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Abstract 

We estimate the degree of spatial differentiation among downstream firms that buy corn from 

upstream farmers and examine whether such differentiation affects competition and enables buyers 

to exert market power, defined as the ability to pay a price for corn that is below its marginal value 

product net of processing cost. We estimate a structural model of spatial competition using corn 

procurement data from the U.S. State of Indiana over 2004-2014. We adopt a strategy that allows 

us to estimate firm-level structural parameters while using aggregate data. Our results return a 

transportation cost of 0.12 cents per bushel per mile (5% of the corn price under average distance 

traveled), which provides evidence of spatial differentiation among buyers. The estimated average 

markdown is $0.80 per bushel (16% of the average corn price in the sample), of which $0.34 is 

explained by spatial differentiation and the rest by the fact that firms operated under binding 

capacity constraints. We also find that corn prices paid to farmers at the mill gate are independent 

of distance between the plant and the farm, providing evidence that firms do not engage in spatial 

price discrimination. Finally, we evaluate the effect of hypothetical mergers on input markets and 

farm surplus. A merger between nearby ethanol producers eases competition and increases 

markdowns by 20% and triggers a sizable reduction in farm surplus. In contrast, a merger between 

distant buyers has little effect on competition and markdowns. 
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Economists and regulators are paying increasing attention to spatial competition in agricultural 

procurement markets; i.e. markets in which downstream firms purchase products from upstream 

farmers to use as inputs in their production processes. These markets are typically characterized 

by buyers that are spatially dispersed and by products that are costly to transport from the farm to 

the buyer. These features of agricultural procurement markets have led researchers to routinely 

assert, despite scant empirical evidence, that spatial differentiation among agricultural processors 

may soften competition, possibly allowing firms to price inputs below their marginal value product 

net of processing costs; i.e. allowing input buyers to engage in input price markdown (e.g. Durham, 

Sexton, and Song, 1996; Alvarez et al., 2000; Fousekis, 2011; Graubner, Balmann, and Sexton, 

2011). A further concern often voiced in the literature is whether spatial differentiation allows 

buyers to engage in spatial price discrimination and pay a lower price to farmers that are located 

closer to their own plants and farther apart from their competitors’ plants (see Graubner et al. 2011; 

Sesmero 2018).1 The extent to which spatial differentiation among buyers of farm products affects 

markdowns, spatial price discrimination, and surpluses is an empirical question, which we address 

in our study. Our goal is to empirically examine whether spatial differentiation allows buyers to 

engage in corn price markdown and spatial price discrimination. 

We develop and estimate a structural model of spatially differentiated buyers in the corn 

procurement market that closely mimics documented empirical features of this market. The model 

consists of downstream firms (corn processors including ethanol firms and wet-milling food 

processors) buying corn from upstream firms (farmers), while accounting for a competitive fringe 

comprised of livestock operators, dry-milling food processors, and exporters. Ethanol and wet-

milling firms set input prices (also referred to as mill-gate prices) paid to farmers and farmers pay 

                                                             
1 Such concerns influenced regulatory interventions including the Robinson-Patman Act (O’Brien and Shaffer, 

1994), and the Grain Inspection, Packers, and Stockyards Administration (GIPSA), among others. 
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the transportation cost to ship the corn to buyers. The structural approach allows us to explicitly 

estimate transportation costs, firm-level production cost parameters and parameters of the residual 

corn supply faced by buyers, which are necessary for computation of price markdowns in the 

presence of spatial competition. We also test for spatial price discrimination examining whether 

markdowns vary depending on the distance between buyers and sellers. Finally, we use the 

structural estimates to conduct counterfactual experiments simulating mergers that differ in the 

distance between merging firms, thereby further characterizing the impact of spatial competition 

on prices, markdowns, and surplus. 

The empirical estimation of parameters necessary to compute markdowns in our structural 

model is challenging since input prices paid by individual firms are privately negotiated and hardly 

available to the public. Most input prices and input production data are available only at a more 

aggregate level. We overcome the aggregation problem by adopting an estimation strategy, similar 

to Miller and Osborne (2014), that allows us to retrieve firm-specific structural parameter estimates 

while using aggregate, county-level data. The estimation strategy builds on a firm-level 

optimization approach that explicitly accounts for spatial differentiation and the distance between 

buyers and sellers. The optimization approach returns optimal plant-level input prices and 

shipments. These predictions are then aggregated to the level of data availability such that demand 

and supply parameters can be estimated that rationalize the data. 

In this study, we use county-level information on corn prices and supply in the U.S. State of 

Indiana from 2004 to 2014. The corn procurement market in Indiana is an ideal setting for several 

reasons. First, it displays all the features associated with spatial differentiation among buyers, i.e., 

a few large processors (oligopsonists) purchase corn from a large number of producers who pay 

transportation cost to deliver products to the buyers. Second, large processors in Indiana are 
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relatively insulated (more so than their counterparts in Illinois, Iowa, or Nebraska) from other large 

processors in neighboring states, though they are likely to compete among themselves (more so 

than their counterparts in Minnesota, Ohio, or Wisconsin). Finally, confining the geographical 

scope of our analysis eases the computational burden of solving our optimization approach which 

increases dramatically with the number of counties and plants considered. 

Our data show that corn is shipped for more than 50 miles. The estimation results return a 

transportation cost of 0.12 cents per bushel per mile (5% of the corn price for average shipping 

distance), which provides evidence for spatial differentiation among buyers. This transportation 

cost softens competition and allows corn processors to exert buyer power, attaining an average 

input price markdown of $0.34 per bushel (7% of the corn price) derived from spatial 

differentiation. Our results also show that, over our study period, firms often set prices under 

binding capacity constraints, consistent with Bertrand-Edgeworth competition. Once capacity 

constraints are binding, markdown increases; on average, capacity constraints increase markdown 

by $0.46 per bushel, more than doubling the effect of spatial differentiation. We also find that corn 

prices paid by buyers to farmers are independent of distance, which confirms that firms do not 

engage in spatial price discrimination. 

Finally, results from our counterfactual experiments on consolidation among ethanol plants‒

a prominent trend in the industry in recent years‒indicate that a merger between nearby ethanol 

plants eases competition and increases markdowns attained by merging firms by $0.14 or 20%. 

We also find that the effect of the merger is not limited to merging plants only; the merger also 

triggers spillover effects on non-merging firms that increase markdowns, but the magnitude of the 

markdown increases is smaller than those of the merging firms per se. Consequently, we find that 

mergers reduce farmers’ surplus and it does so beyond a geographically confined area around the 
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merging firms suggesting strong spatial spillovers. In contrast, a merger between distant ethanol 

plants has little effect on competition and markdowns. Our results clearly indicate that the market 

and welfare effects of a merger depend upon the intensity of competition between merging firms, 

which is determined by their degree of spatial differentiation.  

Our study is related to work on spatial differentiation in fast-food restaurants (Thomadsen 

2005), movie theaters (Davis 2006), coffee shops (McManus 2007), and retail gasoline (Houde 

2012). It also relates to Durham and Sexton (1992) in that it estimates residual supplies faced by 

agricultural processors. However, unlike Durham and Sexton (1992), our study follows an 

estimation strategy proposed by Miller and Osborne (2014) that will enable us to estimate firm-

level structural parameters from market-level outcomes. Other, prominent contributions that focus 

on buying power in the corn procurement market include Saitone, Sexton, and Sexton (2008) and 

Wang et al. (2019). The main differentiating attribute of our paper relative to these studies is that 

we do not impose buyer power but rather estimate it. In this sense, our study contributes to a rich 

empirical literature on buyer power in input markets as reviewed by Azzam (1996), Sexton (2000), 

McCorriston (2002), Sexton (2013), Sheldon (2017), and Merel and Sexton (2017), among others. 

In contrast to these studies, however, our paper explicitly considers the relationship between spatial 

differentiation and competition. We also estimate the degree of spatial competition and identify it 

as a source of buying power. 

 

The Corn Market in Indiana and the Data 

In this section, we introduce the main data sources and use information extracted from these 

sources to document key institutional features of the corn market in the U.S. State of Indiana. We 

identify 4 market features that lay out the foundation of our empirical structural model. 
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We use county-level corn prices that are purchased from Geo Grain. Geo Grain records corn 

prices at multiple elevator locations across the state. These data provide full coverage of the 

Indiana’s territory. We use local corn cash price instead of basis (as it is common in other studies 

of spatial price patterns of corn) because our model identifies parameters based on the difference 

between observed and predicted county-level prices, differencing out forward prices (that are 

based on the Chicago Board of Trade). We also use information on location, capacity, and 

ownership of corn processing plants (which, as will soon be explained, are modeled as 

oligopsonists), total corn supply in each county in each crop year, and distance between processing 

plants and county centroids. We also gathered data on supply shifters; including distance between 

exporting ports and county centroids, and corn requirements by the livestock and dry-milling 

sectors in each county.  

We obtained data on corn production, corn storage, and livestock inventory from the National 

Agricultural Statistics Service of the United States Department of Agriculture (NASS, USDA). 

Information on corn exports and international prices are taken from the Economic Research 

Service (ERS) of the USDA, and the Federal Reserve Bank of St. Louis (FRED), respectively. The 

information on ethanol plants’ location, ownership, capacity, and year built comes from the 

Official Nebraska Government (ONG), the Renewable Fuel Association (RFA), the U.S. 

Environmental Information Administration (EIA), and the Biofuel Atlas published by the National 

Renewable Energy Laboratory (NREL). Information on wet- and dry-milling food processors’ 

capacities and locations is based on Hurt (2012) and personal communications with the author. 

Historical diesel and electricity prices are obtained from the EIA. Distances are calculated using 

Arc-GIS. 
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Information provided in Table 1 portrays an aggregate picture of the corn market in Indiana. 

The upper panel of Table 1 shows the presence of 5 destinations for Indiana corn: ethanol, wet-

milling, dry-milling, livestock, exports, and storage. This panel reports the shares of corn supplied 

annually in Indiana sold to each of these sectors during our period of analysis (2004-2014). The 

lower panel of Table 1 describes the sources of corn supply in Indiana for each year. The numbers 

show that most of the corn supply in any given year comes from production in that same year. 

However, supply from storage can amount to up to 10% of the total corn supply. 

Our primary concern relates to a potential existence of concentrated procurement markets, 

which may be conducive to market power. Concentration takes place when a few large producers 

purchase a substantial fraction of corn supplied within relevant market boundaries, and market 

boundaries can be confined by transportation costs. Therefore, all else constant, concentration will 

raise with transportation cost and with the size of a purchasing firm. We now turn our attention to 

these two aspects. 

Corn farmers typically ship corn to their buyers in trucks (Denicoff et al., 2014; Adam and 

Marathon, 2015) since plants source corn locally and trucking is less costly than other forms of 

transportation within relatively short distances (i.e., below 500 miles). According to the Grain 

Truck and Ocean Rate (GTOR) report from USDA, the transportation rate of grains in the North 

Central region2 inclusive of Indiana on the 1st quarter of 2016 was 0.23 cents, 0.14 cents, and 0.11 

cents per bushel-mile for 25, 100, and 200 miles, respectively.3 At an average corn price of $3.5 

per bushel in 2016, this means that transportation costs amounted to about 3 to 7% of price within 

                                                             
2 The North Central region in the GTOR report includes North and South Dakota, Nebraska, Kansas, Minnesota, 

Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, Kentucky, Tennessee, and Ohio. 
3 These are converted values from the rate reported in GTOR. GTOR reports the transportation rate per truckload-

mile. One truckload is equivalent to 984 bushels of corn.  
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these distances. This underscores the importance of transportation cost and suggests a possible 

geographical localization of corn procurement markets; i.e., plants tend to source corn locally. 

