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Abstract

I analyze the optimal information disclosure problem under commitment of a “contest de-
signer” in a class of binary action contests with incomplete information about the abilities of the
players. If the contest designer wants to incentivize the players to play in equilibrium a particular
strategy profile, she can design an information disclosure rule, formally a stochastic communi-
cation mechanism, to which she will commit and then use to “talk” with the players. The main
tool to carry out the analysis is the concept of Bayes Correlated Equilibrium recently introduced
in the literature. I find that the optimal information disclosure rules involve private information
revelation (manipulation), which is also cost-effective for the designer. Furthermore, the optimal
disclosure rule involves asymmetric and in most cases correlated signals that convey only partial
information about the abilities of the players.

JEL classification: C72, C79, D44, D82, D83.
Keywords: information design, contests, implementation, incomplete information, Bayes Correlated

Equilibrium.

1 Introduction

Have you ever wondered why the hare took a nap? Everybody knows well the fable.! But how many
of us ever think about who organized such a curious contest. Imagine there was a fox behind it. He
decided the where, when and who of the competition. He could also speak with the contestants before

the big hour. Maybe he told the tortoise not to give up, the hare is the fastest but weird things could
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happen. Talking to the hare, he may drop that it takes half a day for the tortoise to walk a similar
distance. We all know the end of the story: the tortoise won and the fox made a fortune betting
against the hare. Let us take a look at how the fox did the magic.

The trick lies in the position of the fox. An agent with privileged information can use it in its
favor. We have a lot of examples from daily life. A pollster could influence an election by sharing
some information with the parties running in the election. Imagine there are two candidates and
candidate A has a slight advantage over candidate B. The pollster can convince candidate B that in
the last poll there was a technical draw. So the campaign strategy must adapt if they want to get
more votes and be the winners. The pollster can share the information with candidate A or not. If the
pollster shares, the candidate can adapt immediately so he can compete in the new scenario. But if
the candidate does not get the information, adaption will take time and he could loose valuable votes.

Many examples abound where there is a third party who is in a position to alter the final results
of a “competition” by modifying, in first instance, the behavior of the participants. The key is the
tools that she posses and the way she uses them. For example, the third party could alter monetary
rewards. But instead, she can do the magic by manipulating the information that the players observe,
without increasing her costs. Without further ado, let us turn to the matter in hand.

I present a model that illustrates how information manipulation can be used to alter the results of
a contest. The model is deliberately simple so as to derive its conclusions with minimal fuss while at
the same time providing a rich ground for its analysis.

Consider a principal who intends to organize a contest between two players. The principal, which
we identify as she, henceforth will be referred to as “the contest designer”. In the contest there is a
prize that is to be awarded to the player, each of which we identify as he, with the highest output.
The output from each player is determined by his innate ability and the effort that he undertakes.
Each player is presumed to always know his ability. The contest designer acts as a third-party to
the contest between the players in the sense that she does not participate in the strategic interaction
between the players. We assume that the designer cannot manipulate the structure of the contest but
can only manipulate the information that the players observe by communicating it to them.

The contest, whose basic structure follows the one in Dubey (2013), belongs to a class of games
with binary actions, namely to shirk or work, and with incomplete information about the abilities
of the players, which are also assumed to be binary, either weak or strong. The class of contests
is parameterized by the value of a common prize, the cost of exerting effort, the private first-order
beliefs that the players hold about their rival’s ability and the value to the designer, in terms of output
produced, of the effort profile chosen by the players.

The designer wants to manipulate the beliefs of the players so that they play in equilibrium a
particular effort profile. In order to carry out this manipulation, the contest designer can design an
information disclosure rule, which formally is a stochastic communication mechanism, to which she
will commit and then use to “talk” to the players. This structure endows the contest designer with
more commitment power in the sense that it will allow her to commit to send any distribution of

messages that she desires as a function of the realized ability vector before learning it. This communi-



cation structure will become publicly known to the players. After this stage, the agents will observe
the realized messages according to the information disclosure rule and will update their beliefs about
the ability of their rival, i.e. their first-order beliefs, their beliefs about the first-order beliefs of their
rival, i.e. their second-order beliefs, and so on.

The main tool to carry out the analysis and search for the optimal information disclosure rule
follows the general methodology introduced in Taneva (2015). The goal of the designer is to design
an information disclosure rule for each contest which will induce an effort profile as a Bayes Nash
Equilibrium (BNE) with the property that such profile maximizes the designer’s objective in expec-
tation. Under this view, the designer would have to first characterize the set of all BNE under all
possible information structures. The novelty here is that in contrast to Taneva (2015), we have an
environment in which the players already possess private information about their abilities, so the set
of information structures that we consider need to respect this restriction. Although performing this
characterization program seems like an insurmountable task, we follow Taneva’s approach in which
we appeal to the notion of Bayes Correlated Equilibrium, introduced by Bergemann and Morris (2016),
which will allow us to characterize the set of all Bayes Nash Equilibria associated with each contest
and with the prior private information of the players. Given the assumption that the players already
have some prior private information about the ability of their rival, we need to use the full power
of Bergemann and Morris’s result? It turns out that in our contest environment in which the players
are informed of their own ability, it comes at almost no cost extending the characterization of Taneva
since the players have distributed knowledge® of the ability vector. Thus, when the designer learns
the true ability vector before communicating with the players, she does not know anything more that
the players already don’t know when they pool their information together.

We find that optimal information disclosure rules in contests involve private information revela-
tion (manipulation). The optimal disclosure rule involves asymmetric and, in a robust set of parame-
ters, correlated messages to each player. The messages involved in the optimal information disclosure
rule convey only partial information about the abilities of the players. The intuition behind this result
can be most clearly understood in the two player contest environment that we describe in this paper.
When both players have similar abilities, in an ex post assessment of the contest the players find that
the competition is evenly poised and each player will find it worthwhile to put effort since they have
an equal shot at obtaining the prize. On the other hand, when the players have disparate abilities, an
ex post assessment of the contest would lead the players to shirk with high probability, particularly
for the strong player. Thus if it were possible, it would be in the interest of the designer to fully
and publicly inform the players when they are similar and tell them nothing when they are different.
However, no information disclosure rule can implement the previous state of affairs, since giving full

and public information when the players are similar immediately makes it common knowledge not

2Theorem 1 in Bergemann and Morris (2016) which provides an epistemic relationship between the set of Bayes Cor-
related Equilibria under some initial information structure and the set of Bayes Nash Equilibria under all information
structures that expand the first one.

3The two players, by pooling their knowledge together, can deduce the full ability vector. See Fagin, Halpern, Moses,
and Vardi (2004, p. 23). Bergemann and Morris (2013) call this property distributed certainty in a language that is more
standard in the game theory literature.



only this fact but also the corresponding event when the players hear nothing when they are differ-
ent. Therefore, it will be in the interest of the designer to only partially reveal information in such a
way that the true ability vector never becomes common knowledge. This is one of the reasons that
makes private information necessary. It turns out that it is the beliefs of the weak player that drive
the incentive to put effort in the contest, since it is his actions and beliefs when competing against a
strong player that actually motivate the strong to work. Hence, the optimal revelation scheme alters
not only the first-order beliefs of the players but also the higher-order hierarchies in a non-trivial way.
Precisely for the previous reasons, public revelation of information is not optimal, since it generates
symmetric hierarchies of beliefs even when the players are different in their abilities. In particular,
for a robust set of parameters, the optimal information scheme follows the rule of informing the under-
dog: at some messages, the weak player will become more informed, with respect to his prior private
information, about the ability vector; whereas at other messages, the weak player will become fully
informed of the ability vector; however, neither these two facts will be common knowledge between
the two players.

The explicit characterization of the optimal information disclosure rule for every contest allows
us to perform an important comparative statics analysis. Suppose that the prize the designer awards
consists of a fraction of the total output produced by the contestants. In this scenario, the designer
can engage in information design while at the same time altering the value of the prize. While the
“revenue” side of information design is intuitively well understood, we are know attaching a “cost” to
actually carrying out the information manipulation. We find necessary and sufficient conditions on
the parameters of the game to ensure that a private, asymmetric and partial information revelation
scheme is optimal for the designer and I also provide conditions for when it is the case that giving
no information is optimal. The main message is that we find that under a robust set of parameters
for which manipulating information while giving a relatively small prize is doubly optimal: it does
not only provide incentives for the players to work but it also does it in the most cost-efficient way
possible.

The rest of the section is devoted to a survey of the related literature.

1.1 Literature Review

This paper belongs to a very recent and active literature on information design. This strand of the
literature about communication in games is different from the cheap talk literature as established
by Crawford and Sobel (1982) because the assumption that the information designer can credibly
commit to an information transmission strategy before learning the true state of the world. The
one-agent version of the problem has been extensively studied in the literature since the seminal
contribution of Kamenica and Gentzkow (2011) on Bayesian Persuasion, which is preceded by the
works of Aumann, Maschler, and Stearns (1995), Brocas and Carrillo (2007) and Benoit and Dubra
(2011). Kamenica and Gentzkow provide a characterization of the optimal information design problem
for the case of a single sender and receiver using techniques from convex analysis. Their elegant

results allows for a clear characterization of optimality of an information structure in the single-



agent case. Since then, the one agent-version has been the subject of a productive effort by many
authors in many different areas and applications (e.g. Gentzkow and Kamenica (2014); Ely, Frankel,
and Kamenica (2015); Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017); Lipnowski and Mathevet
(2018), to name a few).

On the other hand, the theory of information design in games is still at an early stage. Never-
theless, optimal solutions have been derived in specific environments, for example as in Vives (1988);
Morris and Shin (2002) and Angeletos and Pavan (2007). The most closely related papers to this one
in terms of techniques are Taneva (2015) and Bergemann and Morris (2016), as both provide the sys-
tematic approach, based on a revelation-principle style methodology, to approach information design
problems. As mentioned before, the method is based on the notion of Bayes Correlated Equilibrium
that characterizes all Bayes Nash Equilibrium outcomes under all possible information structures. We
take advantage of this formulation to simplify and fully characterize the information design problem
in contests discussed in this paper. Another closely related paper is Mathevet, Perego, and Taneva
(2016) in which they push forward the theory to provide a characterization of the solution to the in-
formation design problem in terms of belief-hierarchy distribution instead of information structures.
This allows them to provide an expression of the optimal solution in games in terms of an optimal
private and public component, where the later part comes from concavification, effectively extend-
ing Kamenica and Gentzkow’s characterization. Their results assume no prior private information
from the players. In particular, they discuss some qualitative properties of belief-hierarchy distri-
butions and information structures which we adapt for our problem of a contest with prior private
information from the players.

For a recent an in-depth survey of the literature on information design, the reader is encouraged
to consult Bergemann and Morris (2018) and Kamenica (2018).

The literature on asymmetric information and information disclosure in contests motivates this
paper. These issues have been the focus of recent work (Fey, 2008; Lim and Matros, 2009; Miinster,
2009; Morath and Miinster, 2013; Epstein and Mealem, 2013; Giirtler, Miinster, and Nieken, 2013;
Fu, Giirtler, and Minster, 2013; Dubey, 2013; Denter, Morgan, and Sisak, 2014; Fu, Lu, and Zhang,
2016; Einy, Moreno, and Shitovitz, 2017). Some of these papers study issues related to how an agent
should disclose information about his private attributes. Other papers in which a designer is present,
study how a designer should disclose “performance evaluations” or study disclosure policies in a one-
sided asymmetric information environment. In particular, Lim and Matros (2009) and Fu et al. (2013,
2016) consider the problem of how to reveal information about contestants entries when these are
stochastic. Denter et al. (2014) analyze the incentives of a privately informed contestant to disclose his
information to his opponent and the incentives for transparency of the designer. Dubey (2013), from
which we take the basic environment, analyzes the impact of null versus complete information in a
contest in terms of expected output from the players. These last strand of articles focus on comparing
the cases of no disclosure versus full disclosure. In this paper, we extend the discussion towards ana-
lyzing partial information disclosure rules and contribute towards a classification of their qualitative

richness and their impact in manipulating the behavior of the players. We also find that focusing



only on no disclosure versus full disclosure is with loss of generality, since the optimal information
disclosure rules require in general partial revelation of information.

A closely related paper is Zhang and Zhou (2016), in which they analyze the Bayesian persuasion
problem in a Tullock contest with one-sided asymmetric information. They assume that one contes-
tant has imperfect information about the cost function of his opponent while the other one is perfectly
informed. The contest designer decides how to disclose this information to the imperfectly informed
contestant using general disclosure rules with can span the whole spectrum between null disclosure
to full disclosure. However, in their analysis, they focus on public disclosure rules, which buys them
a great deal of technical convenience, since they can apply the insights from Kamenica and Gentzkow
to find an optimal solution in their problem. Compared to Zhang and Zhou, our paper extends the
analysis of optimal information disclosure in contests in two directions: we assume all contestants
to have incomplete information about while holding private information about the a payoff relevant
parameter of the contest, and we allow for fully general information disclosure rules, since the dis-
tinction between public and private information and full versus partial disclosure becomes crucial in
contests.

Finally, another very closed related paper is Kramm (2018), who focuses on a multi-task Tullock
contest in which there is incomplete information from all players about how the success in the contest
will depend on the effort mixture put on different tasks. Kramm also considers a methodology inspired
by Bergemann and Morris (2016) to solve for the optimal information policy. A feature in Kramm’s
contest environment is that the players do not hold any prior private information. Nevertheless he
derives similar results to ours: he also finds that there is an important distinction between private
and public information and that in order for the information disclosure policy to benefit the designer,
private information provides the right informational advantage for the players to behave in the way
that the designer intends. In his environment, he finds that optimal information disclosure involves
sometimes disclosing information to a weak player in a particular task while in other scenarios it is
optimal to inform only contestants who are strong in a particular task. Compare this to our results
that say that in general both players should be partially informed while in some cases the weak player
becomes fully informed. However, the nature of the information disclosure rule in this paper is such
that the event that a player becomes fully informed does not become common knowledge when it
happens. Also the information disclosure policy sometimes leaves first-order beliefs untouched while
operating on the second and higher-order hierarchy.

The rest of the chapter follows the following structure. In section 2 we present the description
of the model: the contest designer and the players; the role of the designer in manipulating infor-
mation; and the extended game that is induced by the designer’s choice of information disclosure
rule. Section 3 describes the role of the Bayes Correlated Equilibrium notion in simplifying the op-
timal information disclosure problem in the contest. Section 4 presents the characterization of the
equilibrium behavior for two particular information disclosure rules; these results will be ancillary to
establishing and comparing the main results of the paper. Section 5 presents the main results of the

paper, namely the full characterization of the optimal information disclosure rules for the family of



contest that we are considering and the cost-benefit analysis of designing information in the contest.

Section 6 concludes and describes some extensions and avenues for future research.

2 Model

A principal, which we will refer from now on as the contest designer, intends to run a contest between
two players. The contest designer acts as an external agent to the contest between the players and
her only role is to disclose information to the players but other than that she does not participate
in the strategic interaction. In particular, we assume that the contest designer can only manipulate
information, but not the structure of the contest.

The contest between the two players follows the structure of the basic model in Dubey (2013),
from which we take the particular specification of the contest.

The two players are assumed to be risk neutral and ex-ante symmetric. Each player i € {1,2}
can have one of two abilities, a@; € {«,B} = A; C R, where @« < f. Thus, we identify o with a
weak player and B with a strong player. Each player can choose from two effort levels e; € {0,1} =
{Shirk, Work} = E;. As usual,a € A = A; x A, will denote the ability vector ande € E = E; x E»
the effort vector.

Each player i, given his ability and effort chosen, produces output according to the production

function f : E; x A; — R given by

a; ife; =0

k(aj)a; ife; =1

flei,a;) =

where £ : A; — R is a function such such that £(a;) > 1 for every a; € A; and every i. For both
players, the marginal cost of putting effort is x > 0 and they both put a common value v > 0 on a
prize, which is awarded in full to the player with the higher output and randomized equally in case

of a tie. Thus, each player i has a payoff function u; : E x A — R given by

v—uxe; if f(ej,a;) > f(ej,a;)
ui(e.a) = ¢ ¥ —xe; if f(e;j,a;) = f(ej,aj) (2.1)
—xe; if f(ei,ai) < f(ej,ay)

For reasons that will become clear later, it will be convenient to perform a normalization of the
payoffs in (2.1). Formally, let F : R4 — R, be the positive linear transformation given by f(u) =
u/v. Let ¢ = x/v > 0 denote the normalized marginal cost of working. The normalized payoffs are

given by



1 —¢e; if f(ei,ai) > f(ej,aj),
di(e,a) = f(ui(e.a)) = { 2 —e; if f(ei,ai) = flej.aj), (2.2)
—pe; if f(ei,ai) < f(ej,aj).

We will impose some assumptions on the parameters of the model to make the analysis tractable

and comparable with the results in Dubey (2013).

A1l. (Minimum valuation). ¢ < 1, or equivalently » < v. This assumption precludes that the contest
does not become trivial by making shirking strictly dominant under any information structure.
This assumption enables us to focus on the failure to work caused by strategic competition.
Notice that when ¢ < 1/2 or equivalently 2 < v, the prize is large enough to guarantee even

if it is split equally in the case of a tie, the players still find it worthwile to put effort.
A2. (Monotonicity of Output). £(a;)a; is strictly monotonic for each a; € A; and every i.

A3. (Ordering of Output). B < k(a)x. This assumption is concerned with the ordering of 4 (o)«
and B, i.e. the output when the weak player works and the one from the strong player when he
shirks respectively. Intuitively, this assumption says that if a weak player works, then he can

beat a strong player who shirks.

Let K C Ri 4 denote the set of productivities that satisfy assumptions A.2 and A.3,

K = {(o. . k(). (B)) € RE | < f < k(@) < £(B)B}.

An arbitrary 4-tuple from this set will be denoted by k.

We will assume that the players are privately and independently informed of their own ability and
that their beliefs* about their rival’s ability after being informed is constant across abilities, strictly
positive and symmetric between players. These restrictions imply the existence of a symmetric, sta-
tistically independent common prior from which the posterior beliefs are derived. We can collect the

previous observations into the following assumption.
A4. (Common prior & Constant beliefs). For each player i = 1,2, the posterior beliefs about the
vector of abilities a € A are symmetric between players and constant across abilities, i.e.

prob(a|a) = prob(a|B) = ¥ € (0,1).

These beliefs are induced by a common prior P7, that satisfies statistical independence, as fol-

lows:
v(@a) =92, Py(a.f) =Py (B.a) =v(1—v), Py(B.B) = (1—¥)>,

therefore’ pr € int(A (A)). Abusing notation, we will identify P?h with .

4Formally, these are the first order beliefs of the players about the state a € A
SFor any set X, A(X) denotes the set of probability measures.



