The theoretical prediction rests on the insight that if the investor

14Suboptimal in a single period model if there are no transaction costs.

25



optimizes over transaction costs (i.e. MVTC), she trades from her initial position θ0
t towards

θMV
t but stops at the boundary of the no trading region. The size of the no trading region of

strategy S ∈ {MV,MVTC} is inversely related to the trade aggressiveness TASt defined as,

TASt =

∑
i ‖θS

i,t − θ
0,S
i,t ‖∑

i ‖θMV
i,t − θ

0,S
i,t ‖

∈ [0, 1] . (1)

A large TASt indicates that the investor trades aggressively and chooses a position θS
t close

to θMV
t , which in turn implies that the no trading region is small. In the extreme case where

TA(θS
t ) = 1, θS

t = θMV
t and the no trading region is a singleton. In contrast, a small value

indicates that the investor does not trade aggressively and θS
t is far away from θMV

t , which

in turn means that the no trading region is large. In the extreme case where TASt = 0,

strategy S does not trade at all, θS
t = θ0,S

t , and the initial position lies within the no trading

region. Thus, TASt measures how aggressive an investor trades from the initial position θ0,St

towards the optimum without transaction costs θMV
t , and its inverse quantifies the size of

the no trading region of strategy S.

The last row of table 1 summarizes the average of the monthly TASt for S ∈ {MV,MVTC}.

By definition TAMV
t = 1 and TAMVTC

t ∈ [0, 1]. On average the trade aggressiveness of

strategy MVTC is 0.41 for our set of 29 currencies and 0.35 for our set of 15 developed

currencies. That is, the investor reduces the amount of trading by 59% or 65%. This

reduction in the trading activity decreases the cost to implement MVTC compared to MV .

We further plot the time-series of the turnover
∑
i ‖θSi,t− θ

0,S
i,t ‖ of S = MV (black dashed

line) and S = MVTC (red solid line) in the top panel in Figure 7 for our full set of 29

currencies (left panel) and for the set of 15 developed currencies (right panel). The turnover

of MV is on average almost two times and a half larger than the turnover of MVTC . In a

similar fashion, in the bottom panel of Figure 7, we report the average portfolio holdings and

1-standard deviation error bars of MV (downward pointing triangles and black lines) and

MVTC (upward pointing triangles and red lines). The average portfolio holdings are similar

across the two strategies but the standard deviation is systematically larger for MV , which
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again indicates more trading activity.

Finally, we directly quantify the trading costs. The second panel in Table 1 reports the

average transaction costs paid per year as a percentage of the portfolio value (or alternatively

as a reduction in the portfolio return). The costs paid by MV are substantial, i.e., 5.13% for

the set of 29 currencies and 2.19% for the set of 15 developed currencies. That is, 39%-24%

of MV ’s expected return is lost to transaction costs. The costs paid by MVTC are less than

one-forth the size of the costs paid by MV , i.e., 1.25% for the set of 29 currencies and a

bit more than one-third, i.e. 0.85%, for the set of 15 developed currencies. These savings

in transaction costs are economically meaningful. The difference in costs between MV and

MVTC is highly statistically significant for both the set of 29 currencies and the subset of 15

developed currencies.

Figure 6 visualizes this striking result by plotting the time-series of cumulative transaction

costs (top panels) and the monthly costs (bottom panels) paid by MV (black dashed line)

and MVTC (red solid line) for our full set of 29 currencies (left panels) and for the set of 15

developed currencies (right panels). The spread between the cumulative costs of MV and

MVTC is steadily increasing, while the monthly costs incurred by MV are without exception

always larger than the costs of MVTC . Note that transaction costs are decreasing over time

which is consistent with the decline in average costs illustrated in figure 4. To sum up, our

second theoretical prediction that MV is subject to larger transaction costs than MVTC is

empirically important.

Performance After Transaction Costs

The main prediction of our single period model is:

Prediction 3: MVTC is expected to outperform MV after transaction costs. Moreover,

the outperformance is expected to be more substantial if transaction costs are large.

The third panel in Table 1 compares returns after transaction costs. The Sharpe ratios

after transaction costs are highlighted in boldface. For the full set of 29 currencies, the
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annualized Sharpe ratio of MV is 0.78 and the one of MVTC is 1.16. For the set of the 15

developed currencies , the annualized Sharpe ratio of MV is 0.75 and the one of MVTC is

0.96. The differences of ∆SR = 0.38 and 0.20 respectively are economically meaningful and

almost half, one-forth respectively, of MV ’s Sharpe ratio. MVTC is compensated by a 5.7%,

3.15% respectively, higher annual risk premium than MV per 15% return volatility (which is

roughly equal to the unconditional volatility of the value weighted US stock market index).

We further find that the difference is statistically significant with a p-value of 0.01 and 0.03

respectively. We employ the test proposed by Ledoit and Wolf (2008), which uses block

bootstrapping and is robust to heteroskedasticity and cross- and auto-correlation.15

The bottom panel in Figure 5 illustrates the striking dominance of MVTC by plotting

cumulative returns after transaction costs. The spreads in cumulative returns after costs are

steadily opening. Our results are not driven by outliers or a crisis. Our finding suggests

that our third theoretical prediction is empirically important. Optimizing transaction costs

when constructing mean-variance efficient portfolios substantially improves the out-of-sample

performance.

As mentioned in section 2 MVTC is the solution in a single period model and does not

take into account potentially interesting dynamics in a multi-period model. It is not obvious

at the outset that MVTC performs well when implemented in the data with many trading

dates. The result that MVTC performs significantly better than MV and achieve a high

Sharpe ratio is important.

In addition to the Sharpe ratio analysis, we investigate the (ex-post) utility when switch-

ing from MV to MVTC . The last four rows of Table 1 immediately above the trade aggres-

siveness measure report the annualized return or certainty equivalent CEλ a mean-variance

investor with risk aversion λ ∈ {1, 5, 10, 50} is willing to give up in order to switch from MV

to MVTC . For our set of 29 currencies, a log investor (λ = 1) is willing to give up 0.81% to

switch from MV to MVTC . For an investor with λ equal to 5, 10 or 50, CEλ increases to

3.04%, 5.82% or 28.09%. For the set of 15 developed currencies, the certainty equivalents

15We choose a block size of 5 observations for the block bootstrapping.
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are smaller, i.e., for λ ∈ {1, 5, 10, 50}, CEλ ∈ {0.35%, 1.49%, 2.91%, 14.27%}. The monoton-

ically increasing relation highlights that more risk averse investors have a stronger desire to

manage transaction costs efficiently.

All other moments of returns after transaction costs are comparable across MV and

MVTC . Table 1 lists the monthly return skewness (Skew), kurtosis (Kurt), the percentage

of positive monthly returns (% Positive), the maximum draw down (MDD), which measures

the maximum loss from peak to trough of the strategy in the entire sample, and the auto-

correlation (AC). If anything the skewness and the MDD of MVTC are more favorable than

the ones of MV , suggesting that MVTC has less crash risk exposure than MV .

For completeness, we plot the time-series of the notional values or total dollar exposures∑
i ‖θSi,t‖ of S = MV (black dashed line) and S = MVTC (red solid line) for our full set of

29 currencies and the set of 15 developed currencies in the top, respectively bottom, panel

of Figure 8. The notional value is slightly smaller for MVTC than for MV and mostly below

10. The notional values spikes mostly during the volatile periods around the end of 70s

and the first half of the 80s. Margin requirements in FX derivatives markets are low and

implementing a strategy with a notional value of 20 or even 50 is unproblematic.

To sum up, we recall that the performance before transaction costs of MV and MVTC

are at most identical (if not better for MVTC). MV trades more aggressively and faces larger

transaction costs than MVTC . In other words, MVTC efficiently reduces unnecessary trading

and allows the investor to save money. In turn, MVTC substantially outperforms MV after

transaction costs.

Importance of Correlations between Assets

The last model prediction investigates the assumption of uncorrelated assets which is neces-

sary in the model of Liu (2004) to derive an exact solution for the optimal dynamic trading

strategy subject to transaction costs.
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Prediction 4: If assets are correlated, then the no trading region of MVTC is expected

to be larger than the one of MVTC\Corr. Moreover, transaction costs of MVTC are expected

to be lower than the costs of MVTC\Corr (at least in the absence of price impact), and we

expect MVTC to outperform MVTC\Corr after costs.

Recall that MVTC\Corr, which we introduced in Section 2.4, is the strategy which op-

timizes transaction costs similar to MVTC but assumes that assets are uncorrelated in the

construction of the no trading region and obtain an approximate solution. Figure 9 shows

the time-series of the average conditional correlation of each exchange rate growth i with

all other exchange rate growths, ρi,t = 1
N−1

∑N−1
j=1 Corrt (∆xi,t,∆xj,t) for our full set of 29

currencies (top panel) and for the set of the 15 developed currencies (bottom panel). To

estimate the conditional correlation Corrt (∆xi,t,∆xj,t) between exchange rate growths i and

j in month t we use daily exchange rate growths within the month. The bold black line is

the average of all correlations ρt = 1
N−1

∑N
i=1 ρi,t in month t. Correlations ρi,t are almost

always positive and on average close to 0.5. The average correlation ρt is always between

0.18 and 0.85, which is clearly different from zero.

Table 2 compares the monthly excess returns of MV , MVTC\Corr and MVTC for our full

set of 29 currencies from 1976 to 2016, while Table 3 shows the same analysis for the set of the

15 developed currencies. Note that MV and MVTC are also described in Table 1. Consistent

with the previous finding, the average returns and Sharpe ratios before transaction costs are

similar across the three strategies for the set of 29 currencies. For the set of 15 developed

currencies the Sharpe ratio of MVTC is at least 0.08 higher, due to the ability of the strategy

to achieve a lower volatility without giving away too much expected return.

MVTC\Corr has a trade aggressiveness of 0.70, 0.72 respectively, and transaction costs of

2.34%, 1.63% respectively, per year for the set of 29 currencies and the set of 15 developed

currencies. MVTC\Corr trades less aggressively than MV and is able to save 2.79%, 0.56%

respectively, in costs compared to MV . On the other hand, MVTC\Corr trades considerably

more aggressively than MVTC , with ∆TA = 29% and 37% respectively (both statistically

significant at the 1% level). This means that the no trading region of MVTC is 29%(37%)
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bigger, resulting in average annual cost savings of 0.96%, respectively 0.78%, over MV .

After transaction costs, the Sharpe ratio of MVTC\Corr is 1.01, 0.79 respectively, which

is 0.23, 0.04 respectively, higher than the ratio of MV but 0.15, 0.17 respectively, lower

than the ratio of MVTC . The differences in Sharpe ratios between MV and MVTC\Corr

and MVTC\Corr and MVTC are statistically and economically significant (p-values of 0.03

and 0.04) for the set of 29 currencies. For the set of the 15 developed currencies only

the difference in Sharpe ratio between MVTC\Corr and MVTC is statically and economically

significant (p-value of 0.04). Therefore, accounting for correlations in the optimization is

important to significantly increase the Sharpe ratio when minimizing over transaction costs.

So much that this is the only thing that matters in the superior performance of MVTC for

the set of the 15 developed currencies. Employing the approximate solution MVTC\Corr to

optimize over transaction costs is suboptimal.

The certainty equivalent CEλ an investor with risk aversion λ ∈ {1, 5, 10, 50} is willing

to pay to switch from MVTC\Corr to MV is always negative (i.e., MVTC\Corr is preferred to

MV ). The certainty equivalent for a switch from MVTC\Corr to MVTC are positive, implying

that investors prefer MVTC . All higher order return moments are comparable across the three

strategies and if anything MVTC is preferred especially with regards to crash risk exposure.

We conclude that the no trading regions of MVTC\Corr and MVTC are not only the-

oretically but also quantitatively different. Accounting for correlations when optimizing

transaction costs is empirically important and the out-of-sample out-performance of MVTC

over MVTC\Corr is economically and statistically significant. This empirical finding is an

important contribution to the literature. We should not make the assumption of Liu (2004)

that assets are uncorrelated in order to simplify the optimization problem. This assumption

is a costly mistake (at least in the context of FX markets) and leads to a significant reduction

in the out-of-sample performance.
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4.2 Rules-of-Thumb to Address Transaction Costs

We investigate whether intuitive rules-of-thumb are helpful to mitigate the issue of trans-

action costs. First, if there is time-series variation in the investment opportunity set, it

is reasonable to expect that an equally weighted long-short strategy has a lower turnover

than a mean-variance optimized portfolio with fine tuned weights. The portfolio weights

of a characteristic sorted, equally weighted long-short strategy are in general less sensitive

to time-series variation in forward discounts and covariances than those of a mean-variance

optimized portfolio.16 Thus, it is reasonable to expect that the turnover and transaction

costs are smaller for the equally weighted strategy than an optimized portfolio. We check

whether we can reduce transaction costs and improve the performance after costs if we build

equally weighted portfolios instead of MV or MVTC . We consider five long-short currency

strategies which are well-known in the literature. Second, we expect that trading at a lower

frequency will reduce transaction costs. We repeat our analysis but change the monthly

holding period to either weekly or quarterly and study how the trading frequency affects the

performance. Third, we expect that transaction costs decrease if we restrict trading to assets

with relatively low costs. We repeat our analysis but remove assets with high costs from

the set of admissible assets. Fourth, following the idea of Novy-Marx and Velikov (2016)

we impose a rule that we only rebalance the weight in asset i if ‖θMV
i,t − θ0i,t‖ is larger than

some ad hoc threshold value. This rule ensures that there is less frequent trading and a

position is only rebalanced if the current position is too far away from the desired position,

and thus, the utility gain from the rebalancing is arguably large. Finally, we use expected

returns net of costs to construct MV , which arguably leads to less extreme positions and a

smaller notional value. In turn, we expect that a smaller notional value implies a smaller

turnover and lower transaction costs.

While we confirm that these four intuitive rules-of-thumb help to reduce transaction

costs, we find that they are inefficient because the (before and after cost) performance

significantly worsens. Our finding advises against the use of intuitive rules-of-thumb to

16See the illustrative example in footnote 4.
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mitigate transaction costs because deviating from the optimal tradeoff between expected

return and risk, decreasing the trading frequency, or restricting the asset universe have

adverse consequences on the performance. The out-of-sample performance is significantly

better if we invest in a fully optimized portfolio which accounts for costs in the optimization.

This is one of the key contributions of our paper.

Equally Weighted Portfolios

It is common in the literature to rank assets based on characteristics and construct equally

weighted long-short portfolios. Intuitively, this helps to mitigate two problems: (i) estimation

errors (which lead to an optimistic in-sample but bad out-of-sample performance) and (ii)

transaction costs. With regard to the first problem DeMiguel et al. (2009) demonstrate that

optimized portfolios in the US stock market perform poorly and yield a less attractive out-

of-sample performance than equally weighted portfolios. However, as explained in section

3 estimation errors are not problematic in FX markets. A growing literature shows that

mean-variance optimized portfolios achieve a significantly better out-of-sample performance

(before costs) than equally weighted portfolios (Baz et al., 2001; Della Corte et al., 2009;

Daniel et al., 2017; Ackermann et al., 2016; Maurer et al., 2018a,b).

We focus on the second problem, i.e., transaction costs. The portfolio weights of a

characteristic sorted, equally weighted long-short strategy are in general less sensitive to

time-series variation in forward discounts and covariances than an optimized portfolio with

fine tuned weights. Thus, it is reasonable to expect that the turnover and transaction costs

are smaller for the equally weighted strategy than an optimized portfolio. We construct five

equally weighted currency strategies which are well-known to deliver high returns. The dollar

strategy (DOL) borrows in the USD and equally invests in all other currencies. The dynamic

dollar (DDOL) takes a long position in DOL if the median exchange rate forward discount

is positive, and a short position otherwise. The carry (HML) sorts currencies according to

the forward discount into quintiles and borrows in the bottom and invests in the top quintile.

The momentum (MOM) sorts currencies according to their past 12 month performance into
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quintiles and borrows in the bottom and invests in the top quintile. The value (V AL) sorts

currencies according to the power purchase parity adjusted exchange rate into quintiles and

borrows in the top quintile (overvalued currencies with high real exchange rates) and invests

in the bottom quintile (undervalued currencies with low real exchange rates).

Figure 2 and Table 4 compare the out-of-sample Sharpe ratios of MVTC , MVTC\Corr,

MV , DOL, DDOL, HML, MOM , V AL. In Figure 2 the out-of-sample Sharpe ratios

before (after) costs are illustrated by blue (red) bars and the difference between before and

after cost ratios, which indirectly measures transaction costs, by yellow bars. The figure is

generated using monthly returns of our full set of 29 currencies (top panel) and those of the

set of the 15 developed currencies (bottom panel) from 1976 to 2016. For the set of 29 and

15 currencies columns 2 and 5 (3 and 6) in table 4 provide the Sharpe ratios before (after)

costs. Columns 4 and 7 report the differences between the Sharpe ratios after costs of MVTC

and all other strategies for the set of 29 and 15 currencies. Moreover, columns 4 and 5 in

Table 7 and 8 report the average annual turnover and transaction costs of all the strategies

for the set of 29 currencies and 15 currencies respectively.

We confirm our intuition that the costs for the equally weighted portfolios are significantly

smaller than the costs of the optimized portfolios. Among the five equally weighted portfolios

the DOL has the lowest average annual cost of 0.10%, 0.03% respectively, and MOM the

highest costs of 1.14%, 1.04% respectively. In comparison MV and MVTC have average

annual costs of 5.13%, 2.19% respectively, and 1.25%, 0.85% respectively. However, the

Sharpe ratios (before and after costs) of the equally weighted portfolios are economically

and statistically significantly smaller than the Sharpe ratio of MVTC . For the set fo 29 (15)

currencies HML yields the highest after cost Sharpe ratio of 0.60 (0.59) among the five

equally weighted portfolios. MV and MVTC achieve significantly higher after cost Sharpe

ratios of 0.78 and 1.16 (0.75 and 0.96) for the set of 29 (15) currencies. Despite the savings in

transaction costs the rule-of-thumb to construct equally weighted portfolios is not efficient

because a deviation from the optimal tradeoff between expected returns and risk has a

dominant negative effect on the performance. Therefore, we advise against the use of this
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rule-of-thumb.

Trading Frequencies: Weekly, Monthly, Quarterly

It is intuitive that frequent trading leads to more turnover and higher transaction costs. We

investigate how the performances of our portfolios are affected if we change the trading

frequency from monthly to either weekly or quarterly. We expect that the problem of

transaction costs is more (less) severe at a weekly (quarterly) frequency. Therefore, a simple

rule-of-thumb suggests that we should trade at a quarterly frequency so that we do not have

to worry about transaction costs.