Geographical localization of procurement markets is not by itself sufficient to soften 

competition. The exert market power, the buyer must be large relative to supply in the procurement 

market. Information reported in Table 2 reveals that ethanol plants and wet-milling processors are 

quite large, while individual livestock operations and dry-millers are not. On average, ethanol 

plants and wet milling plants are 4,000 times larger than the average individual livestock operator 

and 6 to 10 times larger than dry-millers. Table 3 reports the ratio of each large processor’s (as 

identified in Table 2) annual corn processing capacity to annual corn produced in the county in 

which the plant operates. In each case, we report the average ratio over the sample period. The 

ratios reported in Table 3 show that these processors are large relative to local supply. Most of 

these plants (88%) have an annual corn processing capacity larger than the corn produced in the 

county where they are located. Ratios for many of these plants in several years are well above 2.  

In line with the existence of large firms purchasing a substantial fraction of the corn supplied 

locally (Table 3), available reduced-form estimates in the US (McNew and Griffith, 2005) and 

Indiana in particular (Jung et al., 2019) found a positive effect of plant sitting on corn prices, but 

they also indicate that the price effect dissipates with distance. The positive price effect is 

consistent with large processing plants facing upward sloping supplies; it means plants must offer 

suppliers a price above their opportunity cost (best bid from other procurement sectors including 

livestock, dry millers, or exporting companies) to re-direct enough corn towards them. The 

dissipation of the price effect with distance is also consistent with procurement markets that are 

geographically localized due to transportation cost. We summarize our discussion in: 
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Market Feature 1: The corn procurement market involves large buyers, ethanol and wet-

milling plants, that are spatially differentiated. Corn purchases involve transportation costs, 

such that firms prefer buying corn from nearby suppliers.  

 

Notwithstanding the geographically localized nature of procurement, the sheer size of these 

plants relative to localized supply also suggests that they have to travel considerable distances to 

procure enough input. This likely results in spatial overlap of these plants’ procurement areas, 

especially when they are spatially clustered. Figure 1 shows the locational pattern of ethanol plants 

(yellow circles) and wet-milling plants (red circles), as well as the spatial pattern of corn 

production in Indiana in 2014. This figure reveals substantial differences in spatial clustering of 

ethanol plants. The variations in the local market conditions have an effect on the intensity of 

competition for corn procurement. But large processors (as indicated by larger circles in Figure 1) 

will also compete with the dry-milling sector, the livestock sector, and exports, which are large 

consumers of corn supplied in Indiana (Table 1). These facts lead to: 

 

Market Feature 2: Dry-milling firms, livestock operators, and exporting firms are small 

buyers acting as a competitive fringe. Large buyers (ethanol and wet-milling firms, as 

identified in Market Feature 1) compete with the competitive fringe and also among 

themselves.  

 

Another important empirical feature of the corn procurement market is the nature of 

procurement channels. A portion of the corn produced is sold immediately after harvest, but 

another portion is stored in elevators and sold throughout the year. Processors buy corn from both 
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farmers and commercial elevators. They purchase corn both in the spot market and through 

contracts. Contracts are usually signed during the growing season and specify a post-harvest 

delivery date, a quantity, and a price. The composition of procurement channels matters because 

our estimation is based on elevator-level cash prices that are then aggregated to the county level. 

Therefore, measurement error in prices could arise if: 1) a large portion of corn is purchased 

directly from farmers and those prices differ from elevator prices, and 2) a large portion of corn is 

purchased through contracts and contract prices differ from cash prices. 

We consider the use of elevator cash prices to be an adequate strategy in our context for two 

reasons. First, while buyers often bypass elevators and purchase directly from farmers, elevator 

prices do not deviate substantially and systematically from farm prices. As for the second potential 

source of measurement error, a large fraction of corn procured by the processors is purchased in 

spot markets. Contracts are commonly used by processors for hedging and protecting profitability 

during periods of thin margins, but hedging opportunities are limited by illiquid futures markets 

on the output side due to limited ethanol and food products storage (see Schill 2016).4 Moreover, 

corn futures markets are highly liquid with efficient price discovery mechanisms, which causes 

convergence, albeit partial, of forward prices to spot prices. 

Another important aspect of pricing is that buyers may offer low mill-gate prices soon after 

harvest, which nevertheless allows them to procure from local farmers as they have fewer outside 

options. As those sources are exhausted, buyers may then raise mill-gate prices to procure from 

farmers located farther away from the plant. Such a pricing strategy would result in spatial price 

discrimination; i.e. the difference between prices received at the farm gate by suppliers located at 

                                                             
4 According to Schill (2016), the use of hedging also reduces upside profit potential, which further limits the use of 

contracts. 



11 
 

varying distances from the buyer will differ from transportation cost (Hardy et al. 2006). This 

requires a trading model that allows for heterogeneous firm-county price pairs in equilibrium.  

We summarize the information on procurement channels and pricing by: 

 

Market Feature 3: Large processors procure the majority of their corn in the spot market 

by posting purchase prices at the mill gate throughout the year, which may result in spatial 

price discrimination. Transportation costs are covered by the sellers. 

 

We now turn our attention to market conditions under which oligopsonists sell their processed 

products. If oligopsonist-owned plants exerted market power downstream, the output price would 

be a function of quantity processed and supplied, which would itself be a function of corn price. 

This would add a layer of complexity to our analysis. Beyond a residual input supply an additional 

output residual demand function faced by each plant would haave to be estimated. However, it is 

unlikely that individual oligopsonistic plants exert market power downstream for two reasons. 

There are close substitutes in the market for the main outputs from both ethanol as well as wet-

milling firms. The price of ethanol mostly followed the price of gasoline during our study period 

according to data from the Official Nebraska Government website 

(http://www.neo.ne.gov/programs/stats/inf/66.html). Similarly, the price of high fructose corn 

syrup (one of the main products from wet-millers along with starch and ethanol) were strongly 

influenced by the price of raw sugar (Oral and Bessler 1997). Moreover, capacity utilization of 

both ethanol (Renewable Fuels Association, 2019) and wet-milling plants (Porter and Spence, 

1982) is typically very high, which limits the role of output price on the procurement decision. 

These facts determine the following feature: 

http://www.neo.ne.gov/programs/stats/inf/66.html
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Market Feature 4: Corn buyers do not have market power when selling their processed 

products and often, but not always, operate at full capacity. 

 

In Figure 2, we map the spatial structure of processing plants (yellow dots) and county-level corn 

prices (color brightness) in 2014, the last year in our sample. The map shows a positive correlation 

between the location and the size of processors (oligopsonists) and corn prices. This pattern applies 

despite the fact that large processors tend to locate in areas with high corn supply, see Figure 1. 

This suggests that large processors substantially increase local demand for corn raising local corn 

prices, which is consistent with Market Feature 1. We note that market power exertion would not 

preclude an increase in local corn price, but it can limit this increase below what it would be in a 

competitive setting. Other areas without large processors also display relatively high prices of corn. 

Consistent with Market Feature 2, these areas are located close to exporting ports (plotted as green 

dots in Figure 2) or livestock production, which cause large shifts in corn demand. 

 

The Empirical Model 

We develop and estimate a structural model to evaluate oligopsonists’ buyer power while 

accounting for spatial differentiation. Our structural model consists of a set of equations that 

describe upstream firms’ selling behavior and downstream firms’ buying behavior. On the demand 

side, we consider ethanol and wet-milling plants that act as oligopsonists. On the supply side, we 

consider farmers in counties that sell corn to oligopsonists for plant-specific prices and to the 

competitive fringe.  
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The corn buyers’ profit optimality conditions characterize optimal corn prices offered by each 

plant to each farmer in every county. Prices offered by a plant and its competitors in equilibrium 

will determine the amount of corn purchased by each plant from farmers in each county. The firm-

level prices and quantities are then aggregated to the county-level. Our estimation algorithm 

searches over a set of parameters that matches the firm-level predictions (aggregated to the county-

level) with the observed county-level data. Our estimation algorithm returns optimally predicted 

corn prices and quantities at the firm level, firm-level procurement and capacity utilization rates, 

and parameter estimates that characterize marginal processing costs. On the sellers’ side, we 

estimate parameters that characterize how much each county sells to each buyer. Ultimately, these 

parameters determine the residual supply of corn faced by each buyer. A key parameter on the 

sellers’ side is transportation costs, which reflect spatial differentiation and competition intensity 

among buyers. 

 

Downstream Firms (Ethanol and Wet-Milling Firms) 

The empirical model we develop here closely mirrors key features of the trading environment 

documented in our industry description. Motivated by Market Feature 1, the corn procurement 

market is characterized by an oligoposony in which large downstream firms (buyers) are spatially 

differentiated and purchase corn from local small upstream firms (sellers) depending on 

transportation cost. In our model, oligopsonists compete with each other and with a competitive 

fringe composed of dry-millers, livestock producers, and exports, as documented in Market 

Feature 2. We also model ethanol producers and wet-millers as price-setting firms and allow these 

firms to engage in spatial price discrimination by setting different prices to different sellers such 

that markdown may vary across sellers, closely mimicking Market Feature 3. Finally, and 
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reflecting Market Feature 4, we assume ethanol plants and wet-millers do not exert market power 

downstream and operate under capacity constraints that may or may not be binding depending on 

market conditions. 

Turning to our empirical model, we allow oligopsonistic firms (F) to own multiple plants (𝑗). 

The firm determines for every plant j the corn price 𝑝𝑖𝑗𝑡
𝑐  (the superscript C refers to corn and the 

subscript t refers to the time period) that is paid to suppliers (farmers) located in county 𝑖=1,…,92 

in Indiana. Since the structure of the problem is the same in all periods, and for notational 

simplicity, we drop the time subscript. The firm-specific vector of corn prices 𝒑𝑭
𝒄  contains as its 

elements the county-specific corn prices 𝑝𝑖𝑗
𝑐  that are offered by every plant j owned by firm F to 

every county i. The quantity of corn shipped from county i to plant 𝑗  is denoted by 𝑞𝑖𝑗
𝑐 (𝒑𝒊

𝒄; 𝒙𝒊, 𝜷),5 

where 𝒑𝑖
𝑐 is the vector of corn prices offered by every plant to county 𝑖, 𝒙𝑖 is a vector of demand 

shifters that captures procurement by the competitive fringe from county i, and 𝜷 is a vector of 

parameters to be estimated. 

Oligopsonists maximize profits every period by determining the optimal corn prices offered 

by each of their plants to famers in every county: 

𝑚𝑎𝑥
𝑝𝑖𝑗

𝑐
𝜋𝐹 = 𝑃ℎ ∗ 𝛼ℎ ∗ ∑ ∑ 𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐; 𝒙𝑖, 𝜷)𝑗∈𝐹𝑖 − ∑ ∑ 𝑝𝑖𝑗

𝑐 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷)𝑗∈𝐹𝑖 − ∑ 𝐹𝐶𝑗𝑗∈𝐹 −

∑ ∫ 𝑚𝑐(𝑄; 𝒘𝑗 , 𝜶)
𝑄𝑗

ℎ

0
𝑑𝑄𝑗∈𝐹                                                (1) 

subject to 

𝛼ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑖∈𝐼𝑁𝐶 ≤ 𝐶𝐴𝑃𝑗         ∀ 𝑗 ∈ 𝐹                                     (2) 

∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐼𝑁𝑃 ≤ 𝑅𝑆𝑈𝑃𝑖        ∀ 𝑖                                       (3) 

                                                             
5 We assume that corn purchased is equal to corn processed because plants have limited storage relative to 

production capacity. 
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The first term in the first line of equation (1), 𝑃ℎ ∗ 𝛼ℎ ∗ ∑ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐹𝑖 ), is firm 𝐹’s revenue 

from selling the processed products denoted by  ℎ  (ℎ = 𝑒𝑡ℎ  for ethanol, or ℎ = 𝑤𝑚  for wet 

millers’ products) at the corresponding prices 𝑃ℎ. The scalar 𝛼ℎ is the conversion productivity 

factor that describes the quantity of output ℎ (ethanol or wet-milling products) obtained per bushel 

of corn processed. The conversion productivity factors are specific to the outputs but homogeneous 

across plants. The second through fourth terms in the right-hand side of equation (1) represent cost 

components. The second term, (∑ ∑ 𝑝𝑖𝑗
𝑐 𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷)𝑗∈𝐹𝑖 ), represents firm 𝐹’s total costs from 

buying corn as an input. The third term in equation (1), ∑ 𝐹𝐶𝑗𝑗𝐹 , are the annualized costs of 

construction or installation and are summed across plants owned by that firm.  

