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Abstract

We study the implications of fire-sale externalities on balance sheet composition. Banks

choose their asset holdings accounting for the liquidation costs incurred when they sell assets to

manage their leverage. Our analysis highlights the fundamental trade-off between diversification

at the bank and at the systemic level. While sacrificing diversification benefits to reduce portfolio

commonality may increase the bank’s idiosyncratic probability of liquidation, it also lowers the

endogenous probability of a costly widespread sell-off. We show that higher heterogeneity in

banks’ leverage is socially beneficial because it gives banks stronger incentives in achieving

systemic diversification. The socially optimal level of systemic diversification can be attained

by taxing banks for creating interlinked balance sheets with high concentration on illiquid assets.

Key words: systemic diversification, leverage, fire-sale externalities, liquidity risk, illiquidity

concentration.
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1 Introduction

The classical paradigm in financial investment prescribes asset diversification as a means to min-

imize risk. Standard pre-crisis policies argued for the unlimited benefits of diversification, with

little emphasis on balancing those against the downside risks of contagion. However, the global

2007-2009 financial crisis highlighted potential vulnerabilities resulting from balance sheet intercon-

nectedness: in a crisis, investors exposed to the same shocked asset may be forced to simultaneously

liquidate their positions in this asset. The liquidation of an asset carried out simultaneously by

many financial institutions exacerbates losses for all investors involved in the sell-off.

Prior literature has analyzed banks deleveraging, and studied the feedback between tightening

liquidity and falling asset prices during financial crises (e.g., Brunnermeier and Pedersen (2008),
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Khandani and Lo (2011), Manconi et al. (2012)). Fire-sale spillovers due to asset commonality

among institutions have been recognized as a major source of systemic risk (e.g., Allen and Carletti

(2013), Billio et al. (2012)). Concerns about fire-sale externalities led, for example, to the initiation

of asset purchase programs under TARP by the U.S. Treasury and to the emergency cash bailout

of Bear Stearns by J.P.Morgan Chase and the New York Federal Reserve in March, 2008.1 All this

indicates the importance of balancing asset diversification (optimal in isolation) with diversification

of fire-sale risk across financial institutions.

A financial firm may mitigate the idiosyncratic risk of each asset by holding a diversified port-

folio. This reduces the portfolio’s variance, and therefore the firm’s individual probability of asset

liquidation. At the system level, instead, “systemic” diversification, i.e., the reduction of portfo-

lio overlaps across different institutions, lowers the likelihood of concurrent asset liquidation and,

therefore, of costly widespread sell-offs.

A decline in the price of a security may force financial investors to liquidate their holdings. For

instance, the findings of Adrian and Shin (2008, 2014) indicate that banks sell risky assets during

periods of market downturns to bring their Value-at-Risk in line with their available equity. Mutual

funds may be forced to liquidate assets to repay investors who redeemed their shares in response

to a price drop (Capponi et al. (2019)). Hedge funds may need to liquidate their positions to

meet margin calls from their prime brokers (Khandani and Lo (2011)). Insurance companies must

liquidate assets to cover for policyholders’ losses after a natural disaster (Girardi et al. (2018)).

While the exact constraints that prompt asset liquidation at fire-sale prices depend on the specific

institutional structure, the underlying mechanism is similar.

We consider a financial system consisting of leveraged institutions (henceforth, called banks)

subject to a leverage constraint: if after an initial market shock the asset value of a bank falls

and its resulting leverage exceeds a given threshold, then the bank is required to liquidate assets

to reduce its leverage ratio. Asset liquidation is costly, and imposes a downward pressure on

prices proportional to the quantity that is being liquidated. A bank is then exposed to cross-agent

externalities if its portfolio significantly overlaps with the portfolios of other banks facing similar

constraints. Each bank chooses its asset holdings ex-ante, i.e., before the market shock is realized,

accounting for potential vulnerability to fire-sale spillovers.

The proposed model highlights the mechanism through which systemic risk affects the banks’

portfolio choice, and quantifies the externalities imposed by the banks on the system. We argue

that systemic risk from fire-sale spillovers should play an important role on the banks’ balance sheet

decisions: a portfolio that is optimal for an agent in isolation may be far from optimal if cross-

agent externalities are accounted for. Our analysis shows that even though banks reduce portfolio

commonality to mitigate the risk of fire-sale spillovers, they do not reduce it enough relative to the

social optimum. This result is a consequence of the fact that each bank only accounts for the costs

1The provision of liquidity by the Federal Reserve was taken to avoid a potential resale of nearly U.S. $210 billion
of Bear Stearns’ assets. The Chairman of the Fed, Ben Bernanke, defended the bail-in by stating that Bear Stearns’
bankruptcy would have affected the economy, causing a “chaotic unwinding” of investments across the U.S. markets
and a further devaluation of other securities across the banking system.
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that other banks impose on it, but disregards the externalities imposed on the rest of the system

through its own liquidation actions.

Our model allows assessing the impact of welfare enhancing policies. Any regulatory intervention

based on the banks’ current balance sheet allocations is subject to the Lucas critique, as banks

may adapt to the new regulatory environment in unexpected and, potentially, socially damaging

ways. Hence, policies should account for the banks’ optimal response, i.e., their equilibrium asset

allocations. Monetary policy tools such as asset purchase programs run by government or regulatory

bodies may have the unintended consequence of incentivizing banks to hold excessively correlated

financial exposures. For example, Acharya et al. (2010) argue that providing unconditional liquidity

support to banks decreases their incentives to hold a liquid portfolio. We show how a tax on the

banks’ balance sheet interconnectedness may align the private optimum with the socially optimal

asset allocation. The externality that a bank imposes on the system is increasing in the size of

its balance sheet, the liquidity of its asset holdings, its leverage ratio, and the illiquidity-weighted

portfolio overlap with other banks. This externality, and the corresponding Pigovian tax, is related

to the systemicness of a bank, as defined in Greenwood et al. (2015): the tax is a weighted average

of an adjusted version of the bank’s systemicness over different asset price shocks.2

Our model predicts that a higher heterogeneity in the financial system reduces the expected

aggregate liquidation costs. Even if each bank were to ignore fire-sale spillovers, it would still

select asset holdings based on its current leverage because the latter determines the incentives of

holding liquid assets. Therefore, banks with different leverages hold different portfolios. When

banks account for fire-sale spillovers, the diversity in their portfolios becomes even higher because

each bank runs away from the externalities imposed by others. From a policy perspective, these

findings suggest that mergers of banks may have unintended consequences, and increase the fragility

of the system. Consolidation would reduce the level of heterogeneity in the system and, as a result,

the possibility of diversifying fire-sale risk across banks. While a single large bank may optimally

choose its asset allocation, it may not be able to diversify its fire-sale risk. By contrast, in a system

of two heterogeneous banks, each bank can adjust its portfolio to lower the likelihood of joint asset

liquidation.

A growing financial literature analyzes the aggregate vulnerability of the banking system to

fire-sale risk (e.g Greenwood et al. (2015),Capponi and Larsson (2015), and Duarte and Eisenbach

(2018)). Unlike these studies, we do not take banks’ portfolios as exogenously given. We frame

the decision making problem of banks’ portfolio selection as a game in which each bank maximizes

the expected return of its own portfolio. Each bank’s allocation decision affects the likelihood

and magnitude of forced asset liquidations and the bank’s contribution to systemic risk. We show

that this game may be casted as a potential game, and therefore a Nash equilibrium can always

be guaranteed to exist under mild conditions on the distribution of the initial asset price shocks.

2In the U.S., banks file the form FR Y-9C every quarter with the Federal Reserve, a report that collects their
consolidated balance sheet data. This information allows a regulator to monitor common exposures in the financial
system, infer –after accounting for size and leverage ratio– each bank’s contribution to systemic risk, and impose a
tax that makes the bank internalize such a contribution.
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There are multiple economic forces that affect the Nash equilibrium of the game. First, portfolio

diversification reduces each bank’s likelihood of forced liquidation; second, highly leveraged banks

have a stronger incentive to hold liquid assets as they are more vulnerable to fire sales; third, banks

seek to reduce portfolio commonality to limit fire-sale spillover costs. Because of the intricate

patterns of interactions between these three forces, the game may admit multiple equilibria.3 We

show that a financial system that is sufficiently homogeneous in both the banks’ characteristics

(size and leverage) and the assets’ liquidity levels admits a unique equilibrium. In such a setting,

the more leveraged bank adjusts its position towards the more liquid asset.

Literature Review

Existing literature has analyzed the implications on asset pricing and financial stability resulting

from banks’ leverage management. Adrian and Shin (2010) provide empirical evidence that banks

react to asset price changes by actively managing their balance sheets. Greenwood et al. (2015)

introduce a model to explain the propagation of shocks in a system of leverage-targeting banks with

common asset holdings. They focus on the first-order effects of fire-sale losses caused by spillovers,

and measure the contribution of each bank to the fragility of the systemCapponi and Larsson

(2015) generalize their analysis and introduce the systemicness matrix to show that higher-order

effects of fire-sale externalities can be substantial during periods of financial distress. Duarte and

Eisenbach (2018) empirically study the historical vulnerability to fire-sale spillovers of American

banks. “Illiquidity concentration”, i.e., the concentration of illiquid assets among large and levered

banks, is shown to have increased significantly up to early 2007. This measure demonstrates the

importance of balance sheet linkages in the propagation of market shocks, and corroborates our

claim that large banks should account for the portfolio composition of other systemically important

banks.