The Contest designer’s preferences over states and outcomes can also be represented by a utility
function v : E x A — R. In this paper, we make the assumption the designer has additive preferences
over the output of the players, specifically, he cares about total output:

v(e,a) = Z fei,ai).

ie{1,2}

We also assume that the designer shares the prior ¥ with the players.

The collection Cy. ¢ = ((4;, Ei,Ui)i=1,2, V) defines a contest for each (¥, ¢). Assumptions A.1-
A.4 constrain the set of possible values of (, ¢) to the open rectangle (0,1) x (0,1) C R2. Any
contest corresponds to a point in this rectangle, so let C = (0, 1)? and by an abuse of notation we
identify each Cy, 4 with the point (y, ¢) € C. Each (¥, ¢) has four payoff relevant states, which can
be represented by four bimatrix games. Under assumptions A.1-A .4, the game (v, ¢) is as in Figure 1
where we use the normalized payoffs as defined in equation (2.2).

We define a contest environment to be the set of all contests (¥, ¢) € C as parameterized by

(¥, ¢,k) € C x K. All of our analysis will be confined to this set of contest environments.

oo w S of w S
W 1-¢.1—90 | 1-9.0 W —¢p.1—¢ 1—¢.0
N 0,1—¢ 3% S 0.1—¢ 0,1
Prob. 2 Prob. ¥ (1 — )
Ba w S BB w S
w 1—¢.—¢ 1—¢.0 14 5—¢.3—¢ | 1-9.0
S 0,1—¢ 1,0 S 0,1-¢ 1.3
Prob. y(1 — ) Prob. (1 —)?

Figure 1: The contest (v, ¢) under assumptions A.1-A.4: normalized payoffs.

2.1 Information disclosure rules

The desiger has the ability to manipulate information and moreover to bring new information of his
own to the table. The designer, with her knowledge of the priorys and before learning the state a € A4,
commits to an information disclosure rule.

Definition 2.1. An information disclosure rule is a set of finite messages M;, one for each player,
and a family of conditional probability distributionsw : A — A(M), where M = My x M>.
For each a € A, the notation r(:|a) denotes the probability distribution over M conditional on the

state a. Since we are assuming that M is finite, we can represent w as a family of vectors:

((r(mla))menm) ge 4-



We denote the information disclosure rule by D = ((M;)i=1,2, 7).
The next example illustrates three particular disclosure rules.

Example 2.2. The null informatation rule, denoted N, provides now new information to the players.
Formally, N = ((M;)i=1,2, 7) where M; = {&} for eachi = 1,2 and n(-|a) = [(&, @)] for® alla € A.

The complete information rule, denotes €, publicly reveals the private information of the players,
i.e. fully reveals their abilities. Formally, € = ((M;)i=1,2.7), M;i = {S,D},i = 1,2, n(-la) = [(S,S)]
when a € {«, B} and 7 (-|a) = [(D, D)] when a € {«f, Ba}.

A middle ground between the previous two is the p-g disclosure rule, denoted by D, 4. Formally,
Dpg = (Mi)i=12.7), Mi = {5.D.2},i = 1.2 and n(-|]a) = p[(S.S)] + (1 — p)[(@. )] when
a € {a, B} and 7 (-|la) = q[(D,D)] + (1 — ¢)[(@, @)] when a € {af, fa}. Intuitively, this rule behaves
as if the designer had two weighted coins. The designer uses the coin with weight p in the event that
the players are similar, in which he publicly reveals the state with probability p and says nothing
with probability 1 — p; and uses the coin with weight ¢ in the event that the players are different, in
which he publicly reveals the state with probability ¢ and says nothing with probability 1 —¢q. <«

After choosing D, its structure is publicly announced to the players, i.e. it is made common
knowledge. This means that the players will become aware of how the designer will communicate
with them in terms of messages and the probability of hearing a particular message. After the infor-
mation disclosure rule D becomes common knowledge, the designer learns a € A and sends privately
a message to each player according to 7 : A — A(M). Notice that the disclosure rule D induces a
Bayesian Game over each (v, ¢) € C, which we denote I'p y 4.

In the game I'p ¢, players will choose a behavioral stragegy o; : Ai xM; — A(E;). The following
definition’ is standard.

Definition 2.3. Let 0 = (0;)i=1,2 be a profile of behavioral strategies in I'p y. 4. The profile o is a
Bayes Nash Equilibrium (BNE) if for every playeri € {1,2}, for everya; € A;, for everym; € M; we
have that

supp(oi (-lai,m;)) € arg max Z prob(ajai)m(mi, mjla)oj(ejla;,m;)ii(e;, ej, a).
el{EE,' e;.,mj,a;

Let €(D, ¥, ¢) denote the set of Bayes Nash Equilibria of I'p ¢ .

Depending on the context, we sometimes suppress the dependence on (v, ¢) on the induced game
I'p. and its equilibrium set € (D).

®The notation [x] denotes the probability measure that puts probability one on the point x.

"For a probability measure p € A(X), where X is a discrete space, the support p is the set of points with strictly positive
probability, i.e. supp(p) = {x € X|p(x) > 0}.
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2.2 The contest design (information) problem

The expected payoff for the designer of information disclosure rule £ and any strategy profile o from

the players is

V(D.0:9.¢.k) =Y P(a)| Y w(mla) [] oileilai.mi) | ve.a). (2.3)

meM i=1,2

The information design problem for the contest designer is given by

VY, ¢, k) = mia)lxge(gn(nvzfi’)é’@) V(D,o: ¥, ¢, k). (2.4)
Notice that in problem (2.4) we are assuming a selection criteria for equilibria® which is the one that
benefits the designer, in case there is multiplicity of equilibria in I'p  ¢.

If we can find an optimal information disclosure rule O* that solves problem (2.4), it is not guar-
anteed that such a rule will induce a unique equilibrium in the extended game. The only thing that
we can guarantee is that in the game induced by £* there will be an equilibrium ¢ * that will achieve
the best effort profile for the designer. However, it may be the case that the optimal information
disclosure rule also induces other equilibria different from ¢*. Thus, an important question is what
equilibrium effort profiles such equilibria engender and how these compare to the ones generated by
the profile 6*. In order to answer this question we will need to characterize the whole equilibrium
set €(D*, ¥, ¢) of the extended game generated by the optimal information disclosure rule.

The next subsection introduces adequate notation and some definitions that will help us to char-

acterize the equilibrium set.

2.3 The game and beliefs induced by an information disclosure rule
2.3.1 The induced game and the extended type space

Recall that, as described in subsection 2.1, once the information disclosure rule is chosen by the de-
signer, he commits to it, in the sense that its probabilistic structure is disclosed publicly to the players,
i.e. it is made common knowledge. Afterwards, the information disclosure rule is used to create the
messages than then will be communicated privately and truthfully to the players.

The previous discussion implies that we can think about the prior information that the players
already posses, i.e. knowledge of their own abilities, together with the message that they hear from
the designer as their type in the incomplete information game I'g. Formally the type space of each
playeris T; = A; x M; fori = 1,2, where each type t; € T; denotes the vector (a;,m;), i.e. playeri’s
a; is her ability type and m; is its message type.

Given the information disclosure rule & = ((M;);=1,2, 7), the probability that the type vector

8 As we will see below, for some special information disclosure rules and some values of the parameters ¢ and ¥, the
set €(D, ¥, ¢) is a singleton.
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t = (t1.12) = ((a1,my), (az, mz)) € T is realized, denoted by P%.(¢), can be computed by”
7(t) = P°(a)m(mla). (2.5)

Of course, we will have that'® marg, P%. = P°, i.e. the marginal with respect to the ability types
A of the joint measure P7. must equal the original prior over A.

After player i learns his ability type a;and hears from the designer his message type m;, i.e. the
type t; = (ai,m;), he uses this information to form a posterior belief p; : T; — A(T;)!! over the

types of his rival #; € T; that he deems possible:

PO(az':aj)”((mi:mj)}(aiaaj)) . o
p - - if t; € supp(margy. P%.)
i(tj|t) = prob(tj|t;) = { Taym; P°(aia;)w(emimp|@iap) = e (2.6)

0 otherwise.

After an information disclosure rule O is put in place, the analysis of the extended game I'p can
be carried out in the standard way by extending the type space to 7', with P7, being the common prior
over it and each player i will calculate their respective posterior about the realized type vector ¢ after
receiving their own type ;.

However, there are situations in which we can further simplify the analysis by considering a
smaller type space than 7. Notice from equations (2.5) and (2.6), we could possibly have that all
players assign probability 1 to some particular subsets of 7" or believe that types in another subset
are no longer possible after they receive their information. These ideas can be expressed rigorously
with the help of the conditional probabilities as calculated by equation (2.6) by defining the notion of
a belief closed subsets of the type space.!?

Definition 2.4. A subset W = W1 x W, of T is called belief closed if for every playeri = 1,2, W; C T;
and for every t; € W;, the posterior probability prob(-|t;) assigns probability one to the set W;, j #i.

Thus, if the profile of players types t = (¢1,2) is in the belief closed subset W, under a common
prior, this fact can be made common knowledge among the two players.

Consider now the equilibrium set €(D) and let 0 : T — A(E;) x A(E>) be a strategy profile
belonging to the equilibrium set. Then, let 02 (-|t) € A(E) be the induced product measure over E

Rigorously, if we define hy : Ax M — Aashy(a,m) =aand hyy : Ax M — M as h(a,m) = m, if t = (a, m) then

PT(t) = P°(hA(a, m))n(hM(a, m)|hg(a, m))
1For a joint probability measure p € A(X x Y), margy p € A(X) denotes the marginal distribution over X induced by

'We depart form the usual notational convention in the literature that denotes the posterior belief of player i at his type
t; about the rival’s type t; as p;(t;)[t;] and instead write this belief as p; (¢;[t;).

12The definition (Myerson, 1991, p. 81) of belief closed subsets is usually written in terms of the Universal Belief
Space (Mertens and Zamir, 1985; Brandenburger and Dekel, 1993). However, the finite and consistent (common prior)
type-space that we are using in this paper, a Harsanyi Model, can be embedded into the Universal Belief Space. Another
name in the literature for belief closed subsets is belief subspaces (Zamir, 2009). Whichever the definition or name that
we use, the notion that they describe is similar: a subset that contains all the states for the world which are relevant to
the situation we are analyzing. Thus, a belief-closed subset describes events that become effectively common knowledge
between the players when they happen.
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for each ¢ € supp (P%), ie. o8 (e|t) = o1(e1|t1)oa(ea|ts) for eache € E and ¢ € supp(P7). The
type action measure induced by the profile o will be denoted by y, € A(T x E) and is given by
Xo(t,e) = P"T(I)UA(e|t) for each t € supp(P%) and each e € E. Notice that the expectation of the
utility of the designer in equation (2.3) is taken with respect to yo. In particular, the expression in

the inner parenthesis of (2.3) is a posterior probability:

marg ., glxol(a,e)

foreacha € Aandeache € E,
marg,[xo|(a)

and then each of these posteriors is averaged over (e,a) € E x A using as weights the original prior
probability P°(a).

2.3.2 Hierarchies of beliefs and properties of information disclosure rules

Consider the extended Bayesian game I'p induced by the information disclosure rule £ and the
extended type space associated with it, T = A x M. We have described previously in the previous
subsection how to calculate the posterior beliefs for the players about the type of their opponent
for each type they may end up having: their private information about their respective abilities and
the messages received from the designer. However, recall that the only payoff-relevant information
from the point of view of the players is their ability types, i.e. the vector a € A. So it is important
to understand how the information disclosure rule affect the beliefs of each player about a, i.e. their
first-order beliefs. Moreover, given the uncertainty the players have about the full vector of abilities a,
and since the decisions the other player takes are relevant, then so are their beliefs about what beliefs
about a the opponent holds, i.e. their second-order beliefs. Similarly, since the second-order beliefs are
relevant and unknown to the players, then they must also hold beliefs about the second-order beliefs,
i.e. their third-order beliefs and so on. Thus, the notion of the infinite hierarchies of beliefs pops up
naturally in our context.

Although Harsanyi’s (Harsanyi, 1967, 1968a,b) notion of type allows us to bypass explicitly con-
sidering the infinite hierarchies of beliefs it is nevertheless instructive, for the purposes of this paper,
to analyze how an information disclosure rule £ impacts those hierarchies. In particular, the ex-
plicit construction of the hierarchy of beliefs induced by an optimal information disclosure rule will
allows us to describe what is its role in inducing the players to behave as intended by the designer.
Furthermore, we will attempt to classify the optimal information disclosure rules by how they affect
the hierarchy of beliefs. Finally, this classification will depend on some properties of the information
disclosure rules that depend on how they affect some or all levels of the hierarchy.

Because of the previous discussion we now present a discussion of how to extract the hierarchies
of beliefs from the extended type-space T and the posterior probabilities p; : T; — A(7}) from each
player. The construction that we present is standard (Battigalli, 2018; Maschler, Solan, and Zamir,
2013), which we adapt to the current model in the paper.
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Extracting the infinite hierarchy Recall, that since the game has a common prior over 4 and
the designer commits to the information disclosure rule O and publicly announces its structure, we
can take the structure of the induced game I'p and its extended type-space T = A x M to be com-
mon knowledge. Therefore, the posterior probability functions p; : 7; — A(7T}) are also common
knowledge.

Now, define for each player the function ¥; : T; — A; as the projection of 7; = A; x M; into the
set of ability types A; i.e. ¥;(a;, m;) = a;. The first-order beliefs of player i about a € A (since player i
knows his own ability, i.e. his component a; of a € A, then his beliefs about a are completely defined
by his beliefs about 4;):

Va; € Aj, hia;ln) = pi(07 (ap)ln) = (marg,, pi (1)) (a)),

where 19]._1(01]-) = {tj € T : ¥;(t;) = a;}. The functions #; + ]’l}('|tj) € A(A;) for j = 1,2 are also
common knowledge. Thus, we can also calculate the second-order beliefs about a € A, which are the

joint beliefs of a player about @ and about his opponent’s first-order beliefs about a:

V(@;.h}) € Aj x A(Ay), h}@;. hile) = > pi(tlt) = pi ((ﬁj’h})_l(&jvﬁ})hz‘),
tjiﬁj(tj)=£3j,
hj Cltj)=h;

where (89;,h})71(@;, h}) = {tj € Tj : (9;,h})(tj) = (@;,h})}. Notice that
hi Clt) = marg,, b7 (|t;).

Intuitively, this means that the first-order beliefs of hi1 (:|t;) € A(Aj) of player i can be obtained as
the marginal distribution over A4; of the joint distribution hl.z(-|t,~) € A(Aj x A(A;))3. We can iterate
the construction to compute for each type, the corresponding third-order beliefs about a, fourth-order
beliefs about a, and so on. Therefore, the beliefs of all orders of player i about a € A are determined

by his type #; according to the function
ti > i) i Clio) hF Cle) B Gl ).

The infinite hierarchy of beliefs of player i at type ¢; is thus h; (-|t;) = (hf-c (lti))g2,- As we defined
before, the ability-type of a player a; = 9;(¢;) is only one component of his overall type, which also
includes information about the beliefs about all the relevant parameters a;, hjl- , hjz-, hj3-, ..., of the game
I'p.

For the original game, I" in which the type space T = A, with the statistically independent prior
P note that the hierarchies of beliefs are quite simple, since they are identical across players and all
ability types: 1! = y[a] + (1 —y)[B], B> = ¥[(@. k)] + (A1 = P)[(B.h")], B> = y[(e. k' h*)] + (1 -
W[(B, h', h?)] and so on. We denote the infinite hierarchy for the original game h = (hy,h,,...).

BThis is the notion of coherency.
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Properties of Information disclosure rules With the notion of the posterior probability and hi-
erarchies of beliefs induced by the messages received by the disclosure rule £ we can now state some
descriptive properties, in terms of their information content, of information disclosure rules. Some of
this properties are adapted from Mathevet et al. (2016) but adapted by taking into consideration that

the players possess private information because they know their own abilities.

Definition 2.5. We say that an information disclosure rule D = ((M;);i=1,.7) satisfies public dis-
closure if both of the following two conditions hold:

1. For allm € \J,c 4 supp(n(-la)) and for every a € A, we have that hil(aj|ti) = hjl.(a,-|tj)for all
i,j,i # jandallt; = (a;,m;),tj = (a;,mj).

2. marg,,. Di(-|ti) = [m;] forallt; and for alli and j,i # j.
Any information rule that is not public is said to satisfy private disclosure.

For symmetric message spaces, we can consider a simplified version of the previous definition

directly in terms of the family of conditional distributions r from the disclosure rule.

Definition 2.6. The information disclosure rule D = ((M,-)i=1,2, ) is said to satisfy public disclosure
ifforalli,j =1,2i # j we have that M; = M; = M), and & satisfies for alla € A

Jr({(m,-,mj) € M; tmy = mj}|a) =1,

Jr({(m,-,mj) € M; tm; # mj}|a) =0.
The set {(m;,mj) € le : mi = mj} will be called the diagonal of M2, diag (Mﬁ) Any information
disclosure rule which is not public is said to satisfy private disclosure.

The next properties that we discuss have to do with the informativeness of the information disclo-

sure rule.

Definition 2.7. We say that an information disclosure rule D = ((M;)i=1,2.7) is
1. Uninformative if h;(:|t;) = h(-) forallt; = (a;,m;) € T; andi.
2. Informative if it is not uninformative.

3. Certain for player i at typet; if there is an ability a; € A; and a message m; € M; such that

ti = (a;,m}) and hi1 (-|ti) = laj] for somea; € A;.
4. Completely certain if it is public and certain for all players and all typest € T = A x M.
5. Correlated if exists a € A such that (margy, 7(|a)) (marg,,, 7(-|la)) # 7(:|a).

6. Uncorrelated if for alla € A, (marng Jr(-|a)) (margM2 n(-la)) = 7(-|a).
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Intuitively, an uninformative information disclosure rule leaves the players with the same beliefs
as they had before receiving the message from the designer, while an informative rules alters the
infinite hierarchy of beliefs non-trivially. Under a certain information disclosure rule, some player
with some ability type might come to belief with certainty that the true ability vector after hearing a
particular message from the designer. However, this may not hold true for other players or messages.
Finally, if a rule is certain for all players and at all messages while at the same time being public, then
it is completely certain. This means that not only all players come to believe with certainty the true

ability vector, but this fact also becomes common knowledge.

3 Simplifying the designer’s problem

The goal of this section is to describe the approach that we will take to obtain the solution of prob-
lem (2.4). In the definition of this problem, notice that the space from which we take the “outside”
maximization is the space of all finite-message information disclosure rules. This set is an infinite
dimensional space. Consider two natural numbers n; and n, and let N = nn,. Consider the mes-
sage space M = M; x M, in which the individual message spaces contain respectively n; and n,
messages, so that the M contains N possible joint messages. Then for each a € A, the 7(-|a) € A(M)

is a point in the (N — 1)-dimensional simplex, i.e.

