
Credit Variance Risk Premiums

Manuel Ammann∗, Mathis Moerke†

This version: December 19, 2019

Abstract

This paper studies variance risk premiums in the credit market. Using a novel data
set of swaptions quotes on the CDX North America Investment Grade index, we find
that returns of credit variance swaps are negative and economically large. Shorting
credit variance swaps yields an annualized Sharpe ratio eclipsing its counterpart in
fixed income or equity markets. The returns remain highly statistically significant
when accounting for transaction costs, cannot be explained by established risk-
factors, structural model variables, and hold for various investment horizons. We
also dissect the overall variance risk premium into payer and receiver variance risk
premiums. We find that exposure to both parts is priced. However, the returns for
payer variance, associated with bad economic states, are roughly twice as high in
absolute terms.
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1. Introduction

The analysis of variance risk and its associated market price has gained a lot of

interest over the last one and a half decades. It has become standard to use the notion of

variance swaps to assess the sign, significance and magnitude of variance risk premiums.

In a variance swap, the ex-post realized variance is exchanged for a fixed variance swap

rate, set at swap inception. The difference in the swap rate and the ex-post realized

variance constitutes the variance risk premium.

Variance risk premiums have been studied extensively for a broad range of asset

classes. To the best of our knowledge, we are the first academic study to conduct this

kind of analysis in credit markets. Thereby, we draw upon a new data set of options

written on the CDX North America Investment Grade 5 Year Index, one of the most

prominent corporate credit indices in the world. Based on the work of Neuberger (1994),

Demeterfi, Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000),

and in line with previous studies, we synthetically construct the variance swap rate from

out-of-the-money payer and receiver swaptions. Since variance swaps are set up to have

zero value at inception, the swap rate constitutes the ex ante risk neutral expecation of

realized variance. In order to be agnostic about the stochastic process of the underly-

ing Credit Default Swap (CDS, hereafter) spread, we define realized variance along the

lines of Neuberger (2012) in a generalized version. More precisely, we only require the

process for the CDS spread to be a martingale and explicitly allow for jumps. Addition-

ally, our estimates are free of discretization biases. These characteristics have made the

framework of Neuberger (2012) the prevailing choice for realized variance in the recent

literature (see Trolle and Schwartz, 2014; Choi, Mueller, and Vedolin, 2017; Kaeck, 2018).

Contrarily, defining realized variance by means of squared log returns leaves the variance

risk premiums exposed to cubed returns (see Carr and Wu, 2009).

Insights from equity (Carr and Wu, 2009), foreign exchange (Ammann and Buesser,

2013), interest rate (Trolle and Schwartz, 2014), Treasury bond (Choi et al., 2017), com-

modity (Trolle and Schwartz, 2010; Prokopczuk, Symeonidis, and Wese Simen, 2017),

and variance-of-variance (Kaeck, 2018) markets point towards strongly negative variance

risk premiums. Credit markets are fundamentally different from other asset classes. In

the case of equity markets, negative variance risk premiums have been associated with

the desire of investors to protect themselves against economically unfavourable states of

the world. They are willing to pay a premium for holding assets paying off in bad states

of the economy.1 CDS provide protection in case firms default on their outstanding debt.

The latter happens frequently in economic downturns. Hence, by their very nature, CDS

yield similar characteristics as variance risk premiums. CDS spreads differ also in another

1Dew-Becker, Giglio, Le, and Rodriguez (2017) show that a model with time-variation in exposure to
disasters is able to explain the main characteristics of the equity variance term structure.
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dimension from equity, foreign exchange or fixed income markets, namely with respect to

their statistical properties. Log changes in CDS spreads exhibit a high degree of positive

skewness and kurtosis (see Byström (2006) for European corporate sector indices). In

case of US single-name CDS, Oh and Patton (2018) document an average excess kurtosis

of above 25. For 5% of firms in their sample, log-differences of daily CDS spreads ex-

hibit excess kurtosis above 75. Further evidence on high kurtosis is provided by Byström

(2007). He studies tail-properties of the main European corporate credit index by means

of margin calculations in a hypothetical credit default swap index futures markets. He

finds that the use of extreme value theory is superior to traditional margin calculations

based on the normal distribution. Hence, it is not a-priori clear, if credit markets exhibit

also negative variance risk premiums.

Although the credit default swap market has undergone tremendous changes in the

last years,2 particular investor interest in volatility-related credit derivatives has been

documented very recently. Peterseil (2019) reports the introduction of an exchange traded

fund exposed to credit variance risk by selling at-the-money straddles on European and US

sub-investment grade credit indices.3 Furthermore, it has been reported that investment

banks have launched a credit equivalent of the VIX index in response to growing investor

demand (Bartholomew, 2017).

In line with other asset classes, we find large and significant variance risk premiums

in credit markets. More precisely, an investment strategy capturing credit variance risk

premiums (CVP, hereafter) by means of shorting 1-month variance swaps yields average

monthly excess returns of 42%. The associated Sharpe ratio is close to six. Thereby, CVP

eclipses its counterpart of nearly all other asset classes by a large margin. Moreover, CVP

is highly statistically significantly different from zero with a t-statistic of 14 in absolute

terms. We compare CVP, measured by the difference in ex ante risk-neutral implied

and ex post realized variance, to another popular trading strategy exposed to variance

risk, namely, investing in an at-the-money (ATM) straddle. The 1-month ATM straddle

generates a return of only of half of CVP, underpinning the large returns of shorting pure

credit variance.

In order to shed light on the sources of CVP, we focus on corridor variance risk pre-

miums. In light of Andersen and Bondarenko (2010) and Kaeck (2018), we decompose

CVP into payer and receiver variance risk premiums with the help of corridor variance

swaps. In the latter, price moves of the underlying constitute only to realized variance if

they happen to be within a specific price corridor. Payer (receiver) variance risk premi-

ums are associated with price moves of the CDS spread above (below) the CDS spread

2See Aldasoro and Ehlers (2018) and references therein for an excellent overview.
3Selling at-the-money straddles is an alternative option strategy for volatility exposure. Choi et al.

(2017) argue that this exposure is, however, non-linear. Furthermore, selling straddles leaves exposure
to other factors. The authors document significantly smaller returns from selling straddles compared to
variance swaps.
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observed at swap inception. Therefore, payer variance risk premiums are associated with

bad economic states, receiver variance risk premiums with good states. We find that both

corridor variance risk premiums are significantly different from zero and sizeable. How-

ever, 1-month payer variance risk premiums are nearly twice as large as receiver variance

risk premiums (in absolute terms), amounting to −51% on average.

Subsequently, we study whether CVP can be explained by structural model variables.

We use the macroeconomic and financial variables suggested by Collin-Dufresne, Gold-

stein, and Martin (2001). We augment these with the intermediary capital risk factor of

He, Kelly, and Manela (2017), as recent literature has stressed the impact of financial

intermediaries on asset prices. We find that structural model variables cannot explain

the negative variance risk premiums.

Moreover, we investigate whether CVP can be explained by common equity asset

pricing risk factors. We find that the equity market return taken as sole potential driver

of CVP is positive, but not significant. Extending the risk-factor space to the Fama-

French six factor model (Fama and French, 2018) reveals that the equity market exhibits

a negative sign, as expected, and the correlation becomes significant. Furthermore, CVP

shows positively and negatively significant relationship to the size and investment portfo-

lio, respectively. However, our analysis documents that CVP, and also corridor variance

risk premiums, remain largely unexplained.

Next, we examine time variation in CVP in the style of Carr and Wu (2009). Our

results suggest that risk premiums based in dollar terms are informative regarding future

realized variance and exhibit time-variation. However, risk premiums defined via log

returns appear to be more similar to a constant or independent time series. These findings

are in line with Carr and Wu (2009) for equity markets.

Motivated by the literature on linking credit with equity markets, we study the co-

movement of CVP with equity variance risk premiums and equity variance-of-variance

risk premiums. We furthermore include fixed-income variance risk premium, as previous

literature has documented that single corporate CDS spreads are partly driven by interest

rates (Ericsson, Jacobs, and Oviedo, 2009). CVP loads significantly and positively on

variance-of-variance risk premiums. However, the latter are not sufficient to fully explain

the former.

Finally, we challenge our findings with two robustness checks. First, we also vary the

investment horizon of variance swap contracts. CVP remain highly attractive considering

investment periods of up to 4 months, yielding returns around −46%. The same holds

true for payer and receiver variance risk premiums. Whereas the former monotonically

increase in absolute terms in the investment horizon, the latter monotonically decline.

Second, we analyze the impact of bid and ask spreads on the profitability of credit variance

swaps. Its importance is illustrated by Driessen, Maenhout, and Vilkov (2009). Once

controlling for transaction costs, the authors find that correlation risk premiums lose their

3



attractiveness over equity risk premiums. In our case, however, shorting variance remains

highly attractive after transaction costs. We document highly significant average returns

of 20%, putting CVP approximately on par with Treasury bond variance risk premiums

before transaction costs.

Our paper is related to various strands in the literature. First and foremost, it draws

upon the vast literature on documenting variance risk premiums across different asset

classes. Carr and Wu (2009) has been the first to document negative and economically

large variance risk premiums. Whereas the authors concentrate on equity markets, Am-

mann and Buesser (2013) adopt the approach and study foreign exchange variance risk

premiums. Trolle and Schwartz (2010) and Prokopczuk et al. (2017) analyze commodity

markets, and Trolle and Schwartz (2014) and Choi et al. (2017) focus on fixed income. In-

stead of constructing variance swap rates synthetically from a continuum of option prices,

Egloff, Leippold, and Wu (2010) obtain over-the-counter variance swaps and study their

term structure. Filipović, Gourier, and Mancini (2016) resort also to over-the-counter

variance swaps to motivate a quadratic term structure model for equity variance swaps.

Moreover, our analysis produces credit implied volatility indices as by-products. Eq-

uity implied volatilities have gained prominent space in the academic literature, and

practice. The VIX, computed from options on the S&P 500, is known as the fear gauge

due to its tendency to increase in times of negative equity market returns. Carr and Wu

(2006) estimate an instantaneous correlation effect between S&P 500 returns and changes

in the VIX of −0.78. Whaley (2009) documents that the VIX reacts asymmetrically to

changes in the S&P 500. The change in VIX rises at a higher rate when the stock market

is falling than if it is rising. Mele, Obayashi, and Shalen (2015) extend the analysis to the

interest rate swap market. The authors establish stylized facts of SRVX, the swap rate

volatility index, constructed similarly to VIX, based on interest rate swaptions. Moreover,

they compare the SRVX to VIX and find different behavior beteween both. Attention

has been also paid to the term structure of implied volatilities. Ait-Sahalia, Karaman,

and Mancini (2018) show that in case of equities it is upward sloping. Its counterpart in

Treasury bond markets is, however, downward sloping and its slope exhibits predictive

power for economic growth and economic stress, as reported by Choi et al. (2017). John-

son (2017) document that the slope of the VIX term structure carries information about

S&P 500 variance risk and predicts variance swap, VIX futures, and S&P 500 straddle

returns.