Our work is related to earlier studies on counterparty risk networks. Acemoglu et al. (2015a)

analyze the resilience to shocks of different network architectures. They conclude that a completely

interconnected system, i.e., in which all institutions completely diversify their counterparty credit

risk, may increase the fragility of the system if a large shock hits the network. A similar behavior is

observed in the network of portfolio holdings, where two institutions share a link if their portfolios

overlap: in an interconnected network multiple agents hold similar portfolios and, after a large

market shock, they may all be forced to simultaneously sell assets, exacerbating the costs for all

agents participating in the sell-off. While Acemoglu et al. (2015a) analyze an ex-post scenario where

shocks have already hit the balance sheets of banks in the network, we consider an ex-ante scenario

where the shock is yet to occur. Our network of portfolio holdings is endogenously determined by

3Consider a system with two assets and two banks, and assume that the more leveraged bank is significantly
smaller. In one equilibrium, the more leveraged bank holds a larger position in the liquid asset than the bigger bank,
because its incentive to hold the liquid asset is stronger. In another equilibrium, the lowly leveraged bank, which
dominates in the system because of its size, adjusts its portfolio towards the liquid asset. The smaller bank, which
now has a stronger incentive to run away from the externality imposed by the bigger bank than to hold the liquid
asset, increases its holdings of the illiquid asset.
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the equilibrium choice of banks.

Farboodi (2017) and Acemoglu et al. (2015b) consider endogenous intermediation and highlight

the inefficiencies arising from overexposure to counterparty risk by banks which make risky invest-

ment. Our work shows that, even in the absence of direct credit linkages, banks are exposed to

excessive systemic risk because in equilibrium they hold portfolios that are too similar.

Our study is connected to to that of Wagner (2011), who studies the trade-off between diversity

and diversification in financial exposures. While in our model, it is balance sheet heterogeneity

that incentives banks to reduce portfolio overlaps, in the model by Wagner (2011) even if agents

are identical their portfolios are not. The reason is that he considers a continuum of agents, each

of infinitesimal size, and therefore each agent is not subject to any liquidation cost if it sells assets

while all others do not. Furthermore, because in our model agents are large, it is possible to quantify

the externalities that each bank imposes on the rest of the system and analyze policy implications.4

The tax on systemic risk we propose brings analogies with that considered in the study by

Acharya et al. (2017). They construct an aggregate indicator for the occurrence of a systemic

crisis, which is exogenously specified in terms of total assets and capital of the banks in the system.

Each bank is charged a tax in the amount equal to the share of expected aggregate loss it generates

during the crisis scenario. Different from their top-down approach, we infer the tax directly from

the banks’ balance sheet information: the tax amount is equal to the endogenous cost that each

bank imposes on the rest of the system due to simultaneous asset liquidation, rather than being

determined via an exogenously defined systemic event.

The rest of the paper is organized as follows. We introduce the model primitives and the

assumptions in Section 2. We describe the game theoretical model of strategic banks’ holdings in

Section 3. We solve for the Nash equilibrium and discuss its properties in Section 4. We study

the social planner problem and discuss policy implications in Section 5. We discuss operational

challenges in Section 6. Section 7 concludes the paper. Technical proofs are deferred to the

Appendix.

2 Model Setup

We consider a two-period economy consisting of K assets and N banks. Let di be the initial debt

of bank i, and ei its initial equity. Denote by wi := di + ei the total initial asset value of bank i.

The leverage ratio of bank i is

λi :=
di
ei
,

which may be equivalently rewritten as di = λi
1+λi

wi. Each bank wishes to maintain its leverage

below the target threshold λM,i, i.e., λi ≤ λM,i for every i.5

4Other studies have considered different settings to investigate the dangers and social costs of asset diversification,
e.g., Shaffer (1994) and Ibragimov et al. (2011).

5Empirical findings of Adrian and Shin (2008, 2014) and Greenlaw et al. (2008) confirm that banks manage their
leverage based on internal value at risk models.
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At date 1, each bank chooses its asset allocation. Denote by πi,k the weight of asset k in bank

i’s portfolio. Portfolio weights are positive and satisfy the relation
∑K

k=1 πi,k = 1 for i = 1, · · · , N .

At date 2, each asset k is subject to a return shock Zk. Hence, the return of bank i’s portfolio

is Ri = πTi Z, where πi := (πi,k)1≤k≤K is the vector of bank i’s weights and Z := (Zk)1≤k≤K is the

vector of shocks, which are assumed to be identically distributed. Ex-post, the leverage ratio of

bank i is

λposti =
di

wi(1 +Ri)− di
.

Assumption 2.1. After a shock, banks whose leverage exceeds the threshold liquidate the minimum

amount of assets needed to restore the leverage threshold.

If λposti ≥ λM,i, then bank i sells assets and uses the cash proceeds from the sale xi to repay its

debt. To attain the leverage threshold, xi needs to satisfy the relation di−xi
wi(1+Ri)−di = λM,i. The focus

of the paper is on large liquidity shocks, and it is well known that raising equity during distressed

market conditions is prohibitively costly. Despite selling assets in a depressed market environment

is also difficult, empirical evidence provided by Adrian and Shin (2008) –see the scatter plot in

Figure 6 therein– indicates that firms manage leverage primarily through adjustments in the size of

debt (e.g. through asset disposals), leaving equity unchanged, rather than through direct changes

in equity.6

We remark that Greenwood et al. (2015) assume that banks target their leverage, i.e., that they

immediately sell assets to return to their initial leverage ratio. In our model, it is only the assets

required by the bank to meet its leverage threshold that are liquidated at discounted prices. A

bank that intends to restore its initial leverage ratio may do so on a longer time scale and incur

lower execution costs.

The mechanism that induces financial firms to liquidate assets in distressed market conditions

depends on their institutional structure. While excessive leverage may trigger forced sales in the

banking industry, different constraints play a similar role in other type of financial institutions. For

instance, investors in open-end mutual funds may withdraw their deposits in response to negative

returns. If the number of redeeming investors is too high, and the cash buffer held by the fund

is not sufficient to meet redemption requests, the fund is forced to sell assets (see Capponi et al.

(2019)). Even though we present the model for leveraged banking institutions, its implications

hold for any financial firm subject to a constraint that gets violated when asset values significantly

decline, and which requires asset liquidation to be satisfied again.

Assumption 2.2. Banks liquidate assets proportionally to their initial allocation.

As in Greenwood et al. (2015) and Duarte and Eisenbach (2018), we assume that if bank i needs

to raise a total amount of cash x, then it liquidates πi,kx for each asset k. This assumption may be

interpreted as a stationarity condition on the composition of the banks’ portfolio: in a hypothetical

6If banks use a combination of equity issuance and asset liquidation to reduce leverage, the size of fire-sale
externalities would be lower but our qualitative conclusions would remain unaltered.
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multi-period model, the proportional liquidation strategy would yield a terminal portfolio that is

close to the initial portfolio, and therefore still resilient to subsequent market shocks. We remark

here that there is no agreement in the empirical literature on the liquidation strategy adopted by

financial firms when they liquidate assets. On the one hand, selling liquid assets first reduces the

cost of fire sales. On the other hand, holding liquid assets carries an option value because of the

prospectus that markets may become more illiquid in the future (see Ang et al. (2014)). Because

of the lack of conclusive evidence on what force dominates in this trade-off, we consider the case of

proportional liquidation.7

Asset liquidation is costly. If a large return shock causes the bank’s leverage to exceed the

threshold, the bank needs to readjust its positions and revert its leverage ratio to the threshold.

If assets are liquidated on a very short notice, then the bank may need to sell them at discounted

prices relative to their fundamental values, i.e., a fire sale would occur. The initial price of each

asset k is normalized to one dollar. If the aggregate amount of asset k that banks liquidate is qk,

the execution price per share of the asset is

ppostk := 1 + Zk − γkqk,

where γk > 0 is the price impact parameter of asset k. The limiting case γk ↓ 0 corresponds to the

case of a perfectly liquid asset.

Our model abstracts from the underlying source of market illiquidity, and captures the knocked

down effect of sales on prices in reduced form through the parameter γ. The price impact function

can be viewed as a representation of outside investors with limited capital and other investment

opportunities. This form of price impact function captures the mechanics of typical theoretical

models of fire sales, as explained next. Suppose outside investors with a fixed dollar amount of

outside wealth were to step in and provide liquidity to the banking sector during a fire sale. These

investors would then face a trade-off between the returns from investing in new projects and the

gains from purchasing assets sold by banks at fire-sale prices; see also Shleifer and Vishny (2011)

for a related discussion.

The total amount of shares of asset k that banks liquidate is

N∑
j=1

πj,kxjχ{λpostj >λM,j},

where χ{λpostj >λM,j} is the indicator function of the event {λpostj > λM,j}. Hence, the liquidation

7Greenwood et al. (2015) and Duarte and Eisenbach (2018) also consider –as an alternative to the proportional
liquidation strategy– a pecking order of liquidation where banks first sell off their most liquid assets. They show that
in a calibrated model of fire-sale spillovers this strategy reduces the magnitude of fire-sale losses. In the same context
of leverage targeting, Capponi and Larsson (2015) show analytically that fire-sale externalities are smaller if banks
first sell liquid and then illiquid assets. In a two-period game-theoretical model, forcing banks to follow a pecking
order strategy may lead to counterintuitive results: all banks would simultaneously first sell the most liquid asset,
making its liquidation costly. Some banks may therefore prefer not to hold any share of the most liquid asset only as
an artificial consequence of the pecking order constraint.
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cost per share of asset k is γk
∑N

j=1 πj,kxjχ{λpostj >λM,j}. Let Diag[γ] be the diagonal matrix with

entries γk on the diagonal. Then the total liquidation cost incurred by bank i at time 2 is

costi(πi, π−i, Z) := xiχ{λposti >λM,i}π
T
i︸ ︷︷ ︸

assets liquidated by bank i

Diag[γ]
N∑
j=1

πjxjχ{λpostj >λM,j}︸ ︷︷ ︸
total quantities traded

,

where π−i := (π1, · · · , πi−1, πi+1, · · · , πN ).

At date 1, bank i chooses the portfolio weights that maximize the expected return of its portfolio

at date 2. We outline the technical assumptions A.1–A.4 in the Appendix. We refer to them

whenever they are required in our results.