Table 5 and 6 provide the analogous results to table 4 but for weekly and quarterly

trading frequencies. Moreover, table 7 and table 8 report the average annual turnover and

transaction costs. We observe that the costs to implement MV and the equally weighted

portfolios are the highest at the weekly frequency and the lowest at the quarterly frequency.

For the set of 29 currencies and the set of 15 respectively, MV has an average annual cost

of 11.18%, 5.23% respectively, at the weekly, 5.13%, 2.19% respectively, at the monthly

and 2.46%, 1.04% respectively, at the quarterly frequency. Among the five equally weighted

portfolios average annual costs also decrease, even if much less so in proportion, as we change

the trading frequency from weekly to quarterly. This confirms our intuition that reducing the

trading frequency decreases costs. Surprisingly, there is no monotonic relationship between

the trading frequency and the turnover and costs in the case of MVTC . The average annual

costs of MVTC is 0.36%, 0.25% respectively, at the weekly, 1.25%, 0.85% respectively, at the

monthly and 1.16%, 0.72% respectively, at the quarterly frequency. Therefore, the rule-of-

thumb to trade at a lower frequency reduces trading costs (except in the case of MVTC).

We further observe that the trading frequency do not always has a significant effect

on the before cost Sharpe ratios of the optimized portfolios. While for the set of the 29

currencies, the Sharpe ratios of MVTC , MVTC\Corr and MV are the highest at the monthly

frequency, i.e., between 1.26 and 1.27, against an average level between 0.87 and 1.07 at
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the other frequencies. For the set of the 15 developed currencies there is no substantial

difference between those at the monthly and weekly frequencies while the Sharpe ratios at

the quarterly frequency appear lower. Finally, we observe that the after cost Sharpe ratio

of MVTC is higher at the monthly trading frequency than either at the weekly or quarterly

frequency. Moreover, MVTC dominates the after cost Sharpe ratio of MV and MVTC\Corr

at any frequency.

The trading frequency does not appear to have a significant effect on the before cost

Sharpe ratios of the five equally weighted strategies. While this is a desirable feature of the

equally weighted strategies, we find that the MVTC dominates all other trading strategies in

terms of Sharpe ratios after costs at any trading frequency.

To sum up, we find that trading at a lower frequency decreases transaction costs but

changing the trading frequency has a first order effect on the performance. Overall, it is not

advisable to trade at the quarterly frequency and the after cost Sharpe ratio of MVTC is

higher at the monthly trading frequency than either at the weekly or quarterly frequency.

Removing Assets with High Transaction Costs

Our third rule-of-thumb builds on the intuition that transaction costs decrease if we restrict

trading to assets with low costs and exclude high costs assets from the set of admissible assets.

We focus on the monthly trading frequency and report results for the set of 29 currencies,

and the set of 15 developed currencies respectively. In table 9, table 13 respectively, we show

Sharpe ratios before (after) costs of MV and MVTC in columns 2 and 3 (4 and 5). The

difference between the after cost Sharpe ratios of MVTC and MV and the corresponding

p-value are provided in columns 6 and 7. The first row reports the performance of MV

and MVTC constructed from the full set of 29(15) currencies. The second row reports the

results when we reduce our set of admissible assets by one asset and drop the currency with

the highest median transaction cost over the past 9 months.17 Each subsequent row reduces

the set of admissible assets by an additional asset and row i removes the i − 1 currencies

17Changing the window length does not affect our results.
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with the highest median costs over the past 9 months. Note that the data availability

changes through time and we do not have data for all 29(15) currencies in every month. The

maximum number of currencies we can drop is 10(7) so that we have at least two currency

to construct a portfolio in every month.

First, we confirm our earlier finding that before cost Sharpe ratios are very similar between

MVTC and MV . Second, we observe that the difference between before and after cost

Sharpe ratios are much larger for MV than for MVTC independently of the number of

currencies dropped. For instance the before and after cost difference for MV is 4.36 times,

2.63 respectively, the one for MVTC for the set of 29 currencies, and the set of 15 currencies

respectively, if we do not drop any currency. Such gap stabilizes around 2 times as we start

removing currencies.

The differential between after cost Sharpe ratios of MV and MVTC is narrowing as we

drop currencies (column 6 in table 9 and table 13). The differential is 0.38(0.21) if we do not

drop any currency, 0.21(0.20) if we drop the 4 most expensive currencies and 0.01(0.17) if

we drop the 10(7) most expensive currencies for the set of 29(15) currencies. The differential

is significant if we drop up to 6(3) currencies but turns insignificant thereafter. This is

consistent with our intuition that removing high cost assets from the set of admissible assets

decreases costs and an investor does not need to bother to optimize costs. That is, when

we only trade assets with low costs then the costs and after cost performance of MV and

MVTC are indistinguishable.

We further document an interesting average decline in the before and after cost Sharpe

ratios of MVTC as we drop more currencies. This effect can be clearly seen for the full

set of 29 currencies where the before(after) cost Sharpe ratio monotonically drops from

1.27(1.16) to 1.06(0.93) if we remove the 5 most expensive currencies, and then averages

around 1.03(0.93) if we remove the 10 most expensive currencies. But it is also noticeable

by comparing the before and after cost Sharpe ratios starting from the set of 29 currencies

with those starting from the set of 15 currencies. The before(after) cost average Sharpe

ratio drops from 1.10(0.99) to 1.04(0.95), with the before(after) cost Sharpe ratios of MVTC
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starting with the full set of 29 currencies and removing up to two currencies being at least

0.12(0.08) higher than the best before(after) cost Sharpe ratios achievable starting from the

set of the 15 developed currencies.

The decrease in the Sharpe ratios before costs is a first order effect and dominates the

savings in transaction costs, leading to a decline in Sharpe ratios after costs. Therefore, it is

not efficient to follow a rule-of-thumb to remove high cost currencies to mitigate transaction

costs because shrinking the set of currencies has an adverse effect on the performance which

outweighs the decrease in transaction costs. It is more profitable to work with the full set

of 29 admissible assets and construct a fully optimized portfolio which takes into account

transaction costs.

Thus, focusing on the full set of 29 currencies, in Tables 10 and 11 we provide more

details and decompose the Sharpe ratios to investigate why removing high cost currencies

significantly depresses the performance. First, as we drop high cost currencies (and keep the

risk aversion coefficient λ constant) we observe a decrease in the notional value for MV and

MVTC . We further document a general decrease in average returns and volatilities of MV

and MVTC as we drop costly currencies. Average returns decrease faster than volatilities

and thus Sharpe ratios are declining. This is consistent with the intuition that an investor

reduces his position in the risky portfolio and invests more in the risk-free asset (in our case

the risk-free 1-month USD bond) as the tradeoff between expected return and risk worsens.

The skewness of MV and MVTC does not display a regular pattern but the kurtosis in

general increases. Maximum draw downs are less severe if we drop costly currencies due

to the fact that the notional values decrease. More importantly, if we compare maximum

draw downs per 1% expected return (i.e. we divide the column of Table 11labeled “After

TC MDD” by that of Table 10 labeled “After TC Mean”), we observe that the crash risk of

MV deteriorates at a much faster rate than the one for MVTC , which eventually converges

from above as we shrink the set of admissible assets.18 Similar to the observed decrease

18Note that maximum draw down per 1 % expected return is a measure in a similar spirit like the Sharpe
ratio because it compares risk and expected return. It is a more sensible comparison because both expected
returns and maximum draw down (and volatility) scale linearly with leverage.
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in the Sharpe ratios of MVTC , the increase in the maximum draw down per 1% expected

returns suggests a worsening in the tradeoff between expected returns and (crash) risk as we

drop costly currencies from the set of admissible assets. Finally, in Table 12 we investigate

the return distributions of the currencies which we successively drop in Table 9. In the

ith row we construct a “portfolio” which consists of only the currency with the ith highest

average transaction costs over the past 9 months. The table reports the average transaction

costs, Sharpe ratio, average return, volatility, average correlation with all other currencies,

skewness and kurtosis. We do not observe a statistically significant correlation between

transaction costs and any of the six characteristics. In other words, it does not appear

to be the case that currencies with high costs deliver a more (or less) attractive tradeoff

between expected returns than currencies with low costs. Therefore, our evidence suggests

that as we shrink the set of admissible currencies the benefits of diversification decreases,

which has an adverse effect on the portfolio performance (and decreases the Sharpe ratio

and increases the maximum draw down per 1% expected return for MVTC). On the flip

side, our findings suggest that if we had a larger original set of assets, it is possible that the

decrease in diversification and the adverse effects on the performance are less severe as we

remove just the first few of the most expensive currencies. Our finding that it is not efficient

to follow a rule-of-thumb to remove high cost currencies to mitigate costs may be due to the

fact that our original set of currencies is relatively small. In this case we expect a bell shaped

relation on the performance as we sequentially eliminate the most expensive currencies from

the tradable universe.

We conclude that in our data it is not efficient to follow a rule-of-thumb to remove high

cost currencies to mitigate transaction costs because shrinking the set of currencies has an

adverse effect on the performance which outweighs the decrease in transaction costs. The

adverse effects seem to be due to a deterioration in the portfolio diversification as the set of

admissible assets becomes smaller. Thus, it is more profitable to work with the original full

set of 29 admissible assets and construct a fully optimized portfolio which takes into account

transaction costs.
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No Trading Rule based on the Trade Size

In our fourth rule-of-thumb we follow the idea of Novy-Marx and Velikov (2016) and only

rebalance the weight in asset i if ‖θMV
i,t − θ0i,t‖ is larger than some ad hoc threshold value.

Thus, a position is less frequently rebalanced and trading only occurs if the expected utility

gain is large enough because our current position is relatively far away from the optimal

balance between expected return and risk. This effect is stronger for larger threshold values.

Since such strategies are in general known as “sS” rules we denote them as MVsS.

Columns 2 to 5 in Tables 14 and 15 compare the before and after cost Sharpe ratios of

the MVsS strategies to the MVTC for the various threshold values listed in the first column.

Table 14 presents the results for the set of 29 and Table 15 for 15 currencies at the monthly

frequency. The last two columns of the tables report the annualized costs and turnover of

the MVsS strategies. Imposing a threshold of 0 is the same as implementing strategy MV .

Thus, the first row of the tables report the earlier discussed comparison between MV and

MVTC .

As expected a higher threshold implies that we rebalance positions less frequently, and

the turnover and costs are lower. As we increase the threshold value from 0 to 1, the

turnover drops form 40.47 (27.6) to 9.59 (8.1) and trading costs drop from 5% (2%) to 2%

(1%) for our set of 29 developed and emerging (15developed) currencies. However, a higher

threshold value is also associated with a drop in the before cost Sharpe ratio because our

portfolio is not optimally trading off expected return and risk. The adverse effect on the

before cost performance dominates the savings in trading costs, and thus, this rule-of-thumb

is inefficient. We observe a significantly smaller after cost Sharpe ratio for MVsS compared

to MVTC for any threshold value between 0 and 1.

Conditional Expected Returns Net of Costs

To address transaction costs Burnside et al. (2008) and Burnside et al. (2011) sort currencies

based on forward discounts adjusted for bid-ask spreads to construct HML. That is, they
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lend in currencies with high ln
Å
Xb
i,t

Fai,t

ã
and borrow in currencies with low ln

Å
Xa
i,t

F bi,t

ã
. Notice

that if we take a long position in asset i and pay full round-trip costs to open and close it,

then the expected return reduces to ln
Å
Xb
i,t

Fai,t

ã
= ri,t+1−CP+

i,t −CS+
i,t .19 Because the expected

return of an asset is the expected loss to a short seller, when we take a short position in

asset i and pay full round-trip costs to open and close it, then the expected loss of short

selling increases to ln
Å
Xa
i,t

F bi,t

ã
= ri,t+1 + CS−

i,t + CP−
i,t . Thus, the idea of Burnside et al. (2008)

and Burnside et al. (2011) is to sort currencies based on expected returns net of costs to

construct HML.

In our last rule-of-thumb we follow this idea and construct strategy MVNet which is the

same as strategy MV except that we use expected returns net of full round-trip costs µ̂e
t as

an input instead of the before cost expected returns µe
t . We define

θMVNet
t = arg max

θt

®
θt
′µ̂e

t −
λ

2
θt
′Vtθt

´
,

with µ̂e
i,t = µe

i,t − 1¶
θ
MVNet
i,t

≥0
© ÄCP+

i,t + CS+
i,t

ä
+ 1¶

θ
MVNet
t <0

© ÄCS−
i,t + CP−

i,t

ä
.20 The solution

can be obtained by iteratively computing a sequence of standard mean-variance weights until

µ̂e
t converges. This is complex and only feasible with few assets since it requires iterating on

all possible combinations of the assets for which the weights change signs from one iteration

to the next.

Hence, there are two ways to attempt a solution to this problem. We either (i) recognize

that MVNet is the solution to Problem 1 (or Problem 3 if we center the no-trading region

around θ̃
MV

t as we do in our baseline setup) under the unrealistic assumption of round-trip

costs,21 or (ii) approximate the solution by prematurely stopping the iterations before the

curse of dimensionality becomes too costly (in terms of computing power).

19The costs to close a position are only known in the future when the position is closed. We use the
current costs to close a position as an approximation for the expectation of the future costs.

20Adjusting the second moment of the return distribution do not materially affect the results. We do not
report these results but they are available upon request.

21The mapping with Problem 1 is obtained by setting θ0t = 0 and setting the cost to open ∆P+
i,t new

long positions in asset i equal to ∆P+
i,t

Ä
CP+

i,t + CS+
i,t

ä
and the costs to open ∆S−

i,t new short position equal

to ∆S−
i,t

Ä
CS−

i,t + CP−
i,t

ä
.
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The purpose of this section is to give a simple rule-of-thumb to solve the problem from

the perspective of an investor who does not have access to our optimization, otherwise there

is no point in solving for MVNet under the wrong cost structure when an exact and efficient

solution for the correct problem is available (namely MVTC). Therefore we provide a simple

algorithm to get an approximate solution for θMVNet
t . First, we use

θ
MV

(0)
Net

t =
1

λ
V−1

t µe
t ,

to construct µ̂
e,(1)
i,t = µe

i,t−1ß
θ
MV

(0)
Net

i,t
≥0

™ ÄCP+
i,t + CS+

i,t

ä
+1ß

θ
MV

(0)
Net

t <0

™ ÄCS−
i,t + CP−

i,t

ä
. Second,

we construct

θ
MV

(1)
Net

t =
1

λ
V−1

t µ̂
e,(1)
t .

If sign

Ç
θ

MV
(1)
Net

i,t

å
6= sign

Ç
θ

MV
(0)
Net

i,t

å
for asset i, then we set the portfolio weight θ

MV
(2)
Net

i,t = 0.

Finally, we do one last mean-variance optimization using all assets j for which sign

Ç
θ

MV
(1)
Net

j,t

å
=

sign

Ç
θ

MV
(0)
Net

j,t

å
. That is,

θ
MV

(2)
Net

{j},t =
1

λ
V−1
{j}×{j},tµ̂

e,(1)
{j},t ,

where set {j} includes all j for which sign

Ç
θ

MV
(1)
Net

j,t

å
= sign

Ç
θ

MV
(0)
Net

j,t

å
, and vectors θ

MV
(2)
Net

{j},t

and µ̂
e,(1)
{j},t contain all elements of vectors θ

MV
(2)
Net

t and µ̂
e,(1)
t with the locations specified by

{j}, and matrix V{j}×{j},t contains all elements of matrix Vt with the locations specified by

{j} × {j} . We use θ
MV

(2)
Net

t as an approximation of θMVNet
t .

Intuitively, adjusting expected returns to incorporate trading costs reduces the attrac-

tiveness to buy or short sell assets, and thus, the notional value decreases. In turn, a smaller

notional value is expected to imply less turnover and trading costs.

Tables 4, 5 and 6 compare the before and after cost performance of MVNet with the other

aforementioned strategies. Moreover, tables 7 and 8 report the average annual turnover and
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transaction costs. We observe that MVNet has substantially lower costs and turnover than

MV , achieving levels similar to those provided by MVTC\Corr. These findings are robust to

(i) the set of 29 or 15 currencies and (ii) the trading frequency being weekly, monthly or

quarterly.

Similarly to the other rules-of-thumb, the reduction in trading costs come at the expense

of a suboptimal risk-return tradeoff. As shown in Table 4, 5 and 6 the before cost performance

of MVNet is comparable to that of MVTC only at the quarterly frequency where costs do not

matter much. MVNet underperform MVTC the monthly frequency by a Sharpe ratio gap of

at least 0.12 (representing 11.5% of the MVTC performance). Moreover, it proofs not to be

an adequate strategy for trading at higher frequencies, delivering a Sharpe ratio of no more

than 0.26 when the asset universe encompasses the full set of 29 currencies.

Similarly, the after-cost performance of MVNet is comparable to that of MVTC only at

the quarterly frequency. At the monthly frequency the Sharpe ratio of MVNet is 0.32 lower

than that of MVTC which is statistically significant on the 1% level when trading involves

the full set of 29 currencies. For the set of 15 developed currencies the difference is 0.14,

which is not statistically significant but nevertheless it is economically meaningful since it

represents approximately 15% of the performance of MVTC . Finally, at the weekly frequency

MVNet turns unprofitable, and thus, it is inadequate to tackle transaction costs at higher

frequencies.

4.3 Price Impact

In the previous discussions we assume no price impact when an investor trades and trading

costs are fully captured by current bid and ask quotes. As explained in sections 2.2 and

3.1 it is difficult to obtain sensible estimates for the price impact. In particular, there is no

definite answer on whether larger trades have less price impact per dollar traded, leaving

aside the issue of how to estimate it.

For this reason we employ the two mainstream functional forms for the price impact
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described in section 2.2 and a wide range of estimates. In particular, for each type of

trade z ∈ {P+, P−, S+, S−}, the price impact PIt due to the trade ∆z
t is either linear

and PIt = PILt = ∆z
t
′Πz,L

t , or it grows at a rate of of 0.5 with the size of the trade and

PIt =
√
PI t =

√
∆z

t
′
Πz,SR

t . The diagonal matrices Πz,L
t and Πz,SR

t contain the asset specific

price impact parameters as in Novy-Marx and Velikov (2016) and Frazzini et al. (2015).

In order to get precise estimates of these parameters we need data on trade orders of

investors in the FX markets. Since we do not have these data we perform a sensitivity

analysis. We assume Πz,L
t = Πz,SR

t = πIt, where It is the Nt × Nt identity matrix, and we

vary π between 0 and 100 basis points (bps), which includes a back-of-the-envelope average

estimate from Mancini et al. (2013).22 We therefore analyze the implications of a time and

currency invariant, linear or square-root price impact on our trading strategies.

