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Abstract

Under the production approach to markup estimation, any flexible input should
recover the markup. I test this implication using four manufacturing censuses and
store-level data from a US retailer, and overwhelmingly reject that markups estimated
using labor and materials have the same distribution. For every dataset, markups
estimated using labor are negatively correlated with markups using materials, exhibit
greater dispersion, and have opposite time trends. Non-neutral productivity differ-
ences can reconcile these findings. I develop a flexible cost share estimator to model
such heterogeneity. Using this estimator, markups estimated with different inputs are
positively correlated in the cross-section and time series.
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Measuring the markup is central to the evaluation of the effects of mergers, changes in

trade barriers, and explanations for aggregate trends such as the decline in the labor share

of income. Despite their importance, it is difficult to measure markups. The production

approach to markup estimation (De Loecker and Warzynski, 2012) has become prominent

as it has allowed economists to estimate markups at scale across industries. In contrast, the

demand approach (Berry et al., 1995) requires industry studies.1

The production approach uses cost minimization for identification. Given competitive

input markets, the additional revenue from a marginal increase in a flexible input is equal

to the marginal cost of increasing that input multiplied by the firm’s markup. Thus, the

markup is identified as a variable input’s output elasticity divided by the input’s share of

revenue. If one knew the production function, one can recover the markup given cost data.

Because any flexible input identifies the markup, the markup is overidentified with mul-

tiple flexible inputs. I test this implication by comparing markups estimated using labor,

materials, or a composite of both.2 I conduct these tests using manufacturing plants or firms

from Chile, Colombia, India, and Indonesia, as well as a nationwide US retailer’s stores.

Across all five datasets, I strongly reject that different inputs imply the same markup. I

then show that non-neutral technological differences can explain these findings, and develop

an estimator accounting for them that provides much more consistent estimates across inputs.

1Using the demand approach requires one to model demand and competition which vary substantially
across industries, and often require detailed, industry specific data including price instruments.

2In the literature, De Loecker and Warzynski (2012) and Blonigen and Pierce (2016) use labor, De Loecker
et al. (2016) materials, De Loecker and Scott (2017) both, De Loecker and Eeckhout (2018) cost of goods
sold, and De Loecker et al. (2018) cost of goods sold (Compustat) and labor (Economic Census).
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Across multiple statistical tests, I reject that markups estimated using different inputs

are the same in all of the datasets. I then focus on two major features of the markup

distribution. First, labor markups are much more disperse than materials markups. For

example, the 90th percentile markup for the retailer’s stores is 76% higher than the 10th

percentile using labor, compared to only 6% higher using materials.

Second, markup measures are negatively correlated, both in the cross-section and in time

trends. In Colombia, a plant with a 100% larger markup measured using labor (the “labor

markup”) has, on average, a 28% lower markup measured using materials (the “materials

markup”). The average labor markup for Colombia falls by 28% over time, while the average

materials markup rises by 8%.

I reconcile these findings by relaxing the maintained assumption that productivity is

Hicks neutral. Non-neutral technological improvements affect factors of production asym-

metrically. For example, higher labor augmenting productivity would both lower labor’s

output elasticity relative to materials’ output elasticity and labor costs relative to materials

costs. By ignoring such productivity differences when estimating output elasticities, markups

based upon alternative inputs would have opposing time trends and negative correlations.

To test this possibility, I develop an estimator that accounts for differences in labor

augmenting productivity. The ratio of labor to materials costs provides a signal of labor

augmenting productivity; I estimate output elasticities as input cost shares within bins

of this ratio. This flexible cost share estimator does not require data on output quantities,
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which are typically not observed. Across all five datasets, as well as Monte Carlo simulations,

markups estimated with different inputs using this approach are positively correlated and

have similar time trends.

I then reexamine several stylized facts for markups. Without controlling for labor aug-

menting productivity, I find conflicting evidence across datasets and input measures for

each stylized fact. Using the flexible cost share estimator estimator, I consistently find that

markups are positively correlated with size, exporting, and profit shares. For the retailer,

I exploit two company provided classifications of the degree of competition, and find little

relationship between the degree of competition and markups.

I then explore several alternative explanations other than non-neutral productivity. Vi-

olations of the static labor first order condition, such as through hiring and firing costs,

monopsony power, or wage bargaining with unions, cannot explain my findings. For exam-

ple, I continue to find stark differences in markups after comparing markups estimated using

energy and non-energy raw materials instead of labor. Finally, adjustment costs cannot

explain long run differences in markup trends across different inputs.

My findings of conflicting correlations when estimating markups with different inputs are

robust to several estimation approaches that assume only neutral productivity differences,

estimating production functions at the subindustry or product level, and estimating quantity

rather than revenue production functions.

My paper is most similar to work that examines differences between markup estimates
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using the production approach. De Loecker et al. (2018), Karabarbounis and Neiman (2018),

and Traina (2018) debate how using different inputs from Compustat affects the aggregate

trend in US markups, while Bridgman (2019) examines the same question using the National

Accounts. De Loecker and Scott (2017) compare average markup estimates using the demand

approach to those from the production approach using data on US breweries.

My work is also related to the literature estimating labor augmenting productivity differ-

ences (Doraszelski and Jaumandreu, 2018; Oberfield and Raval, 2014; Raval, 2019; Zhang,

2019). Within this literature, Doraszelski and Jaumandreu (2019) also provide a dynamic

panel estimator for markups given labor augmenting productivity differences, and apply it

to the effect of exporting on markups using Spanish manufacturing data.3

1 Production Approach

The key assumptions for the production approach are that the firm cost minimizes in each

period with respect to any variable input for which it is a price taker in the input market.

Below, I derive the estimator for the markup under these assumptions following De Loecker

and Warzynski (2012).

Take a firm with production function Fit(Kit, Lit,Mit), where Kit is capital for firm i and

time t, Lit is labor, and Mit is materials. The firm receives price Pit for its output and faces

3They show that labor markups and materials markups estimated assuming neutral productivity provide
opposing estimates of the effect of exporting on markups; with the dynamic panel approach, exporters and
non-exporters have similar markups.
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input prices PX
it for input X. A cost minimizing firm sets marginal products equal to factor

prices. This implies, for input Xit,

Pit
∂Fit
∂Xit

=
Pit
λit
PX
it , (1)

where λit is the firm’s marginal cost.4 The left hand side is the marginal revenue product of

increasing input Xit. The right hand side is the marginal cost of increasing Xit – its price,

PX
it – multiplied by the markup Pit

λit
. Thus, the markup is a wedge between the marginal

revenue product of an input and the marginal cost of an input.

Converting this expression to elasticity form5, the output elasticity for input X, βXi , is

equal to the markup µit multiplied by input X’s share of revenue sXit :

∂Fit
∂Xit

Xit

Fit
=

Pit
λit

PX
it Xit

PitFit
(2)

βXit = µits
X
it . (3)

The markup µit is then the output elasticity of input X divided by X’s share of revenue:

µit =
βXit
sXit

. (4)

4The marginal cost is the Lagrange multiplier on the production function in the cost minimization prob-
lem.

5Formally, multiply each side by Xit

Fit
and divide each side by the price Pit.
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This expression for markups holds for all variable inputs at the firm level. Thus, I can test

the production approach by examining whether the markup recovered using one input is the

same as the markup recovered using another.

2 Data

I use production level datasets on manufacturing for four countries: Chilean plants from

1979-1996, Colombian plants from 1978-1991, Indian plants from 1998-2014, and Indonesian

firms from 1991-2000. These data are yearly censuses, except for India which is part census

and part sample (for which I use the provided sampling weights). These datasets have

between 5,000 to 30,000 establishments per year. I also use retail store-level data from

an anonymous major US nationwide retailer (“Company 1”) for three years. This retailer

has thousands of stores across the United States. I summarize the characteristics of these

datasets in Table I and include further details on data construction in Appendix B.

Table I Datasets
Dataset Sector Time Period No. Establishments No. Industries Used

Chile Manufacturing 1979-1996 5,000 / year 16
Colombia Manufacturing 1978-1991 7,000 / year 21
India Manufacturing 1998-2014 30,000 / year 23
Indonesia Manufacturing 1991-2000 14,000 / year 22
Company 1 Retail 3 years Thousands / year 1

For each dataset, I have data on capital, labor, materials, and sales at the establishment-

year level. An establishment is a manufacturing plant for the Chilean, Colombian, and
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Indian data, a firm for the Indonesian data, and a retail store for Company 1. I use capital,

materials, and output deflators in order to construct consistent measures of inputs and

outputs over time, and drop any observations with zero or negative capital, labor, materials,

sales, or labor costs. I also drop observations in the bottom 1% and top 1% of labor’s share

of revenue, materials’s share of revenue, and the composite variable input share of revenue

for each industry to remove outliers.

For labor, I use the number of workers for Chile, Colombia, and Indonesia, and the

number of manufacturing worker-days for India. For Company 1, I use the total number of

hours worked by all workers. Labor costs are the total of salaries and worker benefits.

For materials, I include expenses for raw materials, electricity, and fuels for the manu-

facturing datasets. For the retailer, I have data on the cost of goods sold for separate parts

of the store; materials is the sum of the cost of goods sold. The composite variable input is

the sum of materials and labor costs.6

For capital, I construct a perpetual inventory measure of capital for each type of capital.

I then construct rental rates of capital based on an average real interest rate over time plus

depreciation for that type of capital, and sum capital stocks times their rental rates, plus

any rental payments for capital, as my measure of capital.7

For the manufacturing datasets, I estimate production functions at the industry level.

6I deflate this input using the output deflator to match De Loecker et al. (2018)’s treatment of cost of
goods sold.

7This provides an approximation to a Divisia index for capital given different types of capital. See Diewert
and Lawrence (2000) and Harper et al. (1989) for details on capital rental rates and aggregation. For the
retailer, I use BLS rental rates for retail trade. See Appendix B for more details on capital construction.
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I define industries at a similar level to two digit US SIC (i.e., Chilean Food Products).8 I

only include industries with at least 1,000 observations over the entire dataset, and so use

between 16 and 23 industries for each manufacturing dataset. For the retailer, I estimate a

single production function across all retail outlets.