Another strand of literature is concerned with risk premiums and trading strategies

in credit markets. Longstaff, Pan, Pedersen, and Singleton (2011) use the affine sovereign

credit model of Pan and Singleton (2008) to dissect sovereign credit default spreads into

their risk premiums and a default risk component. They find a significant risk premium

amounting to one third of the CDS spread. Moreover, both components are strongly

related to global macroeconomic factors. However, the link is more pronounced for the
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default risk component. Jarrow, Li, Ye, and Hu (2019) explore mispricings in the term

structure of CDS spreads. The latter use a reduced-form credit risk model to construct

out of sample market-neutral portfolios along the term structure of corporate CDS. The

documented mispricings tend to be positively related to market volatility and credit and

liquidity risk factors.

Finally, we contribute to the substantial literature linking credit derivatives to equity

markets. The theoretical motivation for most studies is the structural model of Merton

(1974). In his model, a firm’s default probability is depending on the firm’s leverage,

equity volatility, and the level of the risk-free rate. Different measures for equity volatility

have been employed in the literature. Collin-Dufresne et al. (2001) employ the VIX

index as a substitute of firms implied volatilities of traded options. On the contrary,

Campbell and Taksler (2003) and Ericsson et al. (2009) use realized volatility. The latter

authors find that realized volatility and leverage carry substantial explanatory power in

explaining levels and changes of corporate CDS spreads. Cremers, Driessen, Maenhout,

and Weinbaum (2008) incorporate implied alongside realized volatility in their regression

model. Focusing on CDS levels, they document an improved estimation fit when including

implied volatilities from firms’ individual options. Cao, Yu, and Zhong (2010) refine the

use of option implied information. As the authors argue, CDS exhibit similar features

to out-of-the-money put options as both offer effective protection against downside risks.

They find that firms’ put option-implied volatility is superior to historical volatility. On

the one hand, the authors relate their finding to the ability of implied volatility to predict

future realized volatility. On the other hand, they find that volatility risk premium in

option prices co-moves with CDS spreads. Another strand of research has looked at lead-

lag-relationships between equity and credit markets. Norden and Weber (2009) document

that equity returns are leading CDS spreads, whereas the opposite does not hold true.

Moreover, CDS are more sensitive to the stock market than to bond markets. Hilscher,

Pollet, and Wilson (2015) confirm these findings in a more recent sample period.

The remainder of the paper is structured as follows. Section 2 details our methodolog-

ical framework. In section 3, we present our data set. Section 4 describes and discusses

our main empirical findings, whereas section 5 concludes.

2. Methodology

2.1. Credit Default Index Swaptions

A credit default swap (CDS) is a contract giving its holder the right to sell a bond

for its face value in case of default or otherwise specified credit event by the bond issuer.

Consequently, a CDS index (CDIS) tracks the cost of buying protection for each company

in a portfolio. A buyer of protection on a CDIS receives insurance against losses stemming
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from defaults of any of the index’s single-name constituents during the lifetime of the

contract. In exchange, the protection buyer pays a fixed coupon and a cash upfront

payment to the protection seller at trade inception.

In the following, we use the notation of Rutkowski (2012). Let T0 < T1 < · · · < Tm

denote the tenor structure of a forward-start CDIS, where

• T0 = T is the inception date,

• Tm is the maturity date,

• Tj is the jth fee payment date for j = 1, . . . ,m.

We further assume that the recovery rate δ ∈ [0, 1] is predetermined, constant and the

same for all reference entities in the CDIS. More generally, we assume that firms are

identical. We denote by B the process for the money-market account which is assumed

to be strictly positive. Let n be the initial number of reference entities and τi the time

at which entity i defaults, then Jt = n−
∑n

i=1 1{t≥τi} =
∑n

i=1 1{τi>t} denotes the number

of entities which have survived up to time t.

We will later consider options written on a forward CDIS with expiry T = T0. Their

pricing will be based on a change of numéraire argument. For the remainder, we assume

that the event {τn ≤ T} has zero probability under Q. This ensures that the candidate

numéraire is strictly positive and does not vanish with non-zero probability. Economically,

the technicality rules out the default of all reference entities before swaption maturity.4

From the perspective of the CDIS seller, the value of the forward CDIS with spread

κ at time t ∈ [0, T0] is

Snt (κ) = EQ
t (P n

t )− κEQ
t (Ant ),

where

P n
t =(1− δ)Bt

m∑
i=1

B−1
τi
1{T0<τi≤Tm}

Ant =Bt

m∑
j=1

αjB
−1
Tj
JTj ,

with αj = Tj − Tj−1 for every j = 2, . . . ,m and EQ
t denotes the risk-neutral expectation

given the information available up to time t. P n
t is the discounted payoff of the protection

leg, whereas Ant is the discounted payoff of the fee leg per one unit of the spread.5 The

latter is also known as risky annuity or defaultable price value of the basis point. It is

4Morini and Brigo (2011) refer to the default of all entities as the Armageddon event, whereas
Rutkowski (2012) uses the term collapse event. The authors have shown that incorporating the event
requires knowledge of the risk-neutral conditional distribution of τn. Rutkowski (2012) is silent on its
estimation, while Morini and Brigo (2011) resort to index tranches.

5We suppress the dependence of An
t on the inception date of the forward-start CDIS, T0 = T , for ease

of notation.
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market convention to compute the implied risk-neutral probabilities for different maturi-

ties using a flat single-name CDS curve with a constant spread equalling κnt . Therefore,

we can approximate Ant by JtPVtκ
n
t , where PVtκ

n
t is the risky annuity calibrated by a

flat CDS curve with spread equalling the actually quoted CDIS spread in the market.

An option on a CDIS, also referred to as a swaption, is an agreement to sell or

buy protection on the underlying index with a certain maturity at a pre-agreed spread.

Swaptions are European options. The option holder of a payer index option has the right,

but no obligation, to buy protection in the index at the strike spread. On the contrary,

a receiver option entitles its holder the right to sell protection in the index at the strike

spread.

Assume that the CDIS was initiated at time 0, with constant spread κn0 . κnT denotes

the prevailing market spread at time T . PT (t, κ) represents the time-t value of a European

payer swaption with maturity T = T0 and strike spread κ. At expiration, the swaption

has a payoff of

(PVT (κnT )JT (κnT − κn0 )− nPVT (κ)(κ− κn0 ) + LT )+ , (1)

where Lt = (1 − δ)
∑n

i=1 1{τi≤t} denotes the loss process of the CDIS. We would like to

point out several noteworthy aspects with respect to Equation (1). First, unlike forward

CDIS, swaptions provide protection from losses occurring between option inception and

option maturity T . Secondly, PVT (κ) denotes the risky annuity at time T and hence

is random in the interest rates. On the contrary, PVT (κT ) is random in interest rates

and the index spread κT . We follow market convention and approximate future interest

rates by current forward rates for the same date. Consequently, randomness in PVT (κ)

vanishes and PVT (κU) remains to be random with respect to κT only. We can rewrite

the swaption payoff in Equation (1) to

(SnT (κ) + LT )+ = (SaT (κ))+ , (2)

where SaT (κ) = SnT (κ) + LT denotes the loss-adjusted forward CDIS and we have used

the approximation PVT (κ)n ≈ PVT (κT )JT ≈ AnT . The price of the loss-adjusted forward

CDIS at time t ∈ [0, T ] is given by

Sat (κ) = EQ
t (P a

t )− κEQ
t (Ant ),

where P a
t = P n

t + BtB
−1
T LT . Consequently, the loss-adjusted fair forward CDIS spread

at any time t ∈ [0, T ] is the random variable κat,T which solves Sat (κat,T ) = 0. For every

t ∈ [0, T ],

κat,T =
EQ
t (P a

t )

EQ
t (Ant )

,
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and the price of the forward CDIS can be expressed as, for every t ∈ [0, T ]

Sat (κat ) = Aat (κ
a
t,T − κ). (3)

By inspection of Equations (2) and (3), we see that through a suitable change of

numéraire,6 the price of a payer option is given as

PT (t, κ) = AatEA
t

[
(κat,T − κ)+

]
, (4)

where A denotes the risky annuity measure associated with Aat as numéraire. The corre-

sponding receiver swaption, denoted by RT (t, κ), has a time-t price of

RT (t, κ) = AatEA
t

[
(κ− κat,T )+

]
. (5)

Equations (4) and (5) illustrate that a payer swaption can be associated with a call option

on the CDIS spread, whereas a receiver swaption resembles the notion of a put option.

2.2. Variance Swap Contracts

This subsection introduces variance swaps in credit markets. In a variance swap, the

long side receives the difference between the realized variance of the CDIS spread over

the life of the contract and a pre-determined rate K

(RVt,T −K)× Aat , (6)

where RVt,T denotes the realized variance of κat,T over a partition Π = {t = t0 < . . . tn =

T} of the interval from t to T and is defined as

RVt,T = 2×

[(
κat1,T
κat0,T

− 1− log
κat1,T
κat0,T

)
+ . . .+

(
κatn,T
κatn−1,T

− 1− log
κatn,T
κatn−1,T

)]
. (7)

The definition in Equation (7) is based on Neuberger (2012) and Bondarenko (2014) and

has been adopted frequently in the recent literature (see Choi et al., 2017; Kaeck, 2018).7

The popularity of realized variance as in Equation (7) stems from two facts. First, its risk-

neutral expectation can be calculated in a model-free way if κat,T follows a martingale, and

hence, the latter is not restricted to be a continuous process. Second, results are robust

to discretization biases. The inclusion of the risky annuity in Equation (6) is adapted

from Mele and Obayashi (2015).

The fixed variance swap rate is determined as the value for K such that the variance

6See Rutkowski (2012) for details.
7Trolle and Schwartz (2014) use a similar approach based on arithmetic changes, whereas Equation (7)

is a generalized version of log-changes.
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swap has zero value at t, it solves

EQ
t

[
e−

∫ T
t r(s)ds (RVt,T −K)× Aat

]
= 0,

and is given by

K ≡ IVt,T = EA
t [RVt,T ] =

2

Aat

∫ ∞
0

MT (t, κ)

κ2
dκ, (8)

where

MT (t, κ) =

RT (t, κ) if κ ≤ κat

PT (t, κ) if κ > κat

(9)

To shed further light on the sources of credit variance risk premiums, we follow the

ideas of Andersen and Bondarenko (2010) and Kaeck (2018) and decompose (implied and

realized) return variation into price ranges by means of corridor variances.8 Generally,

corridor variance is constructed as

IV Bu,Bd

t,T =
2

Aat

∫ Bu

Bd

MT (t, κ)

κ2
dκ, (10)

whereMT (t, κ) as in Equation (9), and Bd (Bu) denotes the lower (upper) bound of the

price corridor. The realized counterpart is given as

RV Bu,Bd

t,T =
n∑
i=1

g(κati,T )− g(κati−1,T
)− g′(κati−1,T

) ·
(
κati,T − κ

a
ti−1,T

)
, (11)

where

g(x) =


2×

(
− logBu − x

Bu
+ 1
)

if x > Bu

−2× log x if x ∈ [Bd, Bu]

2×
(
− logBd − x

Bd
+ 1
)

if x < Bd

and g′(x) denotes the derivative of g with respect to x. Model-invariance and robustness to

discretization are retained by Equation (11) (see Bondarenko, 2014). We focus on the two

most intuitive price ranges, namely upside and downside variances. Upside (downside)

variance is the return variation when the current forward CDIS spread is above (below)

the starting forward CDIS spread. More precisely, in the former case we have Bd = 0 and

Bu = κat0,T , whereas in the latter Bd = κat0,T and Bu = ∞. Since Equation (10) breaks

into either payer or receiver swaptions, we term the semi-variances payer and receiver

variances.