Mancini et al. (2013) provide linear price impact estimates for nine currency pairs over

the period January 2007 to December 2009 based on data from the Electronic Broking

Services, a leading global marketplace for spot inter-dealer FX trading.23 In their framework

πii,t = φt × xi,t where xi,t is the net trade in currency i at time t in millions of USD and

φt is the sensitivity (in bps) at time t of currency returns to xi,t. As back-of-the-envelope

estimates, we take the average of their estimates φ̂t and average |xi,t| for all the currency

pairs involving the USD which are part of our traded universe. This yields an average price

impact of π̄ ≈ 0.44× 41.42 ≈ 18.22 bps.

We therefore analyze the role of the time-currency invariant price impact π on our strate-

gies for many different values inside the basis point interval [0, 100] for both a linear and

a square-root functional form. There is no price impact when π = 0. This is a reasonable

assumption for an investor with a relatively small portfolio size and small buy and sell orders.

In contrast, if π = 100 bps, then an x% change in the portfolio allocation of asset i changes

the execution price and increases the per dollar cost to trade the asset by x bps. A large π

22To our knowledge Mancini et al. (2013) is the only study that reports the price impact coefficients for
FX rates.

23The nine currency pairs are the AUD/USD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/USD, GBP/USD,
USD/CAD, USD/CHF and USD/JPY.
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is more relevant to an investor with a large portfolio size and large buy and sell orders.

The top graphs in Figure 10 show how annualized out-of-sample Sharpe ratios after

transaction costs depend on the price impact parameter π for various trading strategies con-

structed from our set of 29 developed and emerging (left panel) and 15 developed currencies

(right panel) under the assumption of a linear functional form. We find that even a small

value of π has a considerable impact on the after cost Sharpe ratios. The solid black line

displays the results for MVTC . If there is no price impact then the after cost Sharpe ratio is

1.16 (0.96) for our set of 29 developed and emerging (15 developed) currencies. If π is 1, 5

or 10 bps, then the Sharpe ratio drops to 1.11 (0.93), 1.03 (0.88) or 0.97 (0.86). While this

decrease in the performance of MVTC due to the introduction of a price impact is consid-

erable, we find the decrease in the after cost Sharpe ratio becomes less sensitive to changes

in π when π is larger. For instance, the after cost Sharpe ratio experiences a proportionally

moderate decrease from 0.89 (0.81) to 0.79 (0.74) or 0.72 (0.67) when we increase π from 20

to 50 or 100 bps. Thus, even if we assume an investor has a large portfolio size with large

buy and sell orders or FX markets are illiquid and the price impact is large, MVTC remains

a profitable trading strategy.

The introduction of a price impact has a significant negative effect on the performance

of MV (bold black dashed line). The after cost Sharpe ratio sharply decreases, and if π ≥ 2

bps, MV turns unprofitable, i.e., the average returns after costs are negative. This is a stark

result. Ignoring a price impact can have disastrous consequences for an investor. Hence, if

π ≥ 2 bps, taking transaction costs into account in the optimization does not only improves

the out-of-sample performance but it is necessary to earn a positive average return after

costs.

MVTC\Corr is more robust to a price impact than MV . Its after cost Sharpe ratio remains

positive and above 0.53 (0.34) for any level of π for our set of 29 developed and emerging

(15 developed) currencies.

The bottom plots of Figure 10 show the impact of π on the trade aggressiveness as defined

in equation (1) of MV (black dashed line), MVTC\Corr (black dashed-dotted line) and MVTC
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(black solid line). The left (right) figure shows the results for our set of 29 (15) currencies.

By definition the trade aggressiveness of MV is constant and equal to 1. We observe a rapid

decline in the trade aggressiveness of MVTC and MVTC\Corr as π increases, and the decrease

is faster for MVTC . If there is no price impact the trade aggressiveness of MVTC is 0.39

(0.32), and it is only 0.29 (0.23), 0.19 (0.15), 0.12 (0.09) or even 0.03 (0.02) if π is 1, 5,

10 or 100 bps for our set of 29 (15) currencies. The corresponding trade aggressiveness of

MVTC\Corr is 0.72 (0.75), 0.64 (0.67), 0.48 (0.51), 0.37 (0.40) or 0.08 (0.08). While the price

impact causes transaction costs to surge and turns MV unprofitable, MVTC and MVTC\Corr

decrease their trading activity to save costs and remain profitable. This result shed light on

the empirical behavior of the optimal strategy in the presence of price impact, which theory

is silent on. The fact that the trade aggressiveness is inversely related to the magnitude of

the price impact parameter implies that on average in the presence of a price impact it is

optimal to trade less.

Finally, the top panel in figure 10 also reports how π affects the after cost Sharpe ratios

of popular equally weighted currency trading strategies. In the case of MOM (purple solid

line) even a small price impact π of 2 bps turns the strategy unprofitable, quickly making

it the worst among all the discussed strategies. In the case of HML (yellow solid line) and

V AL (green solid line) transaction costs exceed the returns and the after cost Sharpe ratio

is negative if π is in the neighborhood of 30 bps or larger. Thus, the optimized strategies

MVTC and MVTC\Corr are less sensitive to costs arising from a price impact than HML,

MOM or V AL. Although our setting assumes that the price impact is constant through

time, we expect that MVTC and MVTC\Corr are less susceptible to periods of high market

illiquidity than some of the popular currency strategies.

The performance of DOL (blue solid line) is almost unaffected by π, though the after

cost Sharpe ratio of DOL is small even before costs, i.e., 0.09. The after cost Sharpe ratio of

DDOL (red solid line) steadily decreases as π increases. It is 0.43 (0.56) if there is no price

impact and almost linearly decreases to 0.20 (0.23) if π is 100 bps. DDOL is less sensitive

to changes in π than MVTC and MVTC\Corr if π is small but the opposite is true for larger
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values of π. Moreover, for any value of π the after cost Sharpe ratio is always substantially

larger for MVTC than for DDOL.

As reported in Figure 11 the inference remains the same if we adopt a square-root func-

tional form for the price impact. If anything, the relative out-performance of MVTC and

MVTC\Corr become even more evident. As a matter of fact, for values of π higher than

50, while all but the low performing DOL strategy turn unprofitable, the Sharpe ratios of

MVTC and MVTC\Corr stabilize at around 0.42 (0.55) and 0.40 (0.30) for our set of 29 (15)

currencies.

To sum up, independent of the functional form of the price impact or the set of currencies,

minimizing over costs in the optimization is crucial if the price impact is not infinitesimal.

MVTC and MVTC\Corr are the only strategies that perform well after costs even if an investor

has a large portfolio size and executes large USD amounts of buy and sell orders or FX

markets are illiquid and the price impact of trading is severe. In contrast, transaction costs

due to a price impact quickly erode the returns of MV and many popular equally weighted

currency trading strategies. These strategies significantly underperform MVTC even if the

price impact is moderate and some strategies turn unprofitable. Moreover, while the theory

is silent on the size and direction of the optimal trades in the presence of price impact

(because they depend on the price impact parameters), we empirically demonstrate how in

our setup, it is optimal to trade less.

5 Conclusion

Using monthly FX market returns of 29 developed and emerging currencies from 1976 to

2016, we show that taking transaction costs into account in a mean-variance portfolio op-

timization leads to an economically large and statistically significant improvement in the

out-of-sample performance. For the set 29 (15) currencies the out-of-sample Sharpe ratio

after costs increases from 0.78 (0.75) for MV , which ignores costs in the optimization, to

1.16 (0.96) for MVTC , which optimizes costs. The outperformance after transaction costs
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of MVTC over MV is due to a significant reduction in the trading activity which reduces

trading costs. Moreover, we show that it is important to properly account for correlations

between assets to achieve the superior performance of MVTC . This is an important contribu-

tion to the transaction costs literature because it demonstrates that we should not make the

assumption of Liu (2004) that assets are uncorrelated. This is unfortunate because the so-

lution of the optimal portfolio in a dynamic setting with many assets and direct transaction

costs is only known if the assets are uncorrelated.

We further investigate whether the issue of transaction costs can be mitigated if we (i)

construct equally weighted long-short strategies instead of an optimized portfolio, (ii) trade

at a low frequency, (iii) remove assets with high transaction costs from the set of admissible

assets, (iv) only rebalance if the current position is too far from the desired position, or (v) use

expected returns net of costs in the optimization. While we confirm that these intuitive rules-

of-thumb reduce transaction costs, we find that they are inefficient because the performance

significantly worsens if we deviate from the optimal tradeoff between expected returns and

risk, decrease the trading frequency, or restrict the asset universe. Overall, our findings

advise against the use of an intuitive rule-of-thumb to mitigate transaction costs. The out-

of-sample performance is significantly better if we invest in a fully optimized portfolio which

accounts for costs in the optimization.

Finally, we analyze how a price impact of trading affects the performance of our strategies.

We show that MVTC performs well after costs even if an investor has a large portfolio size

and executes buy and sell orders with a large USD amount or FX markets are illiquid and

the price impact of trading is severe. In contrast, MV and many popular equally weighted

currency trading strategies in the literature significantly underperform MVTC . Moreover,

trading costs quickly erode returns and turn many of these strategies unprofitable if the

price impact is large enough. Finally, while the theory is silent on the size and direction

of the optimal trades in the presence of a price impact (because they depend on the price

impact parameters), we empirically demonstrate how in our setup, it is optimal to trade less

in the presence of proportional costs and price impact that what it would be optimal if costs
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were only proportional.
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Table 1: Mean-Variance Strategies: MVTC vs MV

All 29 Currencies 15 Developed Currencies

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.26 1.27 0.96 1.04
Mean 13.30 11.89 9.18 8.50
∆Mean - -1.41 - -0.69

Transaction Costs:

Mean Costs 5.13 1.25 2.19 0.85
∆Mean Costs - -3.88∗∗∗ - -1.34∗∗∗

After Transaction Costs:

SR 0.78 1.16 0.75 0.96
∆SR - 0.38∗∗∗ - 0.20∗∗

(p-value) - (0.01) - (0.03)

Mean 8.17 10.64 6.99 7.64
Vol 10.52 9.21 9.27 7.98
Skew 0.00 0.47 -1.00 -0.28
Kurt 7.60 6.59 15.31 12.94
% Positive 61.49 68.30 62.77 65.96
MDD -37.61 -18.90 -35.97 -24.16
AC 0.11 0.15 0.10 0.17

CEλ=1 - 0.81 - 0.35
CEλ=5 - 3.04 - 1.49
CEλ=10 - 5.82 - 2.91
CEλ=50 - 28.09 - 14.27
TA 1 0.41 1 0.35

Notes: Summary statistics of monthly excess returns of MV and MVTC . First two columns report
results for all 29 currencies, last two columns for 15 developed currencies. The sample period is 1976-
2016. SR is the annualized Sharpe ratio, Mean the annualized average return (in percentage points),
Mean Costs the average annualized transaction costs measured in percentage of the portfolio value,
Vol the annualized standard deviation (in percentage points), Skew the skewness, Kurt the kurtosis,
% Positive the percentage of positive monthly returns, MDD the Maximum Draw Down, AC the
autocorrelation, CEλ the annualized rate of return (Certainty Equivalent) an investor with mean-
variance preferences and risk aversion λ is willing to give up in order to switch from strategy MV to
strategy MVTC . TA measures the average of trade aggressiveness defined in equation (1). ∆Mean,
∆Mean Costs, ∆SR are the differences in the Mean, Mean Costs, SR between MVTC and MV .
Standard errors of ∆SR are estimated using block bootstrapping with block sizes of 5 observations to
account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf, 2008). Standard errors
of ∆Mean Costs are estimated using Newey and West (1987) to account for heteroskedasticity and
auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level of ∆SR and
∆Mean Costs. We only report the p-value for ∆SR after costs.
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Table 2: MVTC vs MV : Importance of Correlations, 29 Currencies

MV MVTC\Corr MVTC

Before Transaction Costs:

SR 1.26 1.22 1.27
Mean 13.30 12.35 11.89
∆Mean 0.95 - -0.46

Transaction Costs:

Mean Costs 5.13 2.34 1.25
∆Mean Costs 2.79∗∗∗ - -1.10∗∗∗

After Transaction Costs:

SR 0.78 1.01 1.16
∆SR -0.23∗∗ - 0.15∗∗

(p-value) (0.03) - (0.04)

Mean 8.17 10.01 10.64
Vol 10.52 9.93 9.21
Skew 0.00 0.79 0.47
Kurt 7.60 8.18 6.59
% Positive 61.49 65.11 68.30
MDD -37.61 -18.92 -18.90
AC 0.11 0.10 0.15

CEλ=1 -0.56 - 0.25
CEλ=5 -2.03 - 1.01
CEλ=10 -3.87 - 1.95
CEλ=50 -18.57 - 9.51
TA 1 0.70 0.41
∆TA - - -0.29∗∗∗

Notes: Summary statistics of monthly excess returns of MV , MVTC and MVTC\Corr. for all 29
currencies from 1976 to 2016. SR is the annualized Sharpe ratio, Mean the annualized average
return (in percentage points), Mean Costs the average annualized transaction costs measured in
percentage of the portfolio value, Vol the annualized standard deviation (in percentage points),
Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive monthly returns,
MDD the Maximum Draw Down, AC the autocorrelation. CEλ is the annualized rate of return
(Certainty Equivalent) an investor with mean-variance preferences and risk aversion λ is willing
to give up in order to switch from strategy MVTC\Corr to strategy MV or MVTC . TA measures
the average of trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs, ∆SR are the
differences in the Mean, Mean Costs, SR between MVTC and MV . ∆TA is the difference in TA
between MVTC\Corr and MVTC . Standard errors of ∆SR are estimated using block bootstrapping
with block sizes of 5 observations to account for heteroskedasticity, cross- and auto-correlation
(Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs and ∆TA are estimated using Newey
and West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a
statistical significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only report the
p-value for ∆SR after costs.
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Table 3: MVTC vs MV : Importance of Correlations, 15 Developed Currencies

MV MVTC\Corr MVTC

Before Transaction Costs:

SR 0.96 0.94 1.04
Mean 9.18 8.62 8.50
∆Mean 0.57 - -0.12

Transaction Costs:

Mean Costs 2.19 1.63 0.85
∆Mean Costs 0.56∗∗∗ - -0.78∗∗∗

After Transaction Costs:

SR 0.75 0.79 0.96
∆SR -0.04 - 0.17∗∗

(p-value) (0.13) - (0.04)

Mean 6.99 6.99 7.64
Vol 9.27 8.88 7.98
Skew -1.00 -0.88 -0.28
Kurt 15.31 14.73 12.94
% Positive 62.77 63.19 65.96
MDD -35.97 -32.29 -24.16
AC 0.10 0.11 0.17

CEλ=1 -0.07 - 0.28
CEλ=5 -0.37 - 1.11
CEλ=10 -0.75 - 2.16
CEλ=50 -3.74 - 10.53
TA 1 0.72 0.35
∆TA - - -0.37∗∗∗

Notes: Summary statistics of monthly excess returns of MV , MVTC and MVTC\Corr. for 15
developed currencies from 1976 to 2016. SR is the annualized Sharpe ratio, Mean the annualized
average return (in percentage points), Mean Costs the average annualized transaction costs mea-
sured in percentage of the portfolio value, Vol the annualized standard deviation (in percentage
points), Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive monthly
returns, MDD the Maximum Draw Down, AC the autocorrelation. CEλ is the annualized rate
of return (Certainty Equivalent) an investor with mean-variance preferences and risk aversion λ
is willing to give up in order to switch from strategy MVTC\Corr to strategy MV or MVTC .
TA measures the average of trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs,
∆SR are the differences in the Mean, Mean Costs, SR between MVTC and MV . ∆TA is the
difference in TA between MVTC\Corr and MVTC . Standard errors of ∆SR are estimated using
block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs and ∆TA are
estimated using Newey and West (1987) to account for heteroskedasticity and auto-correlation.
∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs.
We only report the p-value for ∆SR after costs.
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Table 4: Optimized vs Equally Weighted Portfolios: Monthly Frequency

All 29 Currencies 15 Developed Currencies

Before TC After TC Before TC After TC

Strategies SR SR ∆SR SR SR ∆SR

MVTC 1.27 1.16 - 1.04 0.96 -

MVTC\Corr 1.22 1.01 0.15∗∗ 0.94 0.79 0.17∗∗

(0.03) (0.05)

MV 1.26 0.78 0.38∗∗ 0.96 0.75 0.20∗∗

(0.01) (0.02)

MVNet 1.01 0.84 0.32∗∗∗ 0.92 0.82 0.14
(0.01) (0.24)

DOL 0.10 0.09 1.07∗∗∗ 0.07 0.07 0.89∗∗∗

(0.00) (0.00)

DDOL 0.49 0.43 0.72∗∗∗ 0.59 0.56 0.40∗

(0.00) (0.07)

HML 0.74 0.60 0.55∗∗∗ 0.64 0.59 0.37∗

(0.00) (0.10)

MOM 0.37 0.28 0.87∗∗∗ 0.31 0.24 0.72∗∗∗

(0.00) (0.01)

V AL 0.47 0.38 0.78∗∗∗ 0.53 0.50 0.46∗

(0.00) (0.06)

Notes: Columns 2 and 5 report Sharpe ratios before costs (Before TC SR). Columns 3 and 6 report Sharpe
ratios after costs (After TC SR). Columns 4 and 7 report the difference between the Sharpe ratios after costs
of MVTC and the strategy in the corresponding row (After TC ∆SR). MVTC is the mean-variance optimized
portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized portfolio which
optimizes over transaction costs but makes the simplifying assumption that assets are uncorrelated. MV
is the mean-variance optimized portfolio without taking into account transaction costs in the optimization.
MVNet is analogous to MV only it is based on returns net of costs. DOL borrows in the USD and equally
invests in all other currencies. DDOL takes a long position in DOL if the median exchange rate forward
discount is positive, and a short position otherwise. HML sorts currencies according to the forward discount
into quintiles and borrows in the bottom and invests in the top quintile. MOM sorts currencies according
to their past 12 month performance into quintiles and borrows in the bottom and invests in the top quintile.
V AL sorts currencies according to the power purchase parity adjusted exchange rate into quintiles and
borrows in the top quintile and invests in the bottom quintile. The data are monthly returns for our full set
of 29 currencies (columns 2 to 4) and a subsample of 15 developed currencies (columns 5 to 7) from January
1976 to February 2016. Standard errors for ∆SR are estimated using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf, 2008).
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Table 5: Optimized vs Equally Weighted Portfolios: Weekly Frequency