3 Estimation

Given (4), estimating the markup requires the input share of revenue and the output elasticity

of that input. The input share of revenue, defined as costs for input X divided by total firm

revenue, is observed. However, the production function has to be estimated to recover output

elasticities. I describe below how De Loecker and Warzynski (2012), and subsequent papers

using the production approach such as De Loecker et al. (2018), address this estimation

challenge using a control function approach.

3.1 Production Functions

I estimate Cobb-Douglas and Translog production functions. In one specification, inputs are

capital, labor, and materials; in another, inputs are capital and a composite variable input

of labor and materials.

All lower case variables are in logged form, so fit is logged production, kit capital, lit labor,

8For Chile, Colombia, and Indonesia this is at the three digit ISIC (Rev.2) level, and for India at the
two digit NIC 08 level. Estimating production functions at this level of aggregation is consistent with the
production function literature, such as Levinsohn and Petrin (2003) or Gandhi et al. (forthcoming).
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and mit materials. For the Cobb Douglas production function with labor and materials, the

(logged) production function is:

fi,t = βkki,t + βlli,t + βmmi,t

and so the output elasticity for input X is simply βX . For the Translog production function,

the production function is:

fi,t = βkki,t + βlli,t + βmmi,t + βkkk
2
i,t + βlll

2
i,t + βmmm

2
i,t + βklki,tli,t + βkmki,tmi,t + βlmli,tmi,t

and so the output elasticity for each input will depend upon the level of all inputs. For

example, the firm’s output elasticity for materials would be βm+2βmmmi,t+βkmki,t+βlmli,t.

3.2 Control Function Estimation

I follow De Loecker and Warzynski (2012) and use the Ackerberg et al. (2015) (ACF) estima-

tor for my baseline estimates. The ACF estimator imposes substantial additional assump-

tions on productivity, including that productivity is Hicks neutral and evolves following a

Markov process. In addition, it requires a set of timing assumptions where at least one input

is decided at the time the firm learns its productivity shock.

The control function approach assumes that observed revenue includes additive measure-
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ment error εit. Thus, given log productivity ωit, measured log revenue yit is:

yit = f(kit, lit,mit) + ωit + εit. (5)

Let materials be the flexible input decided at the time the firm learns its productiv-

ity shock. Materials is then a function of the observed inputs and productivity mit =

g(kit, lit, ωit). It can then be inverted for productivity, so ωit = g−1(kit, lit,mit).

The first stage of the ACF estimator controls for a flexible form of the inputs to recover

the additive measurement error εit. Formally, measured log revenue yit is:

yit = f(kit, lit,mit) + g−1(kit, lit,mit) + εit = h(kit, lit,mit) + εit (6)

Since both the production function and productivity are functions of the inputs, they cannot

be separated in the first stage. Instead, the nonparametric function h includes both produc-

tivity ωit and the production function f . The measurement error in sales εit is a residual in

the first stage equation after controlling for h.9

The second major assumption of the ACF approach is that productivity follows a first

order Markov process. In my implementation, I further assume an AR(1) process. Formally,

ωit = ρωi,t−1 + νit (7)

9In practice, I use a third order polynomial in inputs for the function g, and also control for year effects.
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with AR(1) coefficient ρ and productivity innovation νit. In that case, given knowledge of

the production function coefficients β, one can recover the innovation in productivity νit as:

νit(β) = ωit − ρωi,t−1 (8)

The innovation in productivity is a function of production coefficients β because ωit =

yit − εit − fit(β), and εit was recovered in the first stage.

Because the innovation in productivity is, by construction, independent of inputs chosen

before time t, moments of the innovations multiplied by inputs chosen before the productivity

innovation, such as E(νitli,t−1) or E(νitki,t), identify the production function coefficients.

For the Cobb-Douglas production function, I use capital and the first lag of materials

and labor as instruments. For the Translog, I use capital and the first lag of materials and

labor, as well as their interactions, as instruments.10

Finally, I follow De Loecker and Warzynski (2012) and correct the value of sales in the

input share of revenue for the measurement error estimated in the first stage. Thus, for

input X, the estimate of the markup is:

µ̂it =
β̂Xi

sXit exp(ε̂it)
. (9)

10For the specification with the composite variable input instead of labor and materials separately, I use
the lag of the composite input and its interactions as instruments, symmetrically to the case above.
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3.3 Implementation

For each dataset, I estimate industry-level production functions using the ACF estimator.

I estimate four specifications: either a Cobb-Douglas or Translog production function, and

either capital, labor, and materials or capital and a composite variable input as inputs. I

then estimate markups at the establishment-year level using the resulting output elasticities.

This process results in six markup estimates for each establishment-year. Each markup is

estimated using one of three inputs (labor, materials, or the composite input) and one of

two production functions to recover the output elasticity for that input (a Cobb-Douglas or

Translog).

4 Empirical Tests

Under the production approach, any flexible input identifies the markup. I first test the

production approach through formal statistical tests of whether the distribution of markups

is the same using different inputs. I then examine how several features of the markup

distribution vary using different inputs. For all of these tests, and in all the datasets, I

strongly reject that different inputs estimate the same markup.
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4.1 Statistical Tests

I begin by conducting three statistical tests of equality: the paired t-test (mean), the

Kolmogorov-Smirnov test (distribution), and the paired Wilcoxon signed-rank test (me-

dian). I conduct these tests for both the Cobb-Douglas and Translog production functions

comparing labor, materials, and composite variable input markups. I thus conduct 90 tests

– 5 datasets, 2 production functions, 3 flexible inputs, and 3 statistical tests.

I overwhelmingly reject that markups estimated using different flexible inputs have the

same distributions. Across the 90 tests, the largest p-value was 1.8 × 10−4, with all of the

other p-values an order of magnitude or more smaller.11

Because my datasets are large, it is unclear whether these rejections reflect economically

meaningful differences. Therefore, I examine specific features of the markup distribution:

dispersion, time series correlations, and cross-sectional correlations.12

4.2 Dispersion in Markup Estimates

Under the production approach, the degree of markup dispersion should be the same using

different flexible inputs. Instead, I find very different levels of dispersion using different

inputs. As an example, I plot the distribution of each markup across manufacturing plants

in the Chilean Food Products industry in 1996 using the Translog estimates in Figure 1. The

11The second highest p-value is 6.1 × 10−17.
12I also examine average markups in Appendix A.3.
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red solid lines are the labor markup, the blue dashed lines the materials markup, and the

green dash-dot lines the combined variable input markup. The labor markups are much more

dispersed than the materials markups, which are in turn more dispersed than the composite

input markups.

0

2

4

6

8

0 1 2 3 4 5

Markup

Labor Materials Combined Input

Figure 1 Distribution of Translog Markups for Chilean Food Products, 1996

For all the datasets, I measure dispersion by calculating the 90/50 ratio of the markup

estimates, which I report in Table II.13 Just as in Figure 1, labor markups are more disperse

than materials markups, which are more disperse than composite input markups, for each

dataset and production function. For example, using the Translog estimates, the 90th per-

centile markup is 103% higher than the median markup for Chile using labor, 39% higher

13I report the 75/25 and 90/10 ratios in Appendix A.2.
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using materials, and 17% using the composite input.

For the retailer, there is hardly any dispersion in materials markups – the 90th percentile

markup is only 3% higher than the median and 6% higher than the 10th percentile – but

substantial dispersion in the labor markup. For the labor markup, the 90th percentile is

30% higher than the median markup and 76% higher than the 10th percentile under the

Translog estimates.

Table II 90/50 Ratio of Markup Estimates

Labor Materials Composite Input
Dataset CD TL CD TL CD TL

Chile 2.67 2.03 1.53 1.39 1.17 1.17
(0.013) (0.008) (0.003) (0.004) (0.001) (0.001)

Colombia 2.88 1.82 1.82 1.43 1.16 1.17
(0.016) (0.005) (0.008) (0.004) (0.001) (0.001)

India 4.04 2.95 1.38 1.29 1.14 1.14
(0.013) (0.007) (0.001) (0.001) (0.000) (0.000)

Indonesia 4.06 3.12 1.66 1.46 1.15 1.16
(0.025) (0.019) (0.004) (0.003) (0.001) (0.001)

Company 1 1.23 1.30 1.02 1.03 1.02 1.02
(0.002) (0.003) (0.000) (0.000) (0.000) (0.000)

Note: CD is Cobb-Douglas and TL Translog. Estimates use all establishments and years. Standard
errors are based on 20 bootstrap simulations. For India, these estimates ignore the sample weights.

4.3 Time Trends

Under the production approach, the time path in markups should be the same using different

flexible inputs. Instead, for all of the datasets, I find opposing patterns over time using labor

compared to materials to measure the markup. The time trend for composite input markups

lie between the two, but much closer to materials, and exhibit less extreme movements. I
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estimate the following specification:

log(µXi,t) = α + γt + δn + εi,t (10)

where µXi,t is the markup using input X for establishment i in year t, and γt and δn are

year and industry fixed effects. I then plot the year effects using the Translog estimates in

Figure 2 and Figure 3, with the first year normalized to zero. The red solid lines are the

labor markup, the blue dashed lines the materials markup, and the green dash-dot lines the

composite input markups.14

For Chile, the average labor markup initially declines 25% by 1981, then rises to 29%

above its 1979 value by 1987, and then declines again to 22% below its 1979 value by 1996.

In contrast, the average materials markup initially rises 14% above its 1979 value in 1981,

then declines to 3% below its 1979 value by 1987, and then rises again to 16% above its 1979

value by 1996. The composite input markup is 4% above its 1979 value in 1981 and 1987

and 8% above by 1996.

For Colombia, the average labor markup falls substantially at the beginning of the sample

using labor, and remains about 28% lower at the end of the sample compared to the beginning

of the sample. The average materials markup rises over time and is about 8% higher at the

end of the sample. The composite input markup declines over time, but less then labor, and

14I include the Cobb-Douglas trends in Figure 7 and Figure 8 in Appendix A.1. I always find significantly
different markup trends using different inputs.
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is 3% lower at the end of the sample.