The fourth term, (∑ ∫ 𝑚𝑐(𝑄; 𝒘𝑗 , 𝜶)
𝑄𝑗

ℎ

0
𝑑𝑄)𝑗  refers to the total processing costs from 

producing ethanol and wet-milling products, where 𝑄𝑗
ℎ  refers to the corresponding production 

quantities, mc denotes marginal cost, 𝑄 is the amount of corn processed, 𝒘𝑗 is a vector of cost 

shifters (natural gas and electricity prices) and a time trend to capture technological and/or 

efficiency change, and 𝜶 is a vector of corresponding parameters. 

Our model also allows for binding capacity constraints, which is a distinctive feature of corn 

processors (Market Feature 4). We specify the marginal processing cost function as: 

 

𝑚𝑐(𝑄𝑗
ℎ; 𝒘𝑗 , 𝜶) = 𝒘𝑗

′𝜶 + γ {1 −
𝛼ℎ ∑ 𝑞𝑖𝑗

𝑐 (𝑝𝑖
𝑐;𝒙𝒊 ,𝜷)𝑖

𝐶𝐴𝑃𝑗
}                                  (4) 

 

Equation (4) allows marginal processing cost of plant 𝑗 to depend on capacity utilization 

𝛼ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝑝𝑖

𝑐;𝒙𝒊 ,𝜷)𝑖

𝐶𝐴𝑃𝑗
. If γ is positive (negative) plants display economies (diseconomies) of capacity 

utilization, and if γ is zero plants operate under constant marginal processing cost. 
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Inequality (2) ensures that production by plant 𝑗 is not higher than what is technologically 

feasible to produce in any given year (𝐶𝐴𝑃𝑗 denotes capacity of plant j). Finally, inequality (3) 

ensures that corn purchased by all plants does not surpass the available amount of corn from a 

county (production plus storage minus demand from livestock and the fringe). 𝑅𝑆𝑈𝑃𝑖  refers to the 

residual corn supply from farmers in each county, i.e., it is the sum of annual corn production and 

the stock of corn in storage minus demand from the fringe. 

The solution to the optimization problem, as shown in equations (1)-(3), consists of a system 

of Karush-Kuhn-Tucker conditions fully characterized in Appendix A. 

 

Upstream Firms (Farmers) 

We consider corn supplied by farmers in each county to processors and the competitive fringe. 

Total corn supply in each period is determined by production and inventories6 carried over from 

previous years. Inventories are shaped by previous season’s weather and production is determined 

by planted acres and growing season weather. Planted acres are largely driven by world market 

conditions that determine expected price of corn relative to other crops, which we do not model 

but take as given. While oligopsonists’ pricing may have an effect on local planted acres (e.g., 

Wang et al. 2019), its relation to production (our variable of interest) is much weaker due to the 

mediating role of growing season weather. In addition, modeling firms’ internalization of the effect 

of pricing on future planted acres and supply would greatly increase the mathematical and 

computational burden in our analysis. It would require modeling and solving a complex dynamic 

                                                             
6 Storage data is only available at the State level (NASS, USDA). We calculate county-level storage by attributing a 

fraction of State-level storage to each county which is equal to the average share of each county on total production. 
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pricing game, possibly rendering a solution intractable. We abstract away from such considerations 

and focus on a model of shipments and short-run supplies. 

Our model predicts corn supplied by each county to each procurement firm. It builds on two 

premises: First, suppliers can sell corn to one of three sectors: oligopsonists, local competitive 

fringe (dry-millers and livestock producers), and exports competitive fringe. Second, sectors other 

than oligopsonists do not exert market power. Both of these premises are motivated by Market 

Feature 1. Previous studies have documented that corn demand from the local competitive fringe 

can be quite inelastic, especially from its larger source, livestock operators (Suh and Moss, 2017). 

Therefore, we simply subtract that from total supply. In contrast, export prices are determined in 

the international market and are not influenced by individual exporting firms. A competitive 

exporting sector implies exporting firms procure excess supply at their marginal value product. 

This is consistent with the stylized fact that exports are highly (and positively) correlated with 

production as revealed by a relatively constant share of exports over time, see Table 1. We follow 

Miller and Osborne (2014) and model the export component of the competitive fringe as an 

additional plant 𝑗 = 𝐽 + 1 (where 𝐽 is the number of plants owned by oligopsonists), but a plant 

that does not engage in markdown and price discrimination. 

Suppliers obtain value from selling corn to plant 𝑗, where 𝑗 = 1, … , 𝐽 if the plant is owned by 

an oligopsonistic firm, and  𝑗 = 𝐽 + 1  if the plant is an exporting port. Since there are 18 

oligopsonistic plants in our sample (14 ethanol plants and 4 wet-milling plants), 𝐽 = 18. The corn 

price for exports is determined by the international price. The suppliers have to pay the 

transportation cost. In terms of exports, the transportation cost is determined by the distance from 

the county’s centroid to the closest exporting port. The value function of supplier 𝑛 in county 𝑖, 

associated with selling her corn to plant 𝑗 is given as: 
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𝑣𝑖𝑗
𝑛 = 𝛽𝑝𝑝𝑖𝑗

𝑐 + 𝛽𝑑𝑑𝑖𝑗 + 𝛽𝑒𝑒𝑗 + 𝜀𝑖𝑗
𝑛 = 𝒙𝒊

′𝜷 + 𝜀𝑖𝑗
𝑛 ,                                   (5) 

 

where 𝑝𝑖𝑗
𝑐  is the corn price offered by plant j to a farmer in county i, 𝑑𝑖𝑗 is the distance between 

the centroid of the supplier’s county 𝑖 and the centroid of the county where plant 𝑗 is located,  

𝑑𝑖,𝐽+1 denotes the distance between county 𝑖 and its nearest exporting port (there are three ports 

located in Clark, Porter, and Posey counties), 𝑒𝑗 is a dummy variable that is set to 1 if plant 𝑗 is an 

exporting port (𝑗 = 𝐽 + 1). 

The negative ratio of the distance coefficient to the price coefficient (−𝛽𝑑 𝛽𝑝⁄ ) captures corn 

suppliers’ willingness-to-pay for proximity to an oligopsonist. This ratio represents the 

transportation cost, since corn suppliers save this amount per bushel-mile when located one mile 

closer to a dominant firm. The error term (𝜀𝑖𝑗
𝑛 ) captures unobservable match characteristics such 

as a supplier 𝑛’s preference for plant 𝑗 (due to reputation or relational contract considerations). 

The error term is extreme value-distributed, so we get a closed-form solution for the share of 

residual corn supplied by each county to each plant: 

 

𝑆𝑖𝑗 (𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷) = 𝑃𝑟𝑜𝑏(𝑌𝑛 = 𝑗) =

exp (𝒙𝒊
′𝜷)

∑ exp (𝒙𝑖
′𝜷)

𝐽+1
𝑗=1

,           (6) 

 

where 𝒙𝑖𝑗
′ = [𝑝𝑖𝑗

𝑐 , 𝑑𝑖𝑗 , 𝑒𝑗] and 𝑌𝑛  represents the farmer’s choice to sell corn to ethanol and wet-

milling plants or to exporters. The quantity sold from county 𝑖 to plant 𝑗 can be written as: 

 

𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷) = 𝑆𝑖𝑗(𝒑𝑖
𝑐; 𝒙𝑖 , 𝜷) ∗ 𝑅𝑆𝑈𝑃𝑖                                         (7) 
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where residual supply from county 𝑖  in each period, 𝑅𝑆𝑈𝑃𝑖 , is determined by the sum of 

production and inventories, minus demand from livestock and dry-milling firms. 

 

Estimation Strategy 

One empirical challenge in estimating our model is that corn prices are not available at the 

individual buyer- and seller-level. The prices and quantities are available only at a more aggregate 

(county) level. To overcome this challenge, we employ an estimation strategy similar to that 

developed by Miller and Osborne (2014). We use firms’ optimality conditions and iterate over sets 

of candidate parameters to find a vector of corn prices paid by each plant to farmers in each county, 

and quantities shipped from each county to each plant. We then weigh the plant-specific prices 

with the plants’ share on corn purchases to calculate the predicted county-level prices. The 

predicted county-level prices are then compared with the observed county-level prices. The 

process is iteratively repeated until a set of structural parameters is found under which the predicted 

prices and quantities get sufficiently close to the observed counterparts. 

We employ a multinomial logit system for estimation of the farmers’ supply equation (6), 

which has been previously proposed in agricultural economics literature (Hueth and Taylor, 2013) 

and displays several desirable properties. First, it yields an analytical expression for the share and 

quantity of corn sold by each county to each plant (equations 6 and 7), which makes computation 

less burdensome. Second, the logit structure produces a specification consistent with heterogeneity 

in suppliers’ responses to prices making the aggregate supply response smooth to changes in corn 

prices. Otherwise, small changes in price would result in corner solutions at the county level and 

generate discontinuities in supply behavior. Third, it does not artificially constrain farmers to sell 
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corn within a pre-determined radius. This is important in our study since plants purchase corn from 

distant sellers (well beyond 50 miles in some cases). 

Next, we use the multinomial logit supply (as shown in equation (6)) and the solution to the 

oligopsonists’ profit maximization problem (as shown in equations (1)-(3)) to generate price 

predictions based on the set of candidate parameters. Those are closely matched with the observed 

prices applying a Minimum Distance Estimator while iterating over parameters: 7 

 

min
𝜽∈Θ

1

𝑇
∑ [𝒑𝑡

𝑐 − �̃�𝑡
𝑐(𝜽; 𝑿𝑡)]′𝑪𝑡

−1[𝒑𝑡
𝑐 − �̃�𝑡

𝑐(𝜽; 𝑿𝑡)]𝑇
𝑡=1                                  (8) 

 

where Θ is a compact parameter space, and 𝑪𝑡
−1  is an identity matrix, which is not only a 

positive definite matrix, but also uniformly weights equations defined in the vector 𝒑𝑡
𝑐 − �̃�𝑡

𝑐(𝜽; 𝑿𝑡). 

We denote the vector of observed county-level prices in period t by 𝒑𝑡
𝑐. We denote the predicted, 

county-level prices by �̃�𝑡
𝑐(𝜽; 𝑿𝑡) , where 𝜽 = [ 𝜶, 𝜷]′  is a vector of parameter values, and 𝑿𝒕 

encompasses exogenous variables including distances (from oligopsonists to county centroids and 

from exporting ports to county centroids), as well as demand and cost shifters. The estimation 

process involves an inner loop and an outer loop. The inner loop computes �̃�𝑡
𝑐(𝜽; 𝑿𝑡) and the outer 

loop minimizes the distance between �̃�𝑡
𝑐(𝜽; 𝑿𝑡) and its empirical analog 𝒑𝑡

𝑐.  