3 Equilibrium Asset Allocations

The banks’ portfolio allocations are described by a game theoretical model, in which the N banks

are the players. The space of strategies is the set X := {x ∈ [0, 1]K :
∑K

k=1 xk = 1} of admissible

portfolio weights. Each bank maximizes an objective function given by its expected portfolio return,

i.e.,

PRi(πi, π−i) := E[πTi Z − costi(πi, π−i, Z)].

A Nash equilibrium is a set of banks’ asset allocation decisions π∗ := (π∗1, · · · , π∗N ) such that no

bank has any incentive to unilaterally deviate from it, i.e., PRi(π
∗
i , π
∗
−i) ≥ PRi(π̃i, π

∗
−i), for any i

and strategy π̃i of bank i.

Because asset returns are identically distributed, it holds that E[πTi Z] = E[Z1]. Hence, for

each bank maximizing its expected portfolio return is equivalent to minimizing its expected total

liquidation cost ECi(πi, π−i) := E[costi(πi, π−i, Z)]. Bank i’s liquidation cost function ECi may be

rewritten as Si(πi) +
∑

j 6=iMi,j(πi, πj), where

Si(πi) := E
[
πTi Diag[γ]πix

2
iχ{λposti >λM,i}

]
,

Mi,j(πi, πj) := E
[
πTi Diag[γ]πjxixjχ{λposti >λM,i}∩{λpostj >λM,j}

]
.

The term Si is the idiosyncratic component of the expected liquidation cost incurred by bank i.

Such a cost is due to the price dislocation caused by bank i’s asset sales, and would be incurred

even in the absence of other banks in the system. The term Mi,j is the systemic component of the

liquidation cost, i.e., the additional cost incurred by bank i due to the presence of bank j in the

system. This term captures the externality that bank j imposes on bank i due to their overlapping

portfolios.

Fix the asset holdings π−i of all other banks except i. Bank i’s optimization problem is equiv-
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Figure 1: The region of parameters in which the function P (π) is convex for N = 2, K = 2. The
leverage thresholds λM,1, λM,2 are set to 30 and λ1 is set to 15.

alent to choosing the portfolio weight vector πi that minimizes

P (π) :=
N∑
m=1

(
Sm(πm) +

∑
j<m

Mm,j(πm, πj)

)
.

Because each bank minimizes the same objective function, the problem can be formulated in terms

of a potential game, where P (π) is the potential function.

Proposition 3.1. The game specified by (i)-(iii) is a potential game. Moreover, if Z is a continuous

random variable with values in RK , the game admits a Nash equilibrium.

Even though a Nash equilibrium exists, its uniqueness cannot be always guaranteed. This is due

to the complex trade-offs faced by each bank in the system. On the one hand, diversification reduces

the likelihood of asset liquidation. On the other hand, concentration on liquid assets and avoidance

of portfolio overlapping with other banks reduces the realized liquidation costs. The multiple

economic forces that drive allocation decisions imply that the bank’s optimization problem is in

general non-convex. Hence, the game may admit multiple equilibria. If the system is sufficiently

homogeneous, then the incentives to diversify and hold a liquid portfolio are sufficiently aligned,

and the game admits a unique equilibrium (see Theorem 3.2). In Figure 1 we illustrate that the

equilibrium is unique if the economy is not too heterogeneous.

Proposition 3.2. Let N = 2, K = 2. Under Assumption A.1, for any λ, λM , w, γ > 0 there

exist λ∗ < λ < λ∗, λM,∗ < λ < λ∗M , w∗ < w < w∗, γ∗ < γ < γ∗ such that if λi ∈ (λ∗, λ
∗),

λM,i ∈ (λM,∗, λ
∗
M ), wi ∈ (w∗, w

∗) for i = 1, 2 and γk ∈ (γ∗.γ
∗) for k = 1, 2, then there exists a

unique Nash equilibrium.
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4 The Nash Equilibrium of Banks’ Portfolio Holdings

We start by introducing the distance to liquidation, a convenient reparameterization of the leverage

ratio that will be convenient for the analysis conducted in this section.

Definition 4.1. The distance to liquidation of bank i is `i :=
λM,i−λi

(1+λi)λM,i
, for i = 1, · · · , N .

Distance to liquidation can be viewed as a rescaling of the leverage ratio in the units of portfolio

returns. A highly leveraged bank that breaches its leverage threshold even for a moderate decrease

of its asset value has a low distance to liquidation. In contrast, a bank with a low leverage ratio has

a large distance to liquidation. More precisely, the distance to liquidation quantifies the minimal

portfolio return that the bank can absorb without needing to raise cash through asset liquidation.

For instance, if a bank has distance to liquidation equal to 5%, then it would be forced to liquidate

assets if its portfolio return drops below −5%.

The optimal portfolio allocation of a bank in isolation, i.e., if N = 1, provides a benchmark for

analyzing the impact of the system on the equilibrium allocation. If either all assets are equally

liquid or all banks have the same distance to liquidation, then the presence of other banks in the

system does not impact the portfolio holdings of an individual bank. However, in the case of a

heterogeneous financial system, each bank seeks to run away from the systemic externalities by

reducing its portfolio overlap with other banks.

4.1 Single Bank Benchmark

In the absence of systemic externalities, the bank’s portfolio allocation decision is driven by two

main forces: the likelihood of breaching the leverage threshold and the total execution costs from

the bank’s liquidation strategy. If all assets are equally liquid, the individual minimization of

these two criteria yields the same outcome: complete diversification is optimal (see Proposition 4.2

for the formal statement). First, the portfolio’s variance –hence the probability of violating the

leverage threshold– is minimized when the portfolio is fully diversified. Second, the marginal cost

of asset liquidation is increasing in the quantity that is sold, therefore liquidating smaller positions

in multiple assets results in a lower cost than liquidating a large position in a single asset.

Proposition 4.2. Let N = 1 and γk = γ for each k. Under Assumption A.1, the optimal allocation

is πS1,k = 1
K for all k.

Next, we analyze an economy consisting of assets with different levels of liquidity.Observe that

the probability of violating the leverage constraint does not depend on the liquidity of the assets,

but only on the distribution of assets’ returns. On the one hand, a portfolio with equal asset weights

minimizes the likelihood of forced liquidation because returns are identically distributed. On the

other hand, to reduce the total costs in the event of a forced sale the bank should allocate a larger

portion of its wealth to the most liquid asset. More precisely, in a market consisting of two assets

with liquidity parameters γ1 < γ2, the optimal liquidation policy is attained when the marginal
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cost from the sale of each asset is identical. In other terms, if a bank has to liquidate assets, it is

optimal to sell a proportion x of the first asset and 1− x of the second asset, where x satisfies the

indifference condition 1 + γ1x = 1 + γ2(1 − x), i.e., x = γ2
γ1+γ2

. Because of the trade-off between

these two forces, the optimal portfolio weight πS1,1 lies in the interval (12 ,
γ2

γ1+γ2
).

Proposition 4.3. Let N = 1, K = 2, and 0 < γ1 < γ2. Assume that S1(π1) is convex. Under

Assumption A.1, it holds that πS1,1 ∈ (12 ,
γ2

γ1+γ2
), where (πS1,1, 1− πS1,1) minimizes the function S1 on

X. Furthermore, πS1,1(`) is a decreasing function of the distance to liquidation `.

Proposition 4.3 also states that banks with different distances to liquidation weigh these two

forces differently, and therefore their optimal portfolio choice is different. A highly leveraged bank,

i.e., with low distance to liquidation, is more likely to breach the leverage threshold regardless of its

portfolio allocation, and should therefore aim at reducing the costs of its asset liquidation strategy.

Vice versa, a bank with a low leverage ratio is less concerned about its realized liquidation costs,

and constructs a portfolio that is more diversified but less liquid.

4.2 Homogeneous Economy

Consider an economy that is homogeneous either across assets –all assets are equally liquid– or

across banks –all banks have the same distance to liquidation–. Then, banks hold identical portfolios

in equilibrium. Furthermore, as formalized in the next Proposition, this portfolio is the same as in

the single bank benchmark where each bank does not account for the liquidation actions of other

banks.

Proposition 4.4. Under Assumptions A.1 and A.2:

(1) If γk = γ for each k, then π∗i,k = 1
K is the unique Nash equilibrium.

(2) Let πS be the vector of optimal weights determined in Proposition 4.3 when the distance to

liquidation is `. If `i = ` for each i, then π∗i = πS is the unique Nash equilibrium.

While the presence of other banks holding the same portfolio π∗ results in higher expected

liquidation costs, it does not alter the portfolio holdings of each individual bank. To see this,

consider two banks with equal distance to liquidation in an economy with two assets. The optimal

portfolio π∗ that each bank holds if it were the only institution in the economy is such that the

expected marginal liquidation costs for each asset are identical. If this were not the case, the

bank would invest more in the asset with lower marginal cost to reduce the total expected costs.

However, in an economy with two banks, each bank also accounts for the externalities imposed by

the other bank. These externalities can be decomposed across assets: a higher portfolio weight

in an asset implies a larger externality resulting from the liquidation of that asset. If both banks

hold the same portfolio π∗, the additional expected liquidation cost that each bank bears due to

the presence of the other bank is the same for each asset. In particular, the expected marginal

liquidation costs for each asset, after accounting for the extra cost imposed by the other bank, are

also identical.
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4.3 Heterogeneous Economy

In this section, we consider an economy in which there is heterogeneity both with respect to assets’

illiquidity and banks’ leverage. Then the systemic externalities arising from joint liquidation affect

the banks’ optimal portfolio allocations. As argued in Section 4.1, a bank whose leverage is closer

to the threshold values liquid assets more than a bank with higher distance to liquidation. In

an economy consisting of two assets with different liquidity, the bank with higher distance to

liquidation holds a more diversified portfolio and allocates a higher proportion of wealth to the more

illiquid asset relative to the more leveraged. Hence, the presence of the bank with lower leverage

contributes to increase the costs of holding the illiquid asset for the highly leveraged bank, which

in turn readjusts its portfolio to increase its position in the liquid asset even further. Analogously,

the bank with lower leverage shifts its portfolio towards the less liquid asset. Both banks adjust

their positions further and the prevailing Nash equilibrium is the outcome of this process. In each

step of this iterative procedure, each bank runs away from the externalities imposed by the other

bank in the economy.