For India, the average labor markup falls substantially over the sample period, and is

46% lower at the end of the sample compared to the beginning of the sample. The decline

in the materials markup is an order of magnitude smaller, with a 1% overall decline at the

end of the sample. In addition, the materials markup rises post 2008 as the labor markup

sharply declines. The composite input markup exhibits a decline of 8%, much smaller than

for labor but larger than for materials.

For Indonesia, the average labor markup declines between 1991 and 1997 to about 14%

below the 1991 level. With the Asian financial crisis, the average labor markup rises sharply

in 1998 to 4% above its 1991 level, but then falls again to 11% below its 1991 level by

2000. The materials markup increases from 1991 to 1997 to 5% above its 1991 level, but

falls immediately after the crisis to 1% above its 1991 level in 1998. The composite input

markups exhibit very little change over this period.

4.4 Correlations of Markup Estimates

Under the production approach, markup estimates using different inputs for the same estab-

lishment should be highly correlated with each other. Instead, I find negative correlations

between labor and materials markups. For example, in Figure 4, I plot the materials markup

on the x-axis against the labor markup on the y-axis for all plants in the Chilean Food Prod-

ucts industry in 1996. Each a point is a different manufacturing plant using the translog
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Figure 2 Markup Time Trends using Translog Estimates: Chile and Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 3 Markup Time Trends using Translog Estimates: India and Indonesia

-40

-30

-20

-10

0

Pe
rc

en
t C

ha
ng

e

1998 2002 2006 2010 2014

Year

Labor Materials Composite Input

(a) India

-15

-10

-5

0

5

Pe
rc

en
t C

ha
ng

e

1991 1994 1997 2000

Year

Labor Materials Composite Input

(b) Indonesia

Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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estimates with the best linear fit as a solid black line. There is a slight negative relationship

between the labor markup and materials markup.
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Figure 4 Correlation of Markups for Chilean Food Products, 1996

Note: Each point is a manufacturing plant in Chilean Food Products in 1996. Solid black line is
the the best linear fit.

I examine the correlation between markup estimates for all the datasets by estimating

the following regression:

log(µLi,t) = α + β log(µMi,t) + γt + δn + εi,t (11)

where µLi,t and µMi,t are the markups using labor and materials for establishment i in year

t. I also include controls γt and δn, which are year and industry fixed effects, so estimated
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correlations do not reflect the yearly trends discussed in the previous section. In this spec-

ification, β represents the elasticity of the markup using labor with respect to the markup

using materials.

I report these correlations between markup measures in Table III. The labor and ma-

terials markups are negatively correlated with each other, the opposite of the relationship

implied by the production approach. Under the Translog estimates, an establishment with

a 100% higher materials markup has, on average, a 16% lower labor markup for Chile, 28%

lower for Colombia, 17% lower for India, 48% lower for Indonesia, and 1008% lower for

Company 1. In general, the magnitude of the negative correlation is even higher using the

Cobb-Douglas estimates.15

Table III Correlation between Markup Estimates

Dataset CD TL

Chile -0.66 -0.16
(0.017) (0.014)

Colombia -0.99 -0.28
(0.015) (0.021)

India -1.73 -0.53
(0.012) (0.009)

Indonesia -0.97 -0.48
(0.018) (0.021)

Company 1 -7.51 -10.08
(0.143) (0.102)

Note: Estimates based on (11) where the labor markup is the dependent variable and materials
markup the independent variable. CD is Cobb-Douglas and TL Translog. Standard errors are
clustered at the establishment level.

15The large magnitude of the elasticities for Company 1 is due to the measurement error correction to the
input share of revenue as in (9), because the estimated measurement error in sales is negatively correlated
with the materials share of revenue. If I ignore this correction, the elasticity between the labor and materials
markup is -1 for the Cobb-Douglas case and -2.3 for the Translog case.
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5 Non-Neutral Productivity and Markups

In this section, I show that non-neutral productivity differences across plants can explain

my findings. I then develop an estimator to account for labor augmenting productivity

differences. Using this estimator, markups estimated using different inputs have similar

cross-sectional and time series correlations.

5.1 Theory

I assume a CES production function with elasticity of substitution σ, neutral productivity

A, labor augmenting productivity B, and distribution parameters αl and αm:

Y = A((1 − αl − αm)K
σ−1
σ + αl(BL)

σ−1
σ + αmM

σ−1
σ )

σ
σ−1 . (12)

Input shares of revenue are equal to the output elasticity of that input divided by the markup

µ:

wL

PY
=

1

µ
(
w

λ
)1−σ(αl)

σ(AB)σ−1 (13)

pmM

PY
=

1

µ
(
pm
λ

)1−σ(αm)σ(A)σ−1 (14)

where λ is the marginal cost, w the wage, and pm the price of materials.
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Changes in labor augmenting productivity B move the output elasticities of labor and

materials in different directions. Take the case where the elasticity of substitution σ is less

than one, as in Raval (2019). In that case, improvements in B decrease labor’s output

elasticity, but increase materials’s output elasticity as the marginal cost of production λ

falls. If production function estimates ignore labor augmenting productivity differences, a

plant with a high B would have a low labor share and high materials share, and so a high

labor markup and low materials markup. Thus, estimated markups estimated using different

inputs would be negatively correlated.

5.2 Flexible Cost Share Estimator

To explore whether accounting for non Hicks neutral productivity can explain my findings,

I develop a variant of the cost share method of production function estimation to estimate

output elasticities given labor augmenting productivity differences. The cost share method

has been used in productivity analysis (Foster et al., 2001, 2008), and markup estimation

(De Loecker et al., 2018). It estimates the output elasticity of a given input as its share

of total industry cost. It assumes constant returns to scale, and requires first order cost

minimization conditions to hold for all inputs, including capital, at least on average.

I adapt the cost share estimator by estimating cost shares within groups based on the

plant’s labor to materials cost ratio. After dividing (13) and (14), the ratio of labor costs to
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materials costs is a function of labor augmenting productivity B:

wL

pmM
= (

w

pm
)1−σ(

αl
αm

)σ(B)σ−1. (15)

Thus, plants with a similar labor cost to materials cost ratio should have similar values of

B, and so similar output elasticities of labor and materials. For example, by using quintiles,

five groups approximate the differences in B across plants. Output elasticities would be the

input share of total cost within the industry quintile.

One major advantage of this method is it does not require data on firm quantities; thus,

it is robust to criticism that estimating revenue production functions can lead to biased

output elasticities when markups vary across plants (Flynn et al., 2019; Doraszelski and

Jaumandreu, 2019). In addition, the econometrician can easily vary the size of the group,

as well as estimate production functions at the subindustry or product level at which the

number of plants is small.

5.3 Monte Carlo

Through a Monte Carlo exercise, I show that labor augmenting productivity differences can

cause a negative correlation between markups estimated using labor and materials as flexible

inputs. However, with the flexible cost share estimator, markups using different inputs are

positively correlated with each other.
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I simulate an economy in which markups, factor prices, and labor augmenting produc-

tivity differences vary across plants. In this economy, 700 locations each contain 100 cost

minimizing plants. Wages and materials prices vary by location, with the natural log of each

location’s wage and materials price a random draw from a uniform distribution between 0

and 1. Plants face CES demand with an elasticity of demand drawn from a uniform distribu-

tion between 2 and 6. Because demand is CES, the markup plants face is a simple inversion

of the demand elasticity; markups range between 1.2 and 2.

Finally, all plants have a common CES production function, as in (12), with substitution

elasticity 0.5. I draw neutral productivity A and labor augmenting productivity B from a

joint lognormal. I then calibrate the parameters of this lognormal to match data on US

manufacturing plants.16

I then estimate the correlations of the labor markup with the materials markup using

(11). I also examine how the true markup based on the demand elasticity the plant faces is

correlated with the labor or materials markup using (16) for input X:

log(µTruei,t ) = α + β log(µXi,t) + γt + δn + εi,t. (16)

16I normalize the mean of A to 1, and calibrate the mean of B, the variances and covariance of A and
B through moment-matching. I match the following five moments: an aggregate capital share of capital
and labor cost of 0.3, a value of the weighted variance of capital shares of capital and labor of 0.1, and
the aggregate materials share of total cost of 0.55 (all from Oberfield and Raval (2014)) the 90-10 ratio of
marginal cost across plants to 2.7 (from Syverson (2004)), and the coefficient of a regression of the capital
cost to labor cost ratio on the log of the plant’s total cost of capital and labor (weighting by the plant’s
total cost of capital and labor) of 0.08 from Raval (2019). Distribution parameters are 0.1 for capital, 0.3
for labor, and 0.6 for materials.
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Here, the (logged) true markup is the dependent variable and the labor or materials markup

the independent variable.

In Table IV, I report the averages of this Monte Carlo across 200 simulations, with

standard deviations across simulations in parentheses. I simulate an estimator that ignores

labor augmenting productivity by estimating output elasticities using industry-wide cost

shares, i.e., the traditional cost share approach, in the first row. With industry-wide cost

shares, B is assumed not to vary across plants.

As I found in the previous section, labor markups are negatively correlated with materials

markups. A 100% increase in the materials markup decreases the labor markup by 127%.

In addition, both labor and materials markups are only slightly correlated with the true

markup; a 100% increase in the labor markup, or in the materials markup, increases the

true markup by only 6% or 27%.

Table IV Correlation between Markup Estimates: Monte Carlo Estimates

Cost Share Labor on Materials True Markup on Labor True Markup on Materials

Industry-Wide -1.27 0.06 0.27
(0.32) (0.04) (0.14)

Quintile 0.19 0.32 0.58
(0.31) (0.15) (0.19)

Decile 0.54 0.52 0.72
(0.22) (0.15) (0.15)

Note: Estimates based on 200 Monte Carlo simulations, using (11) and (16). For example, True
Markup on Materials indicates a regression where the true markup is the dependent variable and
materials markup the independent variable. True markup is the actual markup set by the firm based
on its demand elasticity in the Monte Carlo simulations. Markup estimates based on the flexible
cost share approach, using either one group (industry wide), five groups (quintiles), or ten groups
(deciles). Standard deviation across 200 bootstrap estimates in parentheses.
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However, these correlations are positive once I use the flexible cost share estimator. I

estimate output elasticities as cost shares within quintiles (second row) and deciles (third

row) of the labor cost to materials cost ratio. A 100% increase in the materials markup

increases the labor markup by 19% using quintiles and 54% using deciles.