Equations (8) and (10) and require a continuum of option prices. However, only

a finite number of strikes is available. We follow ideas from Carr and Wu (2009) to

compute the integrals in Equations (8) and (10). First, we obtain and sort all out-of-the

8The concept was initially introduced by Carr and Madan (1998).
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money swaptions for each date t and maturity T . Second, we construct a grid of implied

volatilities at different moneyness levels. More precisely, we construct a grid of of 2000

implied volatility points within a strike range of ±8 standard deviations from the current

forward price. Thereby the standard deviation is approximated by the average implied

volatility. Third, we linearly interpolate across moneyness. For strikes higher (lower)

than the highest (lowest) listed strike price, we use the implied volatility at the highest

(lowest) available strike. Finally, we convert the implied volatilities back into option

prices using Black (1976).

3. Data

Credit swaptions data are obtained from Markit. Markit is considered the leading

financial services and pricing data company in the area of credit default swaps. We

focus on one of the most prominent North American credit indices, the CDX North

America Investment Grade Index (CDX NA IG). CDX NA IG comprises 125 of the most

liquid North American entities with investment grade credit rating. Markit is owner and

administrator of the index. Along side the Markit iTraxx Europe Main, CDX NA IG is

the globally main corporate credit derivative index based on traded volume (Augustin,

Subrahmanyam, Tang, and Wang, 2014).

Credit swaptions are traded over-the-counter. Markit receives quotes on payer and

receiver options from associated buy-side and sell-side accounts. After assuring data

quality, Markit provides composite payer and receiver quotes per option maturity and

strike. The composite quotes are formed by averaging the latest quotes over the tightest

time window possible on each day ensuring a sufficient amount of quotes.

The data are available at a daily frequency from March 2012 to September 2018. The

maturity date is the third Wednesday of each month. Data span the on-the-run series9

and the first-off-the-run series of the 5 year indices. After the financial crisis of 2007-09,

five-year contracts have become standard and make up the predominant portion in the

market (see Abad, Aldasoro, Aymanns, D’Errico, Fache Rousová, Hoffmann, Langfield,

Neychev, and Roukny, 2016). Data for the underlying reference indices are also provided

by Markit.

From our data set, we keep only days where each of the four nearest maturities carry

at least three strikes. We furthermore verify option implied forward spreads with their

theoretical value using the ISDA CDS standard model.10 Our filters leave us with 226872

receiver and payer swaptions.

9The CDX NA IG index rolls every six months, i.e. a new index is issued. The new issue is known
under an incremented series. The new series of the index is termed on-the-run index until a new series
is created at the next roll date. It then becomes the first off-the-run index.

10We have implemented the ISDA CDS standard model according to White (2013).
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The swaption data set for the CDX NA IG are described in Table 1. For each day,

we group the available receiver and payer quotes into different maturity buckets, each

spanning 30 days. Table 1 describes for each bucket the number of days with observed

quotes, the average and median of the time to maturity, moneyness levels, and number

of strikes. Besides showing statistics for the entire data set, Table 1 further differentiates

between on-the-run and off-the-run series. There is considerably less data on the market

for off-the-run series in any dimension considered. After applying our filter, we observe

option quotes on off-the-run series only on a very few days. Furthermore, the number

of strikes and the strike range is lower than in on-the-run series for longer maturities by

a large margin. Within on-the-run series, the market for options with time to maturity

between 30 and 120 days seems to be most liquid. Across all maturity buckets, we observe

on average on any given day at least 9 different strikes. Though this seems to be little as

compared to equity markets, it is noteworthy, that first studies on variance risk premiums

on single stocks report number of strikes well below our numbers (see Carr and Wu, 2009).

Our analysis on theoretically motivated determinants on credit variance risk premiums

follows Collin-Dufresne et al. (2001). First, we construct a composite leverage ratio for

the CDX NA IG index. Therefore, we take stock prices and shares outstanding for reach

constituent of the CDX NA IG index from the Center for Research in Security Prices.

Quarterly balance sheet and accounting data is obtained from Compustat. We treat

market leverage as book debt (the sum of Compustat items Long-Term Debt - Total and

Debt in Current Liabilities) over the sum of book debt and the market value of equity.

We assume that accounting variables become publicly available after one quarter. The

market value of equity is calculated as the product of the number of common shares

outstanding and share price. For estimating the jump component, we resort to implied

volatilities from S&P 500 index options, taken from OptionMetrics. We augment the

variables in Collin-Dufresne et al. (2001) by the intermediary capital risk factor of He

et al. (2017), taken from Zhiguo He’s website.

We further make use of OptionMetrics to compare credit variance risk premiums with

equity, fixed income variance and equity variance-of-variance risk premiums. We obtain

data on S&P 500, VIX index and the exchange traded fund TLT options from Option-

Metrics. The sample period spans the start of our swaptions data set until December

2017 (the most recent sample period available to us as of writing). The options are

European-style in case of S&P 500 and VIX and written on the spot indices. Options on

TLT are American-style and we use Barone-Adesi and Whaley (1987) to convert them

to European options. For every day in our sample, we use put-call parity for the ATM

option pair for which put and call prices are closest and back out implied forward prices.
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4. Empirical results

4.1. Preliminary Data Analysis

We start by analysing annualized implied volatility of CDX NA IG (CIV, hereafter),

defined as
√

(T − t)IVt,T . We proceed as follows to construct these measures for constant

maturities of 45, 75, and 105 days. At each day in our sample, we straddle the time

to maturity of interest and compute implied variances for the neighbouring maturities.

Subsequently, we interpolate linearly in implied variance to obtain a value at a fixed

time to maturity.11 In principle, this technique can be applied to any number of days.

We have chosen 45 days as the shortest time to maturity instead of 30 days out of two

reasons. First, we thereby avoid extrapolation as we observe for some days in our sample

swaptions with maturities strictly above 30 days. Secondly, we disregard options with less

than 7 days to maturity in the calculation of CIV. We do not consider time to maturities

beyond 105 days since they are less actively traded.

[Insert Figure 1 near here]

Figure 1 displays CIV for the three time to maturities. First, all three time series

exhibit strong time-variation. The lowest levels in all CIV indices are attained around

mid-2017 after a period of slow, but gradually decline. At this point in time, CIV for

45 days is around 35%. Maximums in CIV levels are reached at several periods in our

sample, where they reach roughly 70%. Secondly, we observe several noteworthy spikes.

The most extreme appear to be around the US taper tantrum in 2013 and the ”implosion”

of inverse equity volatility products in early 2018. During both periods, CIV levels across

all maturities nearly double within a few days. Thirdly, the term structure of implied

volatility is most of the time upward sloping. This is best illustrated between mid-2016

and mid-2017. During periods of high stress, however, the term structure inverts. We

observe this pattern particularly around spikes in CIV, for example, during the US taper

tantrum in 2013. Fourthly and finally, the steepness of the term structure is a function

of market calmness: the more quiet the market, the steeper the term structure, as seen

during the first half of 2017.

[Insert Table 2 near here]

Table 2 presents summary statistics for the three different CIV indices. The uncon-

ditional means of CIV levels reflect the on-average upward sloping term structure. This

is in line with equity implied volatility, as Ait-Sahalia et al. (2018) document strictly

increasing mean levels of equity volatility swap rates. However, it does not manifest in

11Precisely, denote by T1 and T2 the straddling maturities of T such that T1 < T < T2. Then implied

variance for maturity T is given as IVt,T = 1
T−t

[
IVt,T1

(T1−t)(T2−t)+IVt,T2
(T2−t)(T1−1)

T2−T1

]
.
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implied equity volatility-of-volatility (Kaeck, 2018) or Treasury bond implied volatility

(Choi et al., 2017), where mean levels are monotonically decreasing in time to maturity.

It is noteworthy that the steepness of the term structure of unconditional implied volatil-

ities is gentle. The difference in mean levels for 45 and 105 days amounts to roughly 2%,

given that the average 45 day implied volatility reads 47.4%. Trolle and Schwartz (2014)

observe a similar finding in USD and EUR denominated interest rate swaptions. Table 2

also confirms our visually inspection with respect to behavior of credit implied volatil-

ity during calm and stressful market periods. The minimum level of implied volatility

is strictly increasing in time to maturity, whereas the opposite holds true for the max-

imum. This points towards the inversion of the term structure during times of market

distress. The reduction in standard deviation for longer maturities adds to that point.

Moreover, we observe that all CIV indices exhibit positive skewness and kurtosis, albeit

monotonically declining in time to maturity.

In addition to levels, Table 2 shows statistics for log-changes in CIV indices. Our

previous findings for CIV levels apply also to log-changes. We furthermore perform a

principal component analysis of log-changes in the three CIV indices, reported in Table 3.

Columns (2)-(4) display the loadings on our CIV indices. Similar to other term structures,

the first principal component can be associated with a level factor, which accounts for

nearly 96% of the variation in CIV indices. The second component represents a slope

factor, covering roughly 3% of variation. The third component can be attributed to a

curvature factor, accounting for roughly 1% of variation.

4.2. Credit variance risk premiums

After having established characteristics of CIV indices, we turn to credit variance risk

premiums. We follow standard practice in the literature (Carr and Wu, 2009; Choi et al.,

2017; Kaeck, 2018) and measure CVP via returns to credit variance swaps, where the

returns are defined as RVt,T/IVt,T − 1.

[Insert Figure 2 near here]

An illustration of CVP is given in Figure 2. The figure depicts monthly realized

variances of forward CDIS spreads next to their implied counterparts in the left graph.

The corresponding returns are shown in the right graph. Each month the return is

computed such that T corresponds to the expiry date of CDX NA IG index options

in the next calendar month and t is the trading day succeeding the expiry date of the

current month. Similar to variance swap investments in equity or fixed income markets,

the realized variance is often well below its implied counterpart, leading to highly negative

returns in most months. Realized variance outreaches implied variance during six months

in our sample, leading to positive gains in a long variance swap.