Theorem 4.5 states that banks reduce portfolio overlapping, and therefore cross-bank external-

ities, when they account for the presence of other banks in the economy.

Theorem 4.5. Let N = 2, K = 2. Assume γ1 < γ2 and `1 < `2. Under Assumptions A.1, A.2,

and A.3, |π∗1,1 − π∗2,1| > |πS1,1 − πS2,1|, where πSi,1 is bank i’s optimal allocation in asset 1 under the

single bank benchmark.

Taken together, Proposition 4.4 and Theorem 4.5 show that it is the heterogeneity in the

financial system that gives banks incentives to reduce their common exposures. We provide a

graphical illustration of this phenomenon in Figure 2. When assets have the same liquidity, i.e., γ1 =

γ2, all banks hold the same perfectly diversified portfolio. If the assets have different liquidities, then

each bank’s holdings would not be equally split across assets, even in the single bank benchmark.

Cross-bank externalities increase diversity in banks’ asset holdings, because banks seek to reduce

their portfolio commonality. A similar mechanism arises if we consider heterogeneity in banks’

initial leverages: assuming assets have different liquidity levels, banks hold identical portfolios if

they are equally levered and thus have the same distance to liquidation. Vice versa, if banks have

initially different leverage ratios, they reduce their common exposures significantly compared to

the optimal allocations in their corresponding single bank benchmark (see the right panel in Figure

2).

Even though, prior to the global 2007-2009 financial crisis, banks may not have fully accounted

for systemic externalities created by portfolio commonality, empirical evidence suggests that they

have accounted for the risk of fire-sale spillovers in more recent years. Duarte and Eisenbach (2018)

define a measure of portfolio overlap on illiquid assets by large leveraged banks, called “illiquidity

concentration”. This measure has increased steadily until 2007 and started to drop in 2013. Such

a decrease in illiquidity concentration means either a higher awareness of portfolio contagion or an

effectiveness of proposed regulatory measures.
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Figure 2: Banks’ portfolio allocations in asset 1 in an economy consisting of two assets and two
banks. We increase heterogeneity across assets (left panel) and across banks (right panel). Solid
lines represent the allocations in the two-bank economy (orange for bank 1, red for bank 2), dashed
lines the allocations of each bank in the single-bank benchmark (blue for bank 1, green for bank
2). We fix λM,1 = λM,2 = λ1 = 30. In the left panel, we choose λ2 = 5. In the right panel, we
choose γ2/γ1 = 6.

The probability of joint asset liquidation is determined endogenously, as it depends on the

portfolio holdings of each bank in the system. Consider, for example, an economy consisting of two

banks and two asset, in which bank 1 only holds asset 1 and bank 2 only holds asset 2. Joint asset

liquidation occurs only when both assets are simultaneously hit by large price shocks. If only one

asset is hit by a shock, then only one bank will be forced to liquidate assets. By contrast, if two

equally leveraged banks hold the same diversified portfolio, then either both banks would be forced

to liquidate assets or neither of them would. This leads to a fundamental trade-off between asset

diversification on the individual firm level and systemic portfolio diversification. Define Aliq(π1, π2)

to be the event that at least one bank liquidates assets when bank 1 and bank 2 hold, respectively,

portfolio π1 and portfolio π2. Define Asim(π1, π2) as the event that both banks liquidate assets.

Proposition 4.6. Let N = 2, K = 2. Assume γ1 < γ2 and `1 < `2. Under Assumptions A.1 and

A.3, P (Aliq(π
∗
1, π
∗
2)) > P (Aliq(π

S
1 , π

S
2 )) and P (Asim(π∗1, π

∗
2)) < P (Asim(πS1 , π

S
2 )).

If neither bank accounts for the externalities imposed by the other, the probability of simulta-

neous liquidation increases because of the larger portfolio overlap. As banks reduce their portfolio

commonality, the bank with higher leverage further increases its exposure to the more liquid asset,

resulting in a less balanced portfolio. Therefore, it has a higher probability of liquidating after a

shock. In contrast, the likelihood that the bank with lower leverage liquidates is smaller, because

such a bank has reduced its position in the more liquid asset and therefore holds a more balanced,

even though less liquid, portfolio. The net effect on the economy is described in Proposition 4.6: on

the one hand, the probability that some bank sells assets to reduce its leverage increases if banks

account for systemic externalities. On the other hand, the probability of a systemic asset sell-off, in

which both banks liquidate assets, is lower. Hence, a new concept of systemic diversification arises:

in equilibrium the system diversifies the likelihood of asset liquidation across banks, reducing the
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Figure 3: The horizontal lines identify the asset returns for which bank 1 liquidates assets, and
the vertical lines the asset returns for which bank 2 liquidates assets. Left panel: solid colored lines
represent the portfolio composition of each bank in the single bank benchmark. Right panel: solid
colored lines represent the portfolio composition of each bank in equilibrium, and dashed colored
lines represent the portfolio composition in the single bank benchmark. An asset price shock is less
like to fall in the region where both banks liquidate in the right panel.

probability of a widespread fire-sale event. Figure 3 illustrates the event of joint liquidation, both

for the case that they account for systemic externalities and they do not. The probability that the

realized price shock falls in the area where both banks simultaneously liquidate is lower if banks

do account for these externalities.

4.4 A System with Multiple Equilibria

In general, the uniqueness of a Nash equilibrium cannot be guaranteed even in an economy consist-

ing of only two banks and two assets. This is because the cost function is not necessarily convex in

the portfolio weights. To understand why this is the case, consider two banks of significantly differ-

ent size: a highly leveraged small bank and a lowly leveraged large bank. Because the externalities

imposed by the small bank on the large bank are small relative to the size of the latter bank, the

large bank’s portfolio allocation is close to the one prevailing in an economy where it is the only

bank. The small bank, instead faces the following trade off. First, the small bank would like to

reduce the likelihood of exceeding the leverage threshold, and hence it aims at holding a fully di-

versified portfolio. Second, the small bank, being highly leveraged, has a stronger incentive to hold

the liquid asset because this lowers the cost of asset liquidation. Third, to minimize its portfolio

overlap with the large bank, the small bank may significantly increase its position in either asset.

Hence, there exists a region of the parameter space in which two equilibria are possible: the small
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Figure 4: Banks’ portfolio allocations in asset 1 for a market of two banks and two assets as a
function of the assets’ heterogeneity. Solid lines represent the allocations in one equilibrium (orange
for bank 1, blue for bank 2), dashed lines the allocations of each bank in another equilibrium. We
fix λM,1 = λM,2 = 30, λ1 = 10, λ2 = 25, w1 = 50w2. There exist two prevailing equilibria in the
γ2/γ1 interval [7, 9.5].

bank may run away from the externalities imposed by the large bank by either holding a much

higher position in the liquid asset compared to the one it would hold in the absence of the large

bank, or shifting its portfolio towards the illiquid asset. We illustrate these two potential outcomes

in Figure 4. If the difference in liquidity of the two assets increases, the large bank also holds a

significant position in the liquid asset thus further increasing portfolio overlap. If the expected

liquidation costs from the presence of the large bank are prohibitively high, it is preferable for the

small bank to load more on the illiquid asset and therefore reduce its portfolio overlap with the

large bank. In the example of Figure 4, for values of γ2/γ1 that belong to the interval [7, 9.5], two

Nash equilibria exist.

4.5 A Multi-Bank Multi-Asset Economy

Most of the results discussed in the paper focus on an economy consisting of two banks and two

assets. Precise mathematical statements are difficult to make in an economy consisting of several

banks holding multiple assets. In this section, we provide numerical evidence that the qualitative

implications of the model remain valid in such an extended economy.

Consider, first, an economy of two banks which hold three types of assets, each identified by

a different level of liquidity, as exemplified in Figure 5. If both banks have the same distance to

liquidation, they hold the same portfolio. If, instead, bank 1 has a lower distance to liquidation

than bank 2, then bank 1 has a stronger incentive to hold the most liquid asset. If asset 1 is

significantly more liquid than the other two assets, bank 1 forgoes the benefits of diversification: it

loads more on its most liquid asset, and decreases its holdings in either of the other two assets. As

bank 1 increases its position in asset 1, this asset becomes more costly to hold for the other bank,

due to the potential fire-sale externalities imposed by bank 1 on bank 2. Hence, bank 2 reduces its
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exposure to asset 1 and concurrently increases its positions in the less liquid assets.

The presence of other banks in the system alters each institution’s portfolio composition. In

fact, banks reduce their portfolio overlap in each asset. The bank that is more likely to exceed

the leverage threshold increases its holdings of the most liquid asset and reduces its holdings of

the least liquid asset. How much the bank alters its holdings of the medium liquid asset crucially

depends on the liquidity of this asset relative to the most and least liquid assets. Suppose that in

the three-asset economy, the two most liquid assets have close (or equal) levels of liquidity. Then the

bank with lower distance to liquidation, i.e., bank 1, increases its position in both of the two most

liquid assets. Hence, bank 1 diversifies across these two assets, and increases the overall liquidity

of its portfolio. Conversely, bank 2 only increases its exposure to the most illiquid asset. If instead,

the two most illiquid assets have similar illiquidity levels, bank 1 only increases its position in the

most liquid asset. In fact, there exists an illiquidity level γ∗ of the medium liquid asset such that

each bank maintains the same exposure to it as in the single-bank benchmark. To summarize, in

an economy consisting of multiple assets, banks behave as in a two-asset economy: bank 1 increases

its holdings of all assets whose illiquidity parameter is lower than γ∗, and reduces its holdings in

the remaining assets. Bank 2 instead increases its holdings of all assets with illiquidity parameter

higher than γ∗.

Next, consider an economy of three banks which hold two types of assets, as shown in Figure 6.