All 29 Currencies 15 Developed Currencies

Before TC After TC Before TC After TC

Strategies SR SR ∆SR SR SR ∆SR

MVTC 0.89 0.84 - 0.98 0.93 -

MVTC\Corr 0.97 0.76 0.08 0.97 0.77 0.17∗

(0.47) (0.10)

MV 1.07 -0.06 0.90∗∗∗ 1.15 0.54 0.40∗∗∗

(0.00) (0.00)

MVNet 0.26 -0.19 1.03∗∗∗ 0.11 -0.24 1.17∗∗∗

(0.00) (0.00)

DOL 0.09 0.08 0.76∗∗∗ 0.08 0.07 0.86∗∗∗

(0.00) (0.00)

DDOL 0.46 0.40 0.43∗∗ 0.61 0.58 0.36∗

(0.04) (0.09)

HML 0.70 0.57 0.27 0.64 0.59 0.34∗∗

(0.11) (0.06)

MOM 0.36 0.26 0.58∗∗∗ 0.25 0.17 0.77∗∗∗

(0.01) (0.00)

V AL 0.41 0.31 0.53∗∗ 0.53 0.47 0.47∗∗

(0.01) (0.04)

Notes: Columns 2 and 5 report Sharpe ratios before costs (Before TC SR). Columns 3 and 6 report Sharpe
ratios after costs (After TC SR). Columns 4 and 7 report the difference between the Sharpe ratios after costs
of MVTC and the strategy in the corresponding row (After TC ∆SR). MVTC is the mean-variance optimized
portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized portfolio which
optimizes over transaction costs but makes the simplifying assumption that assets are uncorrelated. MV
is the mean-variance optimized portfolio without taking into account transaction costs in the optimization.
MVNet is analogous to MV only it is based on returns net of costs. DOL borrows in the USD and equally
invests in all other currencies. DDOL takes a long position in DOL if the median exchange rate forward
discount is positive, and a short position otherwise. HML sorts currencies according to the forward discount
into quintiles and borrows in the bottom and invests in the top quintile. MOM sorts currencies according
to their past 12 month performance into quintiles and borrows in the bottom and invests in the top quintile.
V AL sorts currencies according to the power purchase parity adjusted exchange rate into quintiles and
borrows in the top quintile and invests in the bottom quintile. The data are weekly returns for our full set
of 29 currencies (columns 2 to 4) and a subsample of 15 developed currencies (columns 5 to 7) from January
1976 to February 2016. Standard errors for ∆SR are estimated using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf, 2008).
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Table 6: Optimized vs Equally Weighted Portfolios: Quarterly Frequency

All 29 Currencies 15 Developed Currencies

Before TC After TC Before TC After TC

Strategies SR SR ∆SR SR SR ∆SR

MVTC 0.91 0.83 - 0.89 0.83 -

MVTC\Corr 0.87 0.73 0.09 0.87 0.78 0.05∗∗

(0.24) (0.03)

MV 0.91 0.73 0.10 0.87 0.78 0.05∗∗

(0.15) (0.03)

MVNet 0.86 0.76 0.06 0.91 0.85 -0.02
(0.43) (0.74)

DOL 0.08 0.08 0.75∗∗∗ 0.06 0.06 0.77∗∗∗

(0.01) (0.01)

DDOL 0.41 0.39 0.44∗∗ 0.64 0.63 0.20
(0.05) (0.33)

HML 0.58 0.53 0.30∗∗ 0.43 0.41 0.42∗∗

(0.03) (0.03)

MOM 0.29 0.24 0.59∗∗ 0.17 0.13 0.70∗∗

(0.02) (0.01)

V AL 0.45 0.41 0.42∗∗ 0.55 0.52 0.31
(0.03) (0.13)

Notes: Columns 2 and 5 report Sharpe ratios before costs (Before TC SR). Columns 3 and 6 report Sharpe
ratios after costs (After TC SR). Columns 4 and 7 report the difference between the Sharpe ratios after costs
of MVTC and the strategy in the corresponding row (After TC ∆SR). MVTC is the mean-variance optimized
portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized portfolio which
optimizes over transaction costs but makes the simplifying assumption that assets are uncorrelated. MV
is the mean-variance optimized portfolio without taking into account transaction costs in the optimization.
MVNet is analogous to MV only it is based on returns net of costs. DOL borrows in the USD and equally
invests in all other currencies. DDOL takes a long position in DOL if the median exchange rate forward
discount is positive, and a short position otherwise. HML sorts currencies according to the forward discount
into quintiles and borrows in the bottom and invests in the top quintile. MOM sorts currencies according
to their past 12 month performance into quintiles and borrows in the bottom and invests in the top quintile.
V AL sorts currencies according to the power purchase parity adjusted exchange rate into quintiles and
borrows in the top quintile and invests in the bottom quintile. The data are quarterly returns for our full
set of 29 currencies (columns 2 to 4) and a subsample of 15 developed currencies (columns 5 to 7) from
January 1976 to February 2016. Standard errors for ∆SR are estimated using block bootstrapping with
block sizes of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf,
2008).
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Table 7: Average Turnover and Transaction Costs, 29 Currencies

Weekly Monthly Quarterly

Strategies Turnover Costs Turnover Costs Turnover Costs

MVTC 9.33 0.36 18.49 1.25 12.64 1.16

MVTC\Corr 31.76 1.94 28.74 2.34 15.45 1.83

MV 101.15 11.18 40.47 5.13 17.77 2.46

MVNet 39.59 3.12 23.11 1.73 12.47 1.36

DOL 0.82 0.12 0.50 0.10 0.27 0.05

DDOL 3.78 0.45 3.41 0.44 1.39 0.19

HML 9.39 1.01 8.64 0.98 3.79 0.45

MOM 20.08 1.45 14.81 1.14 7.83 0.72

V AL 6.00 0.71 3.46 0.55 1.71 0.25

Notes: Average annual turnover and transaction costs for diverse strategies. MVTC is the mean-variance
optimized portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized
portfolio which optimizes over transaction costs but makes the simplifying assumption that assets are un-
correlated. MV is the mean-variance optimized portfolio without taking into account transaction costs in
the optimization. MVNet is analogous to MV only it is based on returns net of costs. DOL borrows in
the USD and equally invests in all other currencies. DDOL takes a long position in DOL if the median
exchange rate forward discount is positive, and a short position otherwise. HML sorts currencies according
to the forward discount into quintiles and borrows in the bottom and invests in the top quintile. MOM
sorts currencies according to their past 12 month performance into quintiles and borrows in the bottom and
invests in the top quintile. V AL sorts currencies according to the power purchase parity adjusted exchange
rate into quintiles and borrows in the top quintile and invests in the bottom quintile. The sample contains
all 29 currencies from January 1976 to February 2016.
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Table 8: Average Turnover and Transaction Costs, 15 Developed Currencies

Weekly Monthly Quarterly

Strategies Turnover Costs Turnover Costs Turnover Costs

MVTC 5.30 0.25 12.51 0.85 8.60 0.72

MVTC\Corr 24.12 1.60 21.46 1.63 10.82 0.95

MV 63.73 5.23 27.53 2.19 11.75 1.04

MVNet 19.28 1.80 18.25 1.31 9.18 0.84

DOL 0.68 0.05 0.40 0.03 0.24 0.02

DDOL 3.62 0.27 3.30 0.25 1.44 0.12

HML 7.16 0.47 6.45 0.45 3.38 0.25

MOM 18.72 1.09 15.80 1.04 7.77 0.52

V AL 7.89 0.50 4.10 0.28 2.42 0.19

Notes: Average annual turnover and transaction costs for diverse strategies. MVTC is the mean-variance
optimized portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized
portfolio which optimizes over transaction costs but makes the simplifying assumption that assets are un-
correlated. MV is the mean-variance optimized portfolio without taking into account transaction costs in
the optimization. MVNet is analogous to MV only it is based on returns net of costs. DOL borrows in
the USD and equally invests in all other currencies. DDOL takes a long position in DOL if the median
exchange rate forward discount is positive, and a short position otherwise. HML sorts currencies according
to the forward discount into quintiles and borrows in the bottom and invests in the top quintile. MOM
sorts currencies according to their past 12 month performance into quintiles and borrows in the bottom and
invests in the top quintile. V AL sorts currencies according to the power purchase parity adjusted exchange
rate into quintiles and borrows in the top quintile and invests in the bottom quintile. The sample contains
15 developed currencies from January 1976 to February 2016.
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Table 9: Restricting 29 Admissible Currencies to Low Transaction Cost ones: Sharpe
Ratio

Drop # Top Before TC Sharpe Ratios After TC Sharpe Ratios

TC Currencies MV MVTC MV MVTC ∆SR (p-val)

Keep all 1.26 1.27 0.78 1.16 0.38∗∗∗ (0.01)

Drop 1 1.21 1.24 0.93 1.12 0.20∗∗∗ (0.00)

Drop 2 1.14 1.19 0.83 1.06 0.23∗∗ (0.01)

Drop 3 1.09 1.12 0.80 1.00 0.19∗∗ (0.04)

Drop 4 1.01 1.07 0.73 0.94 0.21∗∗ (0.03)

Drop 5 1.00 1.06 0.74 0.93 0.19∗∗ (0.02)

Drop 6 1.07 1.07 0.83 0.95 0.13∗ (0.10)

Drop 7 1.02 1.05 0.78 0.94 0.15 (0.22)

Drop 8 1.06 1.07 0.85 0.97 0.12 (0.21)

Drop 9 1.11 1.05 0.94 0.96 0.02 (0.64)

Drop 10 1.01 0.93 0.83 0.84 0.01 (0.80)

Notes: Out-of-sample Sharpe ratios of MV and MVTC . Column 2 and 3 provide Sharpe ratios before transac-
tion costs and columns 4 and 5 Sharpe ratios after costs. Column 6 shows the difference between the Sharpe
ratio of MVTC and MV and column 7 indicates the p-value of the difference. Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). The top row includes all 29 available currencies. In subsequent
rows we remove one-by-one the currency with the highest median transaction cost over the previous 9 months.
The data are monthly returns from January 1976 to February 2016.
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Table 10: Restricting 29 Admissible Currencies to Low Transaction Cost ones: No-
tional Value, Mean and Volatility

Drop # Top Notional Value After TC Mean After TC Volatility

TC Currencies MV MVTC MV MVTC MV MVTC

Keep all 4.05 3.38 0.08 0.11 0.11 0.09

Drop 1 4.00 3.39 0.10 0.10 0.11 0.09

Drop 2 4.09 3.45 0.09 0.10 0.11 0.09

Drop 3 4.08 3.39 0.09 0.09 0.11 0.09

Drop 4 3.99 3.30 0.08 0.09 0.11 0.09

Drop 5 3.87 3.14 0.08 0.08 0.10 0.09

Drop 6 3.70 3.01 0.08 0.08 0.10 0.09

Drop 7 3.62 2.97 0.08 0.08 0.10 0.09

Drop 8 3.53 2.90 0.08 0.09 0.10 0.09

Drop 9 3.34 2.82 0.10 0.09 0.10 0.09

Drop 10 3.08 2.60 0.07 0.07 0.09 0.08

Notes: Columns 2 and 3 report the average notional values of MV and MVTC , column 4 and 5 report after
cost average returns and columns 6 and 7 after costs return volatilities. The top row includes all 29 available
currencies. In subsequent rows we remove one-by-one the currency with the highest median transaction cost
over the previous 9 months. The data are monthly returns from January 1976 to February 2016.
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Table 11: Restricting 29 Admissible Currencies to Low Transaction Cost ones: Crash
Risk

Drop # Top After TC Skewness After TC Kurtosis After TC MDD

TC Currencies MV MVTC MV MVTC MV MVTC

Keep all 0.00 0.47 7.60 6.59 -0.38 -0.19

Drop 1 0.19 0.38 6.25 6.02 -0.25 -0.18

Drop 2 -0.45 -0.06 6.25 5.67 -0.31 -0.20

Drop 3 -0.62 -0.12 5.99 5.55 -0.29 -0.20

Drop 4 -0.46 -0.08 5.91 5.78 -0.34 -0.20

Drop 5 -0.47 -0.04 7.84 6.37 -0.27 -0.18

Drop 6 -0.39 0.01 7.42 6.83 -0.22 -0.19

Drop 7 -0.82 0.14 10.03 6.71 -0.27 -0.24

Drop 8 0.00 0.47 10.26 8.31 -0.23 -0.23

Drop 9 1.57 1.30 17.88 16.02 -0.23 -0.23

Drop 10 0.01 0.14 6.58 7.99 -0.22 -0.22

Notes: Columns 2 and 3 report the after cost skewness of MV and MVTC , olumn 4 and 5 report after
cost kurtosis and columns 6 and 7 after costs maximum draw downs. The top row includes all 29 available
currencies. In subsequent rows we remove one-by-one the currency with the highest median transaction cost
over the previous 9 months. The data are monthly returns from January 1976 to February 2016.
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Table 12: Currencies Sorted by Transaction Costs (using all 29 currencies)

# Top TC

Currency TC SR Mean Vol Corr Skew Kurt

# 1 0.3700 0.0400 0.4400 11.7900 0.5400 -0.6800 6.3400

# 2 0.1500 0.1000 1.1800 12.3800 0.5700 -0.0700 5.5800

# 3 0.1200 0.0700 0.8200 12.0800 0.5400 -0.6200 4.8600

# 4 0.1000 0.3200 4.0800 12.6100 0.6300 -0.5200 5.0100

# 5 0.0900 0.1200 1.4400 12.3900 0.5700 -0.4000 4.2400

# 6 0.0800 0.0100 0.0700 11.5600 0.5500 -0.3500 4.4800

# 7 0.0800 0.2300 2.6000 11.4400 0.5700 -0.1700 4.6000

# 8 0.0700 0.1500 1.5900 10.9300 0.6000 0.0100 3.9100

# 9 0.0600 0.1100 1.3600 11.8600 0.5900 -0.8400 9.9300

# 10 0.0600 -0.1200 -1.3800 11.3400 0.6100 -0.3000 5.0400

Notes: Return distributions of individual currencies. Column 2 reports the transaction costs, column 3 Sharpe
ratios after transaction costs, columns 4 and 5 after cost average returns and volatilities, column 6 average
correlations between a currency’s exchange rate and all other exchange rates, columns 7 and 8 return skewness
and kurtosis. Row i provides values for a “portfolio” consisting of the currency with the ith highest transaction
costs over the previous 9 months. The data are monthly returns from January 1976 to February 2016.
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Table 13: Restricting 15 Admissible Currencies to Low Transaction Cost ones: Sharpe
Ratio

Drop # Top Before TC Sharpe Ratios After TC Sharpe Ratios

TC Currencies MV MVTC MV MVTC ∆SR (p-val)

Keep all 0.96 1.04 0.75 0.96 0.21∗∗ (0.02)

Drop 1 0.96 1.04 0.75 0.96 0.21∗∗ (0.02)

Drop 2 1.03 1.05 0.81 0.96 0.16∗ (0.08)

Drop 3 1.05 1.07 0.82 0.98 0.16∗ (0.07)

Drop 4 0.96 1.04 0.75 0.95 0.20 (0.24)

Drop 5 0.97 1.01 0.76 0.91 0.14 (0.43)

Drop 6 0.93 1.02 0.74 0.92 0.18 (0.36)

Drop 7 1.00 1.06 0.80 0.97 0.17 (0.16)

Notes: Out-of-sample Sharpe ratios of MV and MVTC . Column 2 and 3 provide Sharpe ratios before transac-
tion costs and columns 4 and 5 Sharpe ratios after costs. Column 6 shows the difference between the Sharpe
ratio of MVTC and MV and column 7 indicates the p-value of the difference. Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). The top row includes all the 15 developed currencies. In sub-
sequent rows we remove one-by-one the currency with the highest median transaction cost over the previous
9 months. The data are monthly returns from January 1976 to February 2016.
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Table 14: sS Mean-Variance strategies, 29 Currencies

Before TC Sharpe Ratios After TC Sharpe Ratios

Threshold MVTC MVsS MVsS ∆SR Costs Turnover

0 1.27 1.26 0.78 -0.38∗∗∗ 0.05 40.47

0.01 1.27 1.26 0.78 -0.38∗∗∗ 0.05 40.40

0.05 1.27 1.27 0.79 -0.36∗∗∗ 0.05 39.08

0.10 1.27 1.26 0.80 -0.35∗∗∗ 0.05 36.30

0.15 1.27 1.18 0.75 -0.40∗∗∗ 0.05 33.26

0.25 1.27 1.19 0.83 -0.33∗∗∗ 0.04 27.93

0.50 1.27 0.92 0.66 -0.49∗∗∗ 0.03 18.97

0.75 1.27 0.84 0.66 -0.49∗∗∗ 0.02 13.41

1.00 1.27 0.54 0.40 -0.76∗∗∗ 0.02 9.59

Notes: Summary statistics for, MVsS , mean-variance strategies following the “sS” rule. The strategies are at
the monthly frequency over the period January 1976 to February 2016 and use all the 29 available currencies.
Each strategy, defined by its associated threshold weight (constant across currencies), trades in period t in
currency i only if the differential from the i-th mean-variance weight and the one inherited from the previous
period is more than the threshold in absolute value. Column 2 through 4 compare the out-of-sample Sharpe
ratios of MVsS and MVTC . Column 2 and 3 provide Sharpe ratios before transaction costs. Column 4 shows
the after cost Sharpe ratios of MVsS , column 5 its difference, ∆SR, with respect to the after cost Sharpe
ratio of MVTC (negative values indicate underperformance relative to MVTC). Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). Column 6 and column 7 display the annualized trading costs
and the turnover for the different mean-variance “sS” rule strategies. ∗∗∗, ∗∗, ∗ indicate a statistical significance
at the 1%, 5%, 10% level of ∆SR.
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Table 15: sS Mean-Variance strategies, 15 Currencies