13



[Insert Table 4 near here]

Table 4 summarizes the statistics for CVP. Shorting a credit variance swap yields a

monthly average return of around 42%, which is highly significantly different from zero as

given by the t-statistic of approximately 14. CVP eclipses its documented counterparts

in most other asset classes. Kaeck (2018) estimates the equity variance-of-variance risk

premium to amount to 24%. Choi et al. (2017) study Treasury variance swaps where

they report monthly returns of around 20% for shorting Treasury variance. Trolle and

Schwartz (2014) analyze interest rate variance swaps by means of EUR and USD dom-

inated swaptions. They document mean monthly returns to shorting variance between

40% and 66%.

Another popular strategy for gaining exposure to volatility are ATM straddles. Coval

and Shumway (2001) and Santa-Clara and Saretto (2009) document attractive Sharpe

ratios above one for trading straddles on S&P 500 index futures. We synthetically con-

struct ATM straddles with the same time to maturity as the variance swap. Results are

also given in Table 4. Shorting ATM straddles yield average monthly returns of roughly

21%, statistically significantly different from zero. Therefore, the average returns are ap-

proximately half of the size of CVP . Furthermore, they appear also to be riskier, proxied

by volatility.

[Insert Figure 3 near here]

To understand the variance risk premium in different states of the world, we study

corridor variance swaps and their investment returns. We focus on payer- and receiver-

corridors. The payer (receiver) corridor is determined by the prevailing forward CDIS

spread at variance swap initiation as the lower (upper) bound. It is associated with rising

(falling) CDIS spreads. Figure 3 depicts payer- and receiver-variances and corresponding

risk premiums. Although payer- and receiver variance risk premiums are both leptokurtic

and highly skewed, they exhibit notable differences. The realized payer variance equals

zero for a considerable amount of months, especially during 2014 and 2017. We find

only three of such occurrences for realized receiver variances. Furthermore, conditional

on exceedance, realized receiver variance outreaches implied receiver variance by a wider

margin. The visual inspection of payer and receiver variance risk premiums is confirmed

in Table 4. Overall, both premiums earn highly negative and statistically significant

returns, but findings are more pronounced for returns of payer variance swaps. The

latter yields an average monthly return of −50% with a t-statistic of nearly −8. The

average return for receiver variance swaps is −25% with a t-statistic of approximately

−4.

Different implicit levels of leverage can distort the interpretation of monthly average

returns. Therefore, we include risk-adjusted performance measures robust to leverage
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in Table 4: Sharpe ratio, Stutzer ratio, and Sortino ratio.12 We adjust Sharpe ratios

for return-autocorrelation when aggregating them to annualized numbers following Lo

(2002). Not surprisingly, returns to credit variance swaps yield the highest Sharpe ratio in

absolute terms. It amounts to nearly 6, four times higher than for selling ATM straddles.

Sharpe ratios rest on the assumption of normality, however, CVP, as well as corridor

variance risk premiums, exhibit positive skewness and excess kurtosis. Hence, the Stutzer

ratio might be more suitable for comparing risk-adjusted performances. The findings in

Table 4 confirm the high attractiveness of CVP from the perspective of the Stutzer ratio,

where a similar margin to ATM straddles is observed. Since the standard deviations of

payer and receiver variance risk premiums are nearly twice as high as for overall CVP,

their Sharpe and Stutzer ratios are lower than for CVP. However, they are still well above

their counterparts for ATM straddles.

To gain a sharper understanding of CVP, we put it into perspective of direct exposure

to credit risk. We implement a short credit risk strategy by entering into a forward-

starting CDX NA IG index, receiving the fixed leg and paying the floating leg in the

underlying CDIS strategy. The payoffs to this strategy are fundamentally different from

the return definition of credit variance swaps. The CVP is measured as a fully collate-

rialized long position in the variance swap posting IVt,T as collateral at initiation and

receiving RVt,T plus interest at expiry. On the contrary, the payoff bearing direct credit

risk is the profit or loss for a given, time-invariant notional investment in CDIS. In order

to make the latter comparable to CVP, we introduce a required amount of capital needed

to enter into a forward-CDIS. We adjust the amount such that the strategy generates

the same unconditional volatility of CVP.13 Table 4 reports the results. The monthly

average return amounts to 4%, being not statistically significantly different from zero.

The strategy exhibits positive skewness and kurtosis and a Sharpe ratio half of selling

ATM straddles. Consequently, exposure to direct credit risk is less attractive than com-

pensation for variance risk, especially by entering into variance swaps.

4.3. Structural model variables as drivers

The literature analysing the determinants of credit spreads is substantial.14 The

theoretical motivation for most studies lies in the structural model of Merton (1974).

In his model, a firm’s default probability is depending on the firm’s leverage, equity

volatility, and the level of the risk-free rate. Ericsson et al. (2009) confirm the predictions

of Merton’s model and show that equity volatility, firm leverage, and changes in interest

12The inclusion of these measures has been proposed by Bondarenko (2014) and adopted by Kaeck
(2018), for example.

13See Appendix B for details.
14See, e.g. Collin-Dufresne et al. (2001), Campbell and Taksler (2003), Cremers et al. (2008), Ericsson

et al. (2009).
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rate levels suffice to explain the time and cross-sectional variation in single-name CDS

spreads. We consider the set of macroeconomic and financial variables suggested by

Collin-Dufresne et al. (2001), nesting the variables employed by Ericsson et al. (2009), as

potential determinants of CVP. More precisely, we use changes in the 10-year Treasury

rate (∆RF ), squared changes in the 10-year Treasury rate, (∆RF )2, changes in the slope

of the yield curve (∆Slope), changes in the VIX index (∆V IX), returns on the S&P 500

index (RM), and changes in a jump component ∆Jump. Since our CVP is based on a

composite credit index, we construct in a first step a leverage ratio for each day and each

constituent in the CDX NA IG index, if possible,15. Subsequently, we aggregate these to

arrive at a composite leverage ratio. As in Collin-Dufresne et al. (2001), we are interested

in changes in the leverage ratio, ∆Lev. Finally, and motivated by the recent literature on

the role of financial intermediaries on asset prices, we include the intermediary capital risk

factor of He et al. (2017), ∆IRF , as a potential driver of CVP. We therefore determine

the vector of variables at time t as

∆Ft =
[
∆Levt ∆RFt (∆RFt)

2 ∆Slopet ∆V IXt RMt ∆Jumpt ∆IRF
]

We then estimate the following regression model

rt = α + β′∆Ft + εt,

where rt is the return of credit variance swaps (in month t).

The estimated coefficients and statistical significance are reported in Table 5. The

estimates on the S&P 500 and on ∆Jump for CVP are negative. Nevertheless, none

of the coefficients, except for the intercept, are statistically significant at any conven-

tional level. Results, however, change when considering corridor variance risk premiums.

Payer variance risk premium loads negatively, and statistically significant, on the S&P

500 return and the jump component. The intercept remains strongly negative, though.

The opposite sign on both coefficients is positive for receiver variance risk premiums. As

before, the intercept remains negative and highly significant, indicated that the positive

coefficient cannot fully explain the variance risk premium. The remaining variables ex-

hibit no significant effect on corridor variance risk premiums. Hence, structural model

variables are not able to explain variance risk premiums.

[Insert Table 5 near here]

15We do not observe for all constituents in the CDX NA IG index data from Compustat and CRSP.
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4.4. Risk-adjusted returns

Next, we tackle the question of how well CVP can be attributed to established equity

asset pricing risk factors. The literature on risk-factors explaining the cross-section of

equities has witnessed tremendous growth in the last decade. Researchers found several

hundred factors beyond the well-documented three-factor model of Fama and French

(1993) or four-factor model of Carhart (1997). Lately, the vast amount of factors has

been called into question. Feng, Giglio, and Xiu (2019) test 150 factors and conclude

that many of them are redundant. Consequently, we resort to the recently proposed

six-factor model of Fama and French (2018). Our regression model is therefore specified

as follows

rt =α + βMRKT (rMRKT
t − rft ) + βSMB(rSMB

t + βHMLr
HML
t + βRMW r

RMW
t

+ βCMAr
CMA
t + βMOMr

MOM
t + εt, (12)

where rt is the return of credit variance swaps (in month t), rMRKT is the equity mar-

ket return, rf denotes the risk-free rate, rSMB denotes the return of the size portfolio

(SMB), rHML denotes the return of the book-to-market portfolio (HML), rRMW presents

the return of the profitability portfolio (RMW), rCMA denotes the return of the invest-

ment portfolio (CMA), and rMOM is the return of the momentum portfolio (MOM). The

historical portfolio returns and the risk-free rate rf are taken from Kenneth French’s

website.

[Insert Table 6 near here]

Before estimating the full specification in Equation (12), we consider also a nested

model by setting βSMB = βHML = βRMW = βCMA = βMOM = 0. We adjust t-statistics for

heteroskedasticity and autocorrelation using Newey and West (1987). Table 6 provides

results. The slope coefficient of the market portfolio is positive, but not significantly dif-

ferent from zero. Shedding light on this, we repeat the regression with corridor variance

risk premiums. As described in Table 6, payer-variance risk premiums exhibit strong,

negative exposure to the market portfolio. Hence, going long payer variance swaps pro-

vides insurance against negative returns of the equity market portfolio. The opposite

holds true for receiver variance risk premiums, probably rendering overall CVP insignifi-

cantly different from equity market performance. For direct short credit risk exposure, we

conjecture a positive relationship to equity market performance since the strategy profits

from improved credit conditions. Our intuition is confirmed, as shown in Table 6.

Next, we turn our attention to the estimation results of the entire model in Equa-

tion (12). As documented in Table 6, the loadings on the size, book-to-market, prof-

itability and momentum portfolios are positive, whereas negative for the overall equity

market and investment portfolio. Exposure, however, is only statistically significant for
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the latter two and the size portfolio. The negative slope coefficient for the size portfolio

is interesting, since Carr and Wu (2009) find opposite signs for equity variance risk pre-

miums. The difference in results may be explained by a longer sample window in Carr

and Wu (2009) and the recent underperformance of the size portfolio.

We finally include ATM straddle returns in our analysis. The results in Table 6

indicate that buying ATM straddles yields returns which are not significantly related to

existing risk factors or the equity market portfolio, except for the momentum portfolio.

In the latter case, borderline significance and a positive exposure are documented.

4.5. Variation in variance risk premiums

Inspired by Carr and Wu (2009), Ammann and Buesser (2013), and Trolle and

Schwartz (2014), we analyze time variation in CVP by running the following predictive

regression

RVt,T = β0 + β1IVt,T + εt. (13)

Carr and Wu (2009) motivate the analysis by the following equation

IVt,T =
EP
t (Mt,TRVt,T )

EP
t (Mt,T )

= EP
t (mt,TRVt,T ) = EP

t (RVt,T ) + CovP
t (mt,T , RVt,T ),

where Mt,T denotes a pricing kernel, mt,T =
Mt,T

EP
t (RVt,T )

, and P denotes the real-world

probability measure. Hence, under the hypothesis of zero variance risk premiums, we

expect β0 = 0 and β1 = 1 in Equation (13). A positive slope coefficient would imply that

variance swap rates are informative of future realized variance. The case of β1 being below

one would point towards time-variation in variance risk premiums. It is noteworthy that

we analyze the difference in levels of realized variance and the swap rate. This represents

the final payoff in dollar terms of entering a long variance swap contract.