N
w(-la) € Ay—1 = {x eRN: ij- =1,x; >0
J=1

Thus, the space of all finite-message information structures is given by

J= |J (M:M=MxM.|M|=ni|Ma|=nax(An-1)".
(n1,n2)eN?
nin>=N
Therefore, as it is right now, finding the optimal disclosure rule in problem (2.4) is potentially very
hard, since the set J of decision variables is infinite-dimensional.
However, we can use a generalization of Aumann’s correlated equilibrium (Aumann, 1987, 1974)

to games of incomplete information due to Bergemann and Morris (2016) to simplify the problem.

Definition 3.1. Let A : A — A(FE) be a decision rule, i.e. a family of conditional probability distri-
butions over E indexed by the statesa € A. Then we say that A is a Bayes Correlated Equilibrium
(BCE) of (yr,¢) € C if foreachi = 1,2,a € A ande; € E; we have that

> problajlai)(e;.ejla)ii(ei.ej.a) = Y probajlai)A(e;.ejla)ii(e]. ej.a) Vej € E;  (3.1)

€j,aj €j,a;j

As we mentioned in the introduction, Taneva (2015) was the first one to to use the notion of a BCE

to provide the general finite approach to derive the optimal information structure of the designer. Her
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approach, which is the one we follow in this paper, is based on the following theorem from Bergemann

and Morris (2016), which provides the cornerstone of the analysis.

Theorem 3.2. (Bergemann and Morris, 2016, Thm. 1, p. 495). Decision rule A is a BCE of (Y, ¢) € C if
and only if there exists and information disclosure rule © and a BNE of I'g , 4 which induces A. Strategy
profile b of I'p induces A as follows:

Melay =Y m(mla) | T bileilai.mi) | V(a.e) € AxE. (3.2)

meM i=1,2

If A is a BCE of (¢, ¢) € C then the payoff for the designer from A is, when the productivities are
kekK
V. ¢.k) =) P°(a)A(ela)v(e.a). (3.3)
a,e

Therefore, what the theorem claims is that

V(¢ k) = mgxaeenslli)é’@) V(D,o:9.¢,k) = Aeélcqj?()fp,qs) V(A ¥, ¢.k). (3.4)

The inner maximization in the middle part of equation (3.4) implies that we are using an equi-
librium selection criterion. In the theorem, the quantifier “there exists” is equivalent to this inner
maximization. Thus, by using theorem 3.2 we cannot escape from the selection criterion. Changing
the quantifier in the statement of the theorem to for all implies changing the inner maximization for
a minimization. With this qualification, then the information design problem becomes of finding the
best information rule assuming that the agents will play the worst equilibrium. In this case we can no
longer apply theorem 3.2. Recent contributions (Mathevet et al., 2016; Carroll, 2016) are attempts to
push the analysis for this case, which the literature calls adversarial information design (Bergemann
and Morris, 2018). However, we will show that in the model we are considering, the best equilibrium
selection issue is diminished since in the equilibrium set induced by the optimal disclosure rule, the
best equilibrium turns out to be the unique pure strategy symmetric equilibrium generically.

After finding an optimal Bayes Correlated Equilibrium, it is straightforward to come up with an
optimal information structure. The next proposition, which is a corollary of theorem 3.2, explains

how to do it.

Proposition 3.3. Let A* (Y, ¢, k) € arg max; cpcp(y,g) V(A ¥, . k). An optimal information structure
D* = (M*, 7*) can be constructed as follows:
* We set M* = M x My where M = E; for eachi = 1,2. The previous message space is
canonical in the sense that it will provide an action recommendation. Alternatively, any space M’
which isomorphic to M™* also works, i.e. if we can establish a bijection M;* <> M| for the individual

message spaces for eachi = 1,2.

e We set w*(mla) = A*(ela) foralle € E,m € M* anda € A. In here M* stands for either the

canonical message space or any alternate message space that is isomorphnic to it.
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e Any disclosure rule D* which uses canonical message spaces or an isomorphic message space will

be called canonical.

Let o* be the best BNE for the designer under the disclosure rule D*, i.e.

o* e argmax V(D* o0:v¢,¢ k).
oeC(y,¢0,D*)

Then V(Y. ¢.k) = V(D*,0*: . ¢.k). Furthermore, if 8 is any other optimal information disclosure

rule, not necessarily canonical, then there exists a canonical disclosure rule D* such that

I7 ’ b k = V £*7 ; b b k = V 8’ ; ’ ’ k ’
(V. ¢. k) reel X o (D™.0:9.9.k) el (8.0:9.¢.k)
that is, we can always find for any optiimal information disclosure rule, a canonical rule that is also

optimal.

The previous proposition follows the same line of reasoning as proposition 2 in Taneva (2015). In-
tuitively, its main implication is that it is without loss to work with an information disclosure rule that
supplies to the players an action recommendation. This is similar in spirit to the revelation principle
(Myerson, 1979, 1991). According to proposition 3.3, if 6* is a BNE under the information disclosure
rule 7 * and the private information already held by the players, then by theorem 3.2, the decision rule
that it generates is a BCE. Thus, when the designer uses an information disclosure rule that mimics
exactly this disclosure rule as stated in the proposition, then by the obedience constraints in the def-
inition of a Bayes Correlated Equilibrium, it will be in the best interest of the players to actually play
the equilibrium profile ¢* that is implicitly recommended by that information disclosure rule. Thus,
a designer that wishes to design the optimal information disclosure rule, can simplify the problem by
first looking at the optimal set of BCE distributions, pick the best one and then use it to construct the
optimal information disclosure rule.

Another important remark about the statement of 3.3 is that we took the time to describe the
optimal information disclosure rule not only in terms of the canonical message space that gives ac-
tion recommendations but also in terms of any message space that is equivalent to it. Although the
notion of action recommendations is suitable to perform the analysis and to pin down the optimal
information disclosure rule, it is much easier to interpret the informational content of the messages
using an equivalent message space.

Although using the BCE notion makes the analysis tractable, it is still an arduous task to compute
the optimal BCE distribution. The set of BCE distributions consists of a family of four 2 x2 conditional
distributions that need to satisfy the obedience constraints in the BCE definition together with a set
of constraints that make each member of the family a valid probability distribution. Furthermore, we
need to do this for each possible game (¥, ¢,k) € C x K that the designer considers. Appendix A
provides the detailed steps to find an optimal BCE.
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4 Characterization of the equilibrium sets of the null and complete

disclosure rules

In this section, we fully characterize for all games (¥, ¢) € C the equilibrium sets of the null and
complete information disclosure rules. The purpose of this characterization is threefold: to illustrate
the richness of behavior that arises from two simple and intuitive disclosure rules, to expand and
complement the main results in Dubey (2013) and to provide a benchmark for the main results in the
next section.

The full characterization of the set of Bayes Nash Equilibria for disclosure rules & and € across
all contests in C = (0, 1)? is given in propositions 4.1 and 4.3. In order to present a clean statement of
these propositions, we need some preparations. Consider the following collection of subsets Ry C C,

s =1,...,5given by

Ry ={(¥.¢) € C2¢ =y},

Ry ={(¥.¢) € C|2¢ =2 -y},

Ry ={(y,¢) e Cly =2¢ <1—-vy}, (4.1)
Ry ={(y,9) e Cl1 +y =29 <2y},

Rs ={({,¢) € Clmax(1 — ¢, ¢¥) <2¢ <min(l +v,2—y)}.

For reference and visualization of the regions in (4.1), see figure 2. We are now ready to state the

propositions, but we relegate the proofs to the appendix.

Proposition 4.1. Consider the null information disclosure rule N. For each (¥, ¢) € C the equilibrium
set & (Y, ¢, N) is as follows.

1 If (Y, ¢) € int(Ry) then the unique equilibrium'* is for players all of abilities to work and is in

dominant strategies, that is

oV (fai, @) = [W], Va; € Ai, i = 1,2. (4.2)

2. If (Y, ) € int(Ry) then the unique equilibrium is for players all of abilities to shirk and is in

dominant strategies, that is

oV (la;, @) = [S], Va; € A;, i =1,2. (4.3)

3. If (V. §) € int(R3) then the unique equilibrium o is for the high ability player to always work
and the low ability player to always shirk, i.e.

oV (la, @) =[S], o¥(Ip.2)=[W], i=12. (4.4)

14The notation int(X) denotes the interior of the set X.
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Figure 2: Regions described by (4.1)

. If (Y, ¢) € int(Ry4) then the unique equilibrium o is for the high ability player to always shirk

and the low ability player to always work, i.e.
oV (e, @) =[W]. oV(IB.2)=I[S], i=12. (4.5)

. If (Y, ¢) € int(Rs), then the unique equilibrium o isin completely mixed strategies:

2-2¢—y
20— y)

20+ v — 1

GiN(Wla’ @) = 2W s

oV (W|B,2) = =1,2. (4.6)

. If (Y, ¢) € R1 N Rs, then there is a continuum of equilibrium strategies, the high ability player
always work but the low ability player plays any mixed strategy in [0, 1] , i.e.:

o Wa,2) 0,1, o¥(18,2)=[W], i=12. (4.7)

. If (Y, ¢) € ri(R1 N R3), the high ability player > always work and the low ability player plays
any mixed strategy as long as it belongs to a particular proper subset of [0, 1] , i.e.:

20 — 1
2y

oV (Wla, 2) € [ ,1], oV (B @) =[W], i=12. (4.8)

15The notation ri(X) denotes the relative interior of the set X, i.e. ri(X) = {x € X|3e > 0, B¢(x) N aff(X) C X}, where
aff(X) is the affine hull of X and Bc(x) is a ball of radius € centered at x.
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10.

11.

If (Y, ¢) € ri(R3 N Rs), then there is a continuum of equilibrium strategies, the low ability player
always shirks but the high ability player plays any mixed strategy as long as it belongs to a par-
ticular proper subset of [0, 1] , i.e.:

1
N N .
;o = - —1 =1,2. 4.
ot (e 2) = [S]. o, (W|ﬂ,@)e[2(1_w), ] i=1, (4.9)
If (Y, ¢) € Ry N Ry, then there is a continuum of equilibrium strategies, the high ability player
always shirks but the low ability player plays any mixed strategy in [0, 1], i.e.:

oV Wla,2) €[0,1], o¥(|g.2)=1[S], i=1.2. (4.10)

If (Y,¢) € ri(R2 N Rs), then there is a continuum of equilibrium strategies, the high ability
player always shirks but the low ability player plays any mixed strategy as long as it belongs to a
particular proper subset of [0, 1] , i.e.:

1
o (18.2) = [S], o (W]a,2) € [o, ﬁ] i= 1.2, (a11)
If (¥, ¢) € ri(R4 N Rs), then there is a continuum of equilibrium strategies, the low ability player
always works but the high ability player plays any mixed strategy as long as it belongs to a par-
ticular proper subset of [0, 1] , i.e.:

Ui‘N(-Ia,Q) = [W], o;N(Ww, @) € [O, %] i=1,2. (4.12)

With the characterization given by proposition 4.1 we can calculate the payoff to the designer of

the null information disclosure rule, which we state as the next corollary.

Corollary 4.2. Let V(N; ¥, ¢, k) = maxseswy) V(N,0:V, ¢, k) denote the inner maximization in

expression (2.4). Then we have that

1

2.

If(y.¢) € Ri, V(N1 . ¢. k) = 2(V k() + (1= ¥)k(B)B).
If(y.¢) € Ro, V(N1 Y. ¢, k) = 2((1 — ) + YB).

If(y.¢) € R3\ Ri. V(N: . 9. k) =2(Ya + (1 = ¥)&(B)B).
If(.¢) € Ra\ Rs, V(N: Y. ¢.k) = 2((1 = ¥)B + Y k(@)a).

If (Y. ¢) € int(Rs), V(N:¥.¢. k) = (1 =2¢ + Y)a + 2¢ —V)B + 2¢ + ¥ — Dh(0)a + (2 -
2¢ —Y)kR(P)B.

The next proposition describes the equilibrium behaviour under the complete information disclo-

sure rule.
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Proposition 4.3. Consider the complete information disclosure rule €. For each (Y, ¢) € C, the equi-
librium set € (Y, ¢, €) is as follows.

L If (Y, ¢) € {(¥,¢) € C|p < 1/2}, then the equilibrium is unique:

o (la;,S) =[W], i=12, a; €4

oS(Sle,D)y=1—¢, o (S|B.D)=¢, i=1.2. @.13)
2. If (Y, ¢) € {(¥,¢) € C|op > 1/2}, then the equilibrium is unique:
of(la;,S) =1[S], i=1,2, a; €4
of(Sla.D)=1—¢, o (S|B.D)=¢, i=12. (414)
3. If(Y,¢) € {(Y,¢) € C|p = 1/2}, then there is a continuum of equilibria:
o (la;,S) =1[0,1], i=12, a; €4 (.15)

of(Sle,D)=1—-¢, oF(S|B.D)=¢, i=12.

Similarly as we did before, with the characterization given by proposition 4.3 we can calculate
the payoff to the designer of the complete information disclosure rule, which we state as the next

corollary.

Corollary 4.4. Let V(€) = maxsege) V(€, 0) denote the inner maximization in expression (2.4). Then
we have that

1 If¢ < 1/2 then V(€. ¢, k) = 2(¥(1=y) (@(1 =)+ Bg) + k() (¢ + ¥ (1 =) + £ (B)B(1 -
Y= ve)).

2. If ¢ = 1/2 then V(€. Y. ¢. k) = ¥ ((1 — ) + B) + k(@)a(1 + v)) + R(B)B2 =3y + ).

3. If¢ > 1/2 then

V(e pk) =
2(va(l =g =) + A =P)B(L— 1 =@)Y) + v (1= ¥)(Ph@a + (1 - @)LP)B)).

In terms of the properties introduced in definition 2.7, the null information disclosure rule N is
non informative and (trivially) public and the complete information rule is completely certain, since
it is public and certain for all players at all messages. The null rule doesn’t alter the beliefs of the
players, while the complete information rule not only informs all the players, but it makes it such
that this fact becomes commonly known.

However, the null and complete disclosure rules are in most cases not the optimal rules for the

designer. According to proposition 4.1, the null disclosure rule is optimal for the case in which 2¢ <
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Y or equivalently when 2x < v v. Intuitively, in this case the value of the prize is so high when
compared to the cost of putting effort that both players find strictly dominant to put effort without
the need to receive more information from the part of the designer. On the other hand, the results
in Dubey (2013) find that the complete information rule € performs, in general, better than the null
rule N when 2¢ > ¢ and ¢ < 1/2, or equivalently, 2% > ¥ v and 2x < v. Propositions 4.1 and 4.3
extend the results in Dubey (2013) by extending the parameter space to all ¢ € (0, 1). Thefore, a trivial
calculation shows that the complete information disclosure rule, in general, also performs better than
the null rule when 1/2 < ¢ < 1 or equivalently when v < 2x. However, the analysis the null and
complete information rules is not sufficient to pin down the optimum for the contest information
design problem. It is possible to construct a rule that outperforms the complete information rule €©
for all cases in which the null information rule N is not optimal. In the next section, we show how

to construct the globally optimal information disclosure rule for the information design problem.

5 Optimal information Disclosure: Main results

In this section we discuss the main results of the paper. The first subsection describes the full char-
acterization of the optimal information disclosure rule for each contest in C x K. After presenting
these set of results, we illustrate them by means of a numerical example that is meant to showcase
the main features of the characterization. Finally in the last subsection, by fully taking advantage of
our characterization, we perform a comparative statics exercise in which we allow the designer to
alter the value of the prize simultaneously while engaging in information design. The results of this
exercise deliver the necessary and sufficient conditions at which the optimal information structure
not only achieves the goals of the designer but it also does at the cheapest possible way. All proofs
are relegated to appendix A.

5.1 Characterization of the optimal information disclosure rule

We begin by describing the main features of the optimal information disclosure rule. In order to
describe it in a succinct way, we need to introduce some new terminology and notation that will be

useful.

Definition 5.1. The productivity differential by ability type is the difference in output between working
and shirking for each of the ability types, weak and strong. We denote this differentials as

do = f(W.0) = f(S.0) = k() —
dg = f(W.B)— f(S.B) =k(B)B—B

We say that the productivity differential is regular ifdg > dy. Otherwise we say that it is non-regular,
ie. dﬂ < dg.

For every contest environment (¥, ¢,k) € C x K, the class of optimal canonical information
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disclosure rules uses the same message space and the probabilistic structure of the rules share some

global features. The next proposition states these facts formally.

Proposition 5.2 (Optimal Information Disclosure Rules). The class of optimal canonical information

disclosure rules

there exists (V, ¢, k) € C x K such that

D= (D ((Mi=12.7w): DVW¢K) = max V(D039 ¢.k),

(2)D is equivalent to a canonical rule.

has symmetric message spaces given by
M; = {Hard-Fought, —~Hard-Fought} = (mH —mH} fori =1,2,

andw : A — A(M) is given by

7(-|aw) mH -m* (-|aB) mH —-m*
mH Eu 0 mH I 8
-mH 0 1—& -mH ¢ l—pu—8—¢
n(-|fa) m —mH 7(-16pB) m# —m#
mH n ¢ mH £g 0
-mH 8 l—pu—8—¢ -mH 0 1-¢&

where

e £, fora = {aa, BB} is the conditional probability that both players receive the same message m™

at the states in which they are similar;

H

e 1 corresponds to the conditional probability that both players receive the same message m* at

states in which they are different;

» § is the conditional probability of the weak player a receiving the message m™ while the strong

player B received the message —m* at states in which they are different;

e ¢ is the conditional probability that the weak player a received the message —m*™ while the strong

player B received the message m™ at states in which they are different.

The optimal choices of the previous probabilities for each contest environment are given by the map-
ping A (Y, ¢, k) — (6, &g, 1. 8,8), whose dependence on k is only through the ratio of productivity
differentials dg /dy.

Some remarks about proposition 5.2 are in order. Notice that the message space from the optimal

class of information disclosure rules is described in terms of an equivalent space to the canonical
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message space that gives action recommendation. The choice to present the proposition in that way
is due to the fact that it is easier and more intuitive to interpret the information that the designer is
giving to the players in terms of a more “amiable” message space. The designer is telling the players
whether the contest is gonna be hard-fought or not with different probabilities depending on the
state. This of course gives information about the actual state that the players are. Notice that when
the players are similar, which is the case in which the competition is more “fierce”, the designer
tells the same message to both of them. In the event that the players are different, in which there
is a higher risk of both of them shirking with higher probability, it is crucial that the designer puts
positive probability on giving them different messages in order to curb this behavior.