Before TC Sharpe Ratios After TC Sharpe Ratios

Threshold MVTC MVsS MVsS ∆SR Costs Turnover

0 1.04 0.96 0.75 -0.21∗∗ 0.02 27.60

0.01 1.04 0.96 0.75 -0.21∗∗ 0.02 27.54

0.05 1.04 0.96 0.76 -0.20∗∗ 0.02 26.66

0.10 1.04 0.95 0.76 -0.20∗∗ 0.02 25.24

0.15 1.04 0.97 0.79 -0.17∗∗ 0.02 23.60

0.25 1.04 0.81 0.66 -0.30∗∗∗ 0.02 20.38

0.50 1.04 0.77 0.66 -0.30∗∗ 0.02 14.82

0.75 1.04 0.64 0.57 -0.39∗∗ 0.01 11.06

1.00 1.04 0.54 0.49 -0.47∗∗ 0.01 8.10

Notes: Summary statistics for, MVsS , mean-variance strategies following the “sS” rule. The strategies are at
the monthly frequency over the period January 1976 to February 2016 and use the 15 developed currencies.
Each strategy, defined by its associated threshold weight (constant across currencies), trades in period t in
currency i only if the differential from the i-th mean-variance weight and the one inherited from the previous
period is more than the threshold in absolute value. Column 2 through 4 compare the out-of-sample Sharpe
ratios of MVsS and MVTC . Column 2 and 3 provide Sharpe ratios before transaction costs. Column 4 shows
the after cost Sharpe ratios of MVsS , column 5 its difference, ∆SR, with respect to the after cost Sharpe
ratio of MVTC (negative values indicate underperformance relative to MVTC). Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). Column 6 and column 7 display the annualized trading costs
and the turnover for the different mean-variance “sS” rule strategies. ∗∗∗, ∗∗, ∗ indicate a statistical significance
at the 1%, 5%, 10% level of ∆SR.
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Average Annualized Absolute Forward Discounts

Figure 1: Average (across currencies) annualized absolute forward discounts (in percentage
points) for the the full set of 29 currencies (black solid line), the subset of 15 developed
currencies (red dotted line), and the subset of 14 emerging currencies (blue dashed line)
from January 1976 to February 2016. Grey shaded areas indicate NBER recessions.
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Importance of Transaction Costs in FX Markets

All 29 Currencies:

15 Developed Currencies:

Figure 2: Annualized out-of-sample Sharpe ratios before (blue bars to the left) and after (green bars in
the middle) transaction costs of various currency trading strategies and transaction costs (yellow bar to the
right) paid by them. MVTC is the mean-variance optimized portfolio which optimizes over transaction costs.
MVTC\Corr is the mean-variance optimized portfolio which optimizes over transaction costs but makes the
simplifying assumption that assets are uncorrelated. MV is the mean-variance optimized portfolio without
taking into account transaction costs in the optimization. MVNet is analogous to MV only it is based on
returns net of costs. DOL invests equally in all bilateral carry trades. DDOL takes a long position in DOL if
the median exchange rate forward discount is positive, and a short position otherwise. HML sorts bilateral
carry trades according to the forward discount into quintiles and shorts the bottom and invests in the top
quintile. MOM sorts bilateral carry trades according to their past 12 month performance into quintiles and
shorts the bottom and invests in the top quintile. V AL sorts bilateral carry trades according to the power
purchase parity adjusted exchange rate into quintiles and shorts the top quintile (overvalued currencies with
high real exchange rates) and invests in the bottom quintile (undervalued currencies with low real exchange
rates). The data are monthly returns for our full set of 29 currencies from January 1976 to February 2016.
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Mean-Variance Problem with TC: Case of 2 Risky Assets

Figure 3: The investment opportunity set consists of two positively correlated risky assets. The horizontal
axis measures the weight a portfolio places on asset 1 and the vertical axis the weight on asset 2. The green
square is the optimal portfolio θMV

t if there are no transaction costs. The blue parallelogram illustrates the
no trading region of MVTC , which optimizes over transaction costs. The yellow square determines the no
trading region of MVTC\Corr, which optimizes over transaction costs but assumes that the two assets are
uncorrelated in the construction of the no trading region. If the initial position is within the no trading
region, then the investor does not trade. If it is outside, then the investor trades towards θMV

t until she
reaches the boundary of the no trading region as indicated by the arrows. Purple, brown or orange colors of
the arrows indicate that only asset 1, 2 or both assets are traded.
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Average Annualized Transaction Costs

Figure 4: Average (across currencies) annualized costs (in percentage points) to trade a
currency for the the full set of 29 currencies (black solid line), the subset of 15 developed
currencies (red dotted line), and the subset of 14 emerging currencies (blue dashed line) from
January 1976 to February 2016. Grey shaded areas indicate NBER recessions.

71



Cumulative Returns of MV and MVTC

Cumulative Returns Before Transaction Costs:

Cumulative Returns After Transaction Costs:

Figure 5: Time-series of cumulative returns of MV (black dashed line) and MVTC (red solid line) for our
set of 29 currencies (left panels) and for the set of 15 developed currencies (right panels) from January 1976
to February 2016. Returns before transaction costs are shown in the top panel, and returns after transaction
costs in the bottom panel. Grey shaded areas indicate NBER recessions.
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Transaction Costs of MV and MVTC

Cumulative Transaction Costs:

Monthly Transaction Costs:

Figure 6: Time-series of transaction costs of MV (black dashed line) and MVTC (red solid line) for our set
of 29 currencies (left panels) and for the set of 15 developed currencies (right panels) from January 1976 to
February 2016. Cumulative costs are shown in the top panel, and monthly costs in the bottom panel. Grey
shaded areas indicate NBER recessions.
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Trading Activity of MV and MVTC

Turnover:

Average Portfolio Weights and Standard Deviation Bars:

Figure 7: Top panel: Time-series of the turnover
∑
i ‖θi,t − θi,t−1‖ of MV (black dashed line) and MVTC

(red solid line) for our set of 29 currencies (left panels) and for the set of 15 developed currencies (right
panles) from January 1976 to February 2016. Grey shaded areas indicate NBER recessions. Bottom panel:
Average portfolio weights and 1-standard deviation error bars of MV (downward pointing triangle and thin
black line) and MVTC (upward pointing triangle and thick red line).
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Notional Value of MV and MVTC

All 29 Currencies:

15 Developed Currencies:

Figure 8: Time-series of the notional value or total dollar exposure
∑
i ‖θi,t‖ of MV (black dashed line) and

MVTC (red solid line) for our set of 29 currencies (top panel) and for the set of the 15 developed currencies
(bottom panel) from January 1976 to February 2016. Grey shaded areas indicate NBER recessions.
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Average Correlations

All 29 Currencies:

15 Developed Currencies:

Figure 9: Time-series of the average conditional correlation of each exchange rate growth i with all other
exchange rate growths for our full set of Nt = 29 currencies (top panel) and for the set of 15 developed
currencies (bottom panel), ρi,t = 1

N−1
∑N−1
j=1 Corrt (∆xi,t,∆xj,t) estimated using daily data within each

month from January 1976 to February 2016. The bold black line captures the time-series of the cross-
sectional average across all correlations, ρt = 1

Nt−1
∑Nt
i=1 ρi,t. Grey shaded areas indicate NBER recessions.
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Time-currency invariant Linear Price Impact

After cost Sharpe ratios:

Trade Aggressiveness:

Figure 10: The top graphs show annualized out-of-sample Sharpe ratios after transaction costs of various
trading strategies described in Figure 2, as a function of the price impact parameter π ∈ [0, 100], which is
measured in basis points. The price impact is a linear function of the size of the trades, constant across
currencies i and time t, i.e., π = πzi,t ∀i, t and z ∈ {P+, P−, S+, S−}, where πzi,t are the diagonal elements

of Πt
L,z. Similarly the bottom graphs plot the median trade aggressiveness TASt (defined in (1)) of the

various trading strategies as a function of the price impact parameter. Left (right) plots report results for
the set of 29 (15) currencies over the sample from January 1976 to February 2016.
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Time-currency invariant Square-root Price Impact

After cost Sharpe ratios:

Trade Aggressiveness:

Figure 11: The top graphs show annualized out-of-sample Sharpe ratios after transaction costs of various
trading strategies described in Figure 2, as a function of the price impact parameter π ∈ [0, 100], which is
measured in basis points. The price impact is a square-root function of the size of the trades, constant across
currencies i and time t, i.e., π = πzi,t ∀i, t and z ∈ {P+, P−, S+, S−}, where πzi,t are the diagonal elements

of Πt
SR,z. Similarly the bottom graphs plot the median trade aggressiveness TASt (defined in (1)) of the

various trading strategies as a function of the price impact parameter. Left (right) plots report results for
the set of 29 (15) currencies over the sample from January 1976 to February 2016.
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Appendix

A Robustness

Sections A.1, A.2 and A.3 provide robustness results of our main result in various subsam-

ples. Section A.4 provides robustness results for various choice of risk aversion coefficients

λ backing the empirics with the theory. Section A.5 shows that our main results are quan-

titatively more important if we consider full round-trip transaction costs. In section A.6 we

argue that the myopic feature of MVTC does not seem to be a first order problem and MVTC

is the best strategy that we know to address transaction costs.

A.1 NBER Recessions

We investigate the impact of recessions. We confirm our results in both NBER recessions

and non-recession periods. Tables 22 and 23 summarizes the monthly excess returns of MV

and MVTC during NBER recessions (columns 1 and 2) and during non-recession periods

(columns 3 and 4) for our the set of 29(15) currencies from 1976 to 2016. Sharpe ratios before

transaction costs are more than twice(ten), in non-recession periods than during recessions.

This difference is driven by both higher average returns and lower volatilities in non-recession

periods. Transaction costs in recessions are at least 50% more for MVTC but almost identical

for MV . The difference in costs between MV and MVTC is statistically significant. MVTC

outperforms MV and the difference in after cost Sharpe ratios is 0.18(0.20) in recessions and

0.43(0.21) during non-recession periods. Such differences in Sharpe ratios are statistically

significant at the 10% except for MVTC during recessions, where the p-value is 0.26. The

p-values in recession periods are large because we only have 56 monthly observations during

recessions and the power of the test is low. However, the economic magnitude of our result

is meaningful in and out of recessions. It also become apparent how diversification helps in

recessions, the after costs Sharpe ratios of MV and MVTC are much higher when we are
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allowed to trade in the set of 29 currencies rather then constrained to the set of 15 developed

ones.

We conclude, that our findings in Section 4 are present both in and out of recession

periods and diversification helps in recessions.

A.2 Subsamples before and after the Introduction of the Euro

The introduction of the Euro non-trivially affected the investment opportunity set in FX

markets. Our results from Section 4 are stronger in the subsample before the introduction of

the Euro, which is mostly due to the general decline in average transaction costs over time

(Figure 4). Nonetheless we still find sizable improvements after the introduction of Euro,

with statistical significance at the 10%(15%) level for the set of 29(15) currencies.

Tables 24 and 25 summarizes the monthly excess returns of MV and MVTC for our set

of 29(15) currencies before (columns 1 and 2) and after (columns 3 and 4) the introduction

of the Euro on January 2nd, 1999. In both samples, there is no difference in Sharpe ra-

tios before transaction costs between MV and MVTC (except for noticeable improvement

of 0.1 for MVTC in the pre-Euro sample for the set of 15 currencies). Transaction costs

are substantially larger in the pre-Euro sample. Costs incurred by MV and MVTC are

7.65%(3.40%) and 1.76%(1.30%) per year, a difference of 5.89%(2.10%), in the pre-Euro,

and 1.74%(0.57%) and 0.56%(0.25%) per year, a difference of 1.18%(0.32%), in the post-

Euro sample. The difference in costs between MV and MVTC is statistically significant in

both pre- and post-Euro samples. The Sharpe ratios after transaction costs of MV and

MVTC are 0.75(0.83) and 1.26(1.11) in the pre-Euro and 0.86(0.74) and 1.01(0.83) in the

post-Euro sample. The difference of 0.50(0.26) in the pre-Euro sample is economically and

statistically significant with a p-value of 0.011(0.03). The difference of 0.15(0.09) in the

post-Euro sample is economically meaningful but statistically significant at the 10% level for

the set of 29 currencies (it has a p-value of 0.148 for the set of 15 currencies). The decline

in the difference in Sharpe ratios after costs between MVTC and MV from the pre- to the
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post-Euro sample is mostly due to the strong decline in average transaction costs. However,

this does not mean that optimizing transaction costs is irrelevant in the post-Euro era. The

bottom graphs of Figure 5 show how the superior performance of MVTC over MV is steady

over the entire period. The cumulative returns after costs of MVTC are always above those

of MV and the spread is monotonically increasing. To conclude, the main results of Section

4 are confirmed in subsamples before and after the introduction of the Euro.

A.3 Sample from November 1983 to February 2016

Our main analysis uses the sample from January 2nd, 1976 to March 2nd, 2016. The data

before October 11th, 1983 is quoted against the Great British Pound (GBP), and we convert

all data to exchange rates quoted against the USD (using mid quotes between the USD and

GBP). The data quoted against the GBP are less reliable compared to the later sample

quoted against the USD. Moreover, the bid and ask quotes after converting the 1976-1983

data to quotes against the USD do not exactly reflect the true bid and ask quotes against

the USD, i.e., they are the bid and ask quotes against the GBP converted by the mid quote

between USD and GBP. We show that our results are robust independent of whether we use

the full sample from 1976 to 2016 or the shorter sample from 1983 to 2016.

Columns 3 and 4 of Tables 26 and 27 summarize the out-of-sample excess returns of

MV and MVTC for our set of 29(15) currencies from November 1983 to February 2016.

The Sharpe ratios before transaction costs of MV and MVTC are 1.17(1.04) and 1.20(1.04),

which is 0.09(0.08) and 0.07(0.00) lower than in the full sample from 1976 to 2016. The costs

paid by MV and MVTC are 2.76%(1.19%) and 0.86%(0.44%) per year. These numbers are

lower than in the full sample, which is consistent with the fact that average transaction costs

are decreasing over time (Figure 4). MVTC costs less than half of MV to implement. The

difference in costs between MV and MVTC is statistically significant. In contrast and more

importantly, the Sharpe ratios after transaction costs are very similar in the sample starting

in 1983 and in the full sample. The Sharpe ratio of MV is 0.88(0.88) and the one of MVTC
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is 1.11(0.98). The difference between the strategies is 0.23(0.10) and statistically significant

with a p-value of 0.007(0.03). Therefore, we confirm the results from from our main sample

in the smaller sample starting in 1983.

A.4 Risk Aversion Coefficient λ

We show, both empirically and theoretically, that the choice of the risk aversion coefficient

λ is irrelevant for our analysis and does not affect our results. We analyze the out-of-

sample performance of MV and MVTC for values λ ∈ {1, 5, 10, 25, 50, 100, 200}. Our baseline

analysis sets λ = 50. This is a useful contribution for the one-period mean-variance setup

with proportional costs since the independence of the Sharpe ratio measure to portfolios

constructed with θMVTC was not known.

Tables 16 and 19 compare before and after cost Sharpe ratios of MV and MVTC for the

set of 29(15) currencies. For any value of λ the before cost Sharpe ratios of MV and MVTC

are 1.26(0.96) and 1.27(1.04) while the after cost ratios are 0.78(0.75) and 1.16(0.96). As

already shown in our main results, the difference of 0.38(0.20) in after cost Sharpe ratios

between MVTC and MV is highly statistically significant. Therefore, the Sharpe ratios and

our conclusion are unaffected by the choice of λ.

While the independence of λ from the Sharpe ratio of MV is a well known straight-

forward feature of the standard mean-variance setup, the same cannot be said for MVTC .

The following example with 2 excess risky returns (stacked in the vector re) shows why.

In the case of MV SRMV ≡ E[re′θMV]
σ(re′θMV)

=
1
λ
µe′Vµe

1
λ

√
µe′Vµe

. The reason why the Sharpe ratio is

independent from λ is because θMV is proportional to 1
λ
. To illustrate what is going on

with MVTC further assume, without loss of generality, that there are no directional costs

(i.e. CP+ = CP− ≡ C+ and CS+ = CS− ≡ C−). We need to show that θMVTC is

proportional to 1
λ
. From the first order conditions for asset i Viθ

MVTC ≥ 1
λ
(µe

i − C+
i )

and Viθ
MVTC ≤ 1

λ
(µe

i + C−i ) where Vi represents the i-th row of V. The intersections

of these half-planes for all assets i form the no trading region. Replacing the inequalities
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with equalities yields the equations for the borders of the no trading region; solving this

system of equations yields the optimal weights for the corners of the region. From Dyb-

vig and Pezzo (2019) we know that if the first(second) inequality is violated we need to

buy(sell) asset i until the inequality are restored with equality. For brevity we will pick

two representative situations to show that θMVTC is indeed proportional to 1
λ
, the other

situations are analogous. Suppose we are undervalued in asset 1 and overvalued in as-

set 2, then it is optimal to trade to the upper-left corner of the blue no trading region

shown in Figure 3 and buy more of asset 1 while selling more of asset 2. Then θMVTC
′

=

[θMV
1 − V12

V11

Å
V12C+

1 +V11C−2
λ(V22V11−V 2

12)

ã
− C+

1

λV11
, θMV

2 +
V12C+

1 +V11C−2
λ(V22V11−V 2

12)
]′ which is proportional to 1

λ
. Now con-

sider a situation where we are only undervalued in asset 1, then it is optimal to only buy

more of asset i. This violates the first inequality defining the no trading region, thus we need

to trade until we restore it with an equality and leave the position in asset 2 unchanged at θ02.

In this case θMVTC
′
= [ 1

λV11
(µe

1−C+
1 )−V12θ02, θ02]′ with 1

λ(V22−V 2
12)

î
µe

2 −C+
2 − V12

V11
(µe

1 −C+
1 )
ó
≤

θ02 ≤ 1
λ(V22−V 2

12)

î
µe

2 + C+
2 − V12

V11
(µe

1 −C+
1 )
ó
, hence θMVTC is proportional to 1

λ
.

Tables 17 and 20 show that the notional values, after cost average returns and after cost

volatilities of MV and MVTC linearly scale with the risk aversion coefficient λ. This linear

relationship is well-known in the case of MV . It does not trivially hold in the case of MVTC

but empirically we find that it holds up to a precision of four decimal places. Finally Tables

18 and 21 show that the choice of λ has no effect on the skewness and kurtosis. In the case

of MV this holds mechanically. For MVTC this is need to be shown, nonetheless empirically

skewness and kurtosis are virtually unaffected by the choice of λ. The maximum draw down

linearly scales with λ. While this is again a trivial relationship in the case of MV , we find

that it empirically holds for MVTC up to a precision of three decimal places.

To conclude, the choice of λ has no effect on our result that taking costs into account

in a mean-variance portfolio optimization in FX markets significantly improves the out-of-

sample performance after costs, furthermore this fact can also be theoretically proven in a

one-period model.
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A.5 Full Round-Trip Transaction Costs

As a robustness check we repeat our analysis and use full round-trip transaction costs, which

assume that a position is fully closed and re-opened every month, instead of the costs specified

in section 3.1. That is, instead of subtracting CP+
t
′
∆P+

t +CP−
t
′
∆P−

t +CS+
t
′
∆S+

t +CS−
t
′
∆S−

t

from the mid-quote realized returns we subtract the full round-trip costs (CP+
t +CS+

t )′∆P+
t +

(CP−
t + CS−

t )′∆S−
t .