In addition, both labor and materials markups have much higher correlations with the

true markup. A 100% increase in the labor markup increases the true markup by 32% using

quintiles and 52% using deciles. A 100% increase in the materials markup increases the true

markup by 58% using quintiles and 72% using deciles. Thus, although imperfect, estimates

using the flexible cost share estimator are much more correlated with each other and with

the true markup.

5.4 Production Datasets

I estimate markups using the flexible cost share estimator on all five datasets. In Table V, I

report correlations between markup measures estimating using (11) where output elasticities

are the cost share for each industry quintile. Unlike what I previously found, the labor and

materials markups are very correlated with each other, the opposite of the relationship

found in the baseline approach. An establishment with a 100% higher materials markup

has, on average, a 75% higher labor markup for Chile, 34% higher for Colombia, 68% higher

for India, 72% higher for Indonesia, and 89% higher for Company 1 under the cost share

quintile estimates.
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Table V Correlation between Markup Estimates: Cost Share Quintile Estimates

Chile 0.75
(0.007)

Colombia 0.34
(0.011)

India 0.68
(0.004)

Indonesia 0.72
(0.005)

Company 1 0.89
(0.012)

Note: Estimates based on (11) for markups from two flexible inputs, so Labor on Materials
indicates a regression where the labor markup is the dependent variable and materials markup the
independent variable. TL is ACF translog, while Quintile is industry cost share quintiles. Standard
errors are clustered at the establishment level.

I next examine time trends estimated using (10) for markups estimated using cost share

quintiles in Figure 5 and Figure 6. Across all of the datasets, the time trends in markups are

very similar. For example, for Chile, the average labor markup rises 8% by 1987, then rises

to 13% above its 1979 value by 1993, and then declines slightly to 7% above its 1979 value by

1996. Similarly, the average materials markup initially rises 4% above its 1979 value in 1987,

then rises to 11% below its 1979 value by 1993, and then declines slightly to 8% above its

1979 value by 1996. The magnitudes are also much smaller than in the baseline estimates;

for example, the largest markup increase for Chile is between 11 to 13%, compared to 29%

in the baseline estimates.

Thus, after accounting for non-neutral productivity differences through the flexible cost

share estimator, markups estimating using different inputs have similar cross-sectional and

time series correlations.
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Figure 5 Markup Time Trends using Cost Share Quintile Estimates: Chile and Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 6 Markup Time Trends using Cost Share Quintile Estimates: India and Indonesia

-6

-4

-2

0

Pe
rc

en
t C

ha
ng

e

1998 2002 2006 2010 2014

Year

Labor Materials Composite Input

(a) India

-4

-2

0

2

4

Pe
rc

en
t C

ha
ng

e

1991 1994 1997 2000

Year

Labor Materials Composite Input

(b) Indonesia

Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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6 Markup Stylized Facts

I now examine several stylized facts of markups, including how markups correlate with size,

competition, exporting behavior, and an alternative profit share based markup, estimating

markups using the flexible cost share method. For each variable Zit, I estimate the following

regression specification:

log(µXi,t) = α + βZit + γt + δn + εi,t (17)

where µXi,t is the markup estimate for establishment i in year t using input X, and γt and

δn are year and industry fixed effects. Below, I show that the flexible cost share estimator

leads to consistent estimates for each stylized fact across both inputs and datasets.17

6.1 Size

Multiple theories of variable markups (Atkeson and Burstein, 2008; Melitz and Ottaviano,

2008) predict markups increasing in firm size. I examine this prediction by estimating (17)

regressing markups on the logarithm of deflated sales. I report these estimates in Table VI. I

find a consistent, positive correlation between markups and size using the flexible cost share

estimator. Across datasets and inputs, the markup increases, on average, between 2% and

9% with a 100% increase in sales.

17In Appendix A.5, I examine markups estimated without accounting for non-neutral productivity using
the ACF estimators. As in Section 4, estimates of all of the stylized facts vary in sign and magnitude across
inputs and datasets using the ACF estimators.
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Table VI Correlation between Markups and Sales

Labor Materials Composite Input

Chile 0.06 0.04 0.05
(0.002) (0.002) (0.002)

Colombia 0.04 0.02 0.03
(0.001) (0.001) (0.001)

India 0.05 0.02 0.03
(0.000) (0.000) (0.000)

Indonesia 0.07 0.05 0.06
(0.001) (0.001) (0.001)

Company 1 0.09 0.06 0.07
(0.002) (0.001) (0.001)

Note: Estimates are based on (17) where the independent variable is deflated sales. Markups are
estimated using industry cost share quintiles. Standard errors are clustered at the establishment
level.

6.2 Competition

One explanation for high markups is less competition. I examine how markups correlate

with competition for the retailer using its own classification of the degree of competition.18

Company 1 classifies each store as facing either Low, Medium, or High competition, and

records the number of competitors for each store. I examine the competition band in this

section in Table VII, and a discretized number of competitors in Appendix A.6.

I find a consistent, statistically insignificant increase in the markup of 0.1% using the

flexible cost share estimator across all three inputs. Thus, the retailer does not appear to

have substantially different markup across stores, consistent with uniform or near-uniform

18As in Bresnahan and Reiss (1991), any measures of the degree of competition are endogenous, and
may reflect other underlying determinants of market structure such as market size. I examine correlations
between competition and markups after controlling for market size through local area-year fixed effects in
Appendix A.6, and continue to find sharp differences across markup measures using ACF translog estimates
and similar correlations using the flexible cost share estimator.
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pricing by many large retailers (DellaVigna and Gentzkow, 2017).

Table VII Correlation between Markups and Competition

Labor Materials Composite Input

Medium Competition -0.003 -0.002 -0.002
(0.002) (0.001) (0.001)

High Competition 0.001 0.001 0.001
(0.002) (0.001) (0.001)

Note: Estimates are based on (17) where the independent variable is the company-derived measure
of competition; all estimates are relative to a retail store facing Low Competition. Markups are
estimated using industry cost share quintiles. Standard errors are clustered at the establishment
level.

6.3 Exporting

I next examine whether exporters have larger markups, the central question in De Loecker

and Warzynski (2012), using an indicator variable for whether the establishment exports.19

Table VIII contains these estimates. The correlation of markups estimated using the flexible

cost share estimator with exporting are always positive, with a 4 to 11 percentage point

higher markup, on average, for exporters across inputs and datasets.

6.4 Profit Share Markups

An alternative method to estimate markups has been to use data on profits to measure the

markup. Returns to scale (RTS) are equal to the markup multiplied by one minus the share

19For Chile, I only have exporter information for plants from 1990; for India, for plants from 2008.
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Table VIII Correlation between Markups and Exporting

Labor Materials Combined Input

Chile 0.04 0.05 0.05
(0.008) (0.007) (0.007)

Colombia 0.11 0.08 0.09
(0.006) (0.006) (0.005)

India 0.06 0.05 0.06
(0.004) (0.003) (0.002)

Indonesia 0.09 0.08 0.09
(0.004) (0.004) (0.004)

Note: Estimates are based on (17) where the independent variable is an indicator for whether the
establishment exports. Markups are estimated using industry cost share quintiles. Standard errors
are clustered at the establishment level.

of profits sπ, or RTS = µ(1 − sπ). Thus, given constant returns to scale, one can invert the

profit share to estimate the markup.

I examine how production based markups correlate with the profit share based markup,

estimating the profit share in two ways. First, as in Gutiérrez and Philippon (2016), I

calculate the profit based markup as sales divided by total costs, where capital costs are

measured through a user cost approach as the multiple of capital stocks and rental rates.

Second, for the retailer, I have data on accounting profits measured as earnings before interest

and taxes (EBIT) and so can calculate a profit based markup as sales divided by sales minus

profits.

I then regress the log production based markup on the log profit share based markup

using (17). I report these estimates in Table IX. Markups estimated using the flexible cost

share estimator are always strongly positively correlated with the profit share based markup,

with, on average, a 40% to 96% increase in the production markup with a 100% increase in
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Table IX Correlation between Production Markup Estimates and Profit Based Markup

Labor Materials Composite Input

Chile 0.92 0.96 0.96
(0.010) (0.010) (0.009)

Colombia 0.82 0.84 0.83
(0.011) (0.013) (0.011)

India 0.88 0.84 0.86
(0.005) (0.004) (0.004)

Indonesia 0.44 0.42 0.44
(0.017) (0.016) (0.017)

Company 1 0.80 0.56 0.60
(0.012) (0.007) (0.006)

Company 1 (EBIT) 0.82 0.58 0.62
(0.012) (0.007) (0.007)

Note: Estimates are based on (17) where the independent variable is the profit share based
markup. Markups are estimated using industry cost share quintiles. Standard errors are clustered
at the establishment level. All profit based markups are through a factor cost based profit measure,
except for the last row which is an accounting profit (EBIT) based measure.

the profit share based markup.

7 Alternative Mechanisms

In this section, I examine several additional explanations other than non-neutral productivity

for the large, substantive differences between markups estimated with different inputs. One

explanation is violations of the static cost minimization conditions for the variable input,

such as by adjustment costs in labor or wage bargaining. Another concerns production

function estimation; perhaps the control function approach or its auxiliary assumptions

are misspecified. A third is heterogeneity across different subindustries or products within a

broader industry, and a fourth is biases from estimating revenue production functions. A last
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explanation is measurement error in inputs. I find evidence inconsistent these explanations.

7.1 Static Cost Minimization Conditions

The existence of either adjustment costs for altering input quantities or firms with buyer

power in the input market would violate static cost minimization first order conditions. The

literature suggests that such violations are likely to be more severe for labor (Dobbelaere

and Mairesse, 2013), either due to hiring and firing costs when adjusting labor (Petrin and

Sivadasan, 2013), bargaining with unions, or labor monopsony power.20

I examine this issue by including two non-labor flexible inputs in the production function;

both should be robust to labor-specific violations of the static cost minimization conditions.