Another remarkable feature is that the probability mapping A depends on the vector of productivi-
ties k only though the productivity differential ratio. We can think about this productivity differential
ratio as defining, when the players are different, what action profile is more valuable to the designer:
a strong player working and a weak player shirking or vice versa, a strong player shirking and a weak
player working. The ordering of output between these two cases, which is what the designer is inter-
ested in, is defined by the productivity differential ratio. In particular, when productivity is regular,
in the sense of definition 5.1, the former case is better for the designer; whereas when productivity
is non-regular the later case is better. When the normalized cost of putting effort ¢ is less than half,
or equivalently the value of the prize is greater than two times the cost of putting effort, v > 2x,
productivity ratios that are regular or non-regular become the only important cases that the designer
has to consider in terms of k. However, for contest environments in which the the normalized cost
of putting effort is more than half, i.e. ¢ > 1/2, or equivalently 2» > v, the value of the prize is
so low that the competition when the players are similar becomes lackluster. Because of this, it is
more difficult for the designer to incentivize the players to put effort when the players are similar.
Thus the designer needs to make a choice on exactly which state to focus more: when the players are
similar and weak, or when the players are similar and strong. This trade-off also has implications on
the incentives that the designer is able to give when the players are different. The previous reasons
imply that although the probabilities will still depend on k only through the productivity differential
ratio, the designer will need to consider cases in which the ratio is regular and very high and cases
in which the ratio is non-regular and very low.

On the other hand, the remaining probabilities will also depend on (¥, ¢). Recall that each of
these points represents a particular contest in C. At each contest, the BCE notion determines what
can of behavior can arise as a BNE for some information disclosure rule. This behavior is constrained
of course by the obedience constraints embodied in the BCE concept. Furthermore, any informa-
tion disclosure rule needs to satisfy the probability constraints to make it valid system of conditional
probability distributions. At each particular contest (v, ¢), the designer will pick the best BCE distri-
bution from the set of feasible BCE distributions. The best BCE distribution is chosen, of course, in
consideration of its value to the designer, which is determined by the productivity vector k£ through
the ratio of the productivity differentials dg/dg, ask explained in the last paragraph. Thus, the choice
probabilities (£§4, &4, 1,8, {) depends on the trade-off between what is feasible for the designer at a
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particular contest and achieving her goals. More precisely, what is feasible at the (v, ¢) depends on
the trade-offs that the players face between obtaining the prize and the cost of putting effort, whereas
the goals of the designer depend on the value of effort from the players in terms of productivity.
The previous discussion summarizes the intuition about the behavior of the mapping A, which
gives the optimal probabilities at each contest environment. The characterization of this mapping is
given in ample detail in appendix A and is quite involved. However, the next proposition summarizes

some qualitative features of A.

Proposition 5.3. Consider the mapping A : (, ¢, k) — (£4.&p, 11, 8, ) which gives the optimal prob-

abilities for the optimal information disclosure rule at each contest environment. Then there are:

1. a set of regions of the set of productivities {K;};=1,....5 in which the boundaries of each region are

determined by the following cut-off values on the productivity differential ratio:

21, 2%
20 T 29— 1

1/2< ¢ <1

2. a set of regions of the set of contests {Cs}s=1,...,15 and a family of functions

.....

{As 2 (V. 9) = (e §8.11.8. D}ieg
that do not depend on k, such that

for each Cs , there exists a region Ky and a function Ay such that Alc,xk,, = Ay, i.e. the restriction
of A to Cy x Ky is equal to the function Ay which is constant (does not depend) with respect to K. This
means that A is a piece-wise function whose parts are defined by {Cs}s=1,....15 an at each region, the

implied probabilities are independent from k.

The contents of proposition 5.3 are illustrated by figure 3, which denotes the regions {K;};=1,... 5,
and by figure 4, which illustrates the regions {Cs}s=1,....15

F | | | | i
0 2¢-1 1 2 _2¢ Ao
26 26—1
Non-Regular Productivity Regular Productivity

Figure 3: Ratio of productivity differentials—relevant regions

As mentioned before, the full characterization of A is rather involved. However, there is a subset of
the collection of regions at which the description of A is relatively simple. Furthermore, these regions
will play a role in the subsequent comparative statics exercise that we will carry out in subsection 5.3.
We present these regions, the optimal value of the probabilities and the value to the designer at each

of them in the next proposition.
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Figure 4: Structure of A(y, ¢, k)
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Proposition 5.4. Consider the following regions:

Cr={.¢) € C:2¢ = yj,

1 -2y —y? 1—4 1092 — 43 + yr#
G={wpeciyz2gp<—Y "’“L‘/z(lj”;) oo vil
1 -2y —y? 1—4 1092 — 43 4
e ={wpec: =2 w+¢z(1iﬂl/f+) LA 52¢51$,

Cis={(y.¢) € C:2¢ =1}.
Then the optimal probabilities, as given by A : (Y, ¢, k) — (§a, &g, 10, 8,8) are

e Forall (Y, ¢, k) € C1 x K, A(Y, ¢, k) is constant and is given by
AW, ¢, k) =(1,1,1,0,0).

Furthermore, A gives an optimal value of
V(. ¢.k) =2(¥(do + o) + (1 = ¥)(dg + B)) = 2(V k(@) + (1 = ¥)£(B)B)

e If productivity is regular and (Y, ¢) € C, then A(Y, ¢, k) is given by

_ (1.1 v0=20) o 26-v
AW 9.0 = (115200, 558525)

Furthermore, A implies that the optimal value for the designer is

2
V(b k) = 2dg (1 — 9) + da‘% L2y + B — ).

e If productivity is regular and (¥, ¢) € C3 then A(Y, ¢, k) is given by

1
1
2y +¢(B—4y—¥H)—2¢*(1-9)—1
2y (1-9)
26> (1-y)—y > +¢(1-2¢—y?)

2(0-9)¢
2¢3 (1-9)+ ¢ > +¢(2—2y—3y %) +¢* (6y +y>-5)
209 (1—9)

A, ¢.k) =

Furthermore, A implies that the optimal value for the designer is

2
wdy (3200w =4y =2+ ) 20 + B0 - ),
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e If productivity is non-regular and (¢, ¢) € C, U C3 then A(Y, ¢, k) is given by

_ 202203 +y -39y +d>¥ ¢ (2o—Y) (1—¢)2(2¢—w)>
Aw.0.k) = (11, 260—9) 209y 0 200-9)

Furthermore, A implies that the optimal value for the designer is

2
Pp ) = dy (2= 200+ 4 +92) + do (209 =97 + L) 2609 + 1 -9,
e If (Y, ¢) € C15, i.e. (V,¢) = (0,1) x{1/2} and for allk € K, we have that A(Y, ¢, k) is constant
and is given by
AW, ¢, k)= (1,1,1/4,1/4,1/4).

Furthermore, A gives, for ally € (0,1) and k € K, an optimal value of
VW, 1/2,k) = 2@y + B(1 = ¥) + doy (1 + ¥) +dg(1 =) (2~ ¥)

An important remark about proposition 5.4 is that if 0 < ¢ < 1/2 then when the players are
similar, they will hear with probability one the message “hard-fought”, i.e. (§4.£8) = (1,1). Also
notice that in region Cj, all probabilities are independent of the contest environment. This is just
a restatement of the result from proposition 4.1 when the value of the prize is sufficiently large. In
this case, it will be optimal to give a trivially uninformative public signal, or more easily, not give
any information at all. On the other hand, region C;5 is also special because all the probabilities in
there are also independent of the contest environment. This is due to the fact that when ¢ = 1/2,
the set of BCE shrinks to a lower-dimensional subspace, which constraints our choice of the optimal
information disclosure rule to put (u,8,¢) = (1/4,1/4,1/4). On the other hand, we will refer to
environments in union of the regions C2 U C3 as environments with medium prizes.

Now at last we are ready to state the main theorem of this section, which is a description of the

global properties of the optimal information disclosure rules.

Theorem 5.5 (Global properties of the set of optimal information disclosure rules). The class of optimal

canonical information disclosure rules ® satisfies the following properties:

e Every O is informative except when (Y, $) € Ci, ie. except when the value of the prize is

sufficiently large, v > 27”

e Every D is never completely certain, but for some regions it may be certain for some players
and some ability-message pairs (a;,m;), i.e. some players may become certain about the ability

vector but this fact will not be common knowledge.

e Every D is asymmetric: § # { except on region Cy, i.e. when the prize is sufficiently large and

on region Cys, i.e. whenv = 2x.

e Every D is private: either § or { (or both) are different from zero.
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e Every D is correlated, except when (¥, ¢) € C; U C, U Cj5.
e Every D induces a non-trivial hierarchy of beliefs, except when (¢, ¢) € Cj.

In the next subsection, we illustrate, with the help of a particularly simple example, some of the

features of the characterization presented in this section.

5.2 Example with medium prizes

In this subsection we present the full characterization of a numerical example with particularly nice
features. We fix the contest at the parameter values of ¥ = % and ¢ = % but allow k € K to
vary freely. This situation corresponds to (Y, ¢) = (%, %) € C; according to the regions described in
proposition 5.4. Although the characterization can be obtained from proposition 5.4, whose proofis in
appendix A, we nevertheless provide a direct proof in appendix B by solving the actual linear program
implied by the set of Bayes Correlated Equilibria at (¥, ¢) = (%, %) by explicitly going through the
iterations in the simplex algoritihm .

The next result characterizes the optimal information disclosure rule for the designer and its ex-

pected payoff.

Proposition 5.6 (Optimal Information structure for the example). Let (¢, ¢) = (% %) Define the
family of information disclosure rules {§(0) : 6 € [0, 1]} in which

M; = {Hard-Fought, —~Hard-Fought} = {mH, —|mH} fori =1,2,

and m is given by

7 (-|aw) mH —m* (-laB) mH —mH
mH 1 0 mH 1+4 &
-mH 0 0 —mH % - % g
7(-|fa) mH —m# 7(|Bp) mH —m*
mH % + g % — ?—9 mt 1 0
—-mH % g —mH 0 0

forany 6 € [0, 1]. Then, there exist 6 € [0, 1] such that 8(6) solves the information design problem:

V =max max V(D,o0)= max V(§(0),0).
D ceC€(D) ce€(8(9))

Specifically, we have that

1. Ifdg > dy then 8(0) is optimal and gives an expected payoff of
— 3
V=oz+,3+zda+d,g (5.1)
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2. Ifdg < dy then 8(1) is optimal and gives an expected payoff of
_ 5 11
V_a+ﬂ+8da+ﬁdﬁ. (5.2)
3. Ifdg = dg, then for any 0 € [0, 1], the rule 8(0) is optimal and gives an expected payoff of
— 7
V=oz+,3+zd,3. (5.3)

Example 5.7. We will illustrate proposition (5.6) by specifying some values for the productivities of

the players for each case.
1. o =3,p =4.k(@e = 5.k(B) = 7. In this case we have that £ = 3. Thus

— 23 65 59
V=—>VE)=—>VN)=—.
2 6 6

2. a=3,8=4k(e)a =5,k(8) = 5.5. In this case we have that j—g%. Thus

_ 241 115 103
V=" 1) = — > V(N) = —.
24 12 12

3. a =3, =4,k(@0)a =5,k(B)B = 6. In this case we have that j—s = 1. Thus

_ 2l
V=T >V =10> VW) =9

<

In the information design problem, it is important to remark again that for any information dis-
closure rule, we are analyzing the equilibrium behavior that it engenders and then choosing the best
equilibrium from the point of view of the designer, as pointed out in section 2.1. We can see this in
theorem 5.6 by noticing that to compute the expected payoff of the designer for the optimal rule §(6),
we are taking the maximum over the equilibrium set &(&(0)) of the incomplete information game
induced by §(6). Therefore, what our results imply is that at least one equilibrium of €(&8(6)) will be
the optimal from the perspective of the designer. However, up until this point our results are silent

about the behavior of other equilibria in the equilibrium set.

5.2.1 Calculating the hierarchies of beliefs and Characterizing equilibrium set

The optimal information structure §(6) induces a Bayesian Game, which we denote I'g(4). The equi-
librium set of I'g) is denoted as €(&(#)). In light of the discussion at the end of the previous
paragraph, it is important to obtain the full characterization of the equilibrium set to fully under-
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stand how the two players will behave at all possible equilibria engendered by the optimal disclosure
rule &(6).

When the designer uses the optimal information disclosure rule §(0), with message spaces M; =

{m"—m™} for each i = 1,2 we can enumerate the types #; that this information rule induces as
follows: ° u
1 2
[l = (a,m ), tl - (Ol,_‘m )9
3 H 4 H (5-4)
i =(B.m7), 7 =(p,—~m?).
Thus, the joint distribution over 7' = T} x T3, as calculated from equation (2.5), is given by
PS.(t1,12) | 1) 12 13|
1 1 1 o) o)
g 2 O |sts |7
2 1 50 o)
i 0 0 |s—7 |3 (5.5)
3 1,6 |1_56 1
f st s~ 7| 3 |0
4 0 o)
£y 7 36 0 0

Thus, for each 6 € [0, 1], the information disclosure rule §(6) engenders a new larger type space
T. As pointed out in proposition (5.6), the value of # that makes & (6) optimal depends on the configu-
ration of the player’s productivities by their ability type. In particular, notice that for when 6 € {0, 1},

i.e. the boundary of the interval [0, 1], we get a very different distribution P7. over T

PS(t1.12) | 1y 13 13 1y
1} o 0 . 0
112 0 0 % 0 for 8 =0, (5.6a)
¢ |4 [ s o
tf 0 0 0 0
PS(t1.12) | 1) 13 13 1y
tf A I - T
12 0 0 % % for 6 = 1. (5.6b)
i 7 | 1 | a |0
t} = 3¢ 0 0

Notice that in this example, for the type space and distribution given in equation (5.6a) we can
eliminate for each player i = 1,2 the type ;' from the analysis because no player believes with
positive probability that this type obtains. Formally speaking, we can use the definition of a belief
closed subset as defined in definition (2.4) to make this claim rigorous. For the type space in equation
(5.6a), the set W = Wy x W, where W; = {t!,12,t3} fori = 1,2 is a belief closed subset of 7. In this

A AL ]
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case, the players will consider that any type vector in W is possible, but vectors in 7'\ W, since they
occur with probability 0, will not be deemed possible. Thus, we can use W as the reduced type space

for this case.

The hierarchies of beliefs The posterior belief functions p; : T; — A(T}) for each player can be
readily computed from the prior P%..

piClL) | 1) 12 13
tl 2 0 1
! 3 3 for 6 =0, (5.7a)
12 0 0 1
3 1 1 1
1 i 7 2
piClt) | 1] 13 t5 ty
1 3 11 1
1 5 0 30 30
2 2 1 _
1 0 0 2 3 for6 = 1. (5.7b)
3 1 4 6
1 3 33 1 0
4 1 2
h 3 3 0 0

For each player i the first-order beliefs, which are an element of A(4;), are

hiCl) = 3e] + 3[B]
hl¢li) = [B] for 6 = 0, (5.8a)

hiCl) = 3lal + 308]

hi (i) = 3]+ (8]
hiClid) = [B]
W) = Flol+ S8l
Rl = o]

for 6 = 1. (5.8b)

Notice that for 6 = 0, both players of type 1> become certain of the state ability vector, whereas for
6 = 1, both players of types > and ;' become certain of the ability vector.
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For each player i the second-order beliefs are, which are an element of A(4; x A(A4;)), are

R2C) = 3@ 2e] + S0BD) + SUB. Slod + 118D
R2C) = [(B. 3le] + SBD) for6 =0,  (59)
R2CE) = (@ 2l + LIBD] + L@ [BD] + LB, Lol + L(BD)]

RECl) = 3l [BD] + 5518, Tlo] + {TIBD] + 56l(B. [e])]

R Cle) = 318 f7led + FIBD] + 31(B. [@])]

Rl = 3les 3lal + 2IBD] + 350, [BD] + 3108, 33 [o] + {3 IBD)]
R Clet) = 3l el + 2IBD] + 3[(e. [BD)]

for 6 = 1. (5.9b)

The infinite hierarchy for each player i can be computed in a similar way by iterating the con-
structions using the posterior beliefs function p; as shown in subsection 2.3.2.

Notice that although both players at some types became certain of the state given their first-order
beliefs, this fact didn’t became common knowledge, as can be seen from the second-order hierarchies.
In particular, it is at states in which the players are different when they have the possibility of be-
coming certain of this fact. However, this should not be commonly known. It is precisely for this
reason that public information disclosure rules, as the complete information rule or p, g rule, are not
optimal. In order to incentivize the players when they are different to work, the designer needs to
selectively inform them with some probability. However, this needs to be done privately. It is crucial
to have private information because in that way the designer can generate some asymmetry at the
higher-order hierarchies, which is needed for the players to work with higher probability when they
are different.

The equilibrium set We will focus on symmetric equilibria. The following two propositions char-

acterize the symmetric BNE sets for the cases 6 = {0, 1}.

Proposition 5.8. Let 0 = 0 so that the optimal information disclosure rule is given by §(0). For each i,
letoi(t;) € [0, 1] denote the probability putting effort when playeri is of typet;. Leto; = (o; (tik))kzl ,,,,, 3
denote the strategy vector of playeri. The set of symmetric BNE for this optimal information disclosure
rule is given by

€(8(0)) = {o = (01,02) 1 0i(t}) € [%, 1],0i(t?) = 0,0:(t}) = 1,i = 1,2.} (5.10)

The unique pure-strategy equilibrium profile o*, where o = (1,0, 1) for each i = 1,2 is the one that
achieves the optimal value for the designer, i.e. V = V(8(0),c*). Furthermore, for each o € €(8(0)),
V(8(0),0) > V(€), i.e. each equilibrium profile in €(8(0)) gives a larger utility for the designer than
the complete information disclosure rule.
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Proposition 5.9. Let 0 = 1 so that the optimal information disclosure rule is given by 8(1). For each i,
denote the strategy vector of playeri. Let Y = conv{(0, %), (%, 0), (1,0)}. Then the set of symmetric
BNE for this optimal information disclosure rule is given by

€(8(1)) = {o = (01,02) :(0i(t}). 0: (t7)) € Y.0:(}) = Looi(t]') = 0,i = 1,2.} (5.11)

The unique pure-strategy equilibrium profile o, where o = (1,0,1,0) for eachi = 1,2 is the one
that achieves the optimal value for the designer, i.e. V. = V(8(1),0*). Furthermore, if we define ¥ =
conv{(0, %), (%, 0)}, then for each o € €(8(1)) we have that

e If o satisfies that (oi (tl.l),oi (tlz)) €Y\ Y foreachi = 1,2 then V(8(1),0) > V(€).

- Ifo satisfies that (07 (t}), 0i(t?)) € Y foreachi = 1,2. then V(8(1),0) = V(€).

5.3 Optimal design when the designer can alter the value of the prize

In this section, we use the results from subsection 5.1 to derive a comparative statics result which is
quite pertinent in this context. We ask the question of whether information design is useful when the
designer can alter the value of the prize v, or equivalently, alter the normalized cost of putting effort
é.