As expected, we find that trading in the presence of full round-trip costs yields higher

costs. As we move from our baseline analysis with no roll-over fees to our robustness analysis

with full round-trip costs the increase in transaction costs is least severe for MVTC . While

the average annualized costs of MVTC , MVTC\Corr and MV in our baseline analysis for

the set of 29(15) currencies are 1.25%(0.85%), 2.34%(1.63%) and 5.13%(2.19%), they are

2.76%(2.12%), 4.99%(3.90%) and 13.06%(5.61%) in our robustness analysis with full round-

trip costs.

Table 28 to 29 summarize the strategies’ performances. First, Table 28 confirms our main

result that MVTC has a significantly higher Sharpe ratio than MV . Results exacerbate the

insights we gathered from the analysis in the main text. While the baseline difference in after

cost Sharpe ratios for the set of 29(15) currencies is 0.38(0.20) with a p-value of 0.01(0.03),

with round-trip costs it becomes 0.78(0.35) with a p-value of 0.00(0.01). Therefore, we can

view our results in the main text as conservative.

In the main analysis we documented how properly accounting for correlations while op-

timizing over costs is important. The first three rows of Table 29 demonstrates how this is

still the case under full round-trip costs, especially for the set of the 15 developed curren-

cies. Going from MV to MVTC trhough MVTC\Corr improves the after cost Sharpe ratios

from 0.02(0.40) to 0.70(0.51) and 0.80(0.74) for the set of 29(15) currencies. With most

of the improvement, a highly statistically significant 0.67(0.24), obtained switching from

MV (MVTC\Corr) to MVTC\Corr(MVTC). For the set of 29(15) currencies, the improvement

0.11(0.11) from switching from MVTC\Corr(MV ) to MVTC(MVTC\Corr) is more modest and
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not significant at the 10% level with a p-value of 0.11(0.16).

Because a marginally significant Sharpe ratio increment of 0.11 from MVTC\Corr to MVTC

for the full set of 29 currencies is still economically important (it corresponds to an increment

of 1.1% in risk premium given a 10% increment in volatility), we conclude that accounting

for correlations in the optimization still captures a first order effect even in the presence of

full round-trip costs.

Table 29 also illustrates that MVTC continuoes to outperforms all equally weighted strate-

gies as well as MVnet.

A.6 Heuristic Adjustments to Approximate the Optimal Portfolio

in a Multi-Period Setting

As discussed in section 2, MVTC is the optimal solution in a single period model but in

general it is suboptimal in a multi-period framework. Intuitively, there are two reasons for

that. First, the time-series variation in the investment opportunity set introduces a hedging

demand (Merton, 1971). Second, since the optimal portfolio and value function at time t+1

crucially depend on the initial position θ0
t+1 at time t + 1, the portfolio choice at time t

should not only trade off current expected returns, risks and costs but also take into account

the implications on θ0
t+1.

Suppose now we extend our model to a multi-period setting. The investor trades in

every period t and her utility at time t is Ut = Et [
∑∞
τ=t β

τ−tuτ ] where Et[.] is the conditional

expectation operator and β ∈ [0, 1] is a subjective time discount factor of future period τ

mean-variance utility uτ = θτ
′µe
τ− λ

2
θτ
′Vτθτ−

∑
z∈{P+,P−,S+,S−}∆

z
t
′Cz

t + 1
2
PIt(z,∆

z
t)∆z

t . For

simplicity, suppose the investment opportunity set is constant so that there is no hedging

demand (Merton, 1971), i.e., µe
τ = µe, Vτ = V, Cz

τ = Cz, P It(z,∆
z
t) = PI(z,∆z

t) ∀z ∈

{P+, S+, P−, S−}. If there are no transaction costs (CP+ = CS+ = CP− = CS− =

PI(P+,∆P+
t ) = PI(P−,∆P−

t ) = PI(S+,∆S+
t ) = PI(S−,∆S−

t ) = 0), then it is well-

known that the optimal solution in every period t is the same as the solution in the single
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period model, θMV∗
t = θMV = 1

λ
V−1µe, where the superscript ∗ indicates that the portfolio

is the solution to the multi-period setting. In contrast, if there are positive transaction costs

then in general the optimal solution is not equal to the single period solution, θ
MV∗TC
t 6=

θMVTC .

Unfortunately, we do not have an algorithm to solve the multi-period model with many

correlated assets. Instead, we use intuitive arguments to construct heuristic adjustments for

MVTC to approximate MV ∗TC . If the investment opportunity set is constant, we expect that

the no trading region of the multi-period strategy MV ∗TC is smaller than for the single period

strategy MVTC . The marginal utility to move towards θMV is larger in the multi-period

setting than in the single period model because the benefit to be close to θMV is reaped for

multiple periods instead of only once.

A similar intuition applies to settings with stochastic changes in the investment opportu-

nity set. We expect that the size of the no trading region depends inversely on the persistence

in the state variables that determine the investment opportunity set. We illustrate the intu-

ition using two extreme examples. First, if state variables are independently and identically

distributed (i.i.d.), then θMV
t is also i.i.d. (because it is a function of the state variables).

Intuitively, it is optimal to trade towards the unconditional average θ̄MV = E
î
θMV

t

ó
. Once

we get close enough, it is optimal to choose θMV∗
t in the neighborhood of θ̄MV. This is

because in expectation θMV
t+1 is equal to θ̄MV, and thus, choosing θMV∗

t close to θ̄MV means

that θ0
t+1 is close to θMV

t+1 and we expect low trading costs in period t + 1. Therefore, once

our portfolio is in the neighborhood of θ̄MV, the no trading region is large and we do not

trade aggressively. This is why, on average, when the state variables are not persistent and

mean-revert quickly we expect a large no trading region (potentially larger than the no trad-

ing region in the one period model). By the same logic, we expect that the no trading region

is smaller (larger) when the investment opportunity set experiences a change which pushes

θMV
t towards (away from) θ̄MV.

In our second extreme example state variables follow a random walk, i.e., changes are

i.i.d., and accordingly, θMV
t follows a non-stationary process. It is then optimal to trade
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aggressively and set θMV∗
t close to θMV

t . This is because it is our best guess that θMV
t+1 is

close to θMV
t . Thus, choosing θMV∗

t close to θMV
t makes θ0

t+1 the best guess for θMV
t+1 and we

expect low trading costs in period t + 1. Therefore, when the state variables are persistent

we expect the no trading region is small (and potentially smaller than the no trading region

in the one period model) and we trade aggressively.

Following our intuition, we propose the following heuristic solutions to approximate the

unknown, true solution to the multi-period model. We define the cost multiplier

Mi,t(c1, a1, c2, a2) = c1 + a1 × ρ
(
µe

i,t

σ2
i,t

)
+

(
1−

∣∣∣∣∣ρ
(
µe

i,t

σ2
i,t

)∣∣∣∣∣
)
× I¶

θ
MVTC
i,t

∈[θ0i,t,θ̄MV
i ]
©

×I{(θMV
i,t
−θ0

i,t)(θ̄MV
i
−θ0

i,t)>0} ×
[
c2 + a2 × ρ

(
µe

i,t

σ2
i,t

)]
, (2)

where ρ(xt) is the first auto-correlation operator of the time-series xt, σ
2
i,t is the ith diagonal

element of Vt, and the adjusted transaction costs for trading asset i is

Mi,t(c1, c2, a1, a2)
Ä
Cz

i,t∆
z
i,t + πzi,t(∆

z
i,t)

2
ä
, ∀z ∈ {P+, S+, P−, S−}. (3)

We conjecture that there exist a parameter configuration for c1, c2, a1, a2 such that the so-

lution θMVM
TC of Problem 1 with the adjusted transaction costs (given in equation (3))

approximates the true solution θ
MV∗TC
t in the multi-period model.

Notice that θMVM
TC = θMVTC if c1 = 1, c2 = a1 = a2 = 0, and θMVM

TC = θMV if

c1 = c2 = a1 = a2 = 0. Therefore, our heuristic adjustments nest the single period model

solutions with and without transaction costs. More generally, via the multiplier equation

(2), we make the perceived costs from equation (3): 1) on average higher or lower than the

actual costs, 2) a function of the persistence of the state variables, 3) dependent on the

relative path of θMVTC
t with respect to its long run mean θ̄MV. Pre-multiplying the actual

costs buy a higher (lower) than 1 currency-specific factor Mi,t is the heuristics adopted to

induce, according to our intuitive insights, less (more) trading in our myopic strategy due to

the temporal dynamics. Specifically, 1) c1 captures the average level of the currency-specific

9



factor, 2) a1 captures the auto-correlation function which keeps track of the persistence of

each currency price of risk ρ
Å
µei,t
σ2
i,t

ã
(remember that θMVTC

t is proportional to prices of risk),

and 3) the second factor in equation (2) makes the relative path of θ
MVM

TC
t dependent on the

long run mean θ̄MV (inducing more trades – a lower factor Mi,t - when the myopic weights

are converging towards the long run mean and vice versa).24

We empirically assess the importance of our heuristic approximation without and with

the time-currency invariant linear price impact analyzed in Section 4.3 for the set of 29 and

15 currencies. We can construct θMVM
TC and compute returns for any parameter configuration

c1, c2, a1, a2. We then find the configuration which yields the maximum Sharpe ratio after

costs.

Figure 12 plots the annualized after cost Sharpe ratios of the myopic portfolio MVTC

(i.e., c1 = 1, c2 = a1 = a2 = 0) and the portfolio MV M
TC with the maximum after cost Sharpe

ratio in the space c1 ∈ R, c2 = a1 = a2 = 0, (c1, c2) ∈ R2, a1 = a2 = 0, (c1, c2, a1, a2) ∈ R4 as

a function of the price impact parameter π ∈ [0, 100] for the set of 29(15) currencies. The

price impact, when present (i.e. for π > 0), is modeled as linear in the size of the trades ∆z
t

for z ∈ {P+, P−, S+, S−}. 25

In the absence of price impact, that is when π = 0, we observe only small and statistically

insignificant differences between the Sharpe ratios of the myopic portfolio MVTC and any

of the adjusted portfolios MV M
TC . The strategies’ after cost Sharpe ratios range between

1.156(0.962) and 1.185(0.980) with (unreported) very similar levels of trade aggressiveness.

Therefore, in the absence of a price impact, our proposed heuristic approximations of the

multi-period model solution do not improve the out-of-sample performance over the myopic

solution MVTC .

24We also multiply the term which characterizes to the reversion to the long run mean θ̄MV byÅ
1−

∣∣∣∣ρ(µe
i,t

σ2
i,t

)∣∣∣∣ã. This is motivated by the intuition that a higher persistence and longer expected time

for the weights θ
MVM

TC
t to revert to the mean implies that the long run mean is less important as a bench-

mark. In the extreme cases when the processes for
µe
i,t

σ2
i,t

are unit roots, the long run mean does not exists,

and thus, this term vanishes.
25This is without loss of generality given the similar results for the different price impact setups analyzed

in Section ??.
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Price impacts can have a first order effects on the performance of our strategies. Those

should be viewed as the average effects suffered over an interval of time in a more realistic

dynamic model. However, in such frameworks it is feasible and optimal to smooth price im-

pacts over time rather than bear their effects all at once (see for example Liu and Xu (2018)).

For this reason we expect that applying our heuristics adjustments here should improve the

performance. As the two plots in Figure 12 shows for π > 0, the heuristic adjustments im-

prove the performance of MVTC in the presence of a price impact. The more flexible model

(the dot-dashed green line) yields bigger and bigger Sharpe ratio improvements as we move

from a price impact of 5 to 100 basis points, reaching improvements of approximately 0.07

at 100 basis points. Nonetheless, these improvements are second order and almost never

significant. (except for the case of MV M3
TC at 100 basis points with associated p-value of

0.063)

Note that the construction of our heuristic adjustments and in particular the parameter

search suffers from a severe look-ahead bias. Ex-ante we did not know which parameter

configuration c1, c2, a1, a2 maximizes the after cost Sharpe ratio. It is in favor of MVTC that

MV M
TC , whether or not a price impact is considered, does not significantly outperform MVTC

despite of the look-ahead bias.

To conclude, our heuristic analysis suggests that the myopic strategy MVTC earns a high

out-of-sample Sharpe ratio and our intuitive adjustments to approximate the true solution

in a dynamic multi-period setting do not substantially improve the performance.26

26Because it is impossible to gauge the approximation error of MVMTC , we cannot rule out the possibility
that the true, unknown solution MV ∗TC of the multi-period model significantly outperforms the myopic
portfolio MVTC in out-of-sample tests.
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B Details on Portfolio Optimization Problem

B.1 Existence and Uniqueness of Solutions

Theorem 4 below is the natural extension of Proposition 1 in Dybvig and Pezzo (2019) when

there is no price impact as in Problem 1. The following two corollaries are the straightforward

extensions that take price impact and PCA adjustments into account as in Problem 2 and 3

respectively.

Theorem 4 Given the assumption of a positive definite covariance matrix Vt, a positive

risk aversion coefficient λ > 0, and a cost structure of the form 0 ≤ CP−
t ≤ CP+

t , 0 ≤

CS+
t ≤ CS−

t , the optimal solution to Problem 1 exists and the optimal portfolio θMVTC
t we

trade to is unique. The optimal trades are such that ∆P+
n,t + ∆P−

n,t = max(θn,t − θ0n,t, 0) + xn

and ∆S+
n,t + ∆S−

n,t = −min(θn,t − θ0n,t, 0) + xn,t where xn,t ≥ 0. If the round trip cost for the

relevant combination (j, k) ∈ {+,−} is positive, CPj
n,t + CSk

n,t > 0, then it is suboptimal to

simultaneously buy and sell so that xn,t = 0. In particular, if the round-trip trading cost is

positive for all securities, the optimal trades are unique and Problem 1 is unique.

Proof. Let U(∆P+
t ,∆P−

t ,∆S+
t ,∆S−

t ) be the objective function of Problem 1 and de-

fine Û(θ) ≡ max{U(∆P+
t ,∆P−

t ,∆S+
t ,∆S−

t ) subject to the constraints of Problem 1}. De-

fine ∆̂P+
t , ∆̂P−

t , ∆̂S+
t and ∆̂S−

t such that ∆̂P+
n,t + ∆̂P−

n,t = max(θn,t − θ0n,t, 0) ≥ 0 and ∆̂S+
n,t +

∆̂S−
n,t = −min(θn,t−θ0n,t, 0) ≥ 0. Then Û(θt) = U(∆̂P+

t , ∆̂P−
t , ∆̂S+

t , ∆̂S−
t ), because any other

way of generating θ either has the same value (if trading in at least some securities with

round-trip cost of zero) or smaller value. Therefore,

Û(θt) = θ′tµ
e− λ

2
θ′tVtθt−∆̂P+

t (θt)
′CP+

t −∆̂P−
t (θt)

′CP−
t −∆̂S+

t (θt)
′CS+

t −∆̂S−
t (θt)

′CS−
t (4)

Note that −hat∆P+
t (θt)

′CP+
t ,−∆̂P−

t (θt)
′CP−

t ,−∆̂S+
t (θt)

′CS+
t and −∆̂S−

t (θt)
′CS−

t are con-

cave (since ∆̂P+
t (θt)

′CP+
t , ∆̂P−

t (θt)
′CP−

t , ∆̂S+
t (θt)

′CS+
t and ∆̂S−

t (θt)
′CS−

t are convex) and the

quadratic terms are strictly concave. Therefore Û(θt) is strictly concave and if an optimal
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θt exists it is unique. Such an optimum does exists because Û(θt) < Û(θ0t ) outside of the

compact set

θ′tµ
e − λ

2
θ′tVtθt ≥ θ0t

′µe − λ

2
θ0t
′Vtθ

0
t ,

which is a multidimensional ellipse.

The final allocation θt can be achieved by any combination (∆P+
t ,∆P−

t ,∆S+
t ,∆S−

t ) such

that ∆P+
t + ∆P−

t = ∆̂P+
t + ∆̂P−

t + xt = (∆̂P+
t + 1

2
xt) + (∆̂P−

t + 1
2
xt) and ∆S+

t + ∆S−
t =

∆̂S+
t + ∆̂S−

t + xt = (∆̂S+
t + 1

2
xt) + (∆̂S−

t + 1
2
xt), where xn,t ≥ 0. The utility function for

these pairs is given by Û(θt) − 1
2
x′t(C

P+
t + CP−

t + CS+
t + CS−

t ). If round-trip trading costs

are positive for all securities n, then xt = 0 is the unique choice. Given the assumption

of a cost structure of the form CP−
t ≤ CP+

t , CS+
t ≤ CS−

t , whenever it is optimal to buy

more of some security n, the open short position (if any) will optimally be closed or reduced

first (i.e. ∆P−
t ∈ [0,−θ0n,t]) and then a new long position (if any) will optimally be opened

(i.e ∆P+
t ≥ 0.). Similarly, whenever it is optimal to sell more of some security n, the open

long position (if any) will optimally be closed or reduced first (i.e. ∆S+
t ∈ [0, θ0n,t]) and then

a new short position (if any) will optimally be opened (i.e ∆S−
t ≥ 0.). Thus, the optimal

directional trades (∆̂P+
t , ∆̂P−

t , ∆̂S+
t , ∆̂S−

t ) are unique.

Corollary 5 If we include
∑
z∈{P+,P−,S+,S−}

1
2
PIt(z,∆

z
t)∆z

t with PIt(z,∆
z
t) as defined in

Section 2.2 for z ∈ {P+, P−, S+, S−} to take the price impact of trades into account, then

the solution to the new problem, Problem 2, still exists and is unique.

Proof. Problem 2 can more generally be rewritten as

min
x

q′x +
1

2
x′Hx + (1− 1Q)||Π

2
3 x||1.51.5

subject to

0 ≤ x ≤ x

where the exact mapping is detailed in Section B.3. By Theorem 4 if Π = 0 there exist

a unique solution. This is because the objective function is continuous and strictly convex
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over the relevant domain. In the presence of price impact Π 6= 0. If 1Q = 1 than the

Hessian of the objective function is H = λĪ
′
VtĪ + 2Π which is positive definite since λĪ

′
VtĪ

is positive definite as implied by Theorem 4 and Π is positive definite by assumption. If

1Q = 0 than Π ≥ 0 and diagonal by assumption and the Hessian of the objective function is

2λĪ
′
VtĪ + 3

4
Πdiag(x0.5) which is positive definite because it is the sum of a positive definite

matrix 2λĪ
′
VtĪ and a positive semi-definite matrix 3

4
Πdiag(x0.5).

Corollary 6 A solution to Problem 3 exists and it is unique.