[Insert Table 7 near here]

We estimate Equation (13) via Hansen’s (1982) GMM and report results in the left

panel of Table 7. t-statistics are under the null hypothesis of β0 = 0 and β1 = 1 and

corrected for heteroscedasticity and autocorrelation according to Newey and West (1987).

We consider also corridor variance contracts. Table 7 shows that slope coefficients for

CVP, payer- and receiver-variance risk premiums are positive and well below one. How-

ever, only for CVP and payer variance risk premium the slope coefficients are significantly

different from zero.

We redo the analysis in log-terms, i.e. we estimate the following regression

lnRVt,T = β0 + β1 ln IVt,T + εt.
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In this specification, risk premiums are interpreted as the logarithm of the previously

introduced risk premium in Section 4.2. We report only estimates for CVP in the right

panel of Table 7. Contrary to the previous finding, the slope coefficient is no longer

significantly different from zero. Carr and Wu (2009) document a similar finding for equity

indices and single stocks. They conclude that risk premiums defined via log returns must

be more similar to a constant or independent time series than defined in dollar terms.

4.6. Comovement with equity variance and variance-of-variance risk pre-

miums

A large body of research has concentrated on the link of CDS spreads to equity

volatility and Treasury yields. From the perspective of Merton (1974), there exists a

theoretical link between equity volatility, interest rates, and the leverage ratio and CDS

spreads. Ericsson et al. (2009) confirms these variables as powerful determinates of CDS

spreads. Consequently, we are interested in comparing the comovement of variance risk

premiums on the same footing. More precisely, we study the commonality of CVP with

equity variance-of-variance risk premiums and Treasury bond variance risk premiums.

We also include equity variance risk premiums in our analysis. We obtain options on

the S&P 500, the VIX and the exchange traded fund TLT16 from OptionMetrics and

implement the same methodology to estimate the returns on variance swaps, defined as

V SRt,T =
RVt,T
IVt,T

− 1. Precisely, we choose t and T each month such that T corresponds

to the expiry date of CDX NA IG index options in the next calendar month and t is the

trading day succeeding the expiry date of the current month. In case expiry dates for

CDX NA IG swaptions do not align with S&P 500, VIX or TLT options, we construct

synthetic variance swap rates for S&P 500, VIX and TLT matching the time to maturity

of CDX NA IG swaptions. Additionally, we create synthetic S&P 500, VIX and TLT

forward prices with matching expiry dates in order to obtain realized variances. For the

sake of completeness, descriptive statistics are given in Table 9.

Subsequently, we estimate the following regression

V RPCDX NA IG
t,T = α + βS&P 500V RP S&P 500

t,T + βVIXV RP
VIX
t,T + βTLTV RP TLT

t,T , (14)

where V RPCDX NA IG
t,T denotes CVP, and V RP S&P 500

t,T , V RP VIX
t,T , and V RP TLT

t,T its analogue

based on the S&P 500, VIX, and TLT, respectively. We run first univariate regressions,

imposing two of the following three conditions to hold, βS&P 500 = 0, βVIX = 0, βTLT = 0.

Table 8 reports results. CVP loads significantly (at the one-percent level) and positively

on S&P 500, VIX, or TLT variance swaps in isolation. Hence, payoffs to credit variance

16TLT tracks the performance of the Barclays Capital U.S. 20+ Year Treasury Bond Index, and hence,
is exposed to long-term U.S. Treasury bonds.
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swaps are positively related to their counterparts in equity and fixed-income markets.

However, the alpha remains relatively large and significant. It ranges between −30% and

−39%. In terms of adjusted R2s, equity variance-of-variance risk premiums yield the best

fit by achieving 31%.

[Insert Table 8 near here]

We then consider the full specification in Equation (14). Interestingly, the exposure

to equity and fixed-income variance risks is completely absorbed by variance-of-variance

risks, as the former two exhibit the correct sign, but become insignificant. A large and

negative alpha (-33%) still remains. Based on the outlined previous empirical findings, we

expected those results for equity variance risk premiums, but not for Treasury variance

risk premiums.

We repeat the analysis for payer and receiver variance risk premiums. To compare

like for like, we construct corridor variance risk premiums for S& P 500, VIX and TLT.

Payer variance risk premiums are associated with bad economic states of the world. The

same holds true for downward equity risk premiums and upward variance-of-variance and

fixed-income variance risk premiums. The same applies in reverse for receiver variance risk

premiums. In estimating Equation (14), we regress credit corridor variance risk premiums

on the respective counterparts for S& P 500, VIX and TLT. Results are shown in Table 8.

In both cases, credit corridor variance risk premiums are not significantly related to fixed-

income corridor variance risk premiums, neither in uni- nor multivariate regressions.

Payer and receiver variance risk premiums significantly comove with variance-of-variance

and equity variance risk premiums. However, the link appears to be stronger for variance-

of-variance risk premiums. Multivariate regressions confirm this finding. However, as for

total CVP, alphas remain significantly different from zero and economically large.

[Insert Table 9 near here]

4.7. Term structure of credit variance risk premiums

The results presented so far have focused on 1-month investment returns. In style

of Kaeck (2018), we now concentrate on longer holding periods. Each trading day after

the swaption expiry, we calculate returns of variance swaps with 2, 3, and 4 months

to expiry. Table 10 documents average returns, corresponding t-statistics, and Sharpe

and Stutzer ratios. Since the monthly returns are by construction not independent over

time, standard errors are adjusted for heteroskedasticity and autocorrelation according to

Newey and West (1987). The average risk premium is stable over the considered holding

periods and remains highly statistically significant from zero. The same holds true for

corridor variance risk premiums. The overall CVP yields −46% across the three different
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investment horizons. However, the risk-adjusted performance in terms of the Sharpe ratio

is monotonically decreasing in time to maturity. The latter pattern also holds for payer-

and receiver variance risk premiums. It is noteworthy that Sharpe ratios for CVP are

well above 2 in absolute terms, indicating the attractiveness of CVP regardless of the

investment horizon. The estimated Stutzer ratios confirm this finding.

[Insert Table 10 near here]

Table 11 provides results of applying regression model Equation (12) to returns of

variance swaps with contract holding periods of 2, 3, and 4 months. The estimates confirm

the overall finding in Table 10 that overall and corridor variance risk premiums cannot

be explained by standard equity asset pricing factors. Strikingly, adjusted R2s seem

to increase with the holding period, cumulating in 49% for 4-month payer variance risk

premium. Furthermore, the regressions reveal changes in loadings on risk-factors and their

statistical significance. Exposure to investment factors is negative and highly significant

for CVP at the 1-month contract, whereas it becomes positive at the 4-month contract

(again highly significantly different from zero). Similarly, 4-month CVP loads negatively

and statistically significant at the 5% level on book-to-market factors. Contrarily, the

slope coefficient is positive, but insignificant for 1-month holding periods. Taken together,

these findings indicate different investment characteristics across the holding periods.

Secondly, longer-term investment seem to be better explained by standard equity risk

factors. As Table 11 shows, this effect is even stronger for payer and receiver variance

risk premiums.

[Insert Table 11 near here]

4.8. Transaction costs

To investigate whether the above documented results are robust to transaction costs,

we follow Carr and Wu (2009) by assuming that investors short realized variance each

month by entering a short variance swap the trading day after swaption expiry and

holding the position until maturity in the next month. Consequently, we reconstruct

synthetic variance swap rates using bid instead of mid option prices. The incorporation

of transaction costs in our analysis is an important task. Driessen et al. (2009) show

that correlation risk premiums yield Sharpe ratios above equity markets only before

transaction costs.

Markit provides us with bid and ask option prices for the latest on-the-run series.

To obtain bid prices for previous series, we proceed as follows. We treat the bid-ask

spread relative to the mid price as a function of time to maturity and moneyness level.

Subsequently, we use k-nearest-neighbours to find the bid option price for swaptions with
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missing bid-ask spread. Our procedure implicitly assumes that liquidity patterns in the

swaptions remain constant over our entire sample period. Trolle and Schwartz (2014) rest

on the same assumption while contacting major investment banks to obtain indicative

bid-ask spreads at the sample end. Subsequently, the authors form three different strike

buckets and apply to each a representative bid-ask spread. Since Trolle and Schwartz

(2014) concentrate on a single maturity, we would have to introduce a second dimension

to such an approach. We believe that, instead of constructing such a two-dimensional

grid, it is more intuitive to use k-nearest-neighbours.

[Insert Figure 4 near here]

The left graph in Figure 4 depicts the implied variances IVt,T estimated by bid swap-

tion prices for each month in our sample, including also the realized variances (the latter

are not affected by using bid swaption prices instead of mid prices). The right graph

shows the corresponding returns as defined in Section 4.2. The returns appear to be

still highly leptokurtic. However, we observe more occurrences with positive returns.

Moreover, positive returns tend to be larger on average, when compared to our previous

findings based on mid-quotes.

[Insert Table 12 near here]

Table 12 reports the average returns for investment horizons spanning 1 to 4 months.

CVP remains highly negative and statistically significant across all investment horizons.

However, the average 1-month return is reduced by 21 percentage points to −20%, con-

firming the visual inspection. Average returns for longer periods range between −33%

and −36%. Similarly, 1-month payer variance risk premiums are reduced by 14 percent-

age points to −36%, and remain statistically highly significant. The reduction in risk

premiums ceases with increasing investment horizon, e.g., payer variance risk premium

at the 4-month horizon amounts to −60% when estimated from bid-quotes, whereas it

amounts to −64% when calculated from mid-prices. Interestingly, receiver variance risk

premiums become positive at the 1-month horizon and negative for longer periods. How-

ever, mean returns are not significantly different from zero, indicating that variance risk

in states of the world where credit quality improves is not priced.

4.9. Predictive power of credit implied volatility

In the realm of equity markets, the VIX is known as a fear gauge, due to its tendency

to rise in times of negative equity market returns. Moreover, the VIX proves to exhibit

predictive power for future economic activity and financial stability (see Bekaert and

Hoerova, 2014). In the following, inspired by Choi et al. (2017), we analyze whether

credit implied variance and the slope of the credit implied variance term structure contain

22



predictive power for financial stress, measured by the St. Louis Fed Stress Index (STLFSI,

hereafter).17

We use implied credit volatility over the next 45 days and denote it CIV for brevity.

Furthermore, we measure the slope of the term structure of implied variances, slopeCIV,

by the difference between 105-day and 45-day implied variances. To test the predictive

power of CIV and slopeCIV, we examine the following regression model on a weekly basis

for different horizons, n, ranging from 0 to 8 weeks:

STLFSIt+n = αn + βCIV
n CIV2 + βslope CIV

n slopeCIV + εt+n, n ∈ {0, 4, 8}.