The bank with lowest distance to liquidation, i.e., bank 1, has the strongest incentive to hold the

more liquid asset. Bank 1 increases its position in the liquid asset relative to both the single-bank

benchmark and the two-bank economy. All other banks maintain a lower position in the more

liquid asset than bank 1, even in the single-bank benchmark. Hence, by holding an even higher

position in the more liquid asset, bank 1 reduces the portfolio overlap with all other banks. Because

the externalities are stronger in the presence of many other banks, bank 1’s holdings of the more

liquid asset are higher even relative to the case of a two-bank economy. Conversely, the bank with

highest distance to liquidation, i.e., bank 3, holds higher quantities of the less liquid asset than if

it were in a two-bank economy.

There are two opposing forces which drive the portfolio allocation of bank 2, i.e., the bank with

intermediate distance to liquidation, when it accounts for the externalities imposed by other banks

in the system. To reduce portfolio overlap with bank 1, bank 2 should increase its position in the

less liquid asset. Instead, to reduce overlapping with bank 3’s portfolio, bank 2 should increase its

position in the more liquid asset. The aggregate impact of these externalities on bank 2’s portfolio

depends both on balance sheet characteristics of the other two banks, and on the relative liquidity

of the assets.

5 First-Best Allocations

An ample literature has discussed the systemic risk implications of fire sales (see, for example,

Shleifer and Vishny (2011) and Schwarcz (2008)). Persistent price-drops may lead investors to

16



25 20 15 10
λ2

57%

58%

59%

60%

πi,1

25 20 15 10
λ2

26%

27%

πi,1

25 20 15 10
λ2

15%

16%

πi,1

Figure 5: Banks’ portfolio allocations in a model economy consisting of three assets and two
banks. As λ2 increases, there is a higher heterogeneity across banks. Solid lines represent the
equilibrium allocations in the two-bank economy (orange for bank 1, red for bank 2), dashed lines
the allocations of each bank in the single-bank benchmark (blue for bank 1, green for bank 2). We
fix λM,1 = λM,2 = λ1 = 30. The relative assets’ illiquidities are γ2/γ1 = 5 and γ3/γ1 = 10.
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Figure 6: Banks’ portfolio allocations in asset 1 for an economy of three banks and two assets
as a function of the relative asset illiquidity. Solid lines represent the equilibrium allocations (red
for bank 1, green for bank 2 and blue for bank 3), dotted lines the allocations of each bank in the
single-bank benchmark. Dashed lines (red for bank 1 and blue for bank 3) represent the equilibrium
allocations in an economy with only bank 1 and bank 3. We fix λM,1 = λM,2 = 30, λ1 = 30, λ2 = 10,
λ3 = 5.

lose confidence and withdraw funds from institutions, undermining financial intermediation and

weakening the wider economy. The objective of the benevolent social planner is to maximize the

expected aggregate banks’ portfolio returns. Because assets have identically distributed returns, this

is equivalent to minimizing the expected liquidation costs TC(π) =
∑N

i=1ECi(π). The following

result shows that, in a heterogeneous economy, the equilibrium banks’ allocations are not socially

optimal. Even if banks account for the presence of other banks and reduce portfolio overlapping,

their holdings still exhibit excessive asset commonality relative to the social optimum.

Theorem 5.1. Let K = 2 and N = 2. Under the assumptions of Theorem 4.5 and Assumption

A.4, |πSP1 − πSP2 | > |π∗1 − π∗2|, where πSPi is the bank i’s asset 1 allocation that maximizes the

expected aggregate banks’ portfolio returns.

Theorem 5.1 states that banks choose to hold excessively overlapping exposures compared to

the social optimum. This is because each bank does not internalize the externalities it imposes on

all other banks, but only accounts for the externalities imposed by other banks on itself when it

makes its allocation decision. By contrast, in a homogeneous economy the social optimum is aligned

with the banks’ portfolio holdings obtained in equilibrium. In other words, if banks have the same

distance to liquidation, the equilibrium prescribed by Proposition 4.4 is socially optimal. In this

equilibrium all banks hold the same portfolio, i.e., there is complete portfolio overlap. However,

this does not imply that a homogeneous economy is socially preferable to a heterogeneous one.

As the following Proposition shows, the opposite result holds, i.e., aggregate liquidation costs are

maximized in a homogeneous economy.

Proposition 5.2. Assume K = 2 and N = 2. Let w be the aggregate asset value and d the
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Figure 7: Total expected liquidation costs for different levels of leverage heterogeneity. If d1 = d2,
then the system is homogeneous.

aggregate debt in the system. Assume that the banks’ individual asset values are w1 = w2 = w
2 , and

that the debt levels d1 and d2 are such that λ1 := d1
w1−d1 ≤ λM , λ2 := d2

w2−d2 ≤ λM where d1+d2 = d

and λM := λM,1 = λM,2. Define TC∗(d1) to be the total expected liquidation costs in equilibrium

when the debt of bank 1 is d1 (and therefore the debt of bank 2 is d − d1). Then d1 = d
2 is a local

maximum of TC∗(d1).

Theorem 4.5 shows that it is the heterogeneity in the economy that incentives banks to reduced

portfolio overlap. A lower portfolio commonality in turn reduces the likelihood and severity of

liquidity crises. Therefore, aggregate costs are higher in a homogeneous economy where all banks

hold the same portfolio, as stated in Proposition 5.2. See also Figure 7 for a plot of the total

expected liquidation costs as a function of the leverage heterogeneity in the economy.

From a policy making perspective, Proposition 5.2 implies that bank mergers may have unde-

sired effects on financial stability. A homogeneous economy behaves as a single large bank, and

can thus be interpreted as the outcome of bank consolidation. A single bank cannot diversify its

liquidation risk, as it is either affected by the liquidation event or not. If instead the economy is

heterogeneous, banks manage their assets to account for systemic externalities, i.e., adjust their

portfolios to reduce the likelihood of simultaneous sell-offs. A consolidated banking system de-

creases the available options for diversifying fire-sale risk across banks. Hence, the total quantity

that the economy is required to liquidate cannot be as optimally controlled as in an economy of

multiple smaller banks.

Next, we discuss how the imposition of a tax on the interconnectedness of the banking system

may align the private banks’ incentives with the social optimum. The next Proposition provides an

explicit formula for such a tax, through which each bank fully internalizes the externalities imposed

on the rest of the economy.

Proposition 5.3. Under Assumptions A.2 and A.4, if each bank i is charged a tax in the amount
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equal to Ti(π) :=
∑

j 6=iMi,j(π), then the private equilibrium allocation is equal to the social planner’s

optimum.

The tax amount Ti(π) is equal to the sum of externalities Mi,j(π), j 6= i, that bank i imposes

on every other bank in the economy. This externality is increasing in the size of the bank’s balance

sheet, bank’s leverage ratio and the concentration of the bank’s holdings on illiquid assets. This tax

changes the ex-ante banks’ incentives, aligning their equilibrium asset allocations with the social

optimum. In practice, a tax on portfolio overlapping may be combined with the initiation of an

asset purchase program in the event of a liquidity crisis. The tax would not only incentivize banks

to reduce their common exposures, and hence the likelihood of asset liquidation spirals, but would

also fund such a relief program to mitigate fire-sale losses during a crisis.

The tax Ti(π) is related to the systemicness of bank i, as defined in Greenwood et al. (2015):

the amount a bank should be charged equals the component of its expected systemicness that is not

borne by the bank itself. In other words, such a tax amount can be seen as the weighted average of

banks’ contributions to the aggregate vulnerability of the rest of the system over a number of stress

tests with different initial market shocks. Cont and Schaanning (2017) describe stress tests in line

with our model, as we assume that banks –rather than being leverage targeting like in Greenwood

et al. (2015)– only sell assets if their leverage threshold is breached.

In the United States, the Financial Stability Oversight Council (FSOC) uses total consolidated

assets, gross notional credit default swaps, derivative liabilities, total debt outstanding, leverage

ratio, and short-term debt ratio as factors for designating systemically important financial institu-

tions (SIFIs). An institution is designed as SIFI if these factors exceed certain thresholds.8 Our

study highlights another dimension to consider in the designation of SIFI institutions, in addition

to too-big-to-fail measures of default costs. A highly central node in the network of asset holdings

should be taxed more because it would cause higher disruption in the provision of services to the

real economy during fire-sale events (e.g. interruption of project financing, and termination of

productive investments due to suspension of loans).

6 Operational Challenges and Model Extensions

We discuss limitations of the current model and outline potential extensions as well as related

operational challenges. Because our focus is on fire-sale spillovers, we ignore the possibility of a

bank’s default. If bank i’s portfolio return falls below − 1
1+λi

, its equity becomes negative. A slight

extension of the model would cap the amount a bank can liquidate to the total amount of assets

held by the bank. Because the cost function is well-defined for all values of asset shocks Z, we

assume the cost function to be uncapped.

In our model, the leverage ratio is updated only after the initial market shock, but not marked to

market following price changes due to asset liquidation. While we assume that the initial shock on

8The BIS has developed a methodology to identify systemically important financial institutions (SIFIs) based on
asset size, interconnectedness, and the availability of substitutes for the services they provide.
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asset prices is permanent, the knocked-down effect on prices is only temporary. Marking to market

would make leverage procyclical, because the initial asset liquidation –and not further fundamental

market changes– would cause new rounds of deleveraging. We also remark that commercial banks

in the US and universal banks in Europe do not mark the value of their assets to market.9

In our study, we assume that there is only one round of deleveraging. Because asset liquidation

is costly, the revenue loss due to fire sales would result in the bank violating again the leverage

threshold, and thus trigger a new round of deleveraging. Hence, there would be infinite rounds

of deleveraging. Realistically, banks are likely to target a leverage ratio that is strictly smaller

than their threshold, and the resulting safety buffer protects the banks from subsequent rounds

of deleveraging. To preserve tractability and highlight the main economic forces, we assume that

banks target λM,i and perform only one round of asset liquidation. A similar assumption has also

been made by Greenwood et al. (2015), who consider only the first round of deleveraging in their

leverage targeting model.

Our model assumes that banks have full knowledge on the portfolio composition of other banks.