The rationale for asking whether the designer can gain from information design when altering the
value of the prize is two-fold. Firstly, we can think that the designer has no control over the beliefs
of the players, embodied by ¥, nor on the abilities as defined in k or the cost of putting effort. At the
outset of the game we can interpret the model as a situation in which the designer has no control over
the previous parameters. However, the designer has control not only over the information structure
of the game via the disclosure rules but also on the value of the prize that he wishes to offer. What
happens to the optimal information structure when the value of the prize changes is a very relevant
comparative statics exercise.

The second reason comes from the fact that in this model, in the absence of information design, a
single prize scheme is optimal. This follows from the result in Moldovanu and Sela (2001, Prop. 1, pp.
547). However, the size of the bursar to be distributed via the prize has a strong impact on altering
incentives in the model we are considering as was shown in proposition 4.1. If the value of the prize
can be altered and this value is interpreted as a cost to the designer then it is important to know what
can be gained through the design of an optimal information disclosure rule.

With the previous motivations in mind, we proceed to describe the profit maximization problem
that the designer will face when altering the value of the prize. When the value of the prize can
be moved, optimal revenues from the designer when designing information can be expressed as the
value achieved from the optimal information disclosure rule. Thus, revenues can be expressed with

the help of equation (2.4) as
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Vv;x, ¥, k) = V(D,o: v, k), 5.12
(v, ¥, k) mgxaeg(rﬁ%@ (D.,o; ¢, x/v,k) (5.12)

where in W now the remaining parameters (x, ¥, k) that represent respectively the cost of putting
effort, the beliefs of the players and the designer and the productivity vector should be considered as
parameters. On the other hand, the cost of altering the prize is only the size of the bursar that such
a prize represents, i.e. v.

Therefore, profits are revenues minus costs, I7(v; x, ¥, k) = V(v; x, ¥, k) — v. Optimal profits are
thus

I*0e, k) = sup {V(vix, ¥, k)— vl (5.13)
ve(x,00)

Notice that in equation (5.13), the supremum is taken over the interval (x, co) since this is in concor-
dance with the restriction that 0 < ¢ = »/v < 1 discussed in section 2.

The next proposition follows trivially from proposition 4.1

Proposition 5.10. Maximal revenues are achieved when U = 2x /vy and remain constant for any prize
greater than U and for all x,y and k € K. Furthermore, the value 17(0, %, k) is achieved by the null
information disclosure rule.

The simple reason for the statement in proposition 5.10 is that at values greater or equal to U, we
have that it becomes a dominant strategy to work at all possible states under null information. Thus,
in terms of revenues, V (0, x, ¥, k) is the upper bound that we can achieve when altering the prize and
under the possibility of designing information, since the optimal disclosure rule can involve saying
nothing to the players.

However, as x changes we have that

U
PVl E > 2.

Therefore, an increase in x needs an increase in the prize by more than two-fold to achieve the
upper bound in revenues. In particular, when the probability that each player ascribes to their rival
being weak, ¥, tends to zero, the value of the prize that is needed grows without bound. Hence, a
very large prize may not be optimal since its benefits may not outweigh its costs. It may be the case
that a much smaller prize can be better under an optimal information disclosure rule.

On the other hand, we have that as { changes

v 2%

- Y
so we have that when the players believe with high probability that their rival is weak, the value of
the prize required to achieve the upper bound in revenue decreases.

From the discussion above it follows that we will need to compare the performance of the null

information scheme given by IT(0; x, ¥, k) = V (0; %, ¥, k) — U to any other different scheme that we
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are considering. In summary, IT(U; x, ¥, k) provides the threshold on v at which the null information
disclosure rule can become optimal if such value is equal to the supremum in equation (5.13). There-
fore, we will look for conditions on the remaining parameters (x, ¥, k) which imply an optimal prize
less than 0.

For a clean statement of the results, define L : (0,1) — R as

LOY)=1-2¢ +3y2 + \/1 — 4y + 1092 — 493 + 4. (5.14)

The function L () represents the boundary of a region, as a function of the beliefs of the players v,
that the remaining parameters x and k need to satisfy in order for information design to be optimal at
prize values lower than the one implied 0 where the optimal information rule involves saying nothing
to the players.

The results are presented in the next two theorems. Theorem 5.11 deals with the parameter condi-
tions at which the optimal disclosure rule involves non-trivial communication with the players. The-
orem 5.12 complements the previous theorem by describing the optimal disclosure rules that achieve

the optimal profits.
Theorem 5.11. If productivity is regular we have that

1. Ifthe parameters (x, . k) satisfy the condition: 0 < x —dy¥? < (@) L(V), then the optimal

prize scheme is
4x(1—
vt = e —Y) < 0.

L) -4 19

2. If the parameters (x, v, k) satisfy the condition: <@) L(¥) < % — dg?, then the optimal
prize scheme is
v* =2x < V. (5.16)

3. If the parameters (x,V, k) satisfy the condition: x — dg? < 0, then the optimal prize scheme is
U.
If productivity is non-regular, then

4. If the parameters (x, , k) satisfy the condition: 0 < % < dy +dpg, then the optimal prize scheme

N

v* =2x < V. (5.17)
5. If the parameters (x, ¥, k) satisfy the condition: % > do + dg then the optimal prize scheme is

v.

In cases 1,2 and 4 we have that IT* (x, y, k) = IT(v*, %, ¥, k) > T1(U; x, ¥, k). On the other hand, in
cases 3 and 5 we have that IT* (x, y, k) = I1(0; x, Y, k).
Thus, as long as x—dg¥? > 0 for regular productivity or % < dy +dp for non-regular productivity,

non-trivial information design is optimal.
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Theorem 5.12. If the parameters satisfy the conditions x — dg 2 > 0 for regular productivity or % <
de +dg for non-regular productivity then the optimal information disclosure rule D* = (M;)i=1,2,7")
has

M;{Aggressive, Not Aggressive} = {mA, —|mA} fori =1,2,

andn* : A — A(M) is as follows:

e For the regular productivity case in which (dﬂzd"‘) L(¥) < % —da¥? or the non-regular produc-

tivity case in which 0 < % < dy + dg (cases 2 and 4 in theorem 5.11 above) we have that

m*(laa) = 7*(1BB) = [(m™.m™))],
7*(elaB) = n*(e|fa) = 1/4, Vm € M.

dg—da
4

e For the regular productivity case in which (
have that

) L(Y) < x —dgy? (case 1 in theorem 5.11) we

7* (law) = 7*(1B) = [m™ .m")],
w o m By = " m o) = s Ty

¥ (=m® mf jaf) = 7*(m™,—=m |Ba) = 2V

1
1=y L(y)—4y2

6 Concluding remarks

This paper analyzes how a designer can use information to manipulate the beliefs in a contest in
which there is incomplete information about the abilities of the contestants. We found that the op-
timal disclosure rules make the crucial distinction between public and private information and in
general always use partial revelation of information. In particular, we showed how private informa-
tion generates asymmetric hierarchies of beliefs which are necessary for the designer to benefit from
information design. We also performed a cost-benefit analysis of optimal information design rule by
introducing a “price for information” and taking advantage of the full characterization results that we
provided. We found that for a robust set of parameters, information design is the most cost-efficient
way to manipulate the players to act following the interests of the contest designer.

Throughout the analysis of optimal information disclosure rules, we have assumed that the de-
signer was able to pick an equilibrium t hat is to her liking from the equilibrium set engendered
by an information disclosure rule. This equilibrium selection criterion is embedded into the reve-
lation principle-style argument that provides the foundation to use the notion of Bayes Correlated
Equilibrium as a first step into computing the optimal information disclosure rule for the designer.
Generically, the optimal information disclosure rules for contests identified by this method engender
a continuum of equilibria. Although we showed within the context of a particular example that all

equilibria engendered by such a rule perform at least as good as the complete information disclosure
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rule from the point of view of the designer, it remains an important question if we can refine these
results. An important question is to analyze the performance of optimal disclosure rules when we
relax the optimistic equilibrium selection criterion for another one. In particular, we would like to
know what kind of optimal rules arise when we replace the optimistic attitude of the designer by
a pessimistic one in which she now considers that the worst equilibrium is the one that is going to
be picked by the players. In this sense, for any disclosure rule that the designer is considering, this
pessimistic criteria ensures that any equilibria in the equilibrium set engendered by the disclosure
rules perform at least as good as the worst-case scenario.

Tied to the previous notion is the issue about uniqueness of equilibrium under a particular in-
formation disclosure rule. In the paper we identified two information disclosure rules, the null and
complete rules, that have unique Bayes Nash Equilibrium profiles generically. However, in general
these rules were far from optimal. If the designer could find an information disclosure rule that per-
formed better than these two and at the same time engendered a unique equilibrium profile, then she
would not need to worry about the possibility of other bad equilibrium arising under such a rule.

A general solution the this problem can be obtained by extending the techniques in Mathevet
et al. (2016) to the case in which the players hold prior private information, just like they do in the
contests considered here. However, concurrent work to this paper shows that when the designer has
a pessimistic attitude, the candidate optimal rule that emerges turns out to be public. In particular
the optimal public information disclosure rule turns out to engender generically a unique equilibrium.
This is in sharp contrast to the results of this paper and points out the value of public information
disclosure in contests as a mean to incentivize unique equilibrium profiles. An open question remains
about how general this statement is for other classes of games and designer’s objectives.

A second extension is the case of differential information between the designer and the players
while still satisfying the assumption of distributed knowledge between the players and the designer.
When the designer also has private information, any choice of information disclosure rule runs the
risk of informing the players about what the designer knows, and thus impacting the power of the
designer to guide the players to her desire course of action. Therefore, further restrictions need to
be imposed on the choice of the information disclosure rule in order to counteract this effect. This
consideration ties in with the problem of the informed principal in the mechanism design literature.

A final extension that is interesting to analyze is the case of prior private information between
the players which does not satisfy the distributed knowledge requirement. For example, suppose that
the incomplete information in the game is not only described by the ability vector, whose individual
components are assumed to be known privately by the players, but the uncertainty in the contest
also comes from a random component in the value of the prize of which the contestants only receive
a partially correlated signal. A real-life situation that could be modeled by this environment would
be Research and Development races, in which the value of the invention is initially unknown to the
players. In this case, a designer perhaps can disclose information about the value of the prize, the
contestants’ ability or both. In this case, although the techniques from Bergemann and Morris (2016)

still apply, it is nevertheless too artificial since the designer would need to know information that the
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players do not jointly possess.
So, this is how the story ends. The hare never understood what happened that day. The fox, as a
designer, was the real winner. Now, we can extract a new moral from the famous fable: if you want

others to behave as you wish, don’t say more than you need, and just wait until everything is on its stead.
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A Finding an optimal Bayes Correlated Equilibrium for the Designer

A.1 Simplifying the BCE optimization program

In section 3 we described the steps in which the information design problem (2.4) could be simplified
to the search of an optimal Bayes Correlated Equilibrium distribution A in view of theorem 3.2. Equa-
tion (3.4) formalizes the previous claim by showing that the optimal value of the information design
problem es equivalent to the value given by the optimal BCE decision rule A.

For any (y,¢) € C, a decision rule A : A — A(FE) as in definition 3.1 is a four-tuple whose
components come from the three-dimensional probability simplex simplex Az, ie. A € X}_, A3 = A%
Problem (3.4) is thus:

max V(1) (A1)
AreAd
subject to:

Z prob(ajlai)A(ei. ejla)(ii(ei.ej.a) — (e}, ej.a)) > 0, (A.2)

ej,aj

Vi,j =1,2,i # j, Va; € A;,Ve;, e} € Ej,ej # e

There are some features that we wish to point out about the previous program. We have that
A% C R If A € A%, then it needs to satisfy four equality constraints that ensure that for each a € A,
Y eck Alela) = 1. Each one of the equality constraints can be represented by two paired inequality
constraints, for a total of 8. Furthermore, there are 16 non-negativity constraints, i.e. A(e|a) > 0 for
eacha € A and e € E. Additionally the set of inequalities (A.2) describe the obedience constraints
implied by the BCE concept, which is also linear in A. Furthermore we have | E;| x|A;| = 4 constraints
per player for a total of 8. Therefore the program has 32 inequality constraints in 16 variables. The
objective (A.1) is linear in A. Using these observations, we conclude that the previous program is a
linear programming problem.

The objective of this appendix is to provide the details on how to solve this program.

First of all, notice that we can reduce the number of variables to consider by noticing that equality
constraints that define the four-fold product of the three dimensional simplex ensure that in A(-|a)
one of the numbers is determined by the other three for each a € A, which would reduce the number
of variables to 12, with 4 inequality constraints representing the 4-fold probability simplexes, 12 non-
negativity constraints, and 8 obedience constraints for a total of 24 constraints. Using the previous

observations, we will write A : A — A(E) as the vector in R}?

A= (A(W Wila), A(W, S|a), A(S W|a))T
’ ’ ’ ’ ’ acA
that is, we first expand with respect to the effort profile and then we expand with respect to the

state, stacking all of the components as a column vector and where we have incorporated the simplex
restrictions by making A(S, S|a) = 1 — A(W, W|a) — A(W, S|a) — A(S, W|a) for every a € A.
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To simplify further the problem and make it tractable for analysis, we will focus on symmetric
Bayes Correlated Equilibria, hereafter SBCE.

Definition A.1. Let A : A — A(E) be a BCE decision rule as in definition 3.1. A Symmetric Bayes
Correlated Equilibrium (SBCE) is a decision rule which satisfies the following additional restrictions:

AW,Sla) = A(S,Wla) fora e {aa, BB},
AW . Wlap) = A(W.W|Ba),
AW, Slap) = A(S. W|Ba).
AS, Wlap) = AW, S|Ba).

(A.3)

It is obvious that SBCE € BCE, however, it will be shown that the optimal BCE for the designer,
i.e. the optimal solution to problem (A.1) subject to (A.2), actually occurs at a symmetric BCE. We
state this result formally in proposition A.10. The proof of proposition A.10 depends on the next

auxiliary results.

Lemma A.2. Forany (¥, ¢) € C, the set of decision rules that are solutions to the system of inequalities
(A.2) and equalities (A.3) simultaneously is non-empty.

Proof. Fix an environment (¢, ¢) € C. We must show that there is at least one A that simultaneously
solves both (A.2) and (A.3). Let o be a BNE strategy profile for the null information disclosure rule
(see Proposition 4.1) N under environment (V, ¢), that is 0 € ©(y, ¢, N). Define for every e € E
anda € A
Alela) = l_[ oi(eilai, @),
i=1,2

which according to Theorem 3.2 is a BCE and therefore must satisfy (A.2). Furthermore, according to
proposition 4.1, o is almost everywhere unique and symmetric and for environments (y, ¢) in which
the equilibrium set is a continuum (only on subsets of C with measure zero), we can always select
a symmetric one. Therefore, without loss of generality, o can be assumed to be symmetric which in
turn implies that A is symmetric. Since A is symmetric it satisfies the restrictions (A.3). [

At this point, it will be convenient to introduce the following notation: let dy = 4(¢)a — @ and
dg = #(B)B — B denote the marginal productivity of putting effort by the low ability and high ability
player respectively. The next lemma shows how to write the designer’s payoff in a convenient way

using the previous notation.

Lemma A.3. The objective function in (A.1), V(A), which is the expected payoff of the designer given

decision rule A, can be written as a sum of three components:

V() = P°(a = a0)E [v(e, a)la = aa] + P°(a € {aB, BaE [v(e, @)la € {ap, for}]
+P°a = BRIE [v(e.ala = BB]. (Ad)
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where

E [v(e,a)la = aa] = 2dg A(W, Wlaa) + do (AW, Slaw) + A(S, W|aa)) + 2e,
E [v(e,a)la € {eB. Ba}] = (da + dg)(A(W. WlaB) + A(W, W|Ba))
+ do (AW, SlaB) + A(S, W|Ba)),
+ dg(A(S, WlaB) + A(W, S|Ba)) + 2(a + )
E[v(e.a)la = BB] = 2dgA(W. W|BB) + dg (A(W, S|BB + A(S. W|BB)) + 2B.

Proof. Recall that the objective (A.1) comes from the expression in equation (3.3), which is an expected

value:

V() =Eppe [v(e.a)] = Y P(@)Aela)vie.a).

a,e

and that v(e,a) = Ziz=1 f(ei,aj;). Note that for each a € A,

E [v(e.a)la] = ) Alela)v(e.a)
ecE

so that Za,e P°(a)A(ela)v(e,a) = Y ,c4 P°(a)E [v(e, a)|a] which is just the law of total expectation.
If we partition A into three events: oo, ¢ff U fo and BB then we get the expression in (A.4). The
component expressions are obtained by expanding the conditional expectations and collecting terms.
|

For the next results we need first some definitions. Suppose that # = {P;,..., Pr} C R""isa
permutation group, i.e. a set of permutation matrices that is closed under products and inverse. We
will say that a function f : R” — R is P-invariant or symmetric with respect to P if f(P;x) = f(x)
forall x andi = 1,...,k. Define x = (1/k) Zle P;x as the average of x over its &#-orbit. Define
also the fixed subspace of ? as ¥ = {x : Pix = x,i = 1,...,k}. The following are well known facts

which we include here for the sake of completeness.
Lemma A.4. For any x € R", we have that X € ¥ .

Proof. Observe that when each P; is multiplied by some P; we obtain a permutation of the whole
tamily:
PiP;i = Psy, i=1,...,

where o is a permutation. In order to show this, note that for each P;P; is equal to some P by
closedness of the group. To show that Ps is indeed a permutation matrix, suppose that P; P; =
Py P; = Py. Multiplying by the inverse P! to the right, we get that P; = Py. The previous statement
shows that the mapping from the index i to the index s is one-to-one, i.e. a permutation.

Thus

k k k
Pix = (1/k)Y PiPix = (1/k)Y_ Poyx = (1/k) Y Pix = &,

i=1 i=1 i=1

which holds for every j, hence x € ¥. [
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Lemma A.5. If f : R" — R is concave (convex) and P -invariant, then f(x) > (<) f(x).

Proof. Using the concavity of f and then invariance we have that

k k
JE) =1/ f(Pix) = (1/k) Y f(x) = f(x).
i=1 i=1
If f is convex, then a similar argument applies with the inequality reversed. [
The next definition provides the formal statement of an invariant maximization problem. As we

will see, this definition provides a key property in the simplification of invariant problems.

Definition A.6. The optimization problem
max fo(x
max fo(x)
subject to:

filx)=0, i=....m
is P -invariant if the objective fy is P-invariant and the feasible set is P -invariant, that is
fi(x) =0, fm(x) 20 = fi(Pix) = 0,.... fim(Pix) 20, fori=1,... k.

The next proposition will be very useful in simplifying the problem.