We report results in Table 13 and concentrate first on univariate regressions, setting

either βCIV
n or βslope CIV

n to zero. We conjecture a positive (negative) relationship between

STLFSI and credit implied variances (its term structure). In times of stress, credit implied

variance rises and the term structure of credit implied variances inverts. Our results

confirm this hypothesis. CIV2 is positively and significantly related to STLFSI, regardless

of the horizon considered. Any one standard deviation change in CIV2 yields a 0.43 to 0.63

standard deviation increase in STLFSI. A negative, but non-significant effect is estimated

for the slope of the credit implied variance term structure. The effect is also rendered

insignificant in the multivariate setting. However, CIV2 still poses strong predictive power

for financial stress. At contemporaneous and short horizons, the adjusted R2s is above

33%. The power diminishes with the horizon considered, as the adjusted R2 drops sharply

by half for the longest horizon.

[Insert Table 13 near here]

STLFSI includes VIX and MOVE in its construction. Therefore, one might argue that

a high correlation between credit implied volatility and equity and fixed income volatility

drive our results. As a robustness check, we redo the analysis, but with a modified version

of STLFSI. In a first stage, we orthogonalize STLFSI with respect to VIX and MOVE.

We then regress the orthogonalized STLFSI onto CIV2 and its term structure. Table 14

shows that we still find predictive power of CIV2 for short to mid-term horizons.

[Insert Table 14 near here]

17The STLFSI uses 18 weekly data series (including interest rates, yield spreads, and other indicators
such as the VIX and the MOVE) and principal component analysis to measure stress in the financial
markets. A reading above 0 indicates above-average financial market stress, whereas values below zero
indicate below-average financial market stress.
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5. Conclusion

Using a novel data set of swaptions written on the CDX North America Investment

Grade index, this paper studies credit variance risk premiums via the notion of variance

swaps. We document a highly significant monthly premium of −42%, well above equity

or Treasury bond variance risk premiums. Moreover, credit variance risk premiums ex-

hibit excellent risk-adjusted performance as the annualized Sharpe ratio is approximately

6. We dissect credit variance risk premiums into payer and receiver variance risk premi-

ums by means of corridor variance swaps. The former are associated with economically

unfavourable states of the world, in contrast to the latter. We find that both corridor

variance risk premiums are strongly negative and significant. However, payer variance

risk premiums amount to roughly twice receiver variance risk premiums. Additionally,

we study whether well-known equity asset pricing risk factors are able to explain credit

variance risk premiums. The Fama French six-factor model can only explain a very small

portion of variance risk premiums. Our results remain robust if we vary the investment

horizon of credit variance swaps, and account for transaction costs. Finally, we ana-

lyze the information content of credit implied volatility. We find that the level of credit

implied volatility is a highly useful predictor of financial stress.
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Appendix A. Synthesizing Variance Swap Contracts

First, we assume that κa
t,T follows a continuous process. This allow us to write

dκa
t,T

κa
t,T

= σtdW
A
t ,

where dWA
t is a standard Brownian motion under the risky annuity measure A, and σt

denotes the instantaneous volatility.

We follow Bakshi and Madan (2000), Carr and Madan (2001), and Bakshi, Kapadia,

and Madan (2003) and Bondarenko (2014). For any twice-differentiable function g and

any fixed positive x, we have

g(κaT,T ) =g(x) + g′(x)
(
κaT,T − x

)
+

∫ x

0

g′′(κ)
(
K − κaT,T

)+
dκ

+

∫ ∞
x

g′′(κ)
(
κaT,T − κ

)+
dκ.

Specifically for x = κat,T , we obtain

g(κaT,T ) =g(κat,T ) + g′(κat,T )
(
κaT,T − κat,T

)
+

∫ κat,T

0

g′′(κ)
(
K − κaT,T

)+
dκ

+

∫ ∞
κat,T

g′′(κ)
(
κaT,T − κ

)+
dκ.

Taking as g(κ) = log κ yields

log κaT,T = log κat,T+
1

κat,T

(
κaT,T − κat,T

)
−
∫ κat,T

0

1

κ2

(
K − κaT,T

)+
dκ−

∫ ∞
κat,T

1

κ2

(
κaT,T − κ

)+
dκ.

(A.1)

Ito’s lemma implies that

d(log κa
t,T) =

dκa
t,T

κa
t,T

− 1

2
σ2
t dt.
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Therefore, the quadratic variation of κa
t,T can be expressed as

∫ T

t

σ2
sds =− 2 log

κ2
T,T

κa
t,T

+

∫ T

t

dκas,T
κas,T

=2

(
κ2
T,T − κa

t,T

κa
t,T

− log
κ2
T,T

κa
t,T

)
+ 2

∫ T

t

(
1

κas,T
− 1

κa
t,T

)
dκas,T

=2

(∫ κat,T

0

(
κ− κaT,T

)+

κ2
dκ+

∫ ∞
κat,T

(
κaT,T − κ

)+

κ2
dκ

)

+ 2

∫ T

t

(
1

κas,T
− 1

κa
t,T

)
dκas,T . (A.2)

Next, we take expectations under the risky annuity measure A of eq. (A.2), multiply

by Aat and use that κat,T is a martingale under A. This yields

AatEA
t

[∫ T

t

σ2
sds

]
=− 2AatEA

t

[
log κaT,T − log κa

t,T

]
=2AatEA

[∫ κat,T

0

(
κ− κaT,T

)+

κ2
dκ+

∫ ∞
κat,T

(
κaT,T − κ

)+

κ2
dκ

]

=2

(∫ κat,T

0

RT (t, κ)

κ2
dκ+

∫ ∞
κat,T

PT (t, κ)

κ2
dκ

)
.

Finally, we relay the assumption on continuity of κa
t,T and follow Bondarenko (2014).

eq. (7) can be rewritten as

RVt,T =− 2 log
κatn,T
κat0,T

+ 2
n∑
i=1

(
κati,T − κ

a
ti−1,T

κati−1,T

)

=2

(
κatn,T − κ

a
t0,T

κat0,T
− log

κatn,T
κat0,T

)
+ 2

n∑
i=1

(
1

κati−1,T

− 1

κat0,T

)(
κati,T − κ

a
ti−1,T

)
=2

(∫ κat,T

0

1

κ2

(
K − κaT,T

)+
dκ+

∫ ∞
κat,T

1

κ2

(
κaT,T − κ

)+
dκ

)

+ 2
n∑
i=1

(
1

κati−1,T

− 1

κat0,T

)(
κati,T − κ

a
ti−1,T

)
,

where the last equation follows from eq. (A.1).
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Appendix B. Credit risk premiums

To get a better understanding of (semi-) variance risk premiums, we study risk pre-

miums with direct exposure to credit risk. Therefore, we consider the following strategy.

Each month, we enter into a forward-starting CDIS (receiving the fixed leg, paying the

floating leg in the underlying CDIS strategy) one day after the expiry date of CDX NA IG

index options, denoted by t0. The expiration date of the forward-starting CDIS, denoted

by T , coincides with the expiry date of CDX NA IG index options in the succeeding

month. We hold the forward-starting CDIS until maturity, at which it becomes the spot

CDIS. Denote by κt,T the forward CDIS spread at time t ∈ [t0, T ]. Since CDIS are traded

with a standard coupon κ for a given notional N , the value of the forward-starting CDIS

at t ∈ [t0, T ] is

Snt,T = Ant,T
(
κnt,T − κ

)
×N.

This implies that the profit and loss at T is

(
SnT,T − Snt,T

)
×N =

[(
AnT,T

(
κnT,T − κ

))
−
(
Ant,T

(
κnt,T − κ

))]
×N.

The payoffs to this strategy are fundamentally different from the return definition of

credit variance swaps. Precisely, the payoff bearing direct credit risk is the profit or loss

for a given, time-invariant notional investment N in forward-CDIS. In order to make

the latter comparable to credit variance risk premiums, we borrow the idea of Duarte,

Longstaff, and Yu (2007). We assume an initial amount of capital, X, which is needed to

enter into a forward-CDIS. X is not necessarily the same as N . Accordingly, the excess

return of our strategy reads (
SnT,T − Snt,T

)
×N

X
.

We adjust X in order to generate the same unconditional volatility of our estimated

credit variance risk premium. Trolle and Schwartz (2014) employ a similar approach for

measuring variance and skewness risk premiums in USD and EUR denominated swaptions

markets.
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Table 1: CDX North America Investment Grade 5 year options data set
This table summarizes information on options written on the CDX North America Investment Grade 5 year index. The options data is
grouped into buckets depending on the time to maturity. For each bucket, we report the number of days with observed quotes, average
and median time to maturity, moneyness level, and number of strikes per maturity. Panel A displays the statistics on our sample across
on-the-run and off-the-run, whereas Panel B and Panel C focus soley on on-the-run and off-the-run, respectively.

Maturity Bucket

Days ≤ 30 30 < Days ≤ 60 60 < Days ≤ 90 90 < Days ≤ 120 120 < Days ≤ 150 150 < Days ≤ 180 Days > 180

Panel A: On- and off-the-run
# Active Days 1381 1399 1451 1364 1051 704 538
Time To Maturity Mean 17.76 45.67 75.04 105.49 135.33 164.15 205.88

Median 19 47 76 105 134 163 198
Moneyness Mean 0.89 - 1.28 0.83 - 1.52 0.80 - 1.62 0.78 - 1.67 0.77 - 1.71 0.76 - 1.69 0.75 - 1.65

Median 0.89 - 1.25 0.83 - 1.50 0.80 - 1.62 0.78 - 1.66 0.77 - 1.69 0.76 - 1.69 0.75 - 1.65
Number of Strikes Mean 9.20 13.66 15.36 15.46 15.44 14.87 12.90

Median 9 14 15 15 15 15 12

Panel B: On-the-run
# Active Days 1381 1399 1451 1364 1051 704 538
Time To Maturity Mean 17.72 45.61 75.01 105.47 135.33 164.13 205.96

Median 19 47 76 105 134 163 198
Moneyness Mean 0.89 - 1.28 0.83 - 1.52 0.80 - 1.62 0.78 - 1.67 0.77 - 1.71 0.76 - 1.69 0.75 - 1.65

Median 0.89 - 1.25 0.83 - 1.50 0.80 - 1.62 0.78 - 1.66 0.77 - 1.69 0.76 - 1.69 0.75 - 1.65
Number of Strikes Mean 9.19 13.67 15.37 15.51 15.46 14.89 12.91

Median 9 14 15 15 15 15 12

Panel C: Off-the-run
# Active Days 16 17 14 15 2 9 2
Time To Maturity Mean 21.75 50.53 77.73 106.82 134.50 165.78 183.50

Median 26 55 83 106 134.50 162 183.50
Moneyness Mean 0.88 - 1.32 0.83 - 1.52 0.81 - 1.58 0.82 - 1.53 0.84 - 1.55 0.77 - 1.58 0.83 - 1.71

Median 0.88 - 1.31 0.83 - 1.47 0.81 - 1.62 0.82 - 1.52 0.84 - 1.55 0.79 - 1.56 0.83 - 1.71
Number of Strikes Mean 9.69 13.24 14.33 11.82 9 13 10.50

Median 9.50 14 15 12 9 13 10.50
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Table 2: Summary statistics on credit implied volatility
This table reports the summary statistics of credit implied volatilities for three maturities
(45, 75, and 105 days) over the sample period from March 2012 to September 2018.
Columns (3)-(8) report the mean, standard deviation, skewness, kurtosis, minimum, and
maximum. Levels and first differences of log values of the three implied volatility time
series are considered.