This assumption is standard in existing literature on leverage targeting banks, in which the compu-

tation of systemic risk measures relies on publicly available data. In the U.S., financial institutions

file form FR Y-9C with the Federal Reserve every quarter. These forms provide consolidated in-

formation on each bank’s exposures and are available through the Board’s Freedom of Information

Office. Duarte and Eisenbach (2018) build their empirical model on FR Y-9C balance sheet data.

The studies on the vulnerability of the European banking system by Greenwood et al. (2015), and

Cont and Schaanning (2017) rely on publicly available data released by the European Banking

Authority.

7 Conclusions

Existing literature on fire sales has analyzed the mechanism through which hard balance sheet

constraints and portfolio commonality exacerbate fire-sale externalities in the presence of distressed

financial institutions. Our paper fills an important gap in the literature because it views banks

as strategic as opposed to mechanical: Banks adjust their balance sheets to be more resilient to

fire-sale spillovers. As such, our model does not simply provide a tool to study the propagation of

financial contagion through the network of asset holdings due to overlapping portfolios. Rather, it

sheds light on how fire-sale risk affects banks’ ex-ante asset holding decisions. Furthermore, our

model can be used to assess the welfare implications of government intervention as banks adapt to

the new regulatory environment.

A natural extension of the model includes assets with heterogeneous returns. Investments in

more illiquid assets would be compensated with higher risk premia. In such an extension, banks

9Regulators generally try to lean against mark-to-market valuation. One mechanism to enforce this is by requir-
ing buffers in good times that can be run down in bad times. In other words, officials encourage banks to have
lower leverage in good times than in bad times. This is the purpose of the Basel III conservation buffer and the
countercyclical buffer.
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would be profit seeking and risk-averse. Furthermore, our model may be extended to investigate

the dynamics of systemic diversification. In a model economy consisting of multiple periods, each

subject to the occurrence of asset price shocks, banks would face a trade off between liquidating

liquid assets and reduce execution costs now versus holding a more liquid portfolio when severe

shocks occur in the future. In such an economy, decoupling portfolio holdings and liquidation

strategy would allow studying the time evolution of each bank’s optimal portfolio and dynamic

asset pricing implications in the presence of fire-sale externalities.

A Technical Assumptions

Assumption A.1. For each k = 1, . . . ,K, Zk has continuous probability density function, increas-

ing on [−∞, 0], and the random vector Z is spherically symmetric.

Assumption A.1 implies that all assets have the same distribution of returns. Such an assump-

tion allows isolating the effect of fire sales from that of mean-variance optimization of returns.

Furthermore, spherical symmetry guarantees that full diversification yields the lowest likelihood

of liquidation. Because each bank’s cost function only depends on the truncated distribution of

its portfolio return, Assumption A.1 could be relaxed to also include probability density functions

with asymmetric tails. This assumption is satisfied if Z is a centered Gaussian random vector, and

the examples provided in the paper will be based on Gaussian returns.

Assumption A.2. The potential function P (π) is strictly convex on XN .

Assuming that the potential function is strictly convex ensures uniqueness of the equilibrium

asset allocations. For N = 2, this assumption is implied by assumptions on the primitives of the

model (see Theorem 3.2).

Assumption A.3. For each bank i, `i ≤ ¯̀ for a sufficiently small ¯̀.

Under Basel III, the required leverage constraint is λM = 33. This means that a leverage ratio

of 20 implies a distance to liquidation equal to 1.9%. Even a leverage ratio of 10 implies a distance

to liquidation of just 6.3%.

Assumption A.4. The social planner’s objective function TC(π) is strictly convex on XN .

The assumption guarantees that the social planner admits a unique local minimum.

B Proofs

Lemma B.1. If bank i’s portfolio return is Ri, the amount xi that bank i is required to raise is

λM,iwi(Ri + `i)
−.
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Proof. Bank i liquidates if di
wi(1+Ri)−di ≥ λM,i. After substituting di = λi

1+λi
wi, it can be seen that

the inequality is equivalent to Ri + `i ≤ 0. Solving for x in the equation di−x
wi(1+Ri)−di = λM,i, yields

the quantity x = λM,iwi(Ri + `i)
− that bank i is required to trade to comply with regulations.

Proof of Proposition 3.1

Recall that the game is a potential game with potential function P : XN → R if ∀i ∈ {1, · · · , N},
∀π−i ∈ XN−1, ∀π′i, π′′i ∈ X,

P (π′i, π−i)− P (π′′i , π−i) = ECi(π
′
i, π−i)− ECi(π

′′
i , π−i).

It can be immediately verified that P (π) satisfies this condition.

If Z is a continuous random variable, then P (π) is a continuous function over the compact

set XN . Hence, there exists π∗ ∈ XN that minimizes P (π). It can be verified that π∗ is a Nash

equilibrium.

Proof of Proposition 3.2

Recall the definition of distance to liquidation `i in Definition 4.1. First, we assume `1 = `2,

λM,1 = λM,2, w1 = w2 and γ1 = γ2, and prove that the potential function P (π) is strongly convex.

Notice that with λM,1 = λM,2, `1 = `2 is equivalent to λ1 = λ2.

With a slight abuse of notation, we denote πi,1 simply by πi, and hence πi,2 = 1− πi. We will

show that the Hessian matrix H of 1
λ2Mw2γ

P (π) is positive definite. For the first part of the proof

we will consider any N > 1.

Define Ai := {πiZ1 + (1 − πi)Z2 + ` ≤ 0} and Ai,j := {πiZ1 + (1 − πi)Z2 + ` ≤ 0, πjZ1 + (1 −
πj)Z2 + ` ≤ 0} for any 1 ≤ i, j ≤ N . A simple calculation shows that Hi,i = 1

λ2Mw2γ
∂2

∂π2
i
P (π) is

E

[
2(Z1 − Z2)

2(π2i + (1− πi)2)1Ai + 8(πiZ1 + (1− πi)Z2 + `i)(Z1 − Z2)(2πi − 1)1Ai

+ 4(πiZ1 + (1− πi)Z2 + `i)
21Ai +

∑
j 6=i

(
2(πjZ1 + (1− πj)Z2 + `j)(Z1 − Z2)(2πj − 1)1Ai,j

+ (πiπj + (1− πi)(1− πj))
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `j)1Ai,j

] )]
.

The off-diagonal element Hi,j = 1
λ2Mw2γ

∂2

∂πi∂πj
P (π) of the Hessian matrix H is

E

[
(Z1 − Z2)

2(πiπj + (1− πi)(1− πj))1Ai,j + (πjZ1 + (1− πj)Z2 + `j)(Z1 − Z2)(2πi − 1)1Ai,j

+ (πiZ1 + (1− πi)Z2 + `i)(Z1 − Z2)(2πj − 1)1Ai,j

+ 2(πiZ1 + (1− πi)Z2 + `i)(πjZ1 + (1− πj)Z2 + `j)1Ai,j

]
.

Next, we construct a positive semidefinite matrix M1 with the same off-diagonal elements as H.

Define the random vectors v(1) := (πi(Z1−Z2)1Ai)1≤i≤N , v(2) := ((1−πi)(Z1−Z2)1Ai)1≤i≤N , v(3) :=
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((πiZ1 + (1− πi)Z2 + `i)1Ai)1≤i≤N , v(4) := ((Z1−Z2)(πiZ1 + (1− πi)Z2 + `i)1Ai)1≤i≤N and v(5) :=

((2πi−1)1Ai)1≤i≤N . The random matrixM2 := v(1)v(1)
T

+v(2)v(2)
T

+2v(3)v(3)
T

+v(4)v(5)
T

+v(5)v(4)
T

is such that E[M2] has the same off-diagonal elements of H. Recall that for any couple of linearly

independent vectors x, y, the matrix xyT+yxT has exactly one negative eigenvalue, while the matrix

xxT has only one non-zero eigenvalue, which is positive. Now, we want to find a positive definite

diagonal matrix D1 such that D1+M2 is almost surely positive semidefinite and the elements of D1

are as small as possible. An immediate application of Woodbury matrix identity and the matrix

determinant lemma shows that for any symmetric invertible matrix A, we have det(A+xyT+yxT ) =

((1 + xTA−1y)2 − (xTA−1x)(yTA−1y))det(A). Therefore, D1 + v(4)v(5)
T

+ v(5)v(4)
T

is positive

semidefinite if and only if a := (1 + v(4)
T
D−11 v(5))2 − (v(4)

T
D−11 v(4))(v(5)

T
D−11 v(5)) ≥ 0. Define

b := minπ∈XN a. It can be verified that the matrix D1 with entries d
(1)
i,i = N

4 (2` + Z1 + Z2)
21Ai is

such that b = 0. Therefore, D1 +M2 is a positive semidefinite matrix.

We now show that

E

[
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `)1Ai,j

] ]
> 0.

Assume that πi + ε < πj , for some small ε > 0, and define the event Aεi,j := {(πi + ε)Z1 + (1 −
πi − ε)Z2 + ` ≤ 0, πjZ1 + (1 − πj)Z2 + ` ≤ 0}. We have that Ai,j ⊂ Aεi,j and that Z1 < Z2 on

the event Aεi,j \ Ai,j . Therefore, (Z1 − Z2)(πjZ1 + (1 − πj)Z2 + `) > 0 on Aεi,j \ Ai,j . Hence, for

πi < πj , we have shown that the derivative is positive. Similarly, if πi > πj , A
ε
i,j ⊂ Ai,j and

(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `) < 0 on Ai,j \ Aεi,j . It follows that also in this case the derivative

is positive.

Hence, the diagonal matrix D2 with elements

d
(2)
i,i = E

[∑
j 6=i

(πiπj + (1− πi)(1− πj))
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `)1Ai,j

] ]

is positive definite.

Next, we show that the diagonal matrix M3 := H − E[M2 +D1]−D2 is positive semidefinite.