Since Vt is positive definite, from the previous corollary it follows that the objective function

in Problem 3 is strictly concave.

B.2 The No Trading Region with Directional Costs

In the main text we provide a graphical visualization of the no trading region of the opti-

mal trading strategy for the case of 2 risky assets when CP+
t = CP−

t = CS+
t = CS−

t and∑
z∈{P+,P−,S+,S−}

1
2
PIt(z,∆

z
t)∆z

t = 0 (Figure 3). Figure 13 generalizes the cost structure in

this illustration without considering the price impact (i.e.
∑
z∈{P+,P−,S+,S−}

1
2
PIt(z,∆

z
t)∆z

t =

0).27

Explicitly modeling a price impact would unnecessarily complicate the graph without

yielding substantial new insights. With a price impact for any initial allocation from which

it is worth trading it is optimal to stop trading before reaching the boundary of the no trading

region. This is because costs are now function of the trades’ sizes (∆P+
t ,∆P−

t ,∆S+
t ,∆S−

t ).

We choose the parameters of the investment opportunity set such that the 2 risky assets

match the mean values of our full set of 29 currencies from 1976 to 2016. In particular, we

set µe
t = 2.4%, ρ = 0.5, σt = 10% (the diagonal elements of Vt), CP+

t = 1.45% for the

costs of increasing long positions, CS+
t = 0.71% for the costs of decreasing long positions,

27The no=trading region in the presence of price impact would be exactly the same. The optimal trades
would be different. Depending on the starting point θ0t and the price impact parameters, Πz,L

t or Πz,L
t , it

might or might not be optimal to trade at all, and when it is optimal to trade, the trades move towards the
border of the no trading region but they might stop before.
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CP−
t = 0.71% for the costs of reducing short positions, and CS−

t = 1.45% for the costs of

increasing short positions. We set the coefficient of risk aversion λ = 5.

The no trading region for MVTC is the blue polygon, the one for MVTC\Corr is the yellow

square, and the standard mean-variance optimum θMV
t (represented by the green square)

lies inside both. There are two main implications stemming from directional costs: 1) the no

trading region for both MVTC and MVTC\Corr are no more centered around θMV
t , 2) the no

trading region for MVTC is still bigger than the one for MVTC\Corr but is not a parallelogram

anymore.

Because the costs for incrementing long positions for assets 1 and 2, (CP+
t = 1.45%) are

higher than those for decrementing them (CS+
t = 0.71%), it is optimal to stay further away

from θMV
t along the buy directions than the sell ones. So, both MVTC and MVTC\Corr no

trading regions are shifted downward (along the 45◦ line passing through (−0.2, 0.2)) with

respect to locations where θMV
t would have been centered.

The no trading region for MVTC , as in figure Figure 3, continues to be bigger than that

of θMV
t . The two would be equal only if assets were uncorrelated. Another way to see the

same phenomenon is to compute the trade aggressiveness for the two strategies according to

equation (1) and noticing that on average MVTC\Corr trades more aggressively than MVTC .

This is because the only regions where MVTC gets us closer to θMV
t are the bright yellow

corners of the MVTC\Corr no trading region along the 45◦ line passing through (−0.2,−0.2).

These cover a total area less than that covered by the bright blue corners of the MVTC no

trading region along the −45◦ line (passing through the point (-0.2,0.75)), which represent

the regions where MVTC\Corr trades more aggressively.

The directional costs also shape the no trading region for MVTC in a peculiar way. If

there were only two costs, CP−
t = 0.71% and CS−

t = 1.45% the no trading region for MVTC

would be the dash-dotted parallelogram. In contrast, if the two costs were CS+
t = 0.71%

and CP+
t = 1.45%, then the no trading region for MVTC would be the dashed parallelogram.

Notice that the latter is the actual no trading region for MVTC with the two extreme corners

falling outside the positive orthant cut. This observations explains the shape (and the logic)
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of the actual MVTC no trading region. Whenever the starting position θ0
t is far enough from

θMV
t and at least one asset position is negative, then as we travel towards θMV

t and are in

the negative territory, we are targeting the dash-dotted parallelogram along the prescribed

optimal direction(s). However, as soon as we turn into the positive territory we switch our

target to the the dashed parallelogram. Thus, the no trading region of MVTC is the dashed

no trading region with the corners falling into negative territories cut. Once we cross the

line dividing the negative from the positive territory we switch our target from the dashed-

dotted to the dashed parallelogram, but at that point we are already inside the targeted no

trading region and we optimally stop. This intuition also explains why the no trading region

for MVTC\Corr is a rectangle with no edges cut. This no trading region is all contained in

the positive orthant and coincides with the target region for a problem where we neglect

correlation and only have two costs, CS+
t = 0.71% and CP+

t = 1.45%.

B.3 Algorithms

Following the solution approach of Dybvig and Pezzo (2019), we can rewrite Problem 3 as a

standard quadratic program of the form

min
x

q′x +
1

2
x′Hx + (1− 1Q)||Π

2
3 x||1.51.5

subject to

0 ≤ x ≤ x

where q′ ≡ C′+λ(θ0
t − θ̃MV

t )′VtĪ, with θ̃MV
t = 1

λ
Ṽ−1

t µe
t (further details are provided in Sec-

tion 2.3), C′ ≡ [CP+
t
′,CP−

t
′,CS+

t
′,CS−

t
′], H = λĪ

′
VtĪ + 1Q2Π, Ī ≡ [IN , IN ,−IN ,−IN ], Π =

Πt
P+ 0 0 0

0 Πt
P− 0 0

0 0 Πt
S+ 0

0 0 0 Πt
S−


, 1L =


1, if 1

2
PIt = 1

2
PILt and Πz

t = Πz,L
t for z ∈ {P+, P−, S+, S−}

0, if PIt =
√
PI t and 1

2
Πz
t = 1

2
Πz,SR
t for z ∈ {P+, P−, S+, S−}

where PIt,Π
z,L
t and Πz,SR

t are defined in Section 2.2, Ia is the a×a identity matrix, and ||·||pp
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represent the vector p-norm operator to the power of p. The program returns the solution

x ≡ [∆P+
t
′
,∆P−

t
′
,∆S+

t
′
,∆S−

t
′
] which is asset-wise bounded above for ∆P−

i,t by −min(θ0i,t, 0),

the Nt + 1-th through the 2Nt-th element of x, and for ∆S+
i,t by max(θ0i,t, 0), the 2N + 1-th

through the 3N -th element of x, all the other elements in x are set to +∞. The optimal

portfolio θMVTC
t is finally obtained by

θMVTC
t = θ0

t + Īx.

Notice that:

• solving such program for every t produces strategy MVTC (i) with no-price impact if

Π = 0, (ii) with linear price impact if 1L = 1 and Π 6= 0, (iii) with square-root price

impact if 1L = 0 and Π 6= 0

• by setting C = ΠP+
t = ΠP−

t = ΠS+
t = ΠS−

t = 0 we solve the standard mean-variance

problem following the PCA approach proposed by Maurer et al. (2018a), doing so for

every t is the way to implement strategy MV

• by setting Ṽ−1
t = V−1

t if Π = 0 we would solve Problem 1, else we would solve Problem

2

• by replacing Vt with Vd
t (see Section 2.4 for more details) and solving the program

for every t delivers strategy MVTC\Corr

In any case this is a well-behaved convex program and we solve it using the Matlab

Optimization ToolBox.

C Data Sources: Spot and Forward Exchange Rates

In Table 30 we list the Datastream mnemonics for spot and forward exchange rate quotes

against the USD, whereas those against the GBP are listed in Table 31. To obtain mid-, bid-
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and ask-exchange rates, the suffixes (ER), (EB) and (EO) are added to the corresponding

mnemonics.

D Tables and Figures of the Appendix

Table 16: Sensitivity to the Risk Aversion Coefficient λ (29 currencies): Sharpe Ratio

Risk Aversion Before TC Sharpe Ratios After TC Sharpe Ratios

Coefficient λ MV MVTC MV MVTC ∆SR (p-val)

1 1.26 1.27 0.78 1.16 0.38 0.00

5 1.26 1.27 0.78 1.16 0.38 0.00

10 1.26 1.27 0.78 1.16 0.38 0.01

25 1.26 1.27 0.78 1.16 0.38 0.01

50 1.26 1.27 0.78 1.16 0.38 0.01

100 1.26 1.27 0.78 1.16 0.38 0.01

200 1.26 1.27 0.78 1.16 0.38 0.01

Notes: Out-of-sample Sharpe ratios of MV and MVTC . Column 2 and 3 provide Sharpe ratios before transac-
tion costs and columns 4 and 5 Sharpe ratios after costs. Column 6 shows the difference between the Sharpe
ratio of MVTC and MV and column 7 indicates the p-value of the difference. Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). The rows report results for portfolios constructed with risk
aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns from January 1976 to February
2016.
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Table 17: Sensitivity to the Risk Aversion Coefficient λ (29 currencies): Notional
Value, Mean and Volatility

Risk Aversion Notional Value After TC Mean After TC Volatility

Coefficient λ MV MVTC MV MVTC MV MVTC

1 202.75 168.88 4.10 5.32 5.26 4.61

5 40.55 33.77 0.82 1.06 1.05 0.92

10 20.27 16.88 0.41 0.53 0.53 0.46

25 8.11 6.75 0.16 0.21 0.21 0.18

50 4.05 3.38 0.08 0.11 0.11 0.09

100 2.03 1.69 0.04 0.05 0.05 0.05

200 1.01 0.84 0.02 0.03 0.03 0.02

Notes: Columns 2 and 3 report the average notional values of MV and MVTC , column 4 and 5 report
after cost average returns and columns 6 and 7 after costs return volatilities. The rows report results for
portfolios constructed with risk aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns
from January 1976 to February 2016.

Table 18: Sensitivity to the Risk Aversion Coefficient λ (29 currencies): Crash Risk

Risk Aversion After TC Skewness After TC Kurtosis After TC MDD

Coefficient λ MV MVTC MV MVTC MV MVTC

1 0.00 0.46 7.58 6.58 -18.78 -9.46

5 0.00 0.46 7.58 6.58 -3.76 -1.89

10 0.00 0.46 7.58 6.58 -1.88 -0.95

25 0.00 0.46 7.58 6.58 -0.75 -0.38

50 0.00 0.47 7.58 6.59 -0.38 -0.19

100 0.00 0.47 7.58 6.59 -0.19 -0.09

200 0.00 0.47 7.58 6.59 -0.09 -0.05

Notes: Columns 2 and 3 report the after cost skewness of MV and MVTC , column 4 and 5 report after
cost kurtosis and columns 6 and 7 after costs maximum draw downs. The rows report results for portfolios
constructed with risk aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns from
January 1976 to February 2016.
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Table 19: Sensitivity to the Risk Aversion Coefficient λ (15 currencies): Sharpe Ratio

Risk Aversion Before TC Sharpe Ratios After TC Sharpe Ratios

Coefficient λ MV MVTC MV MVTC ∆SR (p-val)

1 0.96 1.04 0.75 0.96 0.20 0.03

5 0.96 1.04 0.75 0.96 0.20 0.03

10 0.96 1.04 0.75 0.96 0.20 0.03

25 0.96 1.04 0.75 0.96 0.20 0.03

50 0.96 1.04 0.75 0.96 0.20 0.03

100 0.96 1.04 0.75 0.96 0.20 0.03

200 0.96 1.04 0.75 0.96 0.20 0.03

Notes: Out-of-sample Sharpe ratios of MV and MVTC . Column 2 and 3 provide Sharpe ratios before transac-
tion costs and columns 4 and 5 Sharpe ratios after costs. Column 6 shows the difference between the Sharpe
ratio of MVTC and MV and column 7 indicates the p-value of the difference. Standard errors for ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross-
and auto-correlation (Ledoit and Wolf, 2008). The rows report results for portfolios constructed with risk
aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns from January 1976 to February
2016.
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Table 20: Sensitivity to the Risk Aversion Coefficient λ (15 currencies): Notional
Value, Mean and Volatility

Risk Aversion Notional Value After TC Mean After TC Volatility

Coefficient λ MV MVTC MV MVTC MV MVTC

1 154.45 125.06 3.71 3.89 4.93 4.06

5 30.89 25.00 0.74 0.78 0.99 0.81

10 15.44 12.50 0.37 0.39 0.49 0.41

25 6.18 5.00 0.15 0.16 0.20 0.16

50 3.09 2.50 0.07 0.08 0.10 0.08

100 1.54 1.25 0.04 0.04 0.05 0.04

200 0.77 0.62 0.02 0.02 0.02 0.02

Notes: Columns 2 and 3 report the average notional values of MV and MVTC , column 4 and 5 report
after cost average returns and columns 6 and 7 after costs return volatilities. The rows report results for
portfolios constructed with risk aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns
from January 1976 to February 2016.
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Table 21: Sensitivity to the Risk Aversion Coefficient λ (15 currencies): Crash Risk

Risk Aversion After TC Skewness After TC Kurtosis After TC MDD

Coefficient λ MV MVTC MV MVTC MV MVTC

1 -0.12 -0.08 16.64 13.36 -17.98 -12.08

5 -0.12 -0.08 16.64 13.36 -3.60 -2.42

10 -0.12 -0.08 16.64 13.36 -1.80 -1.21

25 -0.12 -0.08 16.64 13.36 -0.72 -0.48

50 -0.12 -0.08 16.64 13.36 -0.36 -0.24

100 -0.12 -0.08 16.64 13.37 -0.18 -0.12

200 -0.12 -0.07 16.64 13.38 -0.09 -0.06

Notes: Columns 2 and 3 report the after cost skewness of MV and MVTC , column 4 and 5 report after
cost kurtosis and columns 6 and 7 after costs maximum draw downs. The rows report results for portfolios
constructed with risk aversion coefficients λ ∈ {10, 25, 50, 100, 200}. The data are monthly returns from
January 1976 to February 2016.
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Table 22: MVTC vs MV : NBER Recessions, 29 Currencies

NBER Recessions non-NBER Recessions

MV MVTC MV MVTC

Before Transaction Costs:

SR 0.63 0.63 1.39 1.41
Mean 8.79 8.05 13.89 12.39
∆Mean - -0.74 - -1.50

Transaction Costs:

Mean Costs 4.46 1.78 5.22 1.17
∆Mean Costs - -2.67∗∗∗ - -4.04∗∗∗

After Transaction Costs:

SR 0.32 0.51 0.86 1.29
∆SR - 0.18 - 0.43∗∗∗

(p-value) - (0.26) - (0.01)

Mean 4.33 6.26 8.67 11.22
Vol 13.43 12.38 10.09 8.71
Skew 1.45 1.25 -0.42 0.21
Kurt 9.64 8.41 6.40 5.03
Positive 55.36 60.71 62.32 69.32
MDD -10.69 -9.23 -37.61 -17.96
AC 0.15 0.10 0.09 0.15

CEλ=1 - 0.60 - 0.84
CEλ=5 - 2.22 - 3.15
CEλ=10 - 4.24 - 6.03
CEλ=50 - 20.44 - 29.12
TA 1 0.46 1 0.40

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 29 currencies
for the sample 1976-2016. First two columns report results for the NBER recession periods, last
two columns report results for non-recession periods. SR is the annualized Sharpe ratio, Mean the
annualized average return (in percentage points), Mean Costs the average annualized transaction
costs measured in percentage of the portfolio value, Vol the annualized standard deviation (in per-
centage points), Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive monthly
returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the annualized rate of re-
turn (Certainty Equivalent) an investor with mean-variance preferences and risk aversion λ is willing
to give up in order to switch from strategy MV to strategy MVTC . TA measures the average of
trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs, ∆SR are the differences in the
Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block
bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross- and auto-
correlation (Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs are estimated using Newey and
West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical
significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR
after costs.
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Table 23: MVTC vs MV : NBER Recessions, 15 Currencies

NBER Recessions non-NBER Recessions

MV MVTC MV MVTC

Before Transaction Costs:

SR 0.03 0.14 1.23 1.29
Mean 0.44 1.91 10.33 9.36
∆Mean - 1.47 - -0.97

Transaction Costs:

Mean Costs 3.03 1.49 2.08 0.77
∆Mean Costs - -1.54∗∗∗ - -1.31∗∗∗

After Transaction Costs:

SR -0.17 0.03 1.02 1.22
∆SR - 0.20∗ - 0.21∗

(p-value) - (0.10) - (0.06)

Mean -2.59 0.42 8.25 8.59
Vol 15.35 13.11 8.11 7.02
Skew -1.82 -1.11 0.27 0.77
Kurt 12.09 9.58 6.67 7.69
Positive 48.21 53.57 64.73 67.63
MDD -39.17 -25.37 -16.99 -13.89
AC -0.03 -0.14 0.13 0.28

CEλ=1 - 1.21 - 0.24
CEλ=5 - 4.82 - 1.04
CEλ=10 - 9.35 - 2.04
CEλ=50 - 45.54 - 10.04
TA 1 0.44 1 0.34

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 15 developed cur-
rencies for the sample 1976-2016. First two columns report results for the NBER recession periods,
last two columns report results for non-recession periods. SR is the annualized Sharpe ratio, Mean
the annualized average return (in percentage points), Mean Costs the average annualized transaction
costs measured in percentage of the portfolio value, Vol the annualized standard deviation (in per-
centage points), Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive monthly
returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the annualized rate of re-
turn (Certainty Equivalent) an investor with mean-variance preferences and risk aversion λ is willing
to give up in order to switch from strategy MV to strategy MVTC . TA measures the average of
trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs, ∆SR are the differences in the
Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block
bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross- and auto-
correlation (Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs are estimated using Newey and
West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical
significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR
after costs.
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Table 24: MVTC vs MV : Pre- vs Post-EURO, 29 Currencies

Pre-EURO Post-EURO

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.40 1.41 1.07 1.08
Mean 16.74 14.81 8.67 7.96
∆Mean - -1.93 - -0.71

Transaction Costs:

Mean Costs 7.65 1.76 1.74 0.56
∆Mean Costs - -5.89∗∗∗ - -1.18∗∗∗

After Transaction Costs:

SR 0.75 1.26 0.86 1.01
∆SR - 0.50∗∗ - 0.15∗

(p-value) - (0.01) - (0.06)

Mean 9.09 13.05 6.93 7.40
Vol 12.04 10.36 8.05 7.30
Skew -0.02 0.48 -0.08 -0.04
Kurt 6.93 6.14 5.32 4.64
Positive 63.40 71.70 59.02 63.90
MDD -37.61 -17.96 -18.19 -18.90
AC 0.13 0.15 0.04 0.11