Type Maturity Mean Std Skewness Kurtosis Min Max

Levels 45 0.474 0.066 0.603 3.101 0.336 0.719
75 0.487 0.057 0.395 2.832 0.361 0.673
105 0.495 0.052 0.282 2.763 0.376 0.647

Log changes 45 -0.000 0.039 0.324 4.534 -0.131 0.185
75 -0.000 0.032 0.293 4.439 -0.104 0.158
105 -0.000 0.029 0.221 4.496 -0.103 0.146

Table 3: Principal component analysis of credit implied volatility
This table reports the summary statistics of performing principal component analysis
on log-changes of credit implied volatilities for three maturities (45, 75, and 105 days)
over the sample period from March 2012 to September 2018. Columns (1)-(3) display
the coefficients on the three maturities. The second to last row denotes the amount of
variation explained by the first (first cell), second (second cell), and third (third cell)
principal component.

Maturity PC 1 PC 2 PC 3

45 0.665 0.562 0.492
75 0.656 -0.125 -0.744
105 0.357 -0.818 0.452

Variance (%) 96.394 3.274 0.332
Cumulative variance (%) 96.394 99.668 100.000
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Table 4: Summary statistics on credit variance risk premiums
This table reports monthly summary statistics for the CVP and payer and receiver credit variance risk premiums over the sample period
from March 2012 to September 2018. CVP is given as the monthly return defined by RVt,T/IVt,T − 1, where IVt,T is the implied variance
and RVt,T the realized daily variance over a monthly period. The payer and receiver variance risk premium is defined analogously. Columns
(2)-(9) report the mean, standard deviation, maximum, skewness, kurtosis, Sortino ratio, Stutzer ratio and Sharpe ratio. Standard errors
are computed using Newey and West (1987) accounting for autocorrelation and hetereoscedasticity with optimal bandwidth. Sharpe
ratios are corrected for return-autocorrelation using the approach of Lo (2002). *, **, and *** denote significance at the 10%, 5% and
1% levels, respectively.

Strategy Mean Std Max Skewness Kurtosis Sortino Ratio Stutzer Ratio Sharpe Ratio

CVP -0.42*** 0.28 0.74 1.22 5.37 -2.01 -1.21 -5.62
(-14.06)

CVP Payer -0.51*** 0.52 1.29 1.22 4.02 -1.86 -0.86 -4.05
(-8.75)

CVP Receiver -0.26*** 0.53 1.52 0.95 4.02 -0.87 -0.46 -1.99
(-4.32)

ATM straddle -0.21*** 0.56 1.30 0.65 2.72 -0.75 -0.37 -1.25
(-3.06)

CDS 0.04 0.28 1.06 0.19 4.94 0.21 0.15 0.59
(1.49)
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Table 5: Structural model variables as drivers of the variance risk premiums
This table reports the estimation results from regressing the returns of trading strategies on the structural model variables, where ∆ Lev
is the aggregated leverage ratio, ∆ RF the change in the 10-year Treasury rate, (∆RF )2 the squared change in the 10-year Treasury rate,
∆Slope the change in the slope of the yield curve, ∆V IX the change in market volatility measured by the VIX index, ∆JUMP the
change in a jump component, RM the return on the S&P 500 index, and IRF an intermediary factor. Column (10) reports the adjusted
R2 of the regression. t-statistics are given in parentheses and adjusted for heteroskedasticity and autocorrelation using Newey and West
(1987). *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012 until
December 2017.

Strategy Constant ∆Lev ∆V IX ∆RF (∆RF )2 ∆Slope ∆JUMP RM IRF Adj. R2

CVP -0.44*** -6.78 0.01 0.24 0.69 -0.28 -0.08 -2.23 0.36 -0.05
(-9.94) (-0.62) (0.30) (0.67) (1.20) (-0.56) (-0.07) (-0.85) (0.63)

CVP Payer -0.54*** -10.70 -0.02 0.43 1.88** -0.15 -3.97** -13.07*** 1.48 0.31
(-6.25) (-0.64) (-0.54) (1.00) (2.56) (-0.23) (-2.14) (-2.75) (1.21)

CVP Receiver -0.28*** -6.42 0.03 0.19 -0.74 -0.79 5.45*** 11.72** -1.30 0.28
(-3.89) (-0.38) (1.00) (0.32) (-0.79) (-1.09) (2.81) (2.41) (-0.80)

ATM straddle -0.25*** -13.76 0.00 0.42 1.82 -0.81 2.98 1.31 -0.71 -0.07
(-3.01) (-0.79) (0.02) (0.47) (0.98) (-0.64) (1.20) (0.20) (-0.35)

CDS 0.05 -6.67 0.00 -0.31 -0.68 0.22 1.52 4.82** 0.96 0.58
(1.35) (-0.56) (0.42) (-1.07) (-1.36) (0.63) (1.45) (2.00) (1.37)
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Table 6: Risk-adjusted variance risk premiums
This table reports the estimation results from regressing the returns of trading strategies on the equity market excess return (MRKT), size
(SMB), book-to-market (HML), (RMW), (CMA) and momentum (MOM) factors. Column (8) reports the adjusted R2 of the regression.
t-statistics are given in parentheses and adjusted for heteroskedasticity and autocorrelation using Newey and West (1987). *, **, and ***
denote significance at the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012 until August 2018.

Strategy Alpha MRKT SMB HML RMW CMA MOM Adj. R2

CVP -0.40*** -1.65 0.02
(-11.37) (-1.12)
-0.39*** -2.46** 3.18** 2.53 0.53 -6.58* 0.11 0.08
(-13.03) (-2.45) (2.45) (1.41) (0.21) (-1.81) (0.09)

CVP Payer -0.41*** -8.25*** 0.21
(-6.51) (-4.10)

-0.41*** -9.47*** 5.09** 5.39* 1.51 -9.73* 0.71 0.24
(-6.75) (-5.29) (2.12) (1.74) (0.36) (-1.88) (0.40)

CVP Receiver -0.36*** 8.43*** 0.22
(-8.11) (4.08)

-0.35*** 8.14*** 0.95 -1.85 -0.58 -0.39 -1.14 0.18
(-6.86) (2.97) (0.27) (-0.64) (-0.14) (-0.11) (-0.86)

ATM straddle -0.24*** 2.20 0.00
(-3.70) (1.03)

-0.26*** 2.01 5.54 5.75 3.84 -0.21 3.91* 0.01
(-3.85) (0.86) (1.49) (1.39) (0.85) (-0.04) (1.79)

CDS -0.04* 6.80*** 0.53
(-1.69) (6.58)
-0.01 5.83*** -0.78 0.86 -2.85* -1.14 -2.11*** 0.56

(-0.78) (5.98) (-0.61) (0.74) (-1.94) (-0.55) (-2.91)
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Table 7: Expectation hypothesis regressions
This table shows results for predictive regressions. t-statistics are under the null hypoth-
esis of β0 = 0 and β1 = 1 and are adjusted for heteroscedasticity and autocorrelation
using Newey and West (1987). *, **, and *** denote significance at the 10%, 5% and 1%
levels, respectively. The sample period runs from April 2012 until August 2018.

RVt,T = β0 + β1IVt,T + εt lnRVt,T = β0 + β1 ln IVt,T + εt

Strategy β0 β1 R2 β0 β1 R2

CVP 0.00 0.42*** 0.20 -1.06 0.90 0.30
(0.98) (-3.53) (-1.17) (-0.43)

CVP Payer 0.00** 0.19*** 0.02
(2.40) (-9.13)

CVP Receiver 0.00 0.69 0.16
(0.10) (-0.81)
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Table 8: Comovement with equity market variance risk premiums
The table presents the results from regression credit variance risk premiums (CVP) on
S&P 500 and VIX variance risk premiums. Column (5) reports the adjusted R2 of the
regression. t-statistics are given in parentheses and adjusted for heteroskedasticity and
autocorrelation using Newey and West (1987). *, **, and *** denote significance at
the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012 until
December 2017.

Strategy Alpha S&P 500 VIX TLT Adj. R2

CVP -0.30*** 0.29*** 0.22
(-5.93) (3.35)

-0.37*** 0.21*** 0.31
(-11.70) (3.59)
-0.39*** 0.20*** 0.06
(-9.83) (2.83)

-0.33*** 0.13 0.15** 0.04 0.32
(-9.07) (1.35) (2.07) (0.55)

CVP Payer -0.31*** 0.45*** 0.36
(-3.80) (3.88)

-0.43*** 0.29*** 0.29
(-6.51) (4.38)

-0.53*** 0.14 0.03
(-8.50) (1.21)

-0.33*** 0.33** 0.12 0.03 0.38
(-4.27) (2.47) (1.56) (0.42)

CVP Receiver -0.10 0.51*** 0.22
(-1.43) (4.74)

-0.23*** 0.26*** 0.12
(-3.97) (4.81)

-0.29*** -0.08 -0.00
(-4.03) (-1.19)
-0.14** 0.43*** 0.12 -0.07 0.23
(-2.16) (4.01) (1.42) (-0.96)
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Table 9: Equity variance, variance-of-variance and bond-variance risk premiums
This table reports monthly summary statistics for the equity variance (calculated from S%P 500 index options), equity variance-of-variance
(calculated from VIX index options) and bond variance (calculated from options on the ETF TLT) risk premiumsover the sample period
from March 2012 to September 2018. Teh variance risk premium is given as the monthly return defined by V RP i

t,T = RVt,T/IVt,T−1, where
IVt,T is the implied variance and RVt,T the realized daily variance over a monthly period and i ∈ {CDX NA IG, S&P 500, VIX, TLT}.
Columns (2)-(9) report the mean, standard deviation, maximum, skewness, kurtosis, Sortino ratio, Stutzer ratio and Sharpe ratio. Stan-
dard errors are computed using Newey and West (1987) accounting for autocorrelation and hetereoscedasticity with optimal bandwidth.
Sharpe ratios are corrected for return-autocorrelation using the approach of Lo (2002). *, **, and *** denote significance at the 10%, 5%
and 1% levels, respectively. The sample period runs from April 2012 until December 2017.

Strategy Mean Std Max Skewness Kurtosis Sortino Ratio Stutzer Ratio Sharpe Ratio

SPX -0.43*** 0.40 1.68 2.93 14.48 -1.94 -0.79 -2.88
(-8.70)

VIX -0.25*** 0.68 2.16 1.77 5.90 -1.12 -0.34 -1.83
(-3.34)

TLT -0.17*** 0.34 1.13 1.24 5.33 -0.92 -0.45 -1.57
(-4.06)
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Table 10: Credit variance risk premium (monthly term structure)
This table documents the average credit variance risk premium defined as RVt,T/IVt,T − 1, where IVt,T denotes the implied variance and
RVt,T the realized daily variance. Risk premiums are reported for holding periods of 2, 3 and 4 months. On each month, the first trade
date after swaption expiry is selected and credit variance contract returns are computed from swaptions with 2, 3 and 4 months to expiry.
Results for payer and receiver variance contracts are also reported. t-statistics are adjusted for heteroskedasticity and autocorrelation
using Newey and West (1987). All Sharpe ratios account for return-autocorrelation according to Lo (2002). *, **, and *** denote
significance at the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012 until August 2018.