It follows then that H is positive definite. The i-th element on the diagonal of M3 is

E

[
(Z1 − Z2)

2(π2i + (1− πi)2)1Ai + 6(πiZ1 + (1− πi)Z2 + `)(Z1 − Z2)(2πi − 1)1Ai

+ 2(πiZ1 + (1− πi)Z2 + `)21Ai −
N(Z1 + Z2 + 2`)2

4
1Ai

+
∑
j 6=i

2(πjZ1 + (1− πj)Z2 + `)(Z1 − Z2)(2πj − 1)1Ai,j

]
.

Assume nowN = 2. First, we prove that E

[ (
(Z1 − Z2)

2(π2i + (1− πi)2)− 2(Z1
2 + Z2

2 + `)2)
)

1Ai

]
>

0. Define dax+by(z1, z2) := |az1+bz2|
(a2+b2)1/2

the distance of the point (z1, z2) to the line ax+by = 0. The in-
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equality can then be rephrased as E

[(
2d2y−x(Z1, Z2)(π

2
i + (1− πi)2)− d2x/2+y/2+`(Z1, Z2)

)
1Ai

]
>

0. Since π2i +(1−πi)2 ≥ 1
2 , it is enough to prove that E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1Ai

]
>

0. Define A
(1)
i = Ai∩{πiZ1−(1−πi)Z2+(2πi−1)` < 0} and A

(2)
i = Ai∩{πiZ1−(1−πi)Z2+(2πi−

1)` ≥ 0}. Notice that the line πix− (1−πi)y+ (2πi− 1)` = 0 is the reflection of the line πix+ (1−

πi)y + ` = 0 over y = −`. We will show that E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1
A

(1)
i

]
> 0,

the case for A
(2)
i is analogous. In the set A

(1)
i , consider the points (x1, y1) = (z1, z2) and (x2, y2) =

(z1,−2` − z2) with z2 > −`, which are symmetric with respect to the line y = −`. They are

such that dy−x(x1, y1) > dx/2+y/2+`(x1, y1), dy−x(x1, y1) = dx/2+y/2+`(x2, y2) and dy−x(x2, y2) =

dx/2+y/2+`(x1, y1). In particular,

(d2y−x(x1, y1)− d2x/2+y/2+`(x1, y1)) + (d2y−x(x2, y2)− d2x/2+y/2+`(x2, y2)) = 0.

Notice also that ‖(x1, y1)‖ < ‖(x2, y2)‖. Since the distribution of Z is rotationally invariant and

Z1 has an increasing probability density function on (−∞, 0], we have ϕ(x1, y1) > ϕ(x2, y2), where

ϕ(·, ·) is the probability density function of (Z1, Z2). Therefore,

E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1
A

(1)
i

]
=

∫
A

(1)
i

(d2y−x(z1, z2)− d2x/2+y/2+`(z1, z2))ϕ(z1, z2)dz1dz2

=

∫
A

(1)
i ∩{z2>−`}

(d2y−x(z1, z2)− d2x/2+y/2+`(z1, z2))(ϕ(z1, z2)− ϕ(z1,−2`− z2))dz1dz2.

Both terms in the product of the last integrand are positive. It follows that the expectation on

A
(1)
i is positive. The same arguments hold for the expectation on A

(2)
i , with (x1, y1) = (z1, z2) and

(x2, y2) = (−2`− z1, z2) where z1 > −`.
Next, we prove that

E

[
(πiZ1+(1−πi)Z2+`)(Z1−Z2)(2πi−1)1Ai +(πjZ1+(1−πj)Z2+`)(Z1−Z2)(2πj−1)1Ai,j

]
> 0.

Assume that πi > 1/2, πj < 1/2 and |πi − 1/2| < |πj − 1/2| (analogous arguments apply for all

other combinations). Notice that (πiz1 + (1 − πi)z2 + `)(z1 − z2)(2πi − 1) > 0 for any (z1, z2) ∈
Ai \ Ai,j . Hence, it is enough to show E[((πiZ1 + (1 − πi)Z2 + `)(Z1 − Z2)(2πi − 1) + (πjZ1 +

(1 − πj)Z2 + `)(Z1 − Z2)(2πj − 1))1Ai,j ] ≥ 0. Define A
(1)
i,j = Ai,j ∩ {(1 − πj)Z1 + πjZ2 + ` < 0}

and A
(2)
i,j = Ai,j ∩ {(1 − πj)Z1 + πjZ2 + ` > 0}. On A

(2)
i,j we have dπix+(1−πi)y+` < dπjx+(1−πj)y+`.
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Therefore, for any (z1, z2) ∈ A(2)
i,j , since (1 + x2)1/2x is increasing on [0, 1], we get

(πiz1 + (1− πi)z2 + `)(2πi − 1) + (πjz1 + (1− πj)z2 + `)(2πj − 1) =

− 1√
2
dπix+(1−πi)y+`(z1, z2)(1 + (2πi − 1)2)1/2(2πi − 1)

+
1√
2
dπjx+(1−πj)y+`(z1, z2)(1 + (2πj − 1)2)1/2|2πj − 1| >

1√
2

(−dπix+(1−πi)y+`(z1, z2) + dπjx+(1−πj)y+`(z1, z2))(1 + (2πi − 1)2)1/2(2πi − 1) > 0.

Since z1 − z2 > 0 on A
(2)
i,j , we get E[((πiZ1 + (1 − πi)Z2 + `)(Z1 − Z2)(2πi − 1) + (πjZ1 + (1 −

πj)Z2 + `)(Z1 − Z2)(2πj − 1))1
A

(2)
i,j

] > 0. Next, we show that both E[(πiZ1 + (1− πi)Z2 + `)(Z1 −
Z2)(2πi − 1)1

A
(1)
i,j

] and E[(πjZ1 + (1 − πj)Z2 + `)(Z1 − Z2)(2πj − 1))1
A

(1)
i,j

] are positive. Consider

the point (z1, z2) ∈ A
(1)
i,j with z2 > z1, then also (z2, z1) ∈ A

(1)
i,j . Since dπix+(1−πi)y+`(z1, z2) >

dπix+(1−πi)y+`(z2, z1), we get (πiz1 + (1− πi)z2 + `)(z1 − z2)(2πi − 1) + (πiz2 + (1− πi)z1 + `)(z2 −
z1)(2πi − 1) > 0. It follows that E[(πiZ1 + (1− πi)Z2 + `)(Z1 − Z2)(2πi − 1)1

A
(1)
i,j

] > 0. Similarly,

it can be shown that E[(πjZ1 + (1− πj)Z2 + `)(Z1 − Z2)(2πj − 1)1
A

(1)
i,j

] > 0.

The remaining terms in the diagonal elements of M3 are positive. Hence, H is positive definite

for all (π1, π2) ∈ [0, 1]2, and therefore P (π) is strongly convex.

Because of the smoothness of the potential function with respect to the parameters, there exist

`∗ < ` < `∗ (equivalently, λ∗ < λ < λ∗), w∗ < w < w∗, γ∗ < γ < γ∗ such that if `i ∈ (`∗, `
∗)

(equivalently, if λi ∈ (λ∗, λ
∗)), wi ∈ (w∗, w

∗) for each i and γk ∈ (γ∗.γ
∗) for each k, then P (π) is

strictly convex on XN . The uniqueness of the Nash equilibrium then follows from Theorem 2.3 in

Lã et al. (2016).

Proof of Proposition 4.2

Recall the definition of distance to liquidation ` in Definition 4.1. By Lemma B.1, the bank’s ex-

pected liquidation costs are given by λ2Mw
2γ‖π‖22E[(πTZ + `)21{πTZ+`≤0}]. Since Z is spherically

symmetric, 1
‖π‖2π

TZ has the same distribution as Z1. Hence, ‖π‖22E[(πTZ + `)21{πTZ+`≤0}] =

‖π‖22E[(‖π‖2Z1 + `)21{‖π‖2Z1+`≤0}]. It follows that the expected liquidation costs are minimized

when the bank minimizes ‖π‖2. The minimum of ‖π‖2 is attained at πk = 1
K for each k.

Proof of Proposition 4.3

Recall the definition of distance to liquidation ` in Definition 4.1. Define f(x, `) := E[(xZ1 +

(1 − x)Z2 + `)21{xZ1+(1−x)Z2+`≤0}] and g(x) := x2γ1 + (1 − x)2γ2. The minimizer of f(·, `) is 1
2

and the minimizer of g(·) is xg := γ2
γ1+γ2

> 1
2 . We write fx(x, `) for ∂

∂xf(x, `). Since d
dπ1,1

S1 =

fx(π1,1)g(π1,1) + f(π1,1)gx(π1,1), f ≥ 0, g > 0, fx(x) < 0 on [0, 12) and fx(x) > 0 on (12 , 1], and

gx(x) < 0 on [0, xg) and gx(x) > 0 on (xg, 1], we get that d
dπ1,1

S1 < 0 on [0, 12 ] and d
dπ1,1

S1 > 0 on

[xg, 1]. Hence, πS1,1 ∈ (12 ,
γ2

γ1+γ2
).

Next, we show that fx(x,`)
f(x,`) is an increasing function of ` for x > 1

2 . Since Z is rotationally
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invariant, f(x) = E[(n(x)Z1 + `)21{n(x)Z1+`≤0}], where n(x) = (x2 + (1 − x)2)1/2. An explicit

calculation shows that fx`(π1,1)f(π1,1)− fx(π1,1)f`(π1,1) is equal to

−2(2π1,1 − 1)

n(π1,1)
(2E[Z2

11A]P (A)`n(π1,1) + `2E[Z11A]P (A) + E[Z11A]E[Z2
11A]n(π1,1)

2),

where A = {n(π1,1)Z1 + ` ≤ 0}. Because the distribution of Z1 is increasing on (−∞, 0], we get
`

n(π1,1)
P (A) + E[Z11A] < 0 and E[Z2

11A] + `
n(π1,1)

E[Z11A] < 0. It follows that fx`(π1,1)f(π1,1) −

fx(π1,1)f`(π1,1) > 0 for π1,1 >
1
2 . Therefore, if `2 > `1 we have

fx(πS
1,1(`1),`2)

f(πS
1,1(`1),`2)

>
fx(πS

1,1(`1),`1)

f(πS
1,1(`1),`1)

=

gx(πS
1,1(`1))

g(πS
1,1(`1))

. In other terms, d
dπ1,1

S1(π
S(`1), `2) > 0. Since d

dπ1,1
S1(π1,1, `) is increasing in π1,1, we

get that πS1,1(`2) < πS1,1(`1). Because ` is a decreasing function of λ, we obtain the thesis.