The inner loop solves for the county-plant pairs of prices (�̃�𝑖𝑗
𝑐 ) and quantities (�̃�𝑖𝑗

𝑐 ) for all 

plants and all counties given the candidate parameters and exogenous variables. It does so in two 

steps. First, it generates a vector of firm-level Karush-Kuhn-Tucker (KKT) conditions in the Mixed 

Complementarity Problem structure that solves problem (1)-(3). Expressions for the KKT 

conditions are reported in Appendix A. The KKT conditions constitute, in effect, best response 

                                                             
7 For expositional clarity, we reintroduce the time subscript. 
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functions as they characterize the price offered by each plant to each county as a function of prices 

offered by other plants to that county. Therefore, the second step consists of finding the Nash 

equilibrium of the problem by simultaneously solving the system of KKT conditions. As a result, 

the inner loop generates 𝐽 × 𝑁  equilibrium predictions of firm-county price pairs in period t, 

�̃�𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡), which are functions of candidate parameters and data. Along with these prices, the 

inner loop also generates 𝐽 × 𝑁 equilibrium predictions of firm-county quantity pairs in period t, 

�̃�𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡) . The corn prices offered by all plants to each county are weighted using the 

corresponding procurement shares such that an aggregate, predicted county-level price �̃�𝑖𝑡
𝑐 (𝜽; 𝑿𝑡) 

is obtained; i.e. �̃�𝑖𝑡
𝑐 (𝜽; 𝑿𝑡) = ∑ (

�̃�𝑖𝑗𝑡
𝑐 (𝜽;𝑿𝑡)

∑ �̃�𝑖𝑗𝑡
𝑐 (𝜽;𝑿𝑡)𝑗

) �̃�𝑖𝑗𝑡
𝑐 (𝜽; 𝑿𝑡)𝑗 . These county-level price predictions 

are then stacked in vector �̃�𝑡
𝑐(𝜽; 𝑿𝑡) of equation (8). 

The outer loop minimizes the distance between the observed and predicted equilibria by 

iterating over the candidate parameters in 𝜽. The conditions are stacked and the estimator (see 

equation (8)) compares the aggregated equilibrium predictions �̃�𝑡
𝑐(𝜽; 𝑿𝑡) to the empirical analogs 

in the dataset 𝒑𝑡
𝑐 . These comparisons yield total annual deviations between predicted market 

outcomes and their empirical analogs. The Minimum Distance Estimator minimizes the sum of 

squared errors.  

The iterative estimation algorithm is relegated to Appendix B. We use the MPEC modeling 

strategy, as suggested by Su and Judd (2012)8, and implement the double loop structure in the 

General Algebraic Modeling System (GAMS) software. 9  This increases ease of computation 

preventing common nonconvergence and infeasibility issues.  

 

                                                             
8 We summarize the structure of the algorithm implemented in MPEC in Appendix B. 
9 The GAMS programming code is available from authors upon request. 
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Identification 

We consider 92 counties in Indiana over a 11-year time horizon, such that equation (8) includes 

92x11=1,012 aggregated equilibrium predictions and their empirical analogs. Identification 

proceeds based on these 1,012 non-linear conditions stacked in equation (8). The vector 𝜽 contains 

parameters of the farmers’ supply equation (𝜷), along with the parameters characterizing marginal 

cost of processing corn (𝜶).  

 The vector of parameters 𝜽 that minimizes the sum of squared errors is identified based on 

variation in 𝑿𝑡 and 𝒑𝑡
𝑐. The price coefficient 𝛽𝑝 is, as revealed by Karush-Kuhn-Tucker conditions 

in Appendix A, achieved primarily based on the correlation between county-level prices and the 

joint variation of output price and county-level residual supply. The latter is captured by the 

interaction term between these variables, which varies across space and over time. The parameter 

𝛽𝑑 is determined by the relationship between the spatial configuration of large processors’ plants 

relative to the county centroids (distance from all plants to the county centroids) and county-level 

corn prices. The parameter 𝛽𝑒 is identified by the correlation between distance to exporting port 

and corn prices. Distances from county centroids to plants and exporting ports varies only cross-

sectionally, so parameters 𝛽𝑑  and 𝛽𝑒 are identified based on cross-sectional variation. 

Marginal cost parameters included in vector 𝜶 are determined by the correlation between 

corn price and natural gas price (𝛼𝑛𝑔), corn price and electricity price (𝛼𝑒𝑙𝑒𝑐), and finally corn 

price and a time trend (𝛼𝑡𝑖𝑚𝑒). As noted in our description of the industry (Figure 3), prices of 

natural gas and electricity, as well as the time trend, vary longitudinally but not cross-sectionally. 

Therefore, identification of cost parameters proceeds based on time series variability. Figure 3 

presents the evolution of these variables over time. This figure reveals a negative correlation 
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between natural gas price and corn price, no clear correlation between electricity price and corn 

price, and a positive trend of corn price until 2012 with a reversal afterwards. 

 

Estimation Results  

In this section, we present the results of the farmers’ and the oligopsonists’ estimation equations 

and compute statistics that govern our market and surplus predictions. We put special attention to 

estimating markdowns and to evaluate the degree of spatial competition in the market. We validate 

these results based on their ability to generate observed data, and against other estimates from 

previous studies. 

 

The Upstream Firms (Farmers) 

Parameter estimates of the corn residual supply, as characterized in equation (7), are reported in 

the upper panel of Table 4.10 The estimated coefficient for corn price (𝛽𝑝) is statistically significant 

and positive. The coefficient shows that the price of corn increases in the amount of corn sold to 

downstream firms. The positive effect is indicative of a “business stealing” effect, whereby a 

downstream firm diverts corn away from its competing firms by offering a higher corn price. 

The negative estimate on the coefficient for transportation distance (𝛽𝑑) shows that farmers 

supply less corn to oligopsonistic plants that are located farther away. This result is expected since 

farmers have to pay the transportation cost for corn and a long-distance delivery becomes costly. 

Selling corn to other more closely located plants becomes an attractive alternative. The 

transportation cost, as computed by the ratio (−𝛽𝑑/𝛽𝑝), amounts to 0.12 cents per bushel per mile. 

It should be noted that our estimated transportation cost is very close to the 0.16 cents average cost 

                                                             
10

 All standard errors, as shown in Table 4, are bootstrapped. 
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estimate (within 200 miles) as reported by GTOR. The GTOR estimate represents an average for 

the entire North-Central region, which may explain the small deviations from our transportation 

costs that are specific to Indiana. The small deviations could be explained by road infrastructure 

and diesel prices being different between the North-Central region states and Indiana. 

Evaluating the transportation costs at the average distance of corn delivery and the average 

corn price paid by oligopsonist-owned plants, our model predicts an average transportation costs 

of 5% of the corn price. The corn price that corn farmers receive from plants (after subtracting 

transportation costs) declines in distance between farmers and plants. Hence, our results show that 

the presence of transportation costs has an effect on corn price received by the farmers providing 

evidence for spatial differentiation being an important aspect to be considered in the market. 

The transportation costs and the resulting decline in the corn price received by farmers also 

provides evidence that oligopsonistic firms face upward sloping residual corn supplies. Our 

parameter estimates return a firm-level residual indirect average supply elasticity (calculated 

across plants and time periods) of 0.065.11 This elasticity suggests that if the average plant in our 

sample doubles production (increases corn procurement by 29 million bushels), the price of corn 

would increase by about 30 cents at the plant’s gate (it increases from $5 per bushel to about $5.30 

per bushel, an equivalent of 6.5%).12 

Finally, the positive coefficient on the export dummy variable implies that proximity to an 

exporting port causes an upward shift in the farmers’ supply; in other words, exports present a 

significant shifter in residual supply, consistent with our discussion of Figure 2.13 

                                                             
11 The elasticity is significant at the 1% level. 
12 This is, of course, an oversimplification since such an increase in size would trigger an equilibrium displacement 

that will tend to make that increase in price higher. This value should then be interpreted as a lower bound to the 

price effect 
13  Recall that other shifters‒including demand from livestock and dry-millers‒have been subtracted from residual 

supply due to their inelastic nature. 
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The Downstream Firms (Ethanol and Wet-Milling Firms) 

We now focus on the estimation results of the marginal processing costs of the downstream firms 

(ethanol and wet-milling firms), as characterized in equation (4). The middle panel of Table 4 

reports the estimation results. 

The positively estimated coefficients for natural gas prices (𝛼𝑛𝑔) and electricity prices 

(𝛼𝑒𝑙𝑒𝑐 ) provide evidence that these operate as cost shifters. An increase in input prices rises 

marginal processing cost. This effect is especially large for natural gas, which is consistent with 

the fact that expenditures on natural gas exceed those on electricity. The negatively estimated 

coefficient for the time trend (𝛼𝑡𝑖𝑚𝑒) shows that plants have become more efficient over time, 

which is consistent with findings from Hettinga et al. (2009). Our estimated cost parameters predict 

an average processing cost of $1.62 per gallon, which is close to the cost estimates (around $1.35 

per gallon) as reported in Perrin et al. (2009) and Irwin (2018).  

The 𝛾 parameter measures the change in marginal processing cost per unit of unutilized 

capacity. The estimate is not statistically significantly different from zero, providing evidence that 

the marginal processing cost is constant. Constant marginal processing cost is consistent with 

widely held assumptions made in the literature (see, for example, Gallagher et al., 2005, and Perrin 

et al., 2009) but differ from findings in Sesmero et al. (2016).14 Our estimated capacity utilization 

ratio amounts to 0.98, which is close to the ratios reported by Dale and Tyner (2006). In general, 

our empirical model predictions for revenues and profits of ethanol plants fall within the range 

                                                             
14 Our coefficient is positive suggesting economies of capacity utilization as found in Sesmero et al. 2016. However, 

it is not statistically significant. 
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published in financial reports (see, for example, Green Plains Renewable Energy) and other 

independent reports (see also Irwin, 2018). 

It is important to note that our estimation results generate predictions that closely match 

anecdotal or statistical evidence, and this lends credence to our parameter estimates. A further 

important validation exercise relates to our model’s ability to generate accurate price predictions, 

which forms the center of our identification strategy in the empirical model. Figure 4 shows the 

predicted and observed farm-gate prices across counties and over time periods. Each dot represents 

a combination of an observed price (in a county and a year) and the corresponding predicted price. 

The dot patterns fragment into clusters due to the fact that prices differ substantially across years. 

The correlation between predicted and observed prices is close to 0.99, which supports our model’s 

goodness of fit. The figure illustrates that our structural model does a remarkable job of predicting 

close to observed prices. It should be noted, however, that our empirical model appears to slightly 

over-predict prices when observed prices are uncharacteristically low or high in our sample. This 

is less of a concern in our case, however, since we conduct counterfactual experiments around 

mean conditions, where our model seems to perform best. 

 

Corn Prices and Markdowns over Time 

In the following, we predict plant-county pair prices paid by ethanol and wet-milling plants and 

compare these to the value of marginal product of corn (net of marginal processing cost) to 

calculate markdowns. Figure 5 portrays a substantial average price markdown. The average 

markdown is around $0.80 per bushel, or 16% of the average corn price. To put this markdown in 

context, we note that plants’ fixed cost is typically around $0.60 per bushel (see Irwin 2018). This 

comparison illustrates the following: while markdowns enabled oligopsonist-owned plants to push 
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the average variable cost below the output price overall, the plants likely experienced economic 

losses in some periods. This is especially true in 2012 where a historical drought pushed the 

residual corn supplies from farmers (𝑅𝑆𝑈𝑃𝑖s) down (i.e., pushed the inverse residual supplies 

upwards) such that corn prices increased for all ethanol firms. 

Figure 5 shows that the markdowns vary widely over time (they drop significantly from 

2006 to 2012 and then recover). Fluctuations over time are mostly explained by macroeconomic 

factors affecting the price of corn, and largely absorbed by 𝑅𝑆𝑈𝑃𝑖s in our model. Nevertheless, 

conditional on residual supply, our model also finds substantial variation of markdown across 

plants within a year, as suggested by the minimum and the maximum markdown curves in Figure 

5. The difference between largest and smallest markdown in a year averages 50 cents per bushel 

over the study period but varies in magnitude from almost no variation in 2012 to $1 in 2009. 