I separate materials into raw materials and energy, where energy includes both electricity

and fuel expenditure. I then estimate production functions with capital, labor, and both

raw materials and energy as separate flexible inputs using the manufacturing datasets.

I examine time trends separating raw materials and energy estimating using (10), which

I depict in Appendix A.1 in Figure 9 to Figure 12. In all four datasets, the raw materials

markup has a different time trend than the energy markup.

I report correlations between markup estimates using (11) in Table X; for example,

“Labor on Energy” indicates that the (logged) labor markup is the dependent variable and

20Union bargaining under a “right to manage” model, in which bargaining is over the wage but the firm
can freely choose the number of workers, does not violate my baseline approach. See Nickell and Andrews
(1983) and Dobbelaere and Mairesse (2013).
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energy markup the independent variable.

Neither the labor or raw materials markup is highly correlated with the energy markup.

The raw materials markup is negatively correlated with the energy markup under the Cobb-

Douglas estimates, with elasticities between -0.13 and -0.26, and has no correlation with

the energy markup under the Translog estimates. The labor markup is positively correlated

with the energy markup under the Cobb-Douglas estimates, with elasticities between 0.16

and 0.24, but has a negative correlation with the energy markup under the Translog esti-

mates, with elasticities between -0.02 and -0.10. Thus, labor-specific violations of the cost

minimization conditions cannot explain the markup differences that I find.

Table X Correlation between Markup Estimates: Energy and Raw Materials Separated

Labor on Raw Materials Labor on Energy Raw Materials on Energy
Dataset CD TL CD TL CD TL

Chile -0.60 -0.05 0.21 -0.08 -0.13 -0.01
(0.017) (0.013) (0.008) (0.006) (0.003) (0.002)

Colombia -0.71 -0.05 0.16 -0.05 -0.26 0.00
(0.014) (0.011) (0.006) (0.005) (0.006) (0.003)

India -1.38 -0.32 0.28 -0.12 -0.11 0.00
(0.019) (0.008) (0.003) (0.003) (0.001) (0.001)

Indonesia -0.75 -0.18 0.16 -0.10 -0.14 0.01
(0.023) (0.019) (0.005) (0.006) (0.002) (0.002)

Note: Estimates based on (11) for markups from two flexible inputs, so Labor on Raw Materials
indicates a regression where the labor markup is the dependent variable and raw materials markup
the independent variable. CD is Cobb-Douglas and TL Translog. Standard errors are clustered at
the establishment level.
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7.2 Alternative Production Function Estimators

Following De Loecker and Warzynski (2012), I used the control function approach of Acker-

berg et al. (2015) to estimate production functions. One explanation for my findings is this

estimation approach is misspecified, which could happen for several reasons.

First, the auxiliary assumptions required for the control function approach, such as a

Markov assumption on productivity together with timing assumptions on when the firm

determines its level of inputs, could be wrong. Second, Gandhi et al. (forthcoming) show

that the ACF procedure is not non-parametrically identified when applied to gross-output

production functions.21 Third, Flynn et al. (2019) and Doraszelski and Jaumandreu (2019)

show how the ACF procedure can fail to identify production function parameters with non-

competitive output markets when the dependent variable is revenue and not output. Fourth,

Rovigatti and Mollisi (2018) find that ACF estimates are quite sensitive to the initial con-

ditions used for optimization. Empirically, Foster et al. (2017) show that estimated output

elasticities can vary substantially across different estimation approaches.

To examine whether such issues explain my findings, I examine three different approaches

to production function estimation. First, I use a dynamic panel approach to estimation

following Blundell and Bond (2000). Second, Flynn et al. (2019) develop a new method to

estimate production functions using a similar set of auxiliary assumptions as Ackerberg et al.

21Ackerberg et al. (2015) state that “we would not suggest applying our procedure to gross output pro-
duction functions that are not Leontief in the intermediate inputs”.
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(2015) together with constant returns to scale. I use this new method to estimate translog

production functions.22 Finally, I use the cost share approach assuming that productivity

differences are neutral using industry-year cost shares. The cost share estimates allow the

output elasticities of the industry-level production function to change over time, but do not

allow non-neutral technological differences through groups as in the previous section.

Using all three methods, the time trends using different inputs estimated using (10) are

very different for all cases except for cost shares for Colombia. I depict these in Appendix A.1

in Figure 13 through Figure 20. In addition, after controlling for time trends, I show in

Table XI that the labor markup remains negatively correlated with the materials markup,

with correlations ranging from −0.25 to −1.00 using the dynamic panel approach, −0.17 to

−7.05 using the Flynn et al. (2019) approach, and from −0.24 to −1.00 for the cost share

approach.

Thus, alternative production function estimators assuming neutral productivity differ-

ences cannot explain the differing markup estimates across variable inputs that I document.

7.3 Within Industry Heterogeneity

One potential concern is that production functions vary across subindustries or products

within a broader industry. I first examine this concern by estimating production functions

22This approach does not converge for one industry for Chile, Colombia, and Indonesia, and two industries
for India for the labor and materials specification, as well as one industry for Indonesia and seven industries
for India in the composite variable input specification.
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Table XI Correlation between Markup Estimates: Alternative Estimators

Dataset DP FGT CostShare Ind CostShare SubInd

Chile -0.25 -0.69 -0.24 -0.20
(0.015) (0.018) (0.015) (0.014)

Colombia -0.65 -1.06 -0.65 -0.61
(0.008) (0.020) (0.008) (0.009)

India -0.89 -0.17 -0.89 -0.66
(0.008) (0.007) (0.008) (0.008)

Indonesia -0.70 -0.82 -0.51 0.02
(0.011) (0.020) (0.010) (0.016)

Company 1 -1.00 -7.05 -1.00 -1.00
(0.055) (0.151) (0.055) (0.055)

Note: Estimates based on (11) where the labor markup is the dependent variable and materials
markup the independent variable. Columns labeled DP are markups based on Blundell and Bond
(2000), and labeled FGT based on Flynn et al. (2019), as described in the text. Columns labeled
CostShare Ind are markups based on industry-year level cost shares, and CostShare SubInd are
markups based on subindustry-year level cost shares, as described in the text. Standard errors are
clustered at the establishment level.

at the subindustry level. There are 60 such subindustries for Chile, 82 for Colombia, and

260 for Indonesia. For India, industry definitions vary over time; there are 764 subindustries

in the period before 2004, 684 between 2004 and 2007, and 586 in the period after 2007.23

I estimate production functions at the subindustry level using subindustry-year cost

shares. Time trends, reported in Figure 17 through Figure 20, continue to be very dif-

ferent across inputs. The magnitude of the negative cross-sectional correlation between the

labor and materials markup is smaller at the subindustry level; the labor markup is uncorre-

lated (0.02) with the materials markup for Indonesia, and is negatively correlated with the

materials markup in the other datasets, with correlations ranging from −0.20 to −1.00. See

23For Chile and Colombia, the subindustry is defined at the four digit ISIC (Rev.2) level, for Indonesia at
the five digit ISIC (Rev.2) level, and for India at the five digit NIC 98 level before 2004, five digit NIC 04
level between 2004 and 2007, and five digit NIC 08 level after 2007.
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the CostShare SubInd column of Table XI.

For India, I also have access to product-level data and so can estimate product level

production functions. I only include manufacturing plants that report only one product

within a given year; in 2014, this dataset includes about 25,000 plants and 3,000 products. I

then estimate production functions at the product-year level using product-year cost shares.

The labor markup is negatively correlated with the materials markup with a correlation of

−0.45 using product-year cost shares, compared to −0.85 estimating production functions

using industry-year cost shares on the same data.

Thus, estimating subindustry or product level production functions reduces, but does

not eliminate, the negative cross-sectional correlation between markup estimates that I doc-

ument.

7.4 Revenue Production Functions

Economists typically only have data on revenue, and not output, and so estimate revenue

production functions. However, with imperfect competition, the ACF estimator applied to

revenue production functions may fail to identify production function parameters (Flynn et

al., 2019; Doraszelski and Jaumandreu, 2019).

I examine this issue using data on the quantity produced of ten Indian homogenous

products.24 I estimate product-level quantity production functions using the ACF estimator

24I describe the construction of these products in Appendix B.7; they are Biri Cigarettes, Black Tea,
Corrugated Sheet Boxes, Matches, Portland Cement, Processed Milk, Refined Sugar, Parboiled Non-Basmati
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for plants for which at least 75% of their revenue comes from one of these products. The labor

markup and materials markup are negatively correlated for these products, with a correlation

of −0.42 and −0.83 using Cobb-Douglas and Translog production functions. Thus, problems

with revenue production functions cannot explain my findings.

7.5 Measurement Error

Another potential concern is measurement error in data on inputs due to survey collection.

For example, manufacturing plants may not respond to all survey questions (White et al.,

2016). However, I find similar patterns using Company 1’s data, based on the internal

records of the firm, as I did using manufacturing survey datasets.

Measurement error may be more of an issue for smaller, less sophisticated plants compared

to large plants. All of my baseline estimates do not weight by size. I examine sales and cost

weights, as in De Loecker et al. (2018) and Edmond et al. (2018), in Appendix A.4, and find

qualitatively similar findings to the unweighted results.

8 Conclusion

A key advantage of the production approach to estimating markups is that it allows one to

estimate markups across widely differing industries, and thus estimate the aggregate markup.

The demand approach to markups cannot do so because models for firm competition and

Rice, Raw Non-Basmati Rice, and Shelled Cashew Nuts.
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demand vary substantially across industries.

However, the production approach, as currently implemented, delivers very different

markups using alternative flexible inputs. Labor markups are negatively correlated with

materials markups, have opposing time trends, and are much more disperse.

I then showed that non-neutral technological differences across plants can explain these

findings. I developed a flexible cost share estimator to account for labor augmenting tech-

nology; using this estimator, markups estimated with different flexible inputs have similar

time trends and cross-sectional correlations.