Proposition A.7. If fy is concave and the feasible region of the problem ([ {x : fi(x) > 0} is convex
and P -invariant and there exists an optimal point, then there exists an optimal point in ¥, which implies
that we can solve the original optimization problem by adjoining the equality constraints x € ¥ to the

constraint set without loss of generality.

Proof. Let x* be an optimal point, i.e. fo(x*) > f(x) for all x € R” and x* € (/L {x : fi(x) > 0}.
Let x* = (1/k) Zf-;l P;x*. Convexity and invariance of the feasible region together with lemma A.4
imply that x* € (/L ,{x : fi(x) = 0}) N ¥. Lemma A.5 implies that

k
fo®) = fo | (1/k) Y Pix* | = (1/k) fo(Pix™) = fo(x™),

i=1

and thus fo(x*) = fo(x*), so x* is also an optimal solution. |
We are now in position to state formally the result that the optima occur at the set of SBCE. Recall
that the vector A is ordered by first expanding over effort profiles and then over the ability profile.

Consider the following permutation of vectors in R1?

*

(A.5)

1 234567 8910 11 12
1 327 9846510 12 11)°
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and notice that under 0 * we have that 2 <> 3,5 < 9,6 <> 8 and 11 <> 12 or equivalently

AW, S|laa) <«—  A(S, Wlaa)
AW, WlaB) <«~— MW, W|Ba),
AW.Slap) < A(S.W|Ba). (A.6)
AMS, Wlap) <«— AW, S|Ba),
AW SIBB)  «— A(S.W|BB).

Let P* € R!?*12 be the associated permutation matrix of o*. Since P* is a permutation matrix
it is ortogonal and P* in particular is symmetric so it is also its own inverse. Thus, consider the

permutation group £* = {P*, 1}, where I is the 12 x 12 identity matrix.
Lemma A.8. The objective V(L) is P*-invariant.

Proof. The fact that V(IX) = V(A) readily follows. On the other hand, V(P*1) = V() follows
from the decomposition in lemma A.3 since we can clearly see that the set of variables that are being

permuted (A.6) are precisely the variables that are treated symmetrically in the decomposition. W
Lemma A.9. The feasible set ((A.2) together with the simplex constraints) is * -invariant and convex.

Proof. The feasible set is comprised of the set of inequalities given by (A.2) and the simplex constraints.
All of these constraints are linear inequalities and thus can be represented as BA < ¢ where the coef-
ficients of B and ¢ are of the form prob(a;|a;)(il; (e;. ej, a;, aj) —1; (e}, ej,a;,aj)) fori, j = 1,2,i # j
and e;, ¢; and e; in E and a; and a; in A. Since it is a system of linear inequalities, then the feasible
set is a convex polytope (bounded polyhedron). The matrix B is a 12 x 12 matrix incorporating 8
obedience constraints (4 per player) and 4 simplex constraints in this order; for the moment we will
ignore non-negativity constraints. On the other hand, ¢ is a 12 x 1 column vector..

To show that the feasible set is #*-invariant, it is sufficient to show that BA < ¢ implies that
BP*A < c. Towards this end, we will show that

12 12
(A e RL2:[BAL <[eli} = [ {4 e RY : [B(P* V)i < [el:},
i=1 i=1

where the notation [x]; denotes the i-th component of the column vector x.

A straightforward but tedious computation shows that

A eRZ:[BAL <[c]i} & (A eREZ: [B(P*V))ita < [c]i+a} fori =1,...,4and
A eRY2:[BA; <[e]j} & (A eRZ:[B(P*A)]; < c];} forj =9,...,12.

Observe that P* permutes the players obedience constraints and leaves the simplex constraints equiv-
alent making both systems of inequalities equivalent; this observation completes the proof. [

We are finally ready for the main result of this section.
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Proposition A.10. IfA* solves problem (A.1) subject to the constraints (A.2) then A* also satisfies (A.3).

Thus, without loss of generality, we can add constraints (A.3) to the original problem and thus focus only
on SBCE.

Proof. Lemmata A.8 and A.9 tell us that that we have a #*-invariant linear objective with a convex
P*-invariant feasible set. Thus, if ¥ * is the fixed subspace of #*, then proposition A.7 implies that
without loss of generality we can add the equality constraints A € ¥ * to the original problem.
What remains to show is that the equality constraints A € F* are precisely those that identify
a SBCE according to definition A.1. Notice that we have two systems of inequalities. IA = A and

P*)A = A. The first one is trivially true. The second one es equivalent to
P*A—1IA=(P*—1)A =0,

i.e. we are looking at finding the nullspace of the matrix P* — I. The solution set for the previous

system implies the following five restrictions on A:

AW, Sla) = A(S,Wl]a) fora e {aa, BB},
AW, Wlap) =AW, W|Ba),
AW, Slap) = A(S, W|Ba),
AS. Wlap) =AW, S|Ba),
and all other components free. These are precisely the extra conditions that characterize a SBCE. H

The previous discussion suggests an useful parameterization for the set of SBCE. This parameter-

ization is shown in figure 5.

A(|o) w S A(|aB) w S

w Yo §a — Y w W s

S Eo — Ya Ya — 280 + 1 S ¢ l—p—686-¢
AC|Ba) w S ACIBB) w S

W 1 ¢ W VB 8 — 78

S 8 l—pu—-6-¢ S &g —vp yg — 26 +1

Figure 5: Symmetric BCE—Parameterized decision rule A

Let A = (Vo.8a.vp.5p.14.0.0)T € R7 represent the parameterized decision rule as in figure 5.
The interpretation is straightforward, y, and yg denote the probability that both players are working
when they are similar whereas &, and &g represent the symmetric probabilities that one player is
working while the other is shirking when they are similar. Finally, the remaining variables u, é, ¢
represent the symmetric probabilities when the players are different of both working, weak working
and strong shirking, and weak shirking and strong working.

For this parameterization to be a valid system of conditional probability distributions we need the
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following conditions to hold

26 — 1 <y; <&, fori € {a, B}, (A.7a)
S+l+p<l, (A.7b)

£ >0,y 20, fori = 1,4, (A.7¢c)
©w=>0,6§>0,¢>0. (A.7d)

In a SBCE, the two players are treated symmetrically, so the 8 constraints in (A.2), 4 for each player,
are identical across players. Hence, we can consider only four of them. Rewriting the four obedience

constraints using A yields:

(= 20)ka + pp(1 —9) — 51— $)(1 ) <0 (A8a)

3 (1= 26)(1 = Y)és — w1~ Py + L9y <0, (Asb)

3 (=2 — (1 = $)1 =) =81 =1 =9~ L1 —¥) S 208 +¥ -2),  (A80)
S (L=20)(1 ~ )kg + by + 89U +LoY < Q6+ Y -1 (A

If a player low ability («) is told to work (W), then he will do it if constraint (A.8a) holds. Similarly, if a
player of high ability (B) is told to work, he will do it if (A.8b) holds. On the other hand, a player of low
ability who is told to shirk, will do so if constraint (A.8c) holds. Finally, a player of high ability who is
told to shirk will do it if constraint (A.8d) holds. Partition A = (A1,A2)T where A1 = (yu, &a, v8.£8)T
and A, = (u, 8, {)T. Define the matrix 2 = [£2;, £2,] as the one that incorporates the left-hand side
of the obedience constraints (A.8) and the simplex constraints (A.7a) and (A.7b), i.e. without taking
into consideration the non-negativity constraints and 5 as the respective right-hand side, where £

and 2, are the component matrices that correspond to the previous partition of A

0 (p—3%)v O 0

0 0 0 (p—35) =)

0 (¢=3)v 0 0

0 0 0 (p—3)1=¥)

2,=|-1 2 0 0 (A.9)

1 -1 0 0

0 0 —1 2

0 0 1 -1

|0 0 0 0 ]
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p(—vy)  —(1—p)(1—y) 0
—(1—¢)y 0 oY
—1=¢)1—y) —(1—p)1—y) —(1—v)
oY W Py
2, = 0 0 0 (A.10)
0 0 0
0 0 0
0 0 0
i 1 1 1
0 )
0
—(1=y)1—=¢)+ ¥ (¢ — 3)
(1—=vy)(p—12)+vo
N = (A.11)

e =

/

Notice that both §2 and 5 depend on ¥, ¢ € C, but we supress the dependency for simplicity.
We can use the previous notation about productivities and the parameterized decision rule A to

rewrite the expected payoff of the designer given by equation (A.4) in lemma A.3 as follows:

2¢2doEr +2(1 — ¥)2dgés + 29 (1 — ¥)((da + dp)pe + dod + dgl) + 2(ay + B(1 —¥)). (A.12)

Define the vector p = (p1, p2)T, where the subindexes correspond to the partition of A and where
p1 = (0,9%de.0, (1 —¢)?dg)T and p» = (dg + dg, do, dg)T. Then (A.12) can be written as

20141 + 2 (1 —¥)piAa + 2(ay + B(1 —¥)). (A.13)

We conclude that the objective (A.1) subject to the set of constraints (A.2) is equivalent to the

following program.

V= max {20141 + 20 (1 —¥)pJAa + 2(ay + B(1 — )}

subject to (A.14)

21A1 + 224, <pandA > 0.

Remark: V also depends on (v, ¢, k) but we suppress the dependency for simplicity. ¢

16Notation: if x,y € R”:
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A.2 Further simplifying reductions and auxiliary results

Inspection of the objective (A.13) and the obedience constraints (A.8) yields the following lemma,
whose proof is trivial.

Lemma A.11. In an optimal SBCE for the designer, when the players are similar, the probability that
both work, y; and the probability that only one of them works, §; are equal, i.e. y; = &; for j € {o, n}.
Thus, in an optimal SBCE, when the players are similar either they are both working or both shirking or

mixing between these two cases.

Proof. Notice that y;, j € {«,n} does not enter into the objective (A.13) nor appears in the con-
straints (A.8). The only place that these two variables appear is in the simplex constraints (A.7a)
and the non-negativity constraints (A.7c). Thus, without loss of generality, we can put y; = &; for
J € {a,n} without altering the optimal value of the problem and without affecting the rest of the
feasible set. [

Lemma A.11 yields the following corollaries.

Corollary A.12. The simplex constraints (A.7a) pertaining to the states when the players are similar,

ie.a € {aa, BB}, can be compressed into the single constraints §; < 1 for j € {a, B}.

Corollary A.13. Define the reduced vector A = ():1,12) where Aq = (. £p)T and A2 = (1, 8,07
remains the same as before. Furthermore, define p = (p1., p2)T where pi = (Y >dy, (1 — ¥)?*dg)T and
p2 remains as before. Finally, define the partitioned matrix 2 = [£21.25] representing the reduced

left-hand side obedience constraints and the reduced vector 1) of the corresponding right-hand side as
follows:

[(¢-2)v 0 ]
0 (p-3)U-¥)
(0-3)v 0
2, = 0 p—-a-v) |, (A.15)
1 0
0 1
L O O -
e X>y & x;>yi,i=1,..., n.
e X>Yy & x; >yii=1,..., nandx #y.
e X>Y & x>y, i=1,..., n.
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p—v)  —(1-pd-y) 0
~(1-¢)y 0 oy
—A=p)(1—y) —(1—)(1—y) —(1—v)
2, = 20 v oy | (A.16)
0 0 0
0 0
L 1 1 -
: \
0
A=) (1—@) + v (¢ —13)
=] a-wve-3+ve | (A.17)
1
1

! /
Define the correspondence T : C =3 R> as the solution set of the constraints, i.e.
T(.¢) ={A=(A1.22) €R° | 21A1 + 2242 <31 A 2 0} (A.18)

Then, problem (A.14) is equivalent to:

7 = max {2,3{)11 + 2y (1= Y)plha + 2(ay + B(1 — w))} (A.19)
AEY (V,9)

As mentioned before, the feasible set 7' (¥, ¢) is a convex and compact set since it is a polytope.!’

Since 7 (¥, ¢) describes a convex polytope, then it can potentially be described by the convex hull
of its vertices. The set of vertices of T (¥, ¢) is the set of its extremal points.'®

Thus, for any (v, ¢) let Ext(Y (¥, ¢)) denote the finite set of extremal points of 1 (¢, ¢), ie.
T (¥, ¢) = conv(Ext(T' (¥, ¢))).

However, trying to search for all possible vertices of 7 (v, ¢) is a daunting task, since we have the
following bounds (Salomone, Vaisman, and Kroese, 2016; Eckhoff, Gruber, and Wills, 1993):

1. By the McMullen upper bound theorem; the number of vertices |Ext(Y (¥, ¢))| is at most

n—(d+1)/2] n—d+2/21\ _(12\ _
() ()

where the number of half-spaces that define 7' (¥, ¢) is n = 12, since we have 7 inequalities

plus 4 non-negativity constraints, and d = 5 since A € R5.

7Tt is a bounded polyhedron, since it is described by a finite set of linear inequalities and it does not contain a ray.
181f K is a convex subset of R”, then a point x € K is an extreme point of K provided that y,z € K,0 < 0 < 1, and
x=0y+(1—-0)zimplyx =y =z.
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2. By the Barnette lower bound theorem, the number of vertices |Ext(Y (¥, ¢))| is at least
n(d-—1)—(d + 1)(d —2) = 30,

where n and d are as before.

Thus, trying to find the set of extremal points of 7" (y, ¢) for all (¥, ¢) € C, and then evaluate the
objective function at each of them in order to compare them is an intractable approach in general.
However, there is one situation in which we can completely describe 1 (v, ¢) and that is when

¢ = 1/2. The following lemma records this observation.

Lemma A.14. Let ¢ = 1/2. Then, for any ¢ € (0, 1), we have
T((¥1/2)=(heR0<E&<1,0<f<lp=5=C=1/4}

Proof. We start by substituting ¢ = 1/2in £, £, and §. After the substitution, notice that the upper
portion of 2, vanishes, which implies that the only constraints affecting A= (Eqn £ g)are0 < &, <1
and0 <ég < 1.

On the other hand, we have after some simplifications the following constraints on A, = (i, 8, ¢)

u<3$, (A.20a)

¢ <, (A.20b)
—u—8—20<—1, (A.20c¢)
w+28+¢ <1, (A.20d)
w46+ =<1 (A.20e)

Inequalities (A.20a) and (A.20b) imply that { < u < §. Adding up inequalities (A.20c) and (A.20d)
yields § < ¢. The previous two inequalities implies that © = § = ¢, which together with (A.20e) and
the non-negativity constraints implies that these three numbers must equal 1/4, which concludes the
proof.

|
Careful observation of the objective in (A.19) and the matrix £, yields further simplifications,

which are recorded in the following lemmas.
Lemma A.15. Leti’f = (&, S;) = (1, 1). Define the correspondence T(,¢) : C = R? as

T(.¢) = (A2 € R? | 2242 < i) — 2141, 22 > 0}, (A21)
which represents the solution set of the reduced system of constraints. Then T (v, ¢)is non-empty for

all(.¢) e{(¥.¢) € Clp <1/2}.
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Proof. We need to show that the correspondence (A.21) is non-empty, i.e. it represents a valid system
of inequalities. Towards this end, it is enough to show that it contains at least a point for each
(Y, @) € {(V, ) € C|¢p < 1/2}. First of all, notice that

v(3-94) )
(1=v) (3 — )
~(1=v)(1 - ¢)
i — 21A% = Ve
0
0
1 ),

Since (¥, ¢) € (0, 1) x (0,1/2] we have that ¥ (3 —¢) = 0,(1—v) (3 —¢) =0, —(1—y)(1—¢) <0
and ¥¢ > 0.

Now, consider the following point A, = (1,8, )T = (¢(1—¢), ¢2, (1—¢)?)T, which we will show
satisfies (A.21).1 We have that after some simplifications

0

0
~(1—=y)(1—¢)
2,1, = Ve
0
0

1-¢(0-¢) _

Noticing that 1 — ¢(1 — ¢) < 3/4if ¢ < 1/2, it is easily seen that £2,1/, < §j — £,4%. Finally, it is
easily seen that A, > 0 which completes the proof. [

Lemma A.16. Suppose ¢ < 1/2 and let A* = (1,1) as in lemma (A.15). Recall that V is the optimal
value of problem (A.19). Then

7= max {2,3{)11‘ + 2y (1 —y)pTAs + 2(ay + B(1 — w))} (A.22)
A2€Y (Y,0)

That is, i’f is part of an optimal solution.

Proof. First of all, notice that in (A.19), the coefficient attached to it p1 = (Y2:dy, (1 — W)zdﬂ)T, has
only positive components. Therefore, increasing the value of A; as long as it is feasible increases the

value of the objective.

9The point A/ is part of the equilibrium distribution induced by the complete information disclosure rule €, as described
in 4.3.
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Secondly, in the system of inequalities 2141+ 224, < 7, in the matrix

(p—3)v 0
0 (¢—3)1—v)

(@—3)v 0
-3 a-v)|.
0

0
1
0
0 0

the terms in the upper part, which correspond to the obedience constraints, are all non-positive if
¢ < 1/2. Thus, by making 4, positive and large, we are actually making the obedience constraints
less binding if ¢ < 1/2 orleaving them the same if ¢ = 1/2. Furthermore, the inequalities represented
by the lower part of this matrix together with the non-negativity constraints imply that 0 < A, < 1.
Thus, the observations from the last two paragraphs imply that by putting )ALT = (1, 1)T, we either
strictly increase the value of the objective while making the obedience constraints less binding or
leaving them unchanged while still satisfying the upper bound for this parameter.
Finally, to complete the proof notice that by lemma A.15 the system £2,4, < §j — £ 1):’{‘, A2 >0
is non-vacuous.
|

The previous two lemmas yield the following corollary.

Corollary A.17. Let ¢ < 1/2. Then we can find the optimum of problem (A.19) by solving a simpler

problem:
A3 € argmax {ZﬁIiT + 29 (1 —y)pSAs + 2(ay + B(1 — l/f))} (A.23a)
A2eT(¥.9)
—
A3 € argmax {pJA,} (A.23b)
A2eT (¥.9)

Proof. Define T : R — R as T'(x) = 2p14% + 2(ay + B(1 —¥)) 4+ 2y (1 — ¥)x. It is easily seen
that T is a positive and increasing affine transformation, Since p;)vz € R, we have that T(p;A 2) =
26TA% 42y (1=y)pl Ao+ 2(ay 4+ B(1—)). Thus, the objective in (A.23a) is an affine transformation
of the objective in (A.23b). Since the feasible sets from both problems are the same they necessarily
have the same set of points at which the maximum is attained.
|
Corollary A.17 greatly simplifies the dimensionality and complexity of the problem, since for the
parametric cases in which ¢ < 1/2, we can reduce the number of choice variables to three and we
can find their optimal values by maximizing a much simpler objective function.