In order to explain the variation of markdowns across firms we refer to the derived statistics 

reported in Table 4. The statistics emphasize two potential explanatory factors. The first factor 

relates to the spatial differentiation aspect and the fact that oligopsonistic firms face an upward 

sloping residual input supply, which creates a wedge between marginal factor cost and input supply. 

The second factor relates to our finding that most firms operate at full capacity with an average 

capacity utilization rate of 0.98. This creates a wedge between the value of marginal product and 

input supply. Therefore, our estimation results reveal a salient feature of the corn market, namely 

that spatially differentiated oligopsonistic firms operate in Bertrand-Edgeworth competition. 

In Figure 6, we provide a graphical representation of markdown for an individual firm in 

this context. A profit-maximizing oligopsonist will operate at the level of production for which the 

value of marginal product is equal to marginal factor cost. Markdown is equal to the distance 

between value of marginal product and residual supply. However, if capacity is smaller than the 



28 
 

profit-maximizing production quantity, then the plant will operate at capacity and markdown is 

determined by the distance between value of marginal product and residual supply at capacity. By 

construction, this distance is larger than the wedge between marginal factor cost and residual 

supply. 

Given the two potential factors underlying markdown in our context it follows that, if the 

value of marginal product of corn is sufficiently low relative to residual supply (for example, due 

to a reduction in output price or a bad corn crop), then firms operate below their maximum capacity 

limit and markdown is determined exclusively by spatial differentiation. On the other hand, if 

marginal product of corn is sufficiently high relative to residual supply (firms operate at capacity), 

markdown would also be determined by capacity constraints (above and beyond the spatial 

differentiation factor). 

Our results indicate that, on average, capacity constraints prevail, and markdowns are 

determined by the distance between value of marginal product and residual supply at capacity. 

Therefore, as depicted in Figure 6, markdowns are larger than they would be in the absence of 

those constraints. Specifically, for the average observation in our sample (average across firms and 

over time), the wedge between value of marginal product and residual supply at capacity is $0.8, 

while the wedge between supply and marginal factor cost at capacity is $0.34. These findings are 

consistent with Bertrand-Edgeworth competition; a setting in which binding capacity constraints 

deliver a certain degree of localized market power to otherwise Bertrand-pricing buyers of spatially 

differentiated inputs. 

 

Spatial Price Discrimination  
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An additional focus in our study is whether oligopsonists engage in spatial price discrimination 

and vary markdown by distance. This is an important question as spatial price discrimination is 

another source of deviation from the competitive benchmark and represents a further argument 

that determines the degree of spatial competition. 

In the absence of spatial price discrimination, the corn buyer pays the same mill price 

(before transportation costs) to all sellers, regardless of their location. Consequently, the farm-gate 

prices lie on the linear price-distance gradient as shown in Figure 7. In the presence of spatial 

discrimination, however, corn buyers pay mill prices such that markdowns are higher for corn 

supplies from nearby farmers. In this case, the farm-gate prices received by farmers located close 

to the corn buyers would lie below the linear price-distance gradient depicted in Figure 7. The 

rationale is as follows, the corn buyer accounts for the sellers’ alternative selling options. The corn 

sellers that are close to the purchasing plant are presumably far from other plants which makes it 

more costly to transport corn to them. The additional transportation cost is considered as a 

reference point and subtracted from the purchasing price, so corn sellers located in close proximity 

to the buyer are paid a lower mill price. This enables the ethanol plant to set higher markdowns to 

closely located farmers. 

Figure 7 displays the predicted price-distance gradient (farm-gate prices received by 

suppliers located at varying distances from these plants), as well as the linear price-distance 

gradient for a selected plant. The plant we selected operates under rather average conditions in all 

important dimensions: ratio of capacity to local supply, and distance to the nearest exporting port 

and competitors. Our analysis shows that the firm does not engage in spatial price discrimination, 

as demonstrated by the absence of deviations of predicted farm-gate prices from the linear price-

distance gradient. We have computed these gradients for all firms in our sample, and our finding 
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on the absence of price discrimination holds for all of them. This indicates that firms do not price-

discriminate regardless of their size, distance to competitors and exporting ports, or conditions 

under which they operate (livestock and local supply). 

The absence of spatial price discrimination suggests that cash or mill-gate prices posted by 

firms at the plant gate throughout the year (documented in Market Feature 3) are in fact honored 

and that private transactions regarding which party pays for transportation costs are mostly absent; 

suppliers pay for transportation cost and receive the posted price at the plant gate, regardless of 

their location relative to the plant. This is consistent with previous descriptions of corn marketing 

to large processors (see Edwards, 2017). Our model cannot elucidate why firms do not price-

discriminate spatially. Possible reasons could be related to antitrust concerns or the presence of 

transaction costs since spatial price discrimination would require the plant to decide on whether it 

would absorb a fraction of transportation costs depending on the location of each supplier. 

 

Spatial Purchase Patterns by Downstream Firms 

We further explore the relationship between spatial differentiation and competition. We examine 

how the quantity of corn purchased by oligopsonistic plants from farmers depends on the distance 

between plants and farmers. We also consider how competition affects such spatial procurement 

patterns. 

The spatial pattern of corn purchases is determined by many factors including capacity, 

geographical distribution of corn production, and local competition. Since we are especially 

interested in evaluating the spatial competition effect on the plants’ spatial pattern of procurement, 

we report the purchase-distance relationship for two plants that differ in the degree of spatial 

competition they face, but are similar otherwise (i.e., the plants display a ratio of capacity to local 
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corn residual supply close to 2 and they are located far away from exporting ports). Figure 8 

compares the spatial procurement patterns for two plants. The first plant faces no nearby 

competitors and is located in the Cass county. The second plant faces a close competitor plant and 

it is operating in Randolph county. The figure shows that these plants procure most of their corn 

within a distance of 50 miles (as revealed by calculating the area below procurement curves) but 

likely purchase corn at greater distances. The predicted procurement patterns coincide with 

previous descriptions of procurement regions under similar corn supply conditions (e.g., Kang et 

al. 2010). This finding further validates our estimates and lends credence to our analysis.15 

Next, we turn to the relationship between spatial competition and corn procurement. Figure 

8 shows that the plant facing more spatial competition (there is a competitor in close proximity) is 

forced to travel greater distances (in the direction of their uncontested markets) to procure corn. It 

should be recognized that, given a certain level of spatial competition, plant size relative to local 

corn supply (which could be explained by plant’s expansion, a bad crop, or growth in corn demand 

shifters like livestock) would shift the functions in Figure 8 upwards and exert a similar effect as 

local competition. 

 

Counterfactual Experiments: Mergers, Markdowns, and Farm Surplus 

We have shown that spatial differentiation between oligopsonist-owned plants determines 

competition and the prices and quantities of corn purchased from farmers at various distances. To 

deepen our understanding of the effect of spatial differentiation on prices and surpluses, we 

                                                             
15

 These procurement patterns also support our choice of the logit supply specification. The logit specification allows 

for overlapping regions, but by imposing that competition is global (all plants purchase a positive amount from all 

counties), it may lead to an over-prediction of local competition. However, our estimated model predicts that very 

little corn is typically procured from distances farther than 100 miles, suggesting the risk of over-prediction of 

spatial competition remains limited. 



32 
 

evaluate the effect of different types of mergers between ethanol plants. These mergers are 

characterized by varying distances between merging partners.  

Mergers in the downstream market between ethanol plants are especially interesting in our 

context for two reasons. First, a merger enables firms to internalize competitive externalities 

having an effect on corn demand, prices, and production. As shown earlier, ethanol plants operate 

within geographically localized procurement areas, which implies they compete with plants 

located nearby, but not with distant ones. Hence, spatial differentiation between ethanol plants will 

presumably play a critical role in evaluating merger effects.  

Second, large corn processors do not have opportunities to relocate plants (because of 

prohibitively high costs) and seldom expand capacity, therefore, changes in the ownership 

structure are popular expansion strategies. In fact, a wave of consolidations virtually doubled the 

sales-based Herfindahl-Hirschman Index from 260 to 500 in the period 2013-2018, as indicated in 

the Federal Trade Commission’s 2018 Report on Ethanol Market Concentration. But while 

mergers have been a pervasive feature of the ethanol industry in recent years, they have not taken 

place among plants in Indiana. Consequently, Indiana offers an unconfounded market place for 

merger simulations, which seem particularly timely given recent trends in other states. 

A merger between plants j and k allows the merging firm to internalize competitive 

externalities that would have not been otherwise internalized. Suppose plants j and 𝑘 are owned 

by different firms, then the firms set their prices noncooperatively and do not account for any 

cross-price effects 
𝜕𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖𝑘
 in the ownership matrix  𝛀(𝒑𝑐), which is a critical element of 

firms’ first order conditions as shown in equation (a3), Appendix A.16 Hence, the corresponding 

                                                             
16 See Appendix A for a detailed description of this matrix and its elements. 

https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-report-congress-ethanol-market-concentration/p063000_2018_ethanol_report.pdf
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element in the ownership matrix is zero. The firm that owns plant j does not account for the effect 

that a price change by plant j has on the supply of corn to plant k.  

If plants j and 𝑘 are owned by the same firm via merger, then plant j considers the fact that an 

increase in its corn price to county 𝑖 causes a shift in the residual supply of corn from that county 

to plant 𝑘, represented by the cross-price effect in the ownership matrix. As indicated in the 

Karush-Kuhn-Tucker conditions in Appendix A, this change in the ownership structure will result 

in a different Nash equilibrium of the pricing game. 

The cross-price effect governing the impact of mergers depends upon the spatial 

differentiation between plants 𝑘 and 𝑗 which, in our context, is determined by the distance between 

these plants, the estimated transportation cost, and the spatial pattern of corn supply. Since merger 

effects are likely dependent on the degree of spatial differentiation, we consider two mergers that 

differ in their geographical proximity between the merging ethanol plants. 

In the first merger, Poet purchases the plant in Randolph county, which is located close to two 

of its other plants in Jay county and Shelby county. Figure 9.a shows the plants owned by Poet 

before the merger as yellow dots surrounded by black circles and the plant purchased by Poet 

through the merger is highlighted by a black dot. In the second merger, Poet purchases a more 

isolated plant (the average distance between this plant and those owned by Poet before the merger 

is larger than the one corresponding to the plant in Randolph) in Cass county also denoted as a 

black dot but in Figure 9.b.   

Figure 10 reports post-merger changes in markdowns for both merger cases. Focusing on the 

first merger case, in which Poet-owned plants merge with a nearby competing plant, we find 

substantial increases in markdowns. Based on our structural parameter estimates, we predict that 

plants owned by merging firms will further increase markdown, on average, by $0.14 (which 
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corresponds to a 20% increase in markdown for the average plant in our sample). Our analysis 

shows that, under 2014 market conditions, consolidated plants operate at capacity before and after 

the merger. Therefore, the increase in markdown is not explained by reduced procurement, but 

rather by a downward shift in corn residual supply faced by each firm due to internalization of the 

competitive externalities. 

Turning to the second merger case in which Poet merges with a distant competitor, this merger 

has a much smaller effect on markdown by merging firms as reported in Figure 10.a. A comparison 

between this and the effect of a merger with a nearby competitor, clearly indicates that the 

magnitude of the downward shift in corn residual supplies as a result of a merger depends upon 

the degree of spatial differentiation between consolidating firms. In other words, a merger is likely 

to increase markdown, but only if it takes place between firms that are not strongly spatially 

differentiated. 