2 months 3 months 4 months

Strategy Mean Sharpe Ratio Stutzer Ratio Mean Sharpe Ratio Stutzer Ratio Mean Sharpe Ratio Stutzer Ratio

CVP -0.46*** -3.94 -1.92 -0.47*** -3.18 -2.14 -0.47*** -2.89 -2.23
(-15.11) (-14.56) (-13.81)

CVP Payer -0.59*** -2.99 -1.22 -0.63*** -2.55 -1.38 -0.66*** -2.24 -1.46
(-10.73) (-11.42) (-10.74)

CVP Receiver -0.27*** -1.17 -0.51 -0.24*** -0.85 -0.49 -0.23*** -0.79 -0.55
(-4.46) (-3.80) (-3.79)
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Table 11: Risk-adjusted variance risk premiums (term structure)
This table reports the estimation results from regression the returns of credit variance
risk premiums on the equity market excess return (MRKT), size (SMB), book-to-market
(HML), (RMW), (CMA) and momentum (MOM) factors. Variance contracts are held
over periods for 2 (Panel A), 3 (Panel B) and 4 (Panel C) months. Column (8) reports
the adjusted R2 of the regression. t-statistics are given in parentheses and adjusted for
heteroskedasticity and autocorrelation using Newey and West (1987). *, **, and ***
denote significance at the 10%, 5% and 1% levels, respectively. The sample period runs
from April 2012 until August 2018.

Strategy Alpha MRKT SMB HML RMW CMA MOM Adj. R2

Panel A: 2-month contract
CVP -0.45*** -0.60 -0.00

(-13.53) (-0.74)
-0.43*** -1.33* 1.48 0.45 -1.35 -1.13 -0.18 0.02
(-12.16) (-1.80) (1.41) (0.40) (-1.20) (-0.65) (-0.23)

CVP Payer -0.44*** -6.22*** 0.32
(-7.97) (-7.04)

-0.44*** -7.12*** 4.07** 1.39 -0.22 -1.94 1.04 0.36
(-8.20) (-8.84) (2.39) (0.96) (-0.14) (-0.84) (0.95)

CVP Receiver -0.45*** 7.76*** 0.37
(-10.54) (5.97)
-0.42*** 7.37*** -2.31 -0.89 -2.35 0.31 -1.94** 0.36
(-11.86) (4.96) (-1.08) (-0.37) (-0.97) (0.11) (-2.54)

Panel B: 3-month contract
CVP -0.44*** -0.82 0.02

(-12.27) (-1.31)
-0.42*** -1.27** 1.67* -0.60 -0.84 1.59 -0.25 0.08
(-11.98) (-2.48) (1.67) (-0.76) (-0.97) (1.25) (-0.47)

CVP Payer -0.45*** -5.25*** 0.34
(-8.06) (-8.98)

-0.47*** -5.16*** 4.74*** -0.55 3.20** 3.40* 1.77*** 0.43
(-9.92) (-7.27) (2.77) (-0.56) (2.27) (1.86) (2.74)

CVP Receiver -0.43*** 5.39*** 0.25
(-7.99) (4.89)

-0.36*** 4.29*** -2.60** -0.59 -5.72*** -1.28 -3.02*** 0.33
(-7.14) (4.16) (-2.10) (-0.56) (-3.84) (-0.66) (-4.17)

Panel C: 4-month contract
CVP -0.42*** -1.17** 0.07

(-9.42) (-2.32)
-0.38*** -1.58*** 1.48** -1.25** -0.11 2.70** -0.14 0.17
(-12.32) (-3.89) (2.19) (-2.37) (-0.14) (2.51) (-0.32)

CVP Payer -0.41*** -5.20*** 0.40
(-6.21) (-8.28)

-0.40*** -5.37*** 4.02*** -1.22 3.89*** 4.82** 1.65*** 0.49
(-6.92) (-8.78) (3.58) (-1.41) (3.04) (2.50) (2.94)

CVP Receiver -0.44*** 4.28*** 0.25
(-6.91) (4.52)

-0.37*** 3.75*** -2.05*** -1.17** -4.57*** -0.62 -2.49*** 0.31
(-13.29) (7.58) (-3.19) (-2.23) (-5.52) (-0.66) (-4.83)
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Table 12: Credit variance risk premiums from bid option quotes
This table documents the average credit variance risk premium defined as RVt,T/IVt,T − 1, where IVt,T denotes the implied variance
computed from bid option quotes and RVt,T the realized daily variance. Risk premiums are reported for holding periods of 1, 2, 3 and
4 months. On each month, the first trade date after swaption expiry is selected and credit variance contract returns are computed from
swaptions with 1, 2, 3 and 4 months to expiry. Results for payer and receiver variance contracts are also reported. t-statistics are adjusted
for heteroskedasticity and autocorrelation using Newey and West (1987). All Sharpe ratios account for return-autocorrelation according
to Lo (2002). *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012
until August 2018.

1 month 2 months 3 months 4 months

Strategy Mean Sharpe Ratio Mean Sharpe Ratio Mean Sharpe Ratio Mean Sharpe Ratio

CVP -0.20*** -1.86 -0.35*** -2.37 -0.39*** -2.26 -0.40*** -2.14
(-4.69) (-9.19) (-10.36) (-10.24)

CVP Payer -0.37*** -2.21 -0.52*** -2.28 -0.59*** -2.14 -0.62*** -1.91
(-4.73) (-8.18) (-9.57) (-9.17)

CVP Receiver 0.09 0.51 -0.03 -0.11 -0.05 -0.16 -0.07 -0.22
(1.08) (-0.41) (-0.70) (-1.03)
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Table 13: Predictive regressions St. Louis Fed Stress Index
This table reports the estimation results from weekly regressions of the St. Louis Fed
Stress Index (STLFSI) onto CIV squared and the slope of CIV, slopeCIV, i.e.

STLFSIt+n = αn + βCIV
n CIV2 + βslope CIV

n slopeCIV + εt+n, n ∈ {0, 4, 8, 12}.
CIV denotes credit implied volatility with 45 days to maturity. slopeCIV is measured
by the difference between implied variance with 105 and 45 days to maturity. All vari-
ables are standardized, that means de-meaned and divided by their respective standard
deviation. t-statistics are given in parentheses and adjusted for heteroskedasticity and
autocorrelation using Newey and West (1987). *, **, and *** denote significance at the
10%, 5% and 1% levels, respectively.The sample period runs from April 2012 until August
2018.

α CIV2 slopeCIV Adj. R2

Panel A: Contemp.
-0.00 0.63*** 0.39

(-0.00) (6.68)
-0.00 -0.11 0.01

(-0.00) (-0.85)
-0.00 0.63*** 0.01 0.39

(-0.00) (7.05) (0.12)

Panel B: 4 weeks
-0.02 0.57*** 0.32

(-0.23) (6.50)
-0.02 -0.08 0.00

(-0.13) (-0.76)
-0.02 0.57*** 0.03 0.32

(-0.23) (6.60) (0.32)

Panel C: 8 weeks
-0.06 0.43*** 0.19

(-0.52) (5.52)
-0.05 -0.05 -0.00

(-0.36) (-0.55)
-0.06 0.44*** 0.03 0.19

(-0.52) (5.59) (0.57)
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Table 14: Predictive regressions St. Louis Fed Stress Index (orthogonalized)
This table reports the estimation results from weekly regressions of the St. Louis Fed
Stress Index ( ˆSTLFSI), orthogonalized with respect to VIX and MOVE, onto CIV squared
and the slope of CIV, slopeCIV, i.e.

ˆSTLFSIt+n = αn + βCIV
n CIV2 + βslope CIV

n slopeCIV + εt+n, n ∈ {0, 4, 8, 12}.
CIV denotes credit implied volatility with 45 days to maturity. slopeCIV is measured
by the difference between implied variance with 105 and 45 days to maturity. All vari-
ables are standardized, that means de-meaned and divided by their respective standard
deviation. t-statistics are given in parentheses and adjusted for heteroskedasticity and
autocorrelation using Newey and West (1987). *, **, and *** denote significance at
the 10%, 5% and 1% levels, respectively. The sample period runs from April 2012 until
August 2018.

α CIV2 slopeCIV Adj. R2

Panel A: Contemp.
-0.00 0.05 -0.00

(-0.00) (0.46)
-0.00 0.21** 0.04

(-0.00) (2.47)
-0.00 0.09 0.22** 0.04

(-0.00) (1.00) (2.41)

Panel B: 4 weeks
-0.02 0.29*** 0.08

(-0.16) (3.18)
-0.02 -0.00 -0.00

(-0.13) (-0.04)
-0.02 0.30*** 0.06 0.08

(-0.16) (3.31) (0.75)

Panel C: 8 weeks
-0.05 0.32*** 0.10

(-0.44) (4.00)
-0.04 -0.13 0.02

(-0.35) (-1.12)
-0.05 0.30*** -0.08 0.10

(-0.45) (3.81) (-1.34)
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Fig. 1. Credit implied volatility.
The figure shows the time series of credit implied volatility for three different constant
maturities (45, 75, and 105 days) over the sample period from March 2012 to Septem-
ber 2018. Implied volatility is the annualized square-root of implied variance; that is√

(T − t)IVt,T , where IVt,T is defined in eq. (8).
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Fig. 2. Credit variance risk premiums
The left graph depicts the monthly realized variances RVt,T and the implied variances
IVt,T constructed from CDX North America Investment Grade index options. The right
graph shows the corresponding returns which are defined as RVt,T/IVt,T −1. Each month
the return is computed such that T corresponds to the expiry date of the Investment
Grade index options.
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Fig. 3. Realized versus implied characteristics for payer and receiver credit variance risk
swaps
The top left graph depicts the monthly realized payer-variances and their respective
implied variances. The top right graph shows the corresponding returns which are defined
by the barriers Bd = 0 and Bu = κat0,T . Each month the return is computed such that
T corresponds to the expiry date of the CDX North America Investment Grade index
options. The bottom left and right graphs depict receiver variances where Bd = κat0,T and
Bu =∞.
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Fig. 4. Credit variance risk premiums from bid prices
The left graph depicts the monthly realized variances RVt,T and the implied variances
IVt,T constructed from CDX North America Investment Grade index options. The right
graph shows the corresponding returns which are defined as RVt,T/IVt,T − 1. Estimation
of IVt,T is based on bid swaption prices to account for transaction costs. Each month the
return is computed such that T corresponds to the expiry date of the Investment Grade
index options.
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