The development of the demand approach to markup estimation provides guidance on

how to measure markups going forward. The demand approach focuses on modeling the

heterogeneity in preferences across consumers; for example, Berry et al. (1995) estimate

random coefficients that allow consumers to vary in their sensitivity to price. In order to use

the production approach, economists will have to allow more heterogeneity in production

technology.
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A Additional Empirical Results

A.1 Trends over Time

In Figure 7 and Figure 8, I depict aggregate markup trends based on labor, materials, or the
combined input of both as flexible inputs estimated using Cobb-Douglas production functions. In
Figure 9 to Figure 12, I depict aggregate markup trends based on labor, raw materials, and energy as
flexible inputs estimated using either Cobb-Douglas or Translog production functions. In Figure 13
to Figure 20, I depict aggregate markup trends estimated using a dynamic panel approach, Flynn
et al. (2019), industry-year cost shares, or subindustry-year cost shares.

Figure 7 Markup Time Trends using Cobb-Douglas Estimates: Chile and Colombia
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(b) Colombia

Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

A.2 Markup Dispersion

In Table XII and Table XIII, I report the 75/25 ratio and 90/10 ratio of markup estimates.

A.3 Average Markups

Under the production approach, the average markup should be the same using different flexible
inputs. I test this prediction by estimating the average markup across all establishments using
different flexible inputs. I find similar average markups in some, but not all, of the datasets.

Using all the datasets, I report the ratio of the average labor markup to the average materials
markup in the first two columns of Table XIV. The average labor markup is 9% higher than the
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Figure 8 Markup Time Trends using Cobb-Douglas Estimates: India and Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 9 Markup Time Trends, with Energy: Chile

-20

0

20

40

Pe
rc

en
t C

ha
ng

e

1980 1983 1986 1989 1992 1995

Year

Labor Materials Energy

(a) Cobb-Douglas

-40

-20

0

20

40

Pe
rc

en
t C

ha
ng

e

1980 1983 1986 1989 1992 1995

Year

Labor Materials Energy

(b) Translog

Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 10 Markup Time Trends, with Energy: Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 11 Markup Time Trends, with Energy: India
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 12 Markup Time Trends, with Energy: Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 13 Markup Time Trends, Alternative Estimators: Chile
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 14 Markup Time Trends, Alternative Estimators: Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 15 Markup Time Trends, Alternative Estimators: India
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 16 Markup Time Trends, Alternative Estimators: Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 17 Markup Time Trends, Cost Share Estimators: Chile
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 18 Markup Time Trends, Cost Share Estimators: Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Figure 19 Markup Time Trends, Cost Share Estimators: India
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Figure 20 Markup Time Trends, Cost Share Estimators: Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.

Table XII 75/25 Ratio of Markup Estimates

Labor Materials Combined Input
Dataset CD TL CD TL CD TL

Chile 2.68 2.06 1.41 1.32 1.16 1.15
(0.009) (0.010) (0.003) (0.003) (0.001) (0.001)

Colombia 2.69 1.87 1.63 1.24 1.14 1.14
(0.013) (0.006) (0.005) (0.001) (0.001) (0.001)

India 4.25 3.16 1.32 1.25 1.13 1.12
(0.011) (0.005) (0.001) (0.000) (0.000) (0.000)

Indonesia 3.82 2.65 1.55 1.37 1.12 1.13
(0.022) (0.010) (0.002) (0.002) (0.000) (0.000)

Company 1 1.28 1.35 1.03 1.03 1.02 1.03
(0.002) (0.003) (0.000) (0.000) (0.000) (0.000)

Note: CD is Cobb-Douglas and TL Translog. Estimates use all establishments and years. Standard
errors are based on 20 bootstrap simulations. For India, these estimates ignore the sample weights.
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Table XIII 90/10 Ratio of Markup Estimates

Labor Materials Combined Input
Dataset CD TL CD TL CD TL

Chile 6.25 4.04 2.08 1.81 1.33 1.31
(0.032) (0.020) (0.004) (0.006) (0.002) (0.001)

Colombia 7.87 7.43 2.71 1.68 1.31 1.30
(0.076) (0.304) (0.010) (0.006) (0.001) (0.001)

India 15.81 10.08 1.75 1.58 1.27 1.27
(0.063) (0.044) (0.001) (0.001) (0.000) (0.000)

Indonesia 17.05 8.16 2.34 1.97 1.25 1.28
(0.142) (0.061) (0.005) (0.004) (0.001) (0.001)

Company 1 1.59 1.76 1.05 1.06 1.04 1.05
(0.004) (0.006) (0.000) (0.000) (0.000) (0.000)

Note: CD is Cobb-Douglas and TL Translog. Estimates use all establishments and years. Standard
errors are based on 20 bootstrap simulations. For India, these estimates ignore the sample weights.

average materials markup for Chile, 18% higher for Colombia, 198% higher for India, 72% higher
for Indonesia, and 106% higher for Company 1 under the Cobb-Douglas estimates. Under the
Translog estimates, the average labor markup is 50% higher than the average materials markup for
Chile, 5% lower for Colombia, 46% higher for India, 69% higher for Indonesia, and 5% lower for
Company 1. Thus, the average markups are close to each other for Colombia and Company 1 –
using the Translog estimates, and for Chile and Colombia using the Cobb-Douglas estimates.

A.4 Weighted Estimates

De Loecker et al. (2018) weight markups by sales, while Edmond et al. (2018) argue that cost
weights are the right benchmark for welfare calculations. In this section, I weight all observations
using sales weights (the plant’s share of total sales in the year), or cost weights (the plant’s share
of total costs in the year). I then report the ratio of average markups, trends over time, and
correlations between markups, using either labor, materials, or the combined variable input to
compute markups. In some of the manufacturing datasets, a few plants have very large sales
and cost shares (for example, petroleum refineries in India), so weighted estimates can differ from
unweighted estimates substantially. Nevertheless, I continue to find negative correlations between
labor markups and materials markups and different trends over time after weighting using sales or
cost weights.
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Table XIV Ratio of Average Markup Estimates

Labor/Materials Labor/Combined Input Materials/Combined Input
Dataset CD TL CD TL CD TL

Chile 1.09 1.50 1.30 1.63 1.19 1.09
(0.012) (0.012) (0.012) (0.012) (0.003) (0.002)

Colombia 1.18 0.95 1.53 1.02 1.30 1.08
(0.016) (0.015) (0.016) (0.013) (0.010) (0.005)

India 1.98 1.46 2.17 1.56 1.10 1.07
(0.008) (0.005) (0.008) (0.005) (0.001) (0.001)

Indonesia 1.72 1.69 2.00 1.89 1.17 1.11
(0.018) (0.019) (0.019) (0.021) (0.003) (0.002)

Company 1 2.06 0.95 1.32 0.95 0.64 1.00
(0.004) (0.002) (0.002) (0.002) (0.000) (0.000)

Note: Estimates are the ratio of the average markup between two flexible inputs across all
establishments and years, so Labor/Materials indicates the ratio of the average labor markup to
average materials markup. CD is Cobb-Douglas and TL Translog. Standard errors are clustered at
the establishment level.

Figure 21 Markup Time Trends, Sales Weighted: Chile
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.
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Figure 22 Markup Time Trends, Sales Weighted: Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.

Figure 23 Markup Time Trends, Sales Weighted: India
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.
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Figure 24 Markup Time Trends, Sales Weighted: Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.

Table XV Correlation between Markup Estimates: Sales Weighted

Labor on Materials Labor on Combined Input Materials on Combined Input
Dataset CD TL CD TL CD TL

Chile -0.83 -0.30 -0.40 0.45 1.24 0.98
(0.060) (0.076) (0.167) (0.192) (0.062) (0.053)

Colombia -1.37 -0.09 -1.45 1.50 1.56 0.96
(0.087) (0.199) (0.211) (0.221) (0.056) (0.069)

India -1.89 -0.73 -0.89 0.31 1.04 0.94
(0.127) (0.117) (0.342) (0.233) (0.047) (0.045)

Indonesia -0.65 -0.30 -1.10 0.33 1.54 1.21
(0.094) (0.111) (0.537) (0.345) (0.150) (0.113)

Company 1 -7.06 -9.70 7.22 1.75 -0.03 0.24
(0.152) (0.121) (0.240) (0.144) (0.030) (0.011)

Note: Estimates based on (11) for markups from two flexible inputs, so Labor on Materials
indicates a regression where the labor markup is the dependent variable and materials markup the
independent variable. CD is Cobb-Douglas and TL Translog. Standard errors are clustered at the
establishment level. Estimates weighted with sales weights.
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Figure 25 Markup Time Trends, Cost Weighted: Chile
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.

Figure 26 Markup Time Trends, Cost Weighted: Colombia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.

57



Figure 27 Markup Time Trends, Cost Weighted: India
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.

Figure 28 Markup Time Trends, Cost Weighted: Indonesia
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Note: Estimates based on (10), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.
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Table XVI Correlation between Markup Estimates: Cost Weighted

Labor on Materials Labor on Combined Input Materials on Combined Input
Dataset CD TL CD TL CD TL

Chile -0.83 -0.29 -0.45 0.44 1.26 0.99
(0.059) (0.069) (0.178) (0.196) (0.058) (0.047)

Colombia -1.42 -0.08 -1.54 1.54 1.52 0.89
(0.068) (0.161) (0.199) (0.229) (0.057) (0.063)

India -1.98 -0.77 -1.24 0.30 1.06 0.93
(0.120) (0.112) (0.369) (0.264) (0.055) (0.053)

Indonesia -0.86 -0.46 -1.18 0.03 1.45 1.24
(0.116) (0.126) (0.314) (0.292) (0.095) (0.082)

Company 1 -7.07 -9.71 7.27 1.72 -0.03 0.24
(0.155) (0.119) (0.241) (0.144) (0.030) (0.011)

Note: Estimates based on (11) for markups from two flexible inputs, so Labor on Materials
indicates a regression where the labor markup is the dependent variable and materials markup the
independent variable. CD is Cobb-Douglas and TL Translog. Standard errors are clustered at the
establishment level. Estimates weighted with cost weights.

A.5 Stylized Facts

In this appendix, I examine the same stylized facts as in Section 6, but use the Cobb-Douglas and
Translog ACF estimator to estimate production functions. See Table XVII to Table XX. Across
all of the stylized facts, estimates vary in sign and magnitude across different datasets and inputs.