The question remains if we can extend the result that i’f = (1, 1) is part of an optimum to the

53



case in which ¢ > 1/2. The answer is negative as is shown in lemma A.19. The proof of lemma A.19
uses the following version of Farkas’s Lemma, which is a simple corollary of the version that appears

in Gale (1989, Theorem 2.7, p.46).

Theorem A.18 (Farkas’s Alternative). Let A be an m x n matrix and letb € R™. Exactly one of the

following alternatives hold. Either there exists an x € R" satisfying

; (A.24)
X =V
or else there existsy € R™ satisfying
yTA >0,
yTh < 0, (A.25)
y > 0.

Lemma A.19. Let }:’f = (&}, fg) = (1,1). Then the correspondence T, ¢) is empty-valued for all
V.9 €{(¥.9) € Clp > 1/2}.
Proof. The proof strategy will be to find an appropriate vector y as given by (A.25) in theorem A.18

which will provide a certificate of infeasibility for each ¥, ¢ = (¥, ¢) such that ¢ > 1/2.
The proof will proceed in three steps.

Step 1. Define the correspondence Y : {(y,¢) € C|¢p > 1/2} = RZL as the set of vectorsy = (yi)l?:1
that satisfy the following conditions: y; = y3 =3 >0,y =y4 =3 >0, y5 = y¢ = y7 = 0 and

=y § -1 +0-pd-¢)

= , f —(1— —1/2 0, A.
T R RT3 iy — (1—Y)(@—1/2) > (A.26)
12;;”5%@0 ifye—(1—y)p—1/2)<0.  (A2)

For illustration purposes, consider the case in which ¥ = 1/4. Then we have that

3 j _ 5—4¢
%§%<oo 3/4<¢ < 1.

Figure 6 plots the correspondence in (¢, y/y)-space.

We need to show that Y (v, ¢) is well-defined and non-empty valued for all ¢, ¢ € {(V,¢) € C|¢p >
1/2}. Notice that since ¢ > 1/2

The expression

Y@—-1/2)+d-y)d -¢)
o —(1—-y)(d—1/2)

’
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| <

3/2 |

1/2 3)4 i ¢

Figure 6: The correspondence Y (¢), when ¥ = 1/2 in (¢, y/y)-space.

has a positive numerator since ¢ > 1/2. Furthermore, if the denominator is positive, i.e. Y¢ — (1 —
¥)(¢—1/2) > 0, then the whole expression is strictly positive. If on the other hand the denominator
is strictly negative, i.e. ¢ — (1 —¥)(¢ — 1/2) < 0 then the whole expression is strictly negative.

We now show that if ¢ — (1 — ¥)(¢ —1/2) > 0 and ¢ > 1/2, then

=¥ Y@ —1/2+1—p)(1—¢)
Wy~ (-G —1/2) (A-28)

which makes the condition regarding y/y in (A.26) well-defined. The inequality in (A.28) is equiv-

alent to

(V@ —1/2) + (A =y)(1—9))2¢y — (¥¢ — (1 = ¥)(p — 1/2))(1 - V)

0
) 2ve) (v — (1= y)(d —1/2))

After some algebraic manipulations, the previous inequality es equivalent to

(¢ —1/2)2py2 + (1 = ¥)?) —2(1 — ) Yd(p — 1/2)
2y9) (Ve — (1 — ¥)(p — 1/2))
@ —1/2(2¢v QY — 1) + (1 - v)?)
v (Yo - -y —1/2))

0<

(A.29)

In light of (A.29), we can see that inequality (A.28) is true if and only if the terms in parenthesis
are either all strictly positive or strictly negative at the same time. Since by assumption 1/2 < ¢ < 1,
0 < ¢ < 1sothat ¢y > 0, and y¢ — (1 — ¥)(¢p — 1/2) > 0 we only need to check the sign of
20y 2y — 1) + (1 — ¥)2. We have that

20029 — D)+ (1 -y >yQRy—1D)+(1—-9)2=3¢2 -3y +1>1/4>0, (A.30)
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where the first inequality in (A.30) is due to the fact that ¢ > 1/2 and the final inequality is due

to the fact that 392 — 3y + 1 is a convex function of ¥ which achieves its minimum at 1/4 when
v =1/2.
Therefore, the previous arguments show that Y (y, ¢) is a well-defined non-empty correspondence.

Fix any y € Y(¢, ¢). We will show that y provides a certificate of infeasibility. From theorem A.18
we need the inequalities in (A.25) to hold:

yT2, >0, (A.31a)
yT(i — 2147 <0, (A.31b)
y > 0. (A.31¢)

Evidently, by step 2, each component of'y is either zero or strictly positive so (A.31c) holds. From (A.31a)

we get after rearranging and simplifying terms

(@ =D(a=pP+vi)
Y122 = [ 2((1—@)1 )i +yi| =0. (A32)
—(1=y) +2¢v 7

Similarly, we get from (A.31b) after collecting terms and rearranging that
— (W@ —1/2)+ (A=) —¢) + F(v¢ — (1 —¥)(¢ —1/2)) <O. (A.33)

In (A.32), the first component is strictly positive because 0 < ¢ < 1 and 1/2 < ¢ < 1, so this

inequality will not be binding. Thus, we need the following system to have a solution

vy =2((1 - )1 — ), (A.34a)
2097 > (1—v)3, (A.34b)
Fe -0 =v)(¢—1/2) <F(¥ (¢ —1/2) + 1 —y)1 - 9)). (A.340)

The coefficients attached to y and y in inequalities (A.34a) and (A.34b) are strictly positive by as-

sumption, so these two are equivalent to

LJ2a=9a-w) -y

: 4 (A.35)
14 209 y

m

Notice that in (A.35), the inequality

(-¢)d-y) (A-y) , 4¢d-¢)—1
14 20y 20

holds since 0 < ¢ < 1 and 4¢(1 — ¢) < 1 because ¢ > 1/2.

<0&4p(1—¢) <1

On the other hand, in inequality (A.34c), the coefficient attached to y is strictly positive when
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¢ > 1/2but the coeflicient of y can change sign. Ifitis strictly positive, i.e. py—(1—y)(¢p—1/2) > 0,
then the inequality does provide an upper bound on y/j:

y_Yv@-1/+0-y)d-¢)

y vo—(1-y)@—1/2) ~

and provides no restriction in any other case, i.e. ¢ — (1 — ¥)(¢p — 1/2) < 0.

Combining all these observations, we have that all of them correspond to the definition of Y (v, ¢),
and thus we have shown that the vector y that we arbitrarily chose indeed is a certificate of opti-

mality. This concludes the proof.

A.3 Full characterization of the optimal SBCE

After all the work done to simplify the problem in the previous subsections, we are now ready to
move forward with the characterization of an optimal Symmetric Bayes Correlated Equilibrium.

Before proceeding there are a few remarks that are in order. We are looking to describe the
set of optima of problem (A.14) as a function of all contests ({, ¢) € C and all productivities k € K.
Problem (A.14) is a parametric linear programming problem and although is structurally simple it still
poses a challenge to solve fully. The simplifications from the previous subsections in this appendix
will help in the full characterization. The search for an optimal solution involves making sure that
we are finding positive solutions. On the other hand, the objective function depends on the marginal
productivities (dgy,dg). Therefore, the structure and shape of the set of optimizers will be impacted
by these two considerations.

We need some preparations before describing the full characterization.

Boundaries: The next set of equations describe boundaries in the regions from C that we will

describe next.

L) =y L) =2-vy
1 =2y —y? 1—4 1092 — 43 4
L) =1-9 e = e
24+ y2%— /48 4y 4
G =14y toy) = 2XV VA A 4y

29

3-2¢ + Y2 — /1 —4y + 1092 — 4¢3 + g4
21—v)

b(y) =
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5—9 —V9—10y + y2
Ls(y) = 7

246y — Y2+ J4— 16y + 2492 — 12¢3 + ¢4
bo(y) =

29

Regions: After having described the boundaries in the previous paragraph, we will be able to de-
scribe concisely the regions in C that will define the characterization of the optimal SBCE. We do this

next.

Cr={(.¢9) € C:2¢ < lr(y)}

Co={(y.¢) € C:t1(Y) <2¢ < L5(y)}
C3={(y,¢) € C:ls(y) <2¢ <1}

Co={(.¢) € C:1/2 =9y, 1 <2¢ < Lls(¥)}

Cs ={({,¢) € C: ¢ < 1/2,1 <2¢ < L7(y)}

Co ={(¥.¢) € C :max(ls(¥), L7(¥)) < 2¢ < min(la2(¥), {3(¥))}
Cr={(¥.¢) € C : L3(Y) <2¢ < LrL(y)}

Cs ={(¥.¢) € C : L3(Y) <2¢ < la(y)}

Co ={(y.¢) € C :max(l + .2 —y) < 2¢}

Cio ={({,9) € C: 1/2 <y, ls(y) < 2¢ < {3(V)}
Ci1 ={(¥,¢) € C :max(l7(¥). L (y)) < 2¢ < L3(Y)}
Co={(¥,¢) € C:1/2 =9y, 1 <2¢ < lu(Y)}
Ciz={({,¢) € C:y <1/2,1 <2¢ <Lo(¥)}

Cia ={(¥,9) € C: ¥ = 1/2,4o(y) <2¢ < {3(¥)}
Cis={¥.¢)cC:2¢ =1}

Productivity Regions: Asmentioned earlier, the shape of the set of optimizers also depends on the
marginal productivities of the high versus low ability type player. Specifically, the optimum depends

on the ratio dg/dy. Figure 7 shows the relevant regions.

| i i i i :
0 2¢—1 1 2 20 do
2¢ 2¢—1
Non-Regular Productivity Regular Productivity

Figure 7: Ratio of marginal productivities—relevant regions

We reproduce here again the diagram about the productivity regions that appeared in the main
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body of the paper. In figure 7 each mark represents a cutoff of the ratio dg/d, at which the shape of
the optimizers changes. All cutoffs except or the first and last one are independent of the particular
contest (Y, ¢) considered. The first and last cutoffs depend on the normalized value of the contest
¢ when ¢ > 1/2. The optimizer will be unique except when dg/dy is equal to one of the cutoffs, at
which multiple optimizers are possible. As shown in the figure, when the productivity differential
ratio is less than one corresponds to the case of non-regular productivity as described in the main
body of the paper. Similarly, when the ratio is greater than one corresponds to the case of regular
productivity.

We will present the characterization as a set of lemmas. In what follows, let A*:CxK =3 R’

denote the set of points at which the maximum of problem (A.19) is achieved, i.e.

A*(v.¢.k) = argmax {25741 + 29 (1 = ¥)plAz + 2(ey + B —v)} .
AT (v.9)

where A* = (A%, A4%), AT = (Ex.£5) and A3 = (u*,8%,¢%).

As mentioned before, the structure of A*(, ¢, k) depends, via k on the region in which the ratio
dg/dg falls. Again, we reproduce one of the diagrams that has already appeared on the main body.
Figure 8 represents the large scale structure of A*. Each color represents a region in C x K at which
two things happen: A* is constant with respect to k as long as the respective condition on the ratio of
the productivity differential is met, and the algebraic structure of A* with respect to (1, ¢) is similar.
Intuitively, in each of the regions in figure 8, different obedience and simplex constraints are binding at
the optimal SBCE distribution A *. Therefore, at the optimal BNE induced by such an optimal decision
rule, a player who is recommended to follow a particular action for which the obedience constraint
is binding will be indifferent between following it or not. However, following the recommendation
will be part of the optimal BNE.

There is a pair of regions in which A* is a constant function of (¥, ¢, k). The next two lemmas
(A.20 and A.21) deal with these two cases, which occur when (y, ¢) belongs to the regions C; and
Cis,i.e. when 2¢ < ¢ and ¢ = 1/2 respectively.

Lemma A.20. For all (¥, ,k) € C1 x K, A*(y, ¢, k) is constant and is given by
AY=(1.1), A}=(1,0,0).
Furthermore, A* gives an optimal value of

VW, ¢.k) =2(¢(da + o) + (1= y)(dg + B)) = 2(VR(@a + (1 — ¥)&(B)P)

Proof. The optimality of ):’f = (1, 1) follows from lemma A.16 since ¢ < 1/2 in the region C;. For
the same reason, we can apply corollary A.17 to find the optimal value of A3 by solving the problem
max {p;)cz} subject to Ao € T(y,¢). Since T(¥,¢) includes the non-negativity constraints and
simplex constraint for A, = (u.8,¢) and pJA> = p(de + dg) + 8dg + Cdp, it follows that the
objective is a weighted sum with weights given by A, and in which the largest term is dg 4 dg. Thus,
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é (@) 20 —1)/(2¢) <dg/da < 1 # (b) 29 —1)/(2¢) > dg/de > 0
1 1
Cg C7
Cy Cy
172 : 1/2
/ s / s
C» o C» .
1/2 1y 1/2 1
(01 <dg/dy <2 (d)2 <dg/de < (2¢9)/(2¢ — 1)
¢
1
1/2
/ Ca
C» .
1/2 1y

(e) 2¢)/(2¢ — 1) < dg/da
Figure 8: Structure of A*(y, ¢, k)
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it is sufficient to show that A7 € T, ¢). The point A3 satisfies the non-negativity conditions so we
need to show that [2213‘ <n- .f}l}:’f. The last expression is equivalent to

(1—vy)¢ v(3—9)
—y(1-¢) 1-v)(3—¢)
~(1—y)(1—¢) ~(1—9)(1—¢)
v < v
0 0
0 0
1 )\ 1

From the last expression we can see that the inequalities from rows three to seven are trivially satis-
fied. From the first row after some algebraic manipulations we get that 2¢p < ¥. From the second row
we get that 2¢ < 1 + . Since the first one implies the second one for all (y, ¢) € C we get that the
expression in the previous display is equivalent to 2¢ < . Noticing that this conditions is precisely
the one that defines the boundary of region Ci, we have that A is feasible if and only if (¢, ¢) € Ci.

Finally, substituting the optimal values i’f and A3 into the objective A.19 and simplifying terms

yields the following expression for the value of the information design problem:

Vv

26147 + 2y (1 — y)pIAs + 2(ay + (1 — )
2(Y(de +a) + (1 —y)(dg + B))
2(Yh(@a + (1 —p)&(B)B).

Lemma A.21. If (¢, ¢) € Cy5, i.e. (V,¢) = (0,1) x {1/2} and for all k € K, we have that i*(w,qﬁ,k)
is constant and is given by

AY=(1.1), AL =(1/4,1/4,1/4).

Furthermore, A* gives, for all € (0,1) and k € K, an optimal value of

VW, 1/2,k) = 2@y + (1 —=9)) + da¥ (1 +9) + dg(1 = ¥)(2 = ¥)

Proof. We have again that the optimality of i’f = (1, 1) follows from lemma A.16 since ¢ = 1/2 in
the region Cj¢. Lemma A.14 implies that A% = (1/4,1/4,1/4) is the only feasible point of T°(V, ¢)
for all € (0, 1). The previous fact together with corollary A.17 implies that A is optimal.

Finally, substituting the values i’f and A7 into the objective A.19 and simplifying terms yields the
value of the information design problem as shown in the statement of the lemma. [

The following lemmas complete the characterization of A* over (C \ (C1 U Cy5)) x K.

61



Lemma A.22. Ifk € {k’ eK:1< j—g} and (Y, ¢) € C;, then i*(l//,qﬁ,k) is given by

AT =(1,1),

AF = (w(l—zzp) 0. 26—V )
27 \2p(=9)" " 26(1=v) ) *

Furthermore, A* implies that the optimal value for the designer is

2
V(.. k) = 2dg(1 —y) + da% L2y + B(L— ).

Lemma A.23. Ifk € {k’ eK:1< j—(‘j} and (Y, ¢) € C3 then i*(lﬂ,d),k) is given by

Ay=,
29+ B4y —¥2)—2¢>(1-y)—1
29(1-9)
aF = 20> (1-y)—y > +¢(1-2y—y?)
2= 20=-9)¥
2¢3(1-y)+y>+(2-2¢ =3y 2) +¢2(6¥+¥>-5)

209 (1-v)

Furthermore, A* implies that the optimal value for the designer is

2

+dg (3—2¢(1—w)—4w—w2+?)+2(ou/f+ﬁ(1—W))-

Lemma A.24. Ifk € {k’ eK:0< j—(‘j < 1} and (Y, ¢) € C2 U C3 then i*(lﬂ,¢,k) is given by

Ar=q,,

AF = <2¢2—2¢3+w—3¢w+¢2w 0Q2o—v) (1-9)>Qo—v) )
2 2¢(1—v) Y2(1—y) 0 20—y

Furthermore, A* implies that the optimal value for the designer is

_ 2
V(.¢.k)=dg (2—2(1 + o)¥ + ¥?) + do (2¢w —y?+ %) +2(ay + B(1 — ).

Lemma A.25. Ifk € {k’ eK:1< j—ﬁ < %} and (Y, ¢) € C4 then A*(y, ¢, k) is given by

wz
20429 —2¢ ¥ —2¢> Y=y >+ y>—1
2(1-9) ¥
A* = o Q20—¥)
2 2(1=9)
1-2¢42¢> Y —¢ ¥
20— ¥
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Furthermore, A* implies that the optimal value for the designer is

V¢, k) =dg =201+ )y + ¥?) + do QUL+ $)¥ — ¥2 — 1) + 2y + B(1 — ¥)).

Lemma A.26. Ifk € {k’ eK:1< j—i} and (Y, ¢) € Cs then i*(l//,qﬁ,k) is given by

2k _ 1—¢p—2¢+2¢ Y+

A = (0, =)

(1-9)2¢p+y—1)
29

AF = Q2p+y—1)

2 2

v
3¢p—2¢2—2¢ ¢ +2¢2 Y +dY2—1
20—y

Furthermore, A* implies that the optimal value for the designer is

V(g.k) =dg 2+ 20(=1+9) =2y +¥?) + da(1 =) Q29 + ¥ — 1) + 2(ay + B(1 — ).

Lemma A.27. Ifk € {k’ eK:1< 3_3 < 2} and (Y, ¢) € Cg then i*(w,q’),k) is given by

(2¢—1)y2
(A—-¢)¥y(2—-2¢—¥)
(2¢—1)(1—-y)?

x _ (2-20—y 2y—1
35 = (535 56559)

<3¢—2¢2—2¢w+2¢2w+¢w2—1)

Furthermore, A* implies that the optimal value for the designer is

dp¥(2—2¢ — ) +da(y> +2¢(1 +y) — 1 -2y)

V(Wﬂﬁ»k): 2¢_1

+2(ay + 1 = ¥)).

Lemma A.28. Ifk € {k/ eK:0< j—z < 2} and (Y, ¢) € C7 then i*(w,qﬁ,k) is given by

P _ (U=0)1-0)Cotu-1)
A = (E2EEGER0).