While consolidation between nearby ethanol plants increases markdown by the consolidated 

firms, it may also trigger competitive spillover effects to other, non-consolidating firms. As 

consolidating firms reduce corn prices due to internalization of competition externalities, close 

competitors may benefit from weakened competition, and reduce corn prices themselves. Our 

counterfactual simulation uncovers evidence of spillover effects, i.e., non-consolidating firms also 

attain higher markdown due to the fact that mergers soften competition. In fact, as reported in 

Figure 10.b., a non-consolidating firm located 49 miles away of Poet plants increases markdown 

by $0.12, and a non-consolidating firm located 103 miles away from Poet plants increases 

markdown by $0.07. 

Price effects of mergers have a direct corollary on farm surplus. For the scenario where 

merging plants are located nearby, the spatial pattern of merger-induced changes in farm surplus 
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is plotted in Figure 11. Darker colors denote larger reductions in farm surplus due to weaker 

competition. Some of the largest reductions take place in close proximity to merging firms. But 

adverse effects on farm surplus extend well beyond the geographical confines of merging plants, 

revealing strong competitive spillover effects of mergers. Reductions in farm surplus across 

Indiana vary between $0 and $8 million per county, amounting to roughly a total of $300 million 

at the State level.   

 

Conclusion 

This study conducts an empirical investigation of the existence of spatial oligopsonistic market 

power and spatial price discrimination in the corn procurement market. While the literature has 

devoted some attention to models of spatial differentiation in output markets, there is a remarkable 

lack of empirical evidence on spatial differentiation in input markets. This is particularly relevant 

for agriculture, since market power exertion by processors buying from farmers, in combination 

with high cost to transport products from farms to plants, has long concerned researchers and 

policy makers. 

We adopt an estimation strategy recently proposed by Miller and Osborne (2014) to 

estimate firm-level structural parameters in a model of spatial competition based on market-level 

data. Our model extends this framework to include binding capacity constraints, common in our 

setting. Therefore, our extended framework can accommodate a model of Bertrand competition 

with differentiated inputs, or a model of Bertrand-Edgeworth competition with binding capacities.  

Our estimation results return significant transportation costs and markdowns in the corn 

market, which characterize the relationship between spatial differentiation and competition. Our 

counterfactual simulations indicate that the effect of mergers among corn procurement 
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oligopsonists (particularly in the corn ethanol industry, where mergers seem increasingly common) 

depend upon the spatial pattern of such mergers. A merger between plants in close proximity not 

only increases their markdown but also triggers competitive spillover effects that allow non-

consolidating, nearby plants to increase markdown as well. Competitive spillovers amplify the 

negative impact of mergers on farm surplus and result in substantial losses for the farm sector. On 

the other hand, a merger between plants located far apart is much less consequential for markdown 

and farm surplus. This suggests that assessment of mergers between corn purchasing firms should 

explicitly consider the location of plants owned by merging firms. While our primary focus is 

consolidation counterfactuals, our structural model can be used to also simulate counterfactual 

scenarios on expansion, entry, and policies. However, this goes beyond the scope of this paper and 

we plan to address this in future studies. 

More generally, our analysis indicates that assessment of mergers between spatial competitors 

in agricultural procurement markets should perhaps consider distance more explicitly. Previous 

studies have characterized efficiency gains associated with mergers that would restore pre-merger 

equilibrium prices and quantities (i.e. that would offset increased market power effect) after the 

merger takes place (e.g. Werden-Froeb index) and, thus, should not raise anticompetitive concerns. 

Our analysis suggests the need for the development of such an index in agricultural procurement 

markets, which display two distinct features: 1) spatial differentiation, and 2) possibly binding 

capacity constraints. The development of a regulatory index of this nature seems like a potentially 

relevant research for both scientists and policy makers.  

 

References 



37 
 

Adam, S. and Marathon N. 2015. Transportation of U.S. Grains: A Modal Share of Analysis. 

U.D. Department of Agriculture (USDA), Agricultural Marketing Service (AMS). 

Available at https://www.ams.usda.gov/sites/default/files/media/ModalJune2015.pdf  

Agricultural Marketing Service (AMS), USDA. 2016. Grain Truck and Ocean Rate Advisory 

Quarterly Update. Transportation and Marketing Programs. Available at 

https://www.ams.usda.gov/services/transportation-analysis/gtor 

Alvarez, A. M., Fidalgo, E. G., Sexton, R. J., and Zhang, M. Oligopsony power with uniform 

spatial pricing: theory and application to milk processing in Spain. European Journal of 

Agricultural Economics. 27 (3), 347-364. 

Anderson, S. P., de Palma, A., and Thisse, J. –F. 1989. Spatial Price Policies Reconsidered. 

Journal of Industrial Economics. 38, 1-18. 

Azzam, A. M. 1996. Testing the Monopsony-Inefficiency Incentive for Backward Integration. 

American Journal of Agricultural Economics. 78 (3), 585-590. 

Azzam, A. M. and Schroeter, J. R. 1995. The Tradeoff Between Oligopsony Power and Cost 

Efficiency in Horizontal Consolidation: An Example from Beef Packing. Amer. J. Agr. 

Econ. 77, 825-836. 

Berry, S. T. 1994. Estimating Discrete-Choice Models of Product Differentiation. The RAND 

Journal of Economics. 25(2), 242-262. 

Blair, R. D. and Harrison, J. L. 1992. The measurement of monopsony power. The Antitrust 

Bulletin/Spring, 1992. Federal Legal Publications, Inc. 144-147. 

Bonanno, A. and Lopez, R. A. Wal-Mart's monopsony power in metro and non-metro labor 

markets. Regional Science and Urban Economics. 46 (4), 569-579. 

https://www.ams.usda.gov/sites/default/files/media/ModalJune2015.pdf
https://www.ams.usda.gov/services/transportation-analysis/gtor


38 
 

Coltrain, D., Dean, E., and Barton, D. 2004. Risk Factors in Ethanol Production. Available at 

https://fba.aiub.edu/Files/Uploads/AGB110011.pdf  

Dale, R. T. and Tyner, W. E. 2006. Economic and Technical Analysis of Ethanol Dry Milling: 

Model Description. Staff Paper (06-04), Dept. of Ag. Econ., Purdue University. 

Davis, P. 2006. Spatial competition in retail markets: Move theaters. The Rand Journal of 

Economics. 37, 964-982. 

Denicoff, M. R., Prater, M. E., and Bahizi, P. 2014. Corn Transportation Profile. U.S. 

Department of Agriculture (USDA), Agricultural Marketing Service (AMS). Available at 

https://www.ams.usda.gov/sites/default/files/media/Corn%20Transportation%20Profile.p

df.  

Durham, C. A., and Sexton, R. J. 1992. Oligopsony potential in agriculture: Residual supply 

estimation in California's processing tomato market. American Journal of Agricultural 

Economics. 74 (4), 962-972. 

Durham, C. A., Sexton, R. J., and Song, J. H. Spatial Competition, Uniform Pricing, and 

Transportation Efficiency in the California Processing Tomato Industry. American 

Journal of Agricultural Economics. 78 (1), 115-125. 

e-Education Institute, EGEE 439; Alternate Fuels from Biomass Sources. Pennsylvania State 

University. Available at https://www.e-education.psu.edu/egee439/node/672.  

Edwards, William. 2017. Estimating Grain Transportation Cost. Iowa State University Extension, 

Ag Decision Maker File A3-41. Available at 

https://www.extension.iastate.edu/agdm/crops/html/a3-41.html. 

Eidman, V. T. 2007. Ethanol Economics of Dry Mill Plant, Chapter 3. In R. J. Hauser, ed. Corn-

Based Ethanol in Illinois and the U.S.: A Report. Department of Agriculture and 

https://fba.aiub.edu/Files/Uploads/AGB110011.pdf
https://www.ams.usda.gov/sites/default/files/media/Corn%20Transportation%20Profile.pdf
https://www.ams.usda.gov/sites/default/files/media/Corn%20Transportation%20Profile.pdf
https://www.e-education.psu.edu/egee439/node/672
https://www.extension.iastate.edu/agdm/crops/html/a3-41.html


39 
 

Consumer Economics, University of Illinois, November. Available at 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.520.5515&rep=rep1&type=pdf  

Economic Research Service (ERS), USDA. 

Environmental Information Administration (EIA). 

Fackler, P. L., & Goodwin, B. K. (2001). Spatial price analysis. In Handbook of Agricultural 

Economics, Volume 1 (pp. 971-1024). Amsterdam, Netherlands: Elsevier 

FRED. Federal Reserve Bank of St. Louis. FRED Economic Data for the Global Price of Corn. 

Available at https://fred.stlouisfed.org/series/PMAIZMTUSDM.    

Fousekis, P. Spatial Price Competition Between Cooperatives Unver Hotelling-Smithies 

Conjectures. Agricultural Economics Review. 12 (2), 5-15. 

Gallagher, P., Wisner, R., and Brubacker, H. 2005. Price Relationships in Processors’ Input 

Market Area: Testing Theories for Corn Prices Near Ethanol Plants. Canadian Journal of 

Agricultural Economics. 53, 117-139. 

Graubner, M., Balmann, A., Sexton, R. J. 2011. Spatial Price Discriminations in Agricultural 

Product Procurement Markets: A Computational Economics Approach. Amer. J. Agr. 

Econ. 94(4), 949-967. 

Green Plains Renewable Energy. 2017 Annual Report. Available at 

http://investor.gpreinc.com/static-files/789f73f1-c8e9-4ddf-acd1-421970d5a2cf. 

Hettinga, W. G., Junginer, H. M., Dekker, S. C., Hoogwijk, M., McAloon, A. J., Hicks, K. B. 

2009. Understanding the Reductions in US Corn Ethanol Production Cost: An Experience 

Curve Approach. Energy Policy. 37, 190-203.  

Hotelling, H. 1929. Stability in Competition. Economic Journal. 39, 41-57. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.520.5515&rep=rep1&type=pdf
https://fred.stlouisfed.org/series/PMAIZMTUSDM
http://investor.gpreinc.com/static-files/789f73f1-c8e9-4ddf-acd1-421970d5a2cf


40 
 

Houde, J.-F. 2009. Spatial differentiation and vertical contracts in retail markets for gasoline. 

Available at http://ssrn.com/abstract=1417506  

Hueth, B. and Taylor, C. W. 2013. Spatial Competition in Agricultural Markets: A Discrete-

Choice Approach. Agricultural & Applied Economics Association (AAEA) 2013 AAEA & 

CAES Joint Annual Meeting. Washington DC.  

Hurt, C. 2012. Ethanol Transforms Indiana Corn Uses. Purdue Agriculture Economics Report, 

Purdue Extension, Purdue University. Available at 

https://ag.purdue.edu/agecon/Documents/PAER_June%202012.pdf.Indiana Corn. 2012. 

Available at http://www.incorn.org/index.php/market-development/ethanol/ethanol-facts  

Inderst, R. and Valletti, T. 2009. Price Discrimination in Input Markets. The Rand Journal of 

Economics. 40 (1), 1-19. 

Irwin, S. 2018. What Happened to the Profitability of Ethanol Production in 2017? Farmdoc 

Daily. 8, 45. 

Jung, J., Sesmero, J. P. and Siebert, R. 2019. Using Pre- and Post-Entry Data to Identify the 

Effect of Ethanol Expansion on the Spatial Pattern of Corn Prices: A Study in Indiana. 

Agricultural and Applied Economics Association (AAEA) 2019 Annual Meeting. Atlanta, 

GA. 

Kang, S., Önal, H., Ouyang, Y., Scheffran, J., and Tursun, Ü. D. 2009. Optimizing the Biofuels 

Infrastructure: Transportation Networks and Biorefinery Locations in Illinois. Handbook 

of Bioenergy Economics and Policy, Springer Link. 33, 151-173. 