A.6 Correlations with Competition

REDO SECTION
In Section 6.2, I examined the relationship between markups and competition for Company 1

using a company developed competition band of Low, Medium, or High, and found sharp differences
between markups estimated using different inputs.

I find very similar patterns using the number of competitors instead of the company’s competi-
tion band in Table XXI. I discretize the number of competitors provided by the company into bins
of 0-1, 2, 3, 4, 5-9, or 10 or more competitors. Stores with more competitors have similar markups
to those with less competitors.

One potential driver of both the number of competitors and markups is market size, as in
Bresnahan and Reiss (1991). I thus examine the relationship between the number of competitors
and markups after controlling for market size through fixed effects for the MSA-year of the retail
store. Here, the MSA is either the Metropolitan Statistical Area or Micropolitan Statistical Area
of the retail store’s location.25

25For retail stores not located in a Metropolitan Statistical Area or Micropolitan Statistical Area, the fixed
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Table XVII Correlation between Markups and Sales

Labor Materials Composite Input
Dataset CD TL CD TL CD TL

Chile 0.12 -0.03 -0.02 -0.00 0.01 0.00
(0.005) (0.004) (0.002) (0.001) (0.001) (0.001)

Colombia 0.16 -0.01 -0.07 -0.00 0.00 0.01
(0.004) (0.003) (0.002) (0.001) (0.001) (0.001)

India 0.21 0.05 -0.02 -0.00 0.01 0.01
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Indonesia 0.20 0.04 -0.06 -0.03 0.01 0.01
(0.003) (0.003) (0.001) (0.001) (0.000) (0.000)

Company 1 0.31 0.09 -0.01 -0.02 0.03 -0.04
(0.004) (0.008) (0.000) (0.001) (0.000) (0.001)

Note: Estimates are based on (17) where the independent variable is deflated sales. CD and TL
are ACF Cobb-Douglas and Translog estimators. Standard errors are clustered at the establishment
level.

Table XVIII Correlation between Markups and Competition

Labor Materials Composite Input
Level of Competition CD TL CD TL CD TL

Medium Competition -0.004 -0.016 0.000 -0.001 0.001 -0.004
(0.004) (0.005) (0.000) (0.000) (0.000) (0.000)

High Competition -0.003 -0.088 0.004 0.002 0.006 -0.014
(0.006) (0.009) (0.001) (0.001) (0.000) (0.001)

Note: Estimates are based on (17) where the independent variable is the company-derived measure
of competition; all estimates are relative to a retail store facing Low Competition. CD and TL are
ACF Cobb-Douglas and Translog estimators. Standard errors are clustered at the establishment
level.
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Table XIX Correlation between Markups and Exporting

Labor Materials Combined Input
Dataset CD TL CD TL CD TL

Chile 0.07 -0.11 0.04 0.03 0.05 0.04
(0.018) (0.016) (0.007) (0.006) (0.003) (0.003)

Colombia 0.17 0.02 -0.04 0.03 0.04 0.04
(0.016) (0.014) (0.009) (0.004) (0.003) (0.003)

India -0.03 -0.15 0.01 0.02 0.03 0.02
(0.011) (0.008) (0.002) (0.002) (0.001) (0.001)

Indonesia 0.28 0.05 -0.02 0.01 0.03 0.03
(0.012) (0.011) (0.004) (0.004) (0.001) (0.001)

Note: Estimates are based on (17) where the independent variable is an indicator for whether
the establishment exports. CD and TL are ACF Cobb-Douglas and Translog estimators. Standard
errors are clustered at the establishment level.

Table XX Correlation between Production Markup Estimates and Profit Based Markup

Labor Materials Composite Input
Dataset CD TL CD TL CD TL

Chile -0.03 -0.06 0.37 0.35 0.09 0.08
(0.016) (0.014) (0.010) (0.009) (0.003) (0.003)

Colombia -0.15 -0.16 0.01 0.05 -0.00 0.01
(0.018) (0.014) (0.013) (0.007) (0.004) (0.003)

India 0.21 -0.05 0.15 0.18 0.02 -0.01
(0.010) (0.008) (0.003) (0.004) (0.001) (0.001)

Indonesia 0.06 -0.09 -0.12 -0.09 -0.03 -0.04
(0.011) (0.011) (0.006) (0.005) (0.002) (0.002)

Company 1 1.81 -0.09 -0.08 -0.01 0.15 -0.17
(0.027) (0.041) (0.003) (0.003) (0.003) (0.003)

Company 1 (EBIT) 2.00 0.85 -0.09 -0.09 0.16 -0.16
(0.028) (0.045) (0.003) (0.004) (0.003) (0.003)

Note: Estimates are based on (17) where the independent variable is the profit share based markup.
CD and TL are ACF Cobb-Douglas and Translog estimators. Standard errors are clustered at the
establishment level. All profit based markups are through a factor cost based profit measure, except
for the last row which is an accounting profit (EBIT) based measure.
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I thus re-estimate (17) replacing the year fixed effects with MSA year fixed effects. Table XXII
and Table XXIII contain these estimates; I find slightly higher markups for stores with higher
competition in these estimates.

Table XXI Correlation between Markup and Number of Competitors

Labor Materials Combined Input
Number of Competitors

2 -0.000 0.000 0.000
(0.002) (0.002) (0.002)

3 -0.004 -0.001 -0.002
(0.002) (0.002) (0.002)

4 -0.002 -0.001 -0.001
(0.002) (0.002) (0.002)

5-9 -0.002 -0.002 -0.002
(0.002) (0.001) (0.001)

10+ -0.000 0.000 0.000
(0.003) (0.002) (0.002)

Note: Estimates are based on (17) and are relative to a retail store with 0-1 competitors. Markups
are estimated using industry cost share quintiles. Standard errors are clustered at the establishment
level.

Table XXII Correlation between Markup and Competition Band, MSA-Year Controls

Labor Materials Combined Input
Level of Competition

Medium Competition 0.003 0.002 0.002
(0.001) (0.001) (0.001)

High Competition 0.009 0.005 0.006
(0.002) (0.001) (0.001)

Note: Estimates are based on (17), including MSA-year fixed effects where MSAs are the
Metropolitan or Micropolitan Statistical Area of the retail store. Estimates relative to a retail
store facing Low Competition. Markups are estimated using industry cost share quintiles. Standard
errors are clustered at the establishment level.

B Data Notes (Online Appendix)

In this section, I describe how I construct the main data variables for each dataset.

effect is for all non-MSA locations in the same state.
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Table XXIII Correlation between Markup and Number of Competitors, MSA-Year
Controls

Labor Materials Combined Input
Number of Competitors

2 0.001 0.001 0.001
(0.002) (0.002) (0.002)

3 0.000 0.001 0.001
(0.002) (0.002) (0.002)

4 0.002 0.001 0.001
(0.002) (0.002) (0.002)

5-9 0.007 0.003 0.003
(0.002) (0.001) (0.001)

10+ 0.010 0.006 0.007
(0.003) (0.002) (0.002)

Note: Estimates are based on (17), including MSA-year fixed effects where MSAs are the
Metropolitan or Micropolitan Statistical Area of the retail store. Estimates are relative to a retail
store with 0-1 competitors. Markups are estimated using industry cost share quintiles. Standard
errors are clustered at the establishment level.

B.1 Country Datasets

The first dataset is the Chilean annual census of the manufacturing sector, Encuesta Nacional Indus-
trial Anual (ENIA), spanning the years 1979 to 1996. This data covers all Chilean manufacturing
plants with at least 10 employees, and so contains about 5,000 plants per year.

The second dataset is the annual Colombian Manufacturing census provided by the Departa-
mento Administrativo Nacional de Estadistica between 1981 and 1991. This data contains about
7,000 plants per year. Plants with less than 10 employees are excluded in 1983 and 1984.

The third dataset is India’s Annual Survey of Industries (ASI) from 1998 to 2014. Manufacturing
establishments with over 100 workers are always sampled, while a rotating sample of one-third of
all plants with at least ten workers (twenty if without power) are also sampled. I thus weight by
the provided sample weights in samples using the Indian data. This data contains about 30,000
plants per year.

The fourth dataset is the Manufacturing Survey of Large and Medium-Sized Firms (Survei
Industri, SI) from 1991 to 2000. This dataset is an annual census of all manufacturing firms in
Indonesia with 20 or more employees, and contains about 14,000 firms per year.

B.2 Capital

Capital costs are the most involved variable to construct. For each country, a capital stock is
constructed for each type of capital. Capital services is the sum of the stock of each type multiplied
by its rental rate plus rental payments. This provides an approximation to a Divisia index for
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capital given different types of capital. See Diewert and Lawrence (2000) and Harper et al. (1989)
for details on capital rental rates and aggregation.

The capital rental rate is the sum of the real interest rate R and depreciation rate δ for that type
of capital. I base the real interest rate on private sector lending rates reported in the World Bank
World Development Indicators, which come from the IMF Financial Statistics, for each country.
This real interest rate is constructed as the private sector lending rate adjusted for inflation using
the change in the GDP deflator. Thus, real interest rate R is defined as R = it−πt

1+πt
for lending rate

it and inflation rate πt.
I average this real interest rate over the sample period, so that, since capital rental rates are

constant over time, no variation in the capital stock over time is due to changing rental rates.26

For depreciation rates, I match the depreciation rates calculated for US industries to the equiv-
alent industries in each country for structures and equipment. For transportation, I set the depre-
ciation rate to 0.19.27

Across datasets, there are some differences in the construction of capital stocks. For Chile, I
use end of year capital stocks constructed by Greenstreet (2007). Greenstreet (2007) constructed
capital stocks for three types of capital – structures, equipment, and transportation – using a
permanent inventory type procedure using data on capital depreciation.

For the other datasets, I construct asset-specific capital stocks using a perpetual inventory
method for each type of capital. For Colombia, there are four types of capital: land, structures,
equipment (combining office equipment and machinery), and transportation. For India, there are
six types of capital: land, structures, equipment, transportation, computers, and other (including
pollution equipment). For Indonesia, there are five types of capital: land, structures, equipment,
other capital (for which I use the equipment deflator), and transportation.28 For each asset type, I
construct a perpetual inventory measure of capital starting with the first year reporting a positive
value of the book value of capital. I also construct a backwards perpetual inventory measure
of capital to create capital stocks for plants missing capital stocks using the forward perpetual
inventory calculation.29 I drop observations with zero or negative capital services for equipment or
for total capital.