A% = (o,¢ +%-10)
Furthermore, A* implies that the optimal value for the designer is

do(1-9)2¢ + v — 1)

V(W#’,k): 2¢_1

+2(ay + (1 —¥)).
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Lemma A.29. Ifk € {k’ eK:0< j—g < 2} and (Y, ¢) € Cg then i*(l/f,d),k) is given by

Aix = (1 (1—¢)w(2—2¢—w))
! ©@e-Da-v)2 )¢

* _ (2=-2¢—Y 20—V
A5 = (535 2000)

Furthermore, A* implies that the optimal value for the designer is

¥ (de (49 —2) —dp(2¢ + v —2))
2¢ — 1

Vy.¢.k) = +2(ay + B = ¥)).

Lemma A.30. Ifk € {k’ eK:0< j—s < 2} and (Y, ¢) € Co then A* (Y, ¢. k) is given by

pe _ (20-9)1-w)
A= (2958052.0).

A% = (0, 1, 0)
Furthermore, A* implies that the optimal value for the designer is

) do (1 —
Pk = < 2y 4 b1 )

Lemma A.31. Ifk € {k’ eK:2< j—g} and (Y, ) € Cg U Cy then i*(w,qﬁ,k) is given by

1* = M)
A= (0. 51 )

35 =(1-9.4.0)
Furthermore, A* implies that the optimal value for the designer is

2dgy (1 = — Y + ¢Y)
2¢ — 1

V. ¢.k) = +2do (1 = Y)Y + 2(ay + B(1 — V).

Lemma A.32. Ifk € {k’ eK:2< j—f < %} and (Y, ¢) € Cqg then i*(l/f,qﬁ,k) is given by

i = (¢(1—w)(2—s¢+2¢2+¢w) 1)
! 1-9)2¢-Dy2 )’

Ak = ((2¢_1)(1_,,,) $—=20>+¢¥ ())
2 20=¢)y * 20-9)y

Furthermore, A* implies that the optimal value for the designer is

— )2 _ —h_0h2 _
Pty =y (A0 g (U200 23000 Ly
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Lemma A.33. Ifk € {k’ eK:2< j—g} and (Y, ¢) € Cq1 then )AL*(@/f,qﬁ,k) is given by

2k _ (1—¢)2(2¢+w—1))
M _(0’ Ce-D0-v) /)~

_ (A=9)2o+y¥—1) ¢QRéd+y¥—1)
1 = (U-oiggeion, acszgen o)

Furthermore, A* implies that the optimal value for the designer is

dg(1=)1—y)2¢ + ¥ — 1)

T +da(1=9) 24 + ¥ = 1) + 2@y + B = ¥)).

V. ¢.k) =

Lemma A.34. Ifk € {k’ €EK: % < j—g} and (Y, ¢) € C4 U C1g then A*(V, ¢, k) is given by

i’f:(o,l),

AF = ((1—¢)(z¢+w—1) ¢Qo+y—1) 2—5¢+2¢2+¢1/f)
2 29 T2y 2y

Furthermore, A* implies that the optimal value for the designer is

V¢ k) = dg(1 = y)(3 = 2¢y) + da(l = )20 + ¥ — 1) + 2(ay + (1 — ¥)).

Lemma A.35. Ifk € {k/ eK:0< j—g < 1} and (Y, ¢) € C1p then A*(y, ¢, k) is given by

Ar= (1—¢—2wJ22¢w+w2’0)’

$(2—2¢6—y)
2(1-v)
AF = | 12042946y +202Y —y 2+ y>
2= 2(1-y)y
(1-=¢)2—2¢—¥)
2(1-v)

Furthermore, A* implies that the optimal value for the designer is

V(.¢.k) =dpy(2—=2¢ — ) + da(1 = 2(1 =)y + ¥?) + 2(ay + B(1 — V).

Lemma A.36. Ifk {k’ eK: %{;1 < j—g < 1} and (Y, ¢) € C13 U C14 then i*(l//,qﬁ,k) is given by

(1-vy)?

39202 +2¢—4¢ Y +2¢% Y —pyr>—1
20=V)¥
A = 2¢2+2¢ Y —2¢> Yy —y >+ >—¢
2 2(1—yY)y
(1-¢)(1—2¢+v¥)
2y

ir= (1’ (1—¢)(1—2vf)),
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Furthermore, A* implies that the optimal value for the designer is
V(¢ k) =dg(2 =201 — ) =29 — ) + da (20 (1 —9) + 29 + ¥* — 1) +2(ay + B(1 — V).

¢

i = (10).
3¢—2¢2+2¢—6¢Y+6¢> Y —2¢3 Yy —¢>y2—1
26(1—y)¥
AF = 20429 —4¢Y +2¢° Y —Y >+ ¢y —1
2 20—V

1-3¢4+2¢> 29 +8¢ Y —8¢> Y +2¢3y—p 2+ ¢y
26(1—V) ¥

Lemma A.37. Ifk € {k’ e K2 dB > ()} and (Y, ¢) € C13 then A* (W, ¢, k) is given by

Furthermore, A* implies that the optimal value for the designer is

¢

V¢, k) =dg(2—2¢ — ) + da (2—4¢+2¢W+W2— 1 )+2((W+ﬂ(1 — V).

Lemma A.38. Ifk € {k/ eK: 2q;¢ dB > O} and (Y, ¢) € C14 then A* (Y, ¢, k) is given by

i (1 20+20—6p Y +2¢2 Y +oyr3— 1)
2o—1(1—y)? ’

* _ (2=2¢0—% 20—V
A5 = (335 #5h0)
Furthermore, A* implies that the optimal value for the designer is

Y242y + p(4—6y) -2
2¢ — 1

7y b k) = dg ( ) +2((a + do)¥ + B(L— ).

B Example: detailed calculations

In this appendix we solve an example of program A.19 for the case in which the parameters are
(W, ¢) = (1/2,1/3), i.e. each player believes with probability one half that the rival has low ability
and the normalized cost of putting effort is one third. These parametric values are the ones that define
the example with a medium-valued prize considered in 5.2.

As discussed in lemma A.16 and corollary A.17, the program A.19 can be reduced to a simpler one
since ¢ = 1/3.

The simpler program is given by the expression (A.23b):

max {pglz} (B.1)
A2€7T(1/2,1/3)

where A, = (11,8,¢) and T(1/2,1/3) = {A2 € R? | 2245 < §j — £214%, 4, > 0}
The feasible set '(1/2,1/3) is a convex polytope in R3. Thus, it can be represented as the con-
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@ = (u.8.97
@ = (1/2.0,1/2)7

@ = (1/6,0,5/6)T

@ = (1/16,0,5/8)T

@ = (1/36,5/36,5/9)7
® = (1/2.0,1/3)T

® = (11/18,1/18,2/9)T
© = (2/9,1/9,4/9T

Figure 9: Constraint set for ¢ = 1/3 and ¢ = 1/2.

vex hull of its extreme points. The task of finding the set of extreme points of (v, $) is quite
demanding and cumbersome as discussed in appendix A. However, for the case in the example
(W, ¢) = (1/2,1/3), we can readily find the set of extreme points using standard computational
implementations of the simplex algorithm. In the example we have that the feasible set is equivalent
to the set of vectors (u, 8, {) that belong to

1/2 1/6 1/16 1/36 1/2 11/18
Conv{| o .| o |.] o |.|5/36].] o |.| 1/18 |}. (B.2)
1/2 5/6 5/8 5/9 1/3 2/9

The polytope described by (B.2) is illustrated in figure 9.

Although evaluating the objective in (B.1) at each of the extreme points in (B.2) and comparing
the results would yield the optimal BCE distribution, we will not pursue this approach since it does
not generalize well to the general case. Instead we will show how to solve the optimization program
using the simplex algorithm since in this way we will obtain the intuition of how to solve the general
case.

We start by substituting the values (¥, ¢) = (1/2,1/3) into (B.1) which yields the following:
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max  u(dy +dg) + 8dg + ¢dg

(1.8.£)TER3
subject to
w28 1
OBy, : o <2,
W 3 376
2u ¢ 1
OB, , L2 < -
w.p 3 376 (B.3)
2 28 2
OBy '+ —-—_——_t<-=Z,
S.a 373 Y573
Iz ¢ 1
OB , Ers+2<-,
S.B 3 0t 3=3
Sp: w+8+C¢ <1,

NNp: u=0,6>0,¢>0.
We will introduce the slack variables xyq, Xyg, Xsa, X5 and x4 for each of the constraints and

the objective variable z as follows:

Basic © Xwas Xwp, Xsa> Xsp, Xd

Non-Basic : wu,8,¢

Xwo % _%M +%8
1 2 _1
Xwp 6 T3 3 (B.4)
Xsaa — _% +%M +%8 +C
Xsp = % —%,U« ) —%
Xqg = 1 —pu -6 -
z = (do +dg) +dod +dg¢

We call the system (B.4) a dictionary®, since they translate any choice of right-hand side values
of the non-basic variables into corresponding values of the left-hand side variables or basic variables.

Dictionary (B.4) allows us to write the maximization problem as
maxz subjectto ©>0,8>0,0>0, xypa >0, xy8 >0, x50 >0, x;8 >0, xg7 >0.

However, notice that dictionary (B.4) violates the restriction of giving a feasible solution to the prob-
lem, since by setting all the non-basic variables equal to zero, we get a negative value for the basic

variable x;4. In order to get hold of an initial feasible dictionary, we will need to solve first an auxiliary

20Chvatal (1983, chap. 2, p.17)
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problem:

min X0
(1,8,8,x0)TER*
subject to
2 1
2 28
B2
% ¢ 1
_ 5 2 < -,
3 Tet3TN=g

m+8+¢—x0 <1,
/VLZOvSZO»;EOa

which is actually equivalent to maximizing —xo. Again, writing down the slack variables xyq, Xy,

Xsa, Xgp and x4 and the objective function w = —xo we obtain the dictionary:

Basic L Xwas xu)'BaXSO!?xSBvxd

Non-Basic : u,48,¢, xo

1 2 1
Ywp = 5 T3M 36 tXo (B.5)
Xsa = —3 +30 +35 4+C  +xo
T B I
xg = 1 —pn =8 =0 +4xo
w = —X0

Let s = ¢ denote the replacement-pivoting operation in which variable s enters the basis and
variable ¢ leaves it. Dictionary (B.5) is also infeasible but it can be transformed into a feasible one by

the operation xo = x;5o, Which yields the dictionary:

Basic DX0s Xwas XwB XsBr Xd

Non-Basic : u,8,¢, Xsq

X0 = % _%,u _%8 - +Xsa
Xwa = % —H —§  +Xsa (B.6)
Xwp = 3 —38 =30 +X

X = I —n =30 —% +Xso

Xd = % —gﬂ _%8 =20 +Xga

w = -3 +3u +38 +{ —Xs

The next dictionary is obtained by the operation { = x,,4, which yields:

69



Basic : Xo, 0, Xwa, XsB»Xd

Non-Basic : wu,d,xyg, Xsa
N T TR RV
= 1 _2 _1ls +§ +l
Xo = 27 T3H 6 4wp 4 sa (B.7)
SR N TN AN
Xsp § —H =8 Fxyp
Xo =t 3k —38 +3vup —3%a
— 1 2 15 _3 _1
wo o= —3z t3H Tg TXwp  —71Xsa

The next and final dictionary is obtained by the operation u = x¢, which yields:

Basic Do Xwas XgB, Xg
Non-Basic : §,x0, Xyg. Xsa
1 1 3 9
1 16 29 3% tgYup
¢ § 29 —3wp T 3¥sa (B.8)
wa 8 11 2%0 —gXwp  Tgtsa
_ 5 _3g 3. _1 _3
Xsp = 28 —3z0 t3X0 —gXwp g ¥sa
Xq = % —%5 +%Xo +%xw[3 —%xm
w = —X0
Dictionary (B.8) is the final optimal dictionary since xo = 0 implies that the optimal value of w = —x¢

is equal to zero. Thus, this dictionary points to a feasible solution of the original problem (B.3).
We can obtain an initial feasible dictionary for the original problem (B.3) by omitting all terms
involving x¢ and writing z in (B.4) by substituting the values of the basic variables u and §. Doing

this yields the initial feasible dictionary:

Basic DG Xwas XsBe Xd
Non-Basic : §, Xyp» Xsa
w 6 —a +§¥up
¢ = io—3b —a%up + 3 (B.9)
e = 3o+ s
= L b
Xy = s —al +3%wp —§%¥sa
z = f(da+11dg) —3(dg—da)d +2(3da +dg)xws +32(da + 3dg)xsa

Notice that the initial feasible solution found in (B.9) is precisely vertex number 3 in figure (9).
From the last row of (B.9), we see that in the expression for z, in order to determine which variable
will enter the basis we need to consider what is the relationship between d, and dg. We will thus

break the analysis into three cases.
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Case 1: dg > dy. In this case the coefficient on § in the last row of (B.9) is negative and the
coefficient on x,,g is positive and strictly smaller than the coefficient on x;4. The next dictionary is

obtained by the operation x5 = x4 which yields the dictionary:

Basic D8 Xwas Xsas Xg
Non-Basic : &, Xyp - Xsp
po= I B
¢ = § 28 —xwp 2xgp (B.10)
Xwa = 5 16 —3Xwp T3
Xsq = 15_8 —-26 —%xw,g —%xsﬂ
Xqg = +26 +3x48
z = %da-i-dﬂ —3d'35 +daxw,3 _(3d/3+d0l)xs,3

The next and final dictionary is obtained by the operation x,,8 = Xyq Which yields:

Basic D8 Xy Xsas Xg
Non-Basic : §,xya. X
n o= 3 428 —3Xwa
¢ = i =58 +3xwe  —3x48 (B.11)
Xpp = T 438 —3Xwa +x58
Xso = & 38 +Xwa —3Xsp
Xqg = +26 +3x58
z = %da—i-dﬂ —3(d5—da)8 —3deXwa _3d,3xs,B

The optimal solution implies that § = xyq = Xy = 0. Thus we have that
(IJ” 8’ C? Xwa s xwﬂv Xsas xsﬂ’ xd)T = (1/2’ 0’ 1/2’ O’ 1/3’ 1/6’ O’ O)T (B]‘z)

Case 2: dg < dy. In this case all the coefficients in the last row of (B.9) are positive. However, the
coefficient on x,,g is the largest of three. The next dictionary is obtained by performing the operation

Xypp = Xwe Which yields the dictionary

Basic D8 Xy XgBa Xy
Non-Basic : §, Xya, Xsa
n o= 3 28 —3xue
_ 1
¢ = 73 -2 +§Xwa +i€sa (B.13)
Xwp = is +26 —3twa —3Xsa
xS,B — % —8 +%Xwa —%xsa
xd — % —8 +.Xwa —Xsa
A = %da + Edﬁ +3da8 _(3da + dﬂ)Xwo( +dﬂxsa
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The next and final dictionary is obtained by the operation § = x,g which yields

Basic Do, 6,8 Xy X
Non-Basic : Xwa,Xsa» Xsg
K % _%xwa —%xsa —2x58
1 1 1
§ = 13 tT3¥we —3%sa —Xsp (B.14)
¢ = 2 ixyg +32X5a +2x48
Xwp = % —2Xwa —Xsa —2Xx8
Xd = % +%xwa _%xsa +Xs8
Z - %da + %dﬂ _(2da + dﬂ)Xwa _(da - dﬂ)xSa _3daxsﬂ
The optimal solution implies that xye = Xs¢ = X8 = 0. Thus we have that
(1.8, 8, Xwa, Xy Xsa, X5, Xq)T = (11/18,1/18,2/9,0,1/2,0,0,1/9)T. (B.15)

Case 3: dg = dy = d. In this case, we have that in the last row of (B.9) the coefficient on § is equal
to zero. Furthermore, that row simplifies to z = %d + %dxwﬂ + %dxsa. Thus, the next dictionary is

obtained by performing the operation x,,3 = xwq Which yields

Basic DG Xy XeBs Xg
Non-Basic : 6, xyg, Xsa
_ 1
{ = 7§ =26 ‘f‘g-xw(x +-icsot (B.16)
Xwg = 1g +26 —3Xwa —3Xsa
Xsp = % —6 +%xwot _%xsa
Xg = % - +Xwa —Xsa
z = %d +3d§ —4dxye +dxsg
The next and final dictionary is obtained by the operation § = x,g which yields
Basic D6, 8 Xy X
Non-Basic : Xwa,Xsa»Xsg
T
1 1 1
§ = 15 t3¥wa —3Xsa —XsB (B.17)
¢ = % +%xwa +§xs¢x +2x8
Xwp % —2Xwa  —Xsa —2xp
Xd = % +%xwa _%xsa +Xs8
z = %d —3dxya —3dx,p

Notice that the optimal solution has x4 = x4 = 0 but it says nothing about xs,. Thus, if we let
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Xsq =t We can parameterize the solution as

" 11/18 —2/3

§ 1/18 ~1/3

¢ l=12/9 |+t 5/3 fort € [0,1/6]. (B.18)
Xup 1/2 —1

Xq 1/9 -2/3

Notice that if we put § = 1 — 61 we get that

m 11/18 1/2
8 1/18 0
¢ =60 29 |+a-0]1/2| foréelo. 1]
Xup 1/2 1/3
Xg 1/9 0

We summarize the previous results in the following proposition.

Proposition B.1. Suppose that = 1/2 and ¢ = 1/3. Consider the following family decision rules
{A(0) : 6 € [0, 1]} given by:

A( o) w S A(|aB) w S
14 1 0 w 148 &
s [ o [ o s 4% ¢
A(|Ba) w N AC1BB) w
W 1+8 1-3¢ W 1 0
N & s N 0 0

Then the following statements are true.

1. Ifdg > dy then A(0) solves problem (B.1) and gives an expected payoff of
— 3
V=oz+ﬂ+zda+dﬂ. (B.19)

2. Ifdg < dy then A(1) solves problem (B.1) and gives an expected payoff of

_ 5 11
V_a+ﬁ+6da+5d,g. (B.20)
3. Ifdg = do = d, then for any 6 € [0, 1], A(0) solves problem (B.1) and gives an expected payoff of
— 7
V=oz—|—ﬂ—|—zd. (B.21)
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There are some features about the optimum characterized in B.1 that are worth remarking. In the
search for an optimum, it is important to note that we always take that the basic variables at each
dictionary are positive. In the general case this will provide new restrictions that the parameters (v, ¢)
need to satisfy. Also, the termination condition in the simplex algorithm requires that all coeflicients
of the non-basic variables that appear in the last row of a dictionary to be negative. Notice from our
calculations that in the last row z of the dictionary all the coefficients have to do with functions of dg
and dg. In particular, the determining condition is whether the ratio of these two, dg/d is strictly
greater, strictly less or equal to one. Thus the shape of the optimum depends on how the marginal
productivities behave. Furthermore, notice that multiplicity in this case occurs when dg/dy = 11i.e.
when the marginal productivites are the same. These type of conditions arise in a similar way in the

general case.
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