Kreps, D. M. and Scheinkman, J. A. 1983. Quantity Precommitment and Bertrand Competition 

Yield Counot Outcomes. The Bell Journal of Economics. 14(2), 326-337. 

http://ssrn.com/abstract=1417506
https://ag.purdue.edu/agecon/Documents/PAER_June%202012.pdf
http://www.incorn.org/index.php/market-development/ethanol/ethanol-facts


41 
 

MacDonald, J. M. and Korb, P. 2011. Agricultural Contracting Update: Contracts in 2008. 

Washington DC: U.S. Department of Agriculture, Economic Information Bulletin No. 

EIB 72, February. 

McCorriston, S. 2002. Why should imperfect competition matter to agricultural economists? 

European Review of Agricultural Economics. 29(3), 349-371. 

McManus, B. 2007. Nonlinear pricing in an oligopoly market: the case of specialty coffee. 

RAND Journal of Economics. 38(2), 512-532 

McNew, K. and Griffith, D. 2005. Measuring the Impact of Ethanol Plants on Local Grain 

Prices. Applied Economic Perspectives and Policy. 27(2), 164-180. 

Meral, P. and Sexton, R. J. 2017. Buying Power with Atomistic Upstream Entry: Can 

Downstream Consolidation Increase Production and Welfare? International Journal of 

Industrial Organization. 50, 259-293. 

Miller, N. H. and Osborne, M. 2010. Competition among Spatially Differentiated Firms: An 

Empirical Model with an Application to Cement. Economic Analysis Group Discussion 

Paper, Antitrust Division, U.S. Department of Justice.  

Miller, N. H. and Osborne, M. 2011. Competition among Spatially Differentiated Firms: An 

Estimator with an Application to Cement. Available at 

https://ideas.repec.org/p/bea/wpaper/0072.html.  

Miller, N. H. and Osborne, M. 2014. Spatial Differentiation and Price Discrimination in the 

Cement Industry: Evidence from a Structural Model. RAND Journal of Economics. 45(2), 

221-247. 

NAMA (North America Miller’s Association). Corm Milling Process. Available at 

https://www.namamillers.org/education/corn-milling-process/.  

https://ideas.repec.org/p/bea/wpaper/0072.html
https://www.namamillers.org/education/corn-milling-process/


42 
 

NASS (National Agricultural Statistics Service), USDA. Indiana Field Office. 2014. 

2014 STATE AGRICULTURE OVERVIEW for Indiana. Available at 

http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=INDIAN

A  

NREL (National Renewable Energy Laboratory). The Biofuel Atlas. Available at 

https://maps.nrel.gov/biofuels-

atlas/#/?aL=TxrT7x%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=39.677598330

72648%2C-83.880615234375&zL=7  

O’Brien, D. 2010. Updated Trends in U.S. Wet and Dry Corn Milling Production. AgMRC 

Renewable Energy Newsletter, February.  

O'Brien, D. P. and Shaffer, G. 1994. The Welfare Effects of Forbidding Discriminatory 

Discounts: A Secondary Line Analysis of Robinson-Patman. Journal of Law, Economics, 

& Organization. 10 (2), 296-318.  

Official Nebraska Government. 2015. Ethanol Facilities and Capacity by State and Plant. 

Available at http://www.neo.ne.gov/statshtml/122.htm  

Perrin, R. K., Fretes, N. F., and Sesmero, J. P. 2009. Efficiency in Midwest US Corn Ethanol 

Plants: A Plant Survey. Energy Policy. 37(4), 1309-1316. 

Porter, M. E. and Spence, A. M. 1982. The Capacity Expansion Process in a Growing Oligopoly: 

The Case of Corn Wet Milling. The Economics of Information and Uncertainty, 

University of Chicago Press. Available at https://www.nber.org/chapters/c4438.pdf  

Porter, R. H. and Zona, J. D. 1999. Ohio School Milk Markets: an Analysis of Bidding. Rand 

Journal of Economics. 30, 263-288. 

http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=INDIANA
http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=INDIANA
https://maps.nrel.gov/biofuels-atlas/#/?aL=TxrT7x%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=39.67759833072648%2C-83.880615234375&zL=7
https://maps.nrel.gov/biofuels-atlas/#/?aL=TxrT7x%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=39.67759833072648%2C-83.880615234375&zL=7
https://maps.nrel.gov/biofuels-atlas/#/?aL=TxrT7x%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=39.67759833072648%2C-83.880615234375&zL=7
http://www.neo.ne.gov/statshtml/122.htm
https://www.nber.org/chapters/c4438.pdf


43 
 

Renewable Fuel Association (RFA). 2016. Ethanol Industry Outlook. Available at 

http://www.ethanolrfa.org/resources/industry/statistics/#1454099788442-e48b2782-ea53  

Renewable Energy Policy Network (REN). 2016. Renewables 2016 Global Status Report. 

Available at http://www.ren21.net/wp-

content/uploads/2016/06/GSR_2016_Full_Report.pdf  

Richards, T. J., Allender, W. J., Hamilton, S. F. 2013. Rivalry in Price and Location by 

Differentiated Product Manufacturers. Amer. J. Agr. Econ. 95(3), 650-668. 

Rogers, R. T. and Sexton, R. J. 1994. Assessing the Importance of Oligopsony Power in 

Agricultural Markets. Amer. J. Agr. Econ. 76(5), 1143-1150.  

Saitone, T. L, Sexton, R. J, and Sexton, S. E. 2008. Market Power in the Corn Sector: How Does 

It Affect the Impacts of the Ethanol Subsidy? Journal of Agricultural and Resource 

Economics. 33(2), 169-194.  

Salop, S. 1979. Monopolistic Competition with Outside Goods. Bell Journal of Economics. 10, 

141-156. 

Sesmero, J. P. 2018. Spatial Pricing in Uncontested Procurement Markets: Regulatory 

Implications. Journal of Agricultural & Food Industrial Organization. 16(1). 

Sesmero, J. P., Perrin, R., and Fulginiti, L. 2016. A Variable Cost Function for Corn Ethanol 

Plants in the Midwest. Canadian Journal of Agricultural Economics. 64, 565-587.   

Sexton, R. J. 2000. Industrialization and Consolidation in the U.S. Food Sector: Implications for 

Competition and Welfare. Amer. J. Agr. Econ. 82(5), 1087-1104. 

Sexton, R. J. 2013. Market Power, Misconceptions, and Modern Agricultural Markets. Amer. J. 

Agr. Econ. 95(2), 209-219. 

http://www.ethanolrfa.org/resources/industry/statistics/#1454099788442-e48b2782-ea53
http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report.pdf
http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report.pdf


44 
 

Sheldon, I. M. 2017. The Competitiveness of Agricultural Product and Input Markets: A Review 

and Synthesis of Recent Research. Journal of Agricultural and Applied Economics. 

49(1), 1-44. 

Su, C-L. and Judd, K. L. 2012. Constrained Optimization Approaches to Estimation of Structural 

Models. Econometrica. 80(5), 2213-2230. 

Suh, D. H. and Moss, C. B. 2017. Decompositions of corn price effects: implications for feed 

grain demand and livestock supply. Agricultural Economics. 00, 1-10. 

Tirole, J. 2015. Market Failures and Public Policy. The American Economic Review. 105(6), 

1665-1682. 

Thomadsen, R. 2005. The Effect of Ownership Structure on Prices in Geographically 

Differentiated Industries. The Rand Journal of Economics. 36 (4), 908-929. 

Wang, Y., Delgado, M. S., Gramig, B., and Sesmero J. P. Impact of Ethanol Plant Spatial 

Competition on Local Corn Production: A Spatially Explicit Analysis. Available at 

http://web.ics.purdue.edu/~wang1551/land_use_012018.pdf.  

Williams, O. and Bessler, D. A. 2010. Cointegration: implications for the market efficiencies of 

the high fructose corn syrup and refined sugar markets. Applied Economics. 29 (2), 225-

232. 

 

 

 

 

 

http://web.ics.purdue.edu/~wang1551/land_use_012018.pdf


45 
 

Tables 

 

Table 1. Estimated Share of Corn Use by Processing Sector in Indiana (% of total supply) 

 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Ethanol1 3.85 4.00 3.97 10.06 21.15 32.71 34.82 38.46 65.48 38.65 37.86 
Wet Milling 21.58 22.44 22.26 19.81 22.61 20.72 21.94 23.33 32.52 19.362 18.972 

Livestock3  16.72 17.70 18.39 17.30 20.06 18.29 19.46 20.81 29.31 16.73 16.38 

Dry Milling 2.84 2.95 2.93 2.60 2.97 2.72 2.88 3.07 4.27 2.55 2.49 

Corn Export4 17.63 16.12 19.02 18.35 20.29 15.43 15.84 16.41 12.70 5.52 16.26 
Others (Storage, ship outside IN) 37.39 36.78 33.44 31.87 12.91 10.13 5.06 -2.08 -44.28 17.19 8.03 

Total Corn Supply6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Annual Production7 94.12 93.68 88.30 91.26 92.78 90.86 92.48 92.00 91.15 93.82 96.62 

Corn Stock from the previous year8 5.88 6.32 11.70 8.74 7.22 9.14 7.52 8.00 8.85 6.18 3.38 

* Data source: Hurt (2012) for the period from 2007 to 2012, Author’s estimation (NASS Quick Stats, USDA; ERS, USDA) for the period from 2013 to 2014. 

1. Estimated based on the information of ethanol plants capacities 

2. Assume to stay constant from 2012 (Hurt, 2012) 

3. Estimated based on the livestock inventory data (NASS, USDA). This is converted to the annual amount fed based on the assumption of 11.6 bushels of corn 

per head of a hog over its lifespan (4 months), 50 bushels of corn per head of a cattle over its lifespan (18 months), 0.62 bushels of corn per head of poultry 

over its lifespan (10 weeks). 
4. State Export Data (ERS, USDA) and Survey Data for global price of corn (FRED, Federal Reserve Bank of St. Louis). 

5. Total corn supply in Indiana is the sum of the corn production harvested in the crop year and the corn stock from the previous crop year.   

6. Survey Data (2015), Quick Stats. NASS, USDA for both Hurt (2012) and author 

7. Extremely low due to drought 

8. This is the corn stock from the previous crop year of corn. 
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Table 2. Size of individual plants by sector in Indiana in 2014 

 Count Total 

Capacity 

Mean 

Capacity 

Median 

Capacity 

Min 

Capacity 

Max 

Capacity 

Ethanol plants1 14 430.74 33.13 91.00 7.41 44.44 

Wet-milling plants 5 220.40 44.10 39.40 17.0 75.00 

Dry-milling plants 5 28.50 5.7 4.0 4.00 12.10 

Livestock operators 19,2762 184.19 0.013 N/A N/A N/A 

Note: Capacity measured in Million Bushels per Year 
1 Source: Official Nebraska Government (2015), The Biofuel Atlas of NREL, Hurt (2012), NASS, USDA 
2 2,823 for hog, 14,106 for cattle, 2,347 for poultry (NASS, USDA) 
3 To estimate this we divide the total corn demand from livestock operators by the total number of livestock 

operators in Indiana, due to the lack of data for individual operators. On the other hand, mean capacity for 

other sectors are based on the actual data for individual capacities. 
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Table 3. Ratio of ethanol and wet-milling plants’ corn processing capacity  

to corn production in the county where the plant is located 

Sector Firm County Ratio 

Ethanol 
Plants 

The Andersons Clymers Ethanol, LLC Cass 2.49 
Grain Processing Corp. Daviess 0.61 

Central Indiana Ethanol, LLC Grant 1.42 

Iroquois Bio–Energy Company, LLC Jasper 0.56 

POET Bio-refining Jay 2.41 
POET Bio-refining Madison 1.73 

Valero Renewable Fuels Company, LLC Montgomery 2.08 

Abengoa Bioenergy Corp. Posey 3.59 
POET Bio-refining Putnam 3.79 

Cardinal Ethanol Randolph 2.61 

Noble Americas South Bend Ethanol LLC St. Joseph 3.38 
POET Bio-refining Wabash 2.12 

Green Plains Renewable Energy Wells 3.58 

Wet 
Millers 

Tate & Lyle Tippecanoe 5.43 

Cargill Lake 6.93 
Grain Processing Corp. Daviess 2.89 

Ingredion Marion 24.31 

 Below 11  2 

 Above 12  15 

Note: All counties have 1 ethanol plant but Posey county with 2 ethanol plants. 