Capital deflators for Chile and Colombia are at the 3 digit ISIC level, and I have separate
deflators for structures, equipment, and transportation. For India and Indonesia I use a general
capital deflator, at the 4 digit ISIC level for Indonesia and at the yearly level for India.

For the retailer (Company 1), I have better data on capital than in the manufacturing datasets –
the history of all investments by store going back to the early 1980s separately for land, structures,
and equipment. I use this data to construct a perpetual inventory measure of capital for each

26For Chile and Colombia, the real interest rate series starts in 1985 and 1986, respectively, so I use interest
rates starting from these dates.

27The US depreciation rates are based on NIPA data on depreciation rates of assets; I then use asset-
industry capital tables to construct depreciation rates for structures and equipment for each industry. In-
dustries for the US are at the 2 digit SIC level. The US light truck depreciation rate is 19%.

28For other capital, I use the depreciation rate and deflator for equipment. For computers, I use a
depreciation rate of 31.19%, the US depreciation rate for computer equipment.

29For Indonesia, only total capital and total investment are available in 1996. I thus restart the perpetual
inventory capital measure in 1997, and the backwards PI measure in 1995.

64



type of capital. I obtain capital deflators and rental prices for each type of capital from the BLS
Multifactor Productivity program, constructed for the retail trade industry.

Nominal capital services are then the sum of the real capital stock of each asset type multiplied
by the appropriate deflator and capital rental rate, plus rent. Real capital services are the sum
of the real capital stock of each asset type multiplied by the appropriate capital rental rate, plus
deflated rent.30

B.3 Labor

For Chile, Colombia, and Indonesia, I use the total number of workers as my measure of labor. For
India, I use the total number of days worked by all workers, while for Company 1, I use the total
number of hours worked by all workers.

For labor costs, I use the sum of total salaries and benefits for all of the datasets.

B.4 Energy and Materials

Total energy costs are expenses on all energy inputs, subtracting out any electricity sold to other
parties.

Real energy input requires energy deflators. For Chile, I have data on both value and quantity
of energy inputs for 10 different inputs (plus other fuel). I follow Greenstreet (2007)’s construction
of deflators for each energy input as the ratio of total value over total quantity for each 3 digit
industry-year. Other fuel is deflated using a value weighted average of the other fuels. Electricity is
deflated calculating an electricity price as the average total value of electricity over total quantity
for the year.

For Colombia, I calculate the average electricity price as the median ratio of value to quantity
across all plants for a given year and province and deflate electricity using this electricity price.
For fuels, I only have aggregate fuel value, which I deflate using the output deflator for the 3 digit
petroleum and coal industry.

For India, I deflate fuels and electricity using yearly deflators for each input.
For Indonesia, I calculate the average electricity price as the median ratio of value to quantity

across all plants for a given year and deflate electricity using this electricity price. For fuels, I have
data on both value and quantity of energy inputs for 7 different inputs (plus other fuel). I thus
create deflators for each energy input based on the median value to amount ratio by year. I use
the diesel oil deflator for other fuel inputs.

For Chile, Colombia, and India, I calculate total raw materials as total spending on raw mate-
rials, with an adjustment for inventories of raw materials by adding the difference between the end
year and beginning year value of inventories of raw materials. For Indonesia, total amount of raw
materials used are reported, which I use for total raw materials.

30For Chile, rent is not differentiated by capital type, so I deflate using the structures deflator. Colombia
differentiates between structures rent and machinery rent, India between land rent, building rent, and ma-
chinery rent (I use net rents for all three), and Indonesia between land rent and structures/machinery rent.
For Company 1 I deflate rent using the structures deflator, as most capital is structures.
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For Chile and Colombia, materials deflators are at the 3 digit ISIC level. For Indonesia, they
are at the 5 digit ISIC level and for India at the 4 digit NIC 2008 level. For Chile, I also deflate
lubricants, water, and grease using value to quantity ratios as for the energy inputs described above,
following Greenstreet (2007). For Indonesia, I also do the same for lubricants.

For Retailer 1, materials are the total cost of goods sold at the store. Real materials are
constructed by deflating goods using the appropriate deflators from the PPI.

B.5 Sales

For all of the manufacturing datasets, I calculate total sales as total production value (both domestic
sales and exports, and sales to other establishments of the same company), plus the difference
between the end year and beginning year value of inventories of finished goods. Real sales are
nominal sales deflated by the output deflator. The output deflator is measured at the 3 digit ISIC
level in Chile and Colombia, at the 4 digit NIC 08 level in India, and the 5 digit ISIC level in
Indonesia. For the retailer, I deflate total sales using PPI deflators for the relevant goods.

B.6 Industry Sectors and Data Cleaning

For Indonesia, I drop all duplicated observations. The industry definition also changes in 1998
from ISIC rev.2 to ISIC rev. 3 (with both reported in 1998). I assign plants in 1999 and 2000 the
reported ISIC rev. 2 industry in 1998 if they exist in 1998; if not, I use the modal 5 digit ISIC
rev.2 given the reported value of ISIC rev. 3 using data from 1998.

For India, the industry definition repeatedly changes over the sample period. I use the panel
structure of the data to create a consistent industry definition at the NIC 08 level. For plants with
a NIC 98 or NIC 04 industry, I set the plant’s industry to either the modal industry at the NIC
08 level across years for the plant, or, if this fails, the modal industry at the NIC 08 level for the
given NIC 04 or NIC 98 industry.

For both India and Indonesia, I follow Alcott et al. (2015) and drop plants with an electricity
share of sales above one and a labor, materials, or energy share of sales above two, or sales below
3 currency units.

B.7 Products

I construct ten homogeneous products in the Indian data. When doing so, I have to account for the
fact that the product coding changes several times over the sample period. I describe each product
below.

Biri cigarettes are recorded in thousands of cigarettes. In the 1998 to 2007 data, I use ASICC
code 15323. In the 2008 to 2009 data, I use ASICC code 15325. In the 2010 to 2014 data, I use
ASICC code 2509001.

Black Tea is recorded in kilograms. I include several product codes that correspond to black
tea, but exclude non-black tea, tea bags, and instant tea. In the 1998 to 2009 data, I use the
following ASICC codes: ASICC code 12211 [tea (black) leaf (blended)], ASICC code 12212 [tea
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(black) leaf (unblended)], ASICC code 12213 [tea (black) dust (blended)], ASICC code 12214 [tea
(black) dust (unblended)], and ASICC code 12215 [tea (black) leaf (darjeeling)]. In the 2010 to
2014 data, I use the following ASICC codes: ASICC code 2391301 [Black Tea (CTC) ”crush, tear,
curl”], ASICC code 2391302 [darjeeling tea black leaf], ASICC code 2391303 [non-darjeeling black
leaf], and ASICC code 2391308 [tea dust].

Boxes, Corrugated Sheet are recorded in number of boxes. In the 1998 to 2009 data, I use
ASICC code 57104. In the 2010 to 2014 data, I use ASICC code 3215301.

Matches are recorded in kilograms. In the 1998 to 2009 data, I use ASICC code 37304. In the
2010 to 2014 data, I use ASICC codes 3899801 [Matches safety (match box)] and 3899899 [Matches
n.e.c.].

Portland Cement is recorded in tonnes. In the 1998 to 2007 data, I use ASICC code 94415.
In the 2008 to 2009 data, I use ASICC code 94414. In the 2010 to 2014 data, I use ASICC code
3744008.

Processed Milk is recorded in fluid liters. In the 1998 to 2009 data, I use the following ASICC
codes: ASICC code 11401 [fresh milk], ASICC code 11402 [flavored milk], ASICC code 11403
[chilled/frozen milk], and ASICC code 11404 [skimmed/pasteurized milk]. In the 2010 to 2012
data, I use ASICC code 2211000 [processed liquid milk]. In the 2013 to 2014 data, I use the
following ASICC codes: ASICC code 2211001 [full cream milk], ASICC code 2211002 [toned milk],
ASICC code 2211003 [skimmed milk], and ASICC code 2211099 [other processed milk (nec)].

Refined Sugar is recorded in tonnes. In the 1998 to 2009 data, I use ASICC code 13103. After
2009, refined sugar is initially split into multiple codes with different units (kilograms vs. tonnes),
so I do not include refined sugar after 2009.

Rice, Parboiled Non-Basmati is recorded in tonnes. In the 1998 to 2009 data, I use ASICC
code 12311. In the 2010 to 2014 data, I use ASICC codes 2316107 [Rice (other than basmati),
par-boiled milled] and 2316202 [Rice (other than basmati), par-boiled brown/ husked].

Rice, Raw Non-Basmati is recorded in tonnes. In the 1998 to 2009 data, I use ASICC code
12312. In the 2010 to 2014 data, I use ASICC codes 2316108 [Rice (other than basmati), non-boiled
(atap) milled] and 2316203 [Rice (other than basmati), non-boiled (atap) brown/ husked].

Shelled Cashew Nuts is recorded in tonnes. In the 1998 to 2007 data, I use ASICC code 12111.
In the 2008 to 2009 data, I use ASICC code 12131. In the 2010 to 2014 data, I use ASICC code
2142400.

I only keep manufacturing plants with a 75% of greater revenue share of a given product. I
define the price of a product as the gross value of the product minus any reported expenses (excise
duty, sales tax, and other expenses) divided by the quantity sold. I then drop all plants whose price
is greater than five times, or less than 20%, of the median price for a given product in a given year.

Table XXIV below contains the total number of observations, and number of distinct manufac-
turing plants, for each product.
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Table XXIV Homogeneous Products

Product Number of Observations Number of Distinct Plants

Biri Cigarettes 3234 1053
Black Tea 7263 1316
Boxes, Corrugated Sheet 4234 2299
Matches 2725 676
Portland Cement 2262 598
Processed Milk 2143 784
Refined Sugar 3612 600
Rice, Parboiled Non-Basmati 6433 4481
Rice, Raw Non-Basmati 5535 4061
Shelled Cashew Nuts 3118 979
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