CEλ=1 - 0.22 - 1.27
CEλ=5 - 0.90 - 4.69
CEλ=10 - 1.76 - 8.96
CEλ=50 - 8.60 - 43.16
TA 1 0.39 1 0.42

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 29 currencies
for the sample 1976-2016. First two columns report results for the pre-Euro period (1976-1999), the
last two columns report results for the post-Euro period (1999-2016). SR is the annualized Sharpe
ratio, Mean the annualized average return (in percentage points), Mean Costs the average annualized
transaction costs measured in percentage of the portfolio value, Vol the annualized standard deviation
(in percentage points), Skew the skewness, Kurt the kurtosis, % Positive the percentage of positive
monthly returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the annualized rate
of return (Certainty Equivalent) an investor with mean-variance preferences and risk aversion λ is
willing to give up in order to switch from strategy MV to strategy MVTC . TA measures the average
of trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs, ∆SR are the differences in the
Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are estimated using block
bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross- and auto-
correlation (Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs are estimated using Newey and
West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical
significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR
after costs.
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Table 25: MVTC vs MV : Pre- vs Post-EURO, 15 Currencies

Pre-EURO Post-EURO

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.10 1.20 0.85 0.88
Mean 12.95 12.08 4.11 3.68
∆Mean - -0.88 - -0.44

Transaction Costs:

Mean Costs 3.40 1.30 0.57 0.25
∆Mean Costs - -2.10∗∗∗ - -0.32∗∗∗

After Transaction Costs:

SR 0.83 1.11 0.74 0.83
∆SR - 0.26∗∗ - 0.09
(p-value) - (0.03) - (0.15)

Mean 9.56 10.78 3.55 3.43
Vol 11.49 9.83 4.77 4.13
Skew -1.12 -0.53 0.77 0.81
Kurt 11.46 9.79 6.75 6.88
Positive 66.42 71.32 58.05 59.02
MDD -35.97 -24.16 -14.66 -12.81
AC 0.08 0.15 0.12 0.17

CEλ=1 - 0.04 - 0.59
CEλ=5 - 0.27 - 2.43
CEλ=10 - 0.55 - 4.73
CEλ=50 - 2.77 - 26.16
TA 1 0.30 1 0.40

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 15 developed
currencies for the sample 1976-2016. First two columns report results for the pre-Euro period (1976-
1999), the last two columns report results for the post-Euro period (1999-2016). SR is the annualized
Sharpe ratio, Mean the annualized average return (in percentage points), Mean Costs the average an-
nualized transaction costs measured in percentage of the portfolio value, Vol the annualized standard
deviation (in percentage points), Skew the skewness, Kurt the kurtosis, % Positive the percentage
of positive monthly returns, MDD the Maximum Draw Down, AC the autocorrelation, CEλ the
annualized rate of return (Certainty Equivalent) an investor with mean-variance preferences and risk
aversion λ is willing to give up in order to switch from strategy MV to strategy MVTC . TA mea-
sures the average of trade aggressiveness defined in equation (1). ∆Mean, ∆Mean Costs, ∆SR are
the differences in the Mean, Mean Costs, SR between MVTC and MV . Standard errors of ∆SR are
estimated using block bootstrapping with block sizes of 5 observations to account for heteroskedas-
ticity, cross- and auto-correlation (Ledoit and Wolf, 2008). Standard errors of ∆Mean Costs are
estimated using Newey and West (1987) to account for heteroskedasticity and auto-correlation. ∗∗∗,
∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level of ∆SR and ∆Mean Costs. We only
report the p-value for ∆SR after costs.
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Table 26: MVTC vs MV : 1976-2016 vs 1983-2016, 29 Currencies

1976-2016 1983-2016

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.26 1.27 1.17 1.20
Mean 13.30 11.89 10.85 10.03
∆Mean - -1.41 - -0.82

Transaction Costs:

Mean Costs 5.13 1.25 2.76 0.86
∆Mean Costs - -3.88∗∗∗ - -1.90∗∗∗

After Transaction Costs:

SR 0.78 1.16 0.88 1.11
∆SR - 0.38∗∗∗ - 0.23∗∗∗

(p-value) - (0.01) - (0.00)

Mean 8.17 10.64 8.09 9.17
Vol 10.52 9.21 9.20 8.28
Skew 0.00 0.47 -0.22 -0.06
Kurt 7.60 6.59 5.33 4.82
Positive 61.49 68.30 61.70 67.35
MDD -37.61 -18.90 -19.17 -18.90
AC 0.11 0.15 0.06 0.16

CEλ=1 - 0.88 - 0.33
CEλ=5 - 3.04 - 1.19
CEλ=10 - 5.82 - 2.28
CEλ=50 - 28.09 - 10.96
TA 1 0.41 1 0.41

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 29 currencies for
the full sample 1976-2016 versus the sample starting in 1983. First two columns report results for
the pre-Euro period (1976-1999), the last two columns report results for the post-Euro period (1999-
2016). SR is the annualized Sharpe ratio, Mean the annualized average return (in percentage points),
Mean Costs the average annualized transaction costs measured in percentage of the portfolio value,
Vol the annualized standard deviation (in percentage points), Skew the skewness, Kurt the kurtosis,
% Positive the percentage of positive monthly returns, MDD the Maximum Draw Down, AC the
autocorrelation, CEλ the annualized rate of return (Certainty Equivalent) an investor with mean-
variance preferences and risk aversion λ is willing to give up in order to switch from strategy MV to
strategy MVTC . TA measures the average of trade aggressiveness defined in equation (1). ∆Mean,
∆Mean Costs, ∆SR are the differences in the Mean, Mean Costs, SR between MVTC and MV .
Standard errors of ∆SR are estimated using block bootstrapping with block sizes of 5 observations to
account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf, 2008). Standard errors
of ∆Mean Costs are estimated using Newey and West (1987) to account for heteroskedasticity and
auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%, 10% level of ∆SR and
∆Mean Costs. We only report the p-value for ∆SR after costs.
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Table 27: MVTC vs MV : 1976-2016 vs 1983-2016, 15 Currencies

1976-2016 1983-2016

MV MVTC MV MVTC

Before Transaction Costs:

SR 0.96 1.04 1.04 1.04
Mean 9.18 8.50 7.13 6.42
∆Mean - -0.69 - -0.71

Transaction Costs:

Mean Costs 2.19 0.85 1.19 0.44
∆Mean Costs - -1.34∗∗∗ - -0.75∗∗∗

After Transaction Costs:

SR 0.75 0.96 0.88 0.98
∆SR - 0.20∗∗ - 0.10∗∗

(p-value) - (0.03) - (0.03)

Mean 6.99 7.64 5.94 5.99
Vol 9.27 7.98 6.73 6.12
Skew -1.00 -0.28 0.32 0.15
Kurt 15.31 12.94 6.02 6.60
Positive 62.77 65.96 61.70 64.52
MDD -35.97 -24.16 -18.54 -13.89
AC 0.10 0.17 0.21 0.22

CEλ=1 - 0.35 - 0.08
CEλ=5 - 1.49 - 0.38
CEλ=10 - 2.91 - 0.75
CEλ=50 - 14.27 - 3.74
TA 1 0.35 1 0.33

Notes: Summary statistics of monthly excess returns of MV and MVTC for all the 15 developed
currencies for the full sample 1976-2016 versus the sample starting in 1983. First two columns report
results for the pre-Euro period (1976-1999), the last two columns report results for the post-Euro
period (1999-2016). SR is the annualized Sharpe ratio, Mean the annualized average return (in
percentage points), Mean Costs the average annualized transaction costs measured in percentage of
the portfolio value, Vol the annualized standard deviation (in percentage points), Skew the skew-
ness, Kurt the kurtosis, % Positive the percentage of positive monthly returns, MDD the Maximum
Draw Down, AC the autocorrelation, CEλ the annualized rate of return (Certainty Equivalent) an
investor with mean-variance preferences and risk aversion λ is willing to give up in order to switch
from strategy MV to strategy MVTC . TA measures the average of trade aggressiveness defined in
equation (1). ∆Mean, ∆Mean Costs, ∆SR are the differences in the Mean, Mean Costs, SR between
MVTC and MV . Standard errors of ∆SR are estimated using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf,
2008). Standard errors of ∆Mean Costs are estimated using Newey and West (1987) to account for
heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%,
10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after costs.

28



Table 28: Mean-Variance Strategies with Full Round-Trip Costs: MVTC vs MV

All 29 Currencies 15 Developed Currencies

MV MVTC MV MVTC

Before Transaction Costs:

SR 1.26 1.14 0.96 1.00
Mean 13.30 8.54 9.18 6.59
∆Mean - -4.75 - -2.59

Transaction Costs:

Mean Costs 13.06 2.77 5.61 2.12
∆Mean Costs - -10.29∗∗∗ - -3.49∗∗∗

After Transaction Costs:

SR 0.02 0.80 0.40 0.74
∆SR - 0.78∗∗∗ - 0.35∗∗

(p-value) - (0.00) - (0.01)

Mean 0.24 5.78 3.58 4.47
Vol 10.98 7.19 9.03 6.03
Skew -0.70 0.43 -1.92 -1.01
Kurt 7.34 8.79 19.35 18.05
Positive 53.62 62.55 57.87 64.47
MDD -147.35 -17.24 -41.84 -23.67
AC 0.18 0.08 0.05 0.13

CEλ=1 - 1.55 - 0.68
CEλ=5 - 5.49 - 3.03
CEλ=10 - 10.40 - 5.97
CEλ=50 - 49.79 - 29.49
TA 1 0.43 1 0.40

Notes: Summary statistics of monthly excess returns of MV and MVTC using round-trip costs. First
two columns report results for all 29 currencies, last two columns for 15 developed currencies. The
sample period is 1976-2016. SR is the annualized Sharpe ratio, Mean the annualized average return
(in percentage points), Mean Costs the average annualized transaction costs measured in percentage
of the portfolio value, Vol the annualized standard deviation (in percentage points), Skew the skew-
ness, Kurt the kurtosis, % Positive the percentage of positive monthly returns, MDD the Maximum
Draw Down, AC the autocorrelation, CEλ the annualized rate of return (Certainty Equivalent) an
investor with mean-variance preferences and risk aversion λ is willing to give up in order to switch
from strategy MV to strategy MVTC . TA measures the average of trade aggressiveness defined in
equation (1). ∆Mean, ∆Mean Costs, ∆SR are the differences in the Mean, Mean Costs, SR between
MVTC and MV . Standard errors of ∆SR are estimated using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf,
2008). Standard errors of ∆Mean Costs are estimated using Newey and West (1987) to account for
heteroskedasticity and auto-correlation. ∗∗∗, ∗∗, ∗ indicate a statistical significance at the 1%, 5%,
10% level of ∆SR and ∆Mean Costs. We only report the p-value for ∆SR after costs.
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Table 29: Optimized vs Equally Weighted Portfolios with Full Round-Trip Costs,
Monthly Frequency

All 29 Currencies 15 Developed Currencies

Before TC After TC Before TC After TC

Strategies SR SR ∆SR SR SR ∆SR

MVTC 1.14 0.80 - 1.00 0.74 -

MVTC\Corr 1.20 0.70 0.11 0.91 0.51 0.24∗∗∗

(0.17) (0.00)

MV 1.26 0.02 0.78∗∗∗ 0.96 0.40 0.35∗∗∗

(0.00) (0.01)

MVNet 1.17 0.36 0.44∗∗∗ 0.91 0.38 0.36∗∗∗

(0.00) (0.00)

DOL 0.10 -0.14 0.95∗∗∗ 0.07 -0.10 0.84∗∗∗

(0.00) (0.00)

DDOL 0.49 0.24 0.56∗∗∗ 0.59 0.42 0.32∗∗

(0.01) (0.01)

HML 0.74 0.06 0.74∗∗∗ 0.64 0.30 0.44∗

(0.00) (0.07)

MOM 0.37 0.12 0.68∗∗∗ 0.31 0.10 0.64∗∗

(0.00) (0.02)

V AL 0.47 -0.39 1.20∗∗∗ 0.53 0.17 0.57∗∗

(0.00) (0.04)

Notes: Columns 2 and 5 report Sharpe ratios before costs (Before TC SR). Columns 3 and 6 report Sharpe
ratios after costs (After TC SR). Columns 4 and 7 report the difference between the Sharpe ratios after costs
of MVTC and the strategy in the corresponding row (After TC ∆SR). MVTC is the mean-variance optimized
portfolio which optimizes over transaction costs. MVTC\Corr is the mean-variance optimized portfolio which
optimizes over transaction costs but makes the simplifying assumption that assets are uncorrelated. MV
is the mean-variance optimized portfolio without taking into account transaction costs in the optimization.
DOL borrows in the USD and equally invests in all other currencies. DDOL takes a long position in
DOL if the median exchange rate forward discount is positive, and a short position otherwise. HML sorts
currencies according to the forward discount into quintiles and borrows in the bottom and invests in the top
quintile. MOM sorts currencies according to their past 12 month performance into quintiles and borrows
in the bottom and invests in the top quintile. V AL sorts currencies according to the power purchase parity
adjusted exchange rate into quintiles and borrows in the top quintile and invests in the bottom quintile. The
data are monthly returns for our full set of 29 currencies (columns 2 to 4) and a subsample of 15 developed
currencies (columns 5 to 7) from January 1976 to February 2016. Standard errors for ∆SR are estimated
using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity, cross- and
auto-correlation (Ledoit and Wolf, 2008).
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Table 30: Datastream mnemonics for currency quotes against the U.S. dollar

Currency Spot rate Forward rate Quote convention
Australian dollar BBAUDSP BBAUD1F FCU/USD
Belgian franc BELGLU$ USBEF1F FCU/USD
Brazilian real BRACRU$ USBRL1F FCU/USD
British pound BBGBPSP BBGBP1F USD/FCU
Canadian dollar BBCADSP BBCAD1F FCU/USD
Czech koruna CZECHC$ USCZK1F FCU/USD
Danish krone BBDKKSP BBDKK1F FCU/USD
Euro BBEURSP BBEUR1F FCU/USD
French franc BBFRFSP BBFRF1F FCU/USD
German mark BBDEMSP BBDEM1F FCU/USD
Greek Drachma GREDRA$ USGRD1F FCU/USD
Hungarian forint HUNFOR$ USHUF1F FCU/USD
Icelandic krona ICEKRO$ USISK1F FCU/USD
Irish punt BBIEPSP BBIEP1F USD/FCU
Italian lira BBITLSP BBITL1F FCU/USD
Japanese yen BBJPYSP BBJPY1F FCU/USD
Mexican peso MEXPES$ USMXN1F FCU/USD
Netherland guilder BBNLGSP BBNLG1F FCU/USD
New Zealand dollar BBNZDSP BBNZD1F FCU/USD
Norwegian krone BBNOKSP BBNOK1F FCU/USD
Polish zloty POLZLO$ USPLN1F FCU/USD
Portuguese escudo PORTES$ USPTE1F FCU/USD
Singapore dollar BBSGDSP BBSGD1F FCU/USD
South Africa rand BBZARSP BBZAR1F FCU/USD
South Korean won KORSWO$ USKRW1F FCU/USD
Spanish peseta SPANPE$ USESP1F FCU/USD
Swedish krona BBSEKSP BBSEK1F FCU/USD
Swiss france BBCHFSP BBCHF1F FCU/USD
Taiwan new dollar TAIWDO$ USTWD1F FCU/USD
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Table 31: Datastream mnemonics for currency quotes against the British pound

Currency Spot rate Forward rate Quote convention

Belgian franc BELGLUX BELXF1F FCU/GBP
Canadian dollar CNDOLLR CNDOL1F FCU/GBP
Danish krone DANISHK DANIS1F FCU/GBP
French franc FRENFRA FRENF1F FCU/GBP
German mark DMARKER DMARK1F FCU/GBP
Irish punt IPUNTER IPUNT1F FCU/GBP
Italian lira ITALIRE ITALY1F FCU/GBP
Japanese yen JAPAYEN JAPYN1F FCU/GBP
Netherlands guilder GUILDER GUILD1F FCU/GBP
Norwegian krone NORKRON NORKN1F FCU/GBP
Portuguese escudo PORTESC PORTS1F FCU/GBP
Spanish peseta SPANPES SPANP1F FCU/GBP
Swedish krona SWEKRON SWEDK1F FCU/GBP
Swiss franc SWISSFR SWISF1F FCU/GBP
U.S. dollar USDOLLR USDOL1F FCU/GBP
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Heuristic Adjustments to Approximate a Dynamic MVTC

29 Currencies:

15 Currencies:

Figure 12: The plot shows the annualized after cost Sharpe ratios of four trading strategies as a function
of the price impact parameter π ∈ [0, 100], which is measured in basis points. The price impact is linear
and constant across currencies i and time t, i.e., π = πzi,t ∀i, t and z ∈ {P+, P−, S+, S−}, where πzi,t are

the diagonal elements of Πt
z,L. The results for MVTC are indicated by the black solid line. The other

lines show the results for three different parameterizations of MVMTC , which optimize over the adjusted costs
described in equations (2) and (3). The three cases are c1 ∈ R, c2 = a1 = a2 = 0 (blue dashed line),
(c1, c2) ∈ R2, a1 = a2 = 0 (orange solid line), and (c1, c2, a1, a2) ∈ R4 (green dashed-dotted line). If a
data-point is circled its Sharpe ratio is statistically different from that of MVTC at the 10% level according
to the (Ledoit and Wolf, 2008) Sharpe ratio test performed using block bootstrapping with block sizes of 5
observations to account for heteroskedasticity, cross- and auto-correlation. The data are monthly returns for
our full set of 29 currencies from January 1976 to February 2016.
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Mean-Variance Problem with Directional Transaction Costs:
The Case of 2 Risky Assets

Figure 13: No trading regions for setting of two risky assets with µe
t = 2.4%, ρ = 0.5, σt = 10% (the

diagonal elements of Vt), CP+
t = 1.45%, CS+

t = 0.71%, CP−
t = 0.71% , CS−

t = 1.45%, and λ = 5. The no
trading region for MVTC is the blue polygon, the one for MVTC\Corr is the yellow square, and the standard
mean-variance optimum θMV

t (represented by the green square) lies inside both. If there were only two costs,
CP−

t and CS−
t , the no trading region for MVTC would be the dash-dotted parallelogram. In contrast, if the

two costs were CS+
t and CP+

t , then the no trading region for MVTC would be the dashed parallelogram.
The arrows indicate the optimal trades ∆P+

t , ∆S+
t , ∆P−

t , ∆S−
t according to the MVTC strategy from any

initial position θ0t outside the blue no trading region. Purple, brown or orange colors of the arrows indicate
that only asset 1, 2 or both assets are traded.
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