* Source: Official Nebraska Government (2017), Renewable Fuel Association (2017) 

and The Biofuel Atlas, NREL 

* Note: Status over the previous periods, 2004 through 2013, is available on authors’ 

request. 
1. The number of counties that ethanol plants demand less corn than produced among 

counties where at least one ethanol plant is located. 

2. The number of counties that ethanol plants demand more corn than produced 

among counties where at least one ethanol plant is located. 

3. Grain Processing Corp. (GPC) operates an ethanol plant and a wet-milling plant in 

Daviess county. 
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Table 4. Parameter Estimates and Derived Statistics 

Variables Parameters Parameter Estimates 

Residual supply   

   Corn price 𝛽𝑝 
3.408*** 

(0.71) 

   Distance 𝛽𝑑 
-0.004*** 

(1.9e-5) 

   Export dummy 𝛽𝑒 
0.309*** 

(0.0005) 

Marginal costs   

   Natural gas price 𝛼𝑛𝑔 
0.132*** 

(0.005) 

   Electricity price 𝛼𝑒𝑙𝑒𝑐 
0.051*** 

(0.0015) 

   Time trend 𝛼𝑡𝑖𝑚𝑒  
-0.185*** 

(0.02) 

Extra costs per unit of unutilized capacity γ 
1.58e-4 

(2.8e-4) 

Derived statistics Previous Studies Our Estimates 

   Transportation cost ($ per bu-mile) 0.00161 
0.0012*** 

(9.3e-6) 

   Cap. utilization ratio 0.952 
0.98*** 

(0.007) 

   Marg. processing cost (per gallon) 1.353 
1.62*** 

(0.16) 

Firm elasticity of residual indirect corn supply4  
0.065*** 

(0.016) 

*Note: Standard Error is bootstrapped and represented in parenthesis. Statistical significance at the 10%, 5%, and 

1% are denoted as *, **, and ***, respectively. 

 

1. GTOR report by Transportation and Marketing Program (TMP) of Agricultural Marketing Service (AMS), USDA 

2. Dale and Tyner (2006) 
3. Average from Perrin et al. (2009) and Irwin (2018).  

4. This is an elasticity of residual corn supply faced by individual plants. We take average of elasticity across plants 

over the whole period. This elasticity suggests that if the average plant in our sample doubles production 

(increases corn procurement by 29 million bushels), the price of corn within the plant’s procurement region 

would increase by 30 cents (from $4/bushel to about $4.30/bushel, or 6.5%). This is, of course, an 

oversimplification since such an increase in size would trigger an equilibrium displacement that will tend to make 

that increase in price higher. This value should then be interpreted as a lower bound to the price effect. 
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Figures 

 

Figure 1. Oligopsonists Locations and Corn Production in Indiana Counties in 2014 

 
* Source: Renewable Fuel Association (2017), Geo Grain, Official Nebraska Government (2017) 
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Figure 2. Oligopsonists Locations and Corn Prices in Indiana Counties in 2014 
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Figure 3. Evolution of relevant prices in the corn market 
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Figure 4. Predicted versus Observed farm-gate prices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 = 0.986 
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Figure 5. VMP, Predicted Corn Prices, and Markdown 
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Figure 6. Sources of Markdown for Average Plant in our Sample
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Figure 7. Spatial Price Discrimination for a Selected Plant in our Sample a 

 
a Ratio of Plant Capacity to County Corn Supply is 2 for all three plants/counties. This makes plants 

comparable and allows us to tease out the effect of competition on spatial pattern of corn purchases. 
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Figure 8. Predicted Corn Purchases by Distance for Selected Plants in our Sample a 

 
a Ratio of Plant Capacity to County Corn Supply is 2 for both plants considered. This makes plants comparable and 

allows us to tease out the effect of competition on spatial pattern of corn purchases. 
b In the equations, y represents procurement share and x represents distance from plant to farm 
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Figure 9. Merging and Non-Merging Plants in Counterfactual Simulations 

Figure 9.a. Merger with a nearby competitor 

 
 

Figure 9.b. Merger with a distant competitor 
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Figure 10. Spatial Pattern of Consolidation and Change in Markdown 

Figure 10.a. Comparison between the merger with a nearby and a distant competitor 

 
 

Figure 10.b. Spillover effect of the merger with a nearby competitor 
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Figure 11. Change in producer surplus due to merger with nearby plant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 60  
 

Appendix A. Detailed Estimation Strategies 

a. Firms’ profit maximization. In this Appendix, we provide detailed information on how prices 

offered by each oligopsonist plant to each county are computed. Optimal prices are characterized 

by a system of Karush-Kuhn-Tucker (KKT) conditions: 

𝜕ℒ𝐹(∙)

𝜕𝒑𝑭
𝒄 = −𝒒𝑐(𝒑𝑐; 𝜷) + 𝛀(𝒑𝑐){𝚪 − 𝒑𝑭

𝒄 − 𝚳 − 𝚲} ≥ 𝟎,  𝒑𝑭
𝒄 ≥ 𝟎,  𝒑𝑭

𝒄 {
𝜕ℒ𝐹(∙)

𝜕𝒑𝑭
𝒄 } = 0  ∀ 𝑖 and 𝑗 ∈ 𝐹  (A1) 

𝜕ℒ𝐹(∙)

𝜕𝜆𝑗
= −𝛼𝑗

ℎ ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖 , 𝜷)𝑖∈𝐼𝑁𝐶 + 𝐶𝐴𝑃𝑗 ≥ 0,  𝜆𝑗 ≥ 0,  𝜆𝑗 {
𝜕ℒ𝐹(∙)

𝜕𝜆𝑗
𝒄 } = 0  ∀ 𝑗 ∈ 𝐹       (A2), 

where 𝛀(𝒑𝑐) is a block diagonal matrix that combines 𝑖 = 1,∙∙∙ ,92 submatrices accounting for all 

the counties in Indiana, each of dimension 𝐽 × 𝐽 where 𝐽 is the total number of oligopsonist plants 

in Indiana: 

Ω𝑗𝑘
𝑖 (𝒑𝑖

𝑐; 𝜷) = {
𝜕𝑞𝑖𝑗

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖𝑘
     𝑖𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑗 𝑎𝑛𝑑 𝑘 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑜𝑤𝑛𝑒𝑟

0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                (A3) 

 

The reason that 𝛀(𝒑𝑐) is a block diagonal structure is that 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷) is a function of 

prices offered to that county by all plants 𝒑𝑖
𝑐, but independent of prices offered by those plants to 

other counties 𝒑−𝑖
𝑐 . Therefore, 𝛀(𝒑𝑐) is constructed based on two premises; (ⅰ) farmers in one area 

choose among all 𝐽 oligopsonist plants in Indiana and (ⅱ) corn supply in one county 𝑖 is unaffected 

by prices received by farmers in other counties, −𝑖. 

Moreover, the elements of each submatrix reflect the extent to which a plant internalizes 

competition externalities imposed on another plant in the sample. Each plant 𝑗 sources corn from 

multiple counties. If firm 𝐹  owns multiple plants, then it will internalize pricing externalities 

across its plants. In other words, if plant 1 increases its corn bid to county 𝑖 (an increase in 𝑝𝑖1), it 

will reduce the residual supply of corn from that county faced by plant 2 (all else constant, it will 

reduce 𝑞𝑖2
𝑐 ); i.e., which is the business stealing effect. If the same firm owns both plants, it will 
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fully internalize this negative externality, 
𝜕𝑞𝑖2

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖1
. Otherwise, the plant would not internalize 

the externality and 
𝜕𝑞𝑖2

𝑐 (𝒑𝑖
𝑐;𝒙𝑖,𝜷)

𝜕𝑝𝑖1
 would take a value of zero. 

Matrix 𝛀(𝒑𝑐) is multiplied by 𝚪 which is a vector of marginal value products 𝑃ℎ ∗ 𝛼𝑗
ℎ. 𝚳 

is a vector of 𝛼𝑗
ℎ ∗ 𝑚𝑐(𝑄𝑗

ℎ; 𝒘𝑗 , 𝝃)  which represent the change in marginal processing cost 

associated with producing below capacity, and 𝚲 is a vector of Lagrangian multipliers 𝜆𝑗
𝒄. 

There is no analytical solution to the system (A1)-(A2) so we solve it numerically using a 

non-linear equation solver. The solution consists of 1,656 (18*92) Nash equilibrium prices‒one 

offered by each plant to each county‒along with shadow prices for capacity constraints. The prices 

offered by all plants to a county are aggregated to a single county-level price prediction. The 

aggregation procedure consists of weighting plant-specific prices by the plant’s share on total corn 

purchases:   

�̃�𝒊
𝒄(𝜷, 𝑿𝒕) = ∑ [{

𝑞𝑖𝑗
𝑐,∗(𝒑𝑖

𝑐,∗;𝒙𝑖,𝜷)

∑ 𝑞𝑖𝑗
𝑐,∗(𝒑𝑖

𝑐,∗;𝒙𝑖,𝜷)𝒋
} 𝑝𝒊𝒋

𝒄,∗]𝒋∈𝐹                                        (A4) 

These predicted prices are compared to observed prices as described in the following section. 

 

b. Summary of the economic modeling in MPEC structure. We now turn our attention to the 

estimation of structural parameters. Our estimation strategy consists of choosing a set of 

parameters that minimize the sum of squared errors in predictions subject to equilibrium 

constraints: 

min
𝜽∈Θ

1

𝑇
∑ [𝒑𝑡

𝑐 − �̃�𝑡
𝑐(𝜽; 𝑿𝑡)]′𝑪𝑡

−1[𝒑𝑡
𝑐 − �̃�𝑡

𝑐(𝜽; 𝑿𝑡)]𝑇
𝑡=1                                (A5) 

subject to 

(A1) 
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(A2) 

𝑅𝑆𝑈𝑃𝑖 − ∑ 𝑞𝑖𝑗
𝑐 (𝒑𝑖

𝑐; 𝒙𝑖, 𝜷)𝑗 ≥ 0             ∀ 𝑖                         (A6) 

 

Constraints (A1) and (A2) guarantee that predicted prices are computed based on Nash 

equilibrium plant-county prices calculated as a Mixed Complementary Program (MCP). 

Therefore, the problem above has a Mathematical Programming with Equilibrium Constraints 

(MPEC) structure. Equation (A6) adds to the equilibrium constraints and guarantees that total 

amount of corn purchased by all plants from a county is not larger than the residual supply of 

corn from that county. The MPEC structure is solved in the General Algebraic Modeling System 

(GAMS) software17 by using the algorithm solver developed by Dirkse and Ferris (1998). We 

apply a bootstrap method to compute standard errors of each parameter. 

 

 

 

 

 

 

 

 

 

                                                             
17 GAMS code is available upon request. 
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Appendix B. Algorithm of the iterative parameter estimation 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                     

                                                                                                                    * MDE: Minimum Distance  
                                                                                                                                   Estimation  
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�̃�𝒄,∗ and constraint multipliers, to 
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No 
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