Proof of Proposition 4.4

Rewrite the allocation vector πi ∈ X of bank i as
(
πi,1, · · · , πi,K−1, 1−

∑K−1
k=1 πi,k

)
. Using Lemma

B.1, we get that the derivative ∂
∂πi,h

P (π) is

E

[
2w2

i (π
T
i Z + `i)π

T
i Diag(γ)πi(Zh − ZK)1Ai + 2w2

i (π
T
i Z + `i)

2(πi,hγh − (1−
K−1∑
k=1

πi,k)γK)1Ai+∑
j 6=i

wiwj(π
T
j Z + `j)π

T
i Diag(γ)πj(Zh − ZK)1Ai,j+

∑
j 6=i

wiwj(π
T
i Z + `i)(π

T
j Z + `j)(πj,hγh − (1−

K−1∑
k=1

πj,k)γK)1Ai,j

]
,

where, without loss of generality, we have replaced λM,iwi with wi. To prove (1), assume that

γk = γ and πi,k = 1
K for all i and k. Because Z is spherically symmetric, E[(

∑K
k=1 Zk +

K`i)Zh1{
∑K

k=1 Zk+K`i≤0}] = E[(
∑K

k=1 Zk + K`i)ZK1{
∑K

k=1 Zk+K`i≤0}] for each h. Hence, the first

term in the derivative is 0. The second term is 0, because one of its coefficients is 0. The same

arguments yield that the third and fourth term are also 0. Since the potential function P (π) is

convex, πi,k = 1
K for all i and k is the unique Nash equilibrium.

To prove (2), first notice that π∗ is a critical point for Si(πi). It follows that π∗ solves the

equations E[(π∗TZ+`)π∗TDiag(γ)π∗i (Zh−ZK)1Ai +(π∗TZ+`)2(π∗hγh−(1−
∑K−1

k=1 π
∗
k)γK)1Ai ] = 0

for every h. If `i = `j = ` and πi = πj = π∗, then Ai,j = Ai. Hence, the sum of the first two terms

in the derivative of P (π) and the sum of the last two terms are both 0. From the convexity of P (π)

it follows that πi = π∗ for each i is the unique Nash equilibrium.

Lemma B.2. Assume K = 2. Under Assumptions A.1 and A.3, ∂2P
∂πi,1πj,1

(π) > 0 for 1 ≤ i 6= j ≤ N
and π ∈ XN .

Proof. A simple calculation shows that 1
λM,iλM,jwiwj

∂2P
∂πi,1πj,1

(π) = E[(γ1(`i+2πi,1Z1+(1−2πi,1)Z2)(`j+

2πj,1Z1+(1−2πj,1)Z2)+γ2(`i+(2πi,1−1)Z1+2(1−πi,1)Z2)(`j+(2πj,1−1)Z1+2(1−πj,1)Z2))1Ai∩Aj ],
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where Ai := {π1,1Z1 + (1 − πi,1)Z2 + `i ≤ 0} and Aj := {πj,1Z1 + (1 − πj,1)Z2 + `j ≤ 0}. Assume

`i = `j = 0. From the spherical symmetry of the distribution of Z, it follows that the distribution is

uniform along every circle. Next, we consider the change of variable (Z1, Z2) = (ρ cos(t), ρ sin(t)).

In terms of the new variables (ρ, t), if πi,1 > πj,1, the integration region Ai ∩Aj translates into the

range (0,+∞)× [tl, tr] := (0,+∞)×
[
arctan

(
− πj,1

1−πj,1

)
+ π, arctan

(
− πi,1

1−πi,1

)
+ 2π

]
. For a fixed ρ,

the integral over t reduces to

γ1(2(tr − tl) + 2(−(πi,1 + πj,1) + 4πi,1πj,1)(2tr + cos(2tr)− 2tl − cos(2tl))

+ (2(πi,1 + πj,1)− 1)(sin(2tr)− sin(2tl))) + γ2(· · · ),

up to a positive coefficient. The expression that multiplies γ1 is strictly positive. The same

calculations and arguments hold for the term that multiplies γ2. Hence, the integral over ρ is also

strictly positive. By continuity, the expectation is strictly positive for `1, `2 ≤ ¯̀, for a sufficiently

small ¯̀.

Proof of Theorem 4.5

With a slight abuse of notation, we denote πi,1 simply by πi, and hence πi,2 = 1 − πi. The Nash

equilibrium (π∗1, π
∗
2) solves the system of equations

∂

∂πi
P (πi, πj) = E

[
2w2

i (πiZ1 + (1− πi)Z2 + `i)(γ1π
2
i + γ2(1− πi)2)(Z1 − Z2)1Ai (B.1)

+ 2w2
i (πiZ1 + (1− πi)Z2 + `i)

2((γ1 + γ2)πi − γ2)1Ai

+ wiwj(πjZ1 + (1− πj)Z2 + `j)(γ1πiπj + γ2(1− πi)(1− πj))(Z1 − Z2)1Ai,j

+ wiwj(πiZ1 + (1− πi)Z2 + `i)(πjZ1 + (1− πj)Z2 + `j)((γ1 + γ2)πj − γ2)1Ai,j

]
= 0

for i = 1, j = 2 and i = 2, j = 1,

where Ai := {π1Z1 + (1−πi)Z2 + `i ≤ 0}, Aj := {πjZ1 + (1−πj)Z2 + `j ≤ 0}, and Ai,j := Ai ∩Aj ,
and where, without loss of generality, we have replaced λM,iwi with wi. If `2 = `1, then there exists

π`1 ∈ (12 ,
γ1+γ2
γ2

) such that π1 = π2 = π`1 is the Nash equilibrium. In particular, since ∂
∂πi
Si(πi) = 0

for πi = π`1 , both the sum of the first two terms, i.e., ∂
∂πi
Si(πi), and the sum of the last two

terms, i.e., ∂
∂πi
Mi,j(πi, πj), are zero. Consider equation (B.1) where i = 1, j = 2. For `1 < `2 and

π1 = π2 = π`1 , we will show that the sum of the last two terms is negative, i.e., ∂
∂πi
Mi,j(πi, πj) < 0.
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This is equivalent to proving that

E

[
(π`1Z1 + (1− π`1)Z2 + `2)(Z1 − Z2)1A1,2

]
E

[
(π`1Z1 + (1− π`1)Z2 + `1)(π`1Z1 + (1− π`1)Z2 + `2)1A1,2

] <

− ((γ1 + γ2)π
`1 − γ2)

(γ1π`1
2

+ γ2(1− π`1)2)
=

E

[
(π`1Z1 + (1− π`1)Z2 + `1)(Z1 − Z2)1A1

]
E

[
(π`1Z1 + (1− π`1)Z2 + `1)21A1

] ,

where the last equality follows from ∂
∂π1

S1(π1) = 0 for π1 = π`1 . Define h(`2) := E[(π`1Z1 +

(1− π`1)Z2 + `2)(Z1 − Z2)1A1,2 ] and k(`2) := E[(π`1Z1 + (1− π`1)Z2 + `1)(π
`1Z1 + (1− π`1)Z2 +

`2)1A1,2 ]. The inequality we want to prove can thus be rewritten as h(`2)
k(`2)

< h(`1)
k(`1)

. Notice that

h(`2) = 1
2
∂
∂πE[(πZ1+(1−π)Z2+`2)

21A1,2 ]|π=π`1= 1
2
∂
∂πE[(n(π)Z1+`2)

21A1,2 ]|π=π`1= E[(n(π`1)Z1+

`2)
2π`1−1
n(π`1 )

Z11A1,2 ], where n(π) = (π2 + (1 − π)2)1/2. Also, k(`2) = E[(n(π`1)Z1 + `1)(n(π`1)Z1 +

`2)1A1,2 ]. Explicit computations show that h′(`2)k(`2) − h(`2)k
′(`2) = (2π`1 − 1)`1(E[Z11A1,2 ]2 −

E[Z2
11A1,2 ]P (A1,2)). It follows from the Cauchy-Schwartz inequality and π`1 > 1

2 that this expres-

sion is negative. Hence, the fraction h(`)
k(`) is decreasing in `, which proves the inequality. In particular,

it follows that ∂
∂π1

P (π1, π2) < 0 for (π1, π2) = (π`1 , π`1). From the convexity of the potential func-

tion P (π1, π2), we get that ∂
∂π1

P (π1, π2) = 0 for (π1, π2) = (π
(0)
1 , π`1), where π

(0)
1 > π`1 . Similarly,

∂
∂π2

P (π1, π2) = 0 for (π1, π2) = (π`2 , π
(0)
2 ), where π

(0)
2 < π`2 . In particular, π

(0)
2 < π`2 < π`1 < π

(0)
1 ,

where the second inequality follows from Proposition 4.3.

Next, we show that the optimal weight π1 of bank 1 is a decreasing function of π2. For a fixed π2,

let π̄1(π2) be the optimal response by bank 1, i.e., ∂
∂π1

P (π̄1(π2), π2) = 0. Differentiating both the left

and right hand side with respect to π2 yields ∂2

∂π1∂π2
P (π̄1(π2), π2) + ∂2

∂π2
1
P (π̄1(π2), π2)× ∂

∂π2
π̄1 = 0.

From the convexity of P and Lemma B.2, it follows that π̄1(π2) is decreasing, and therefore π̄−11 (π1)

is decreasing. Analogously, π̄2(π1) is a decreasing function.

We have already proved that π̄1(π
`1) = π

(0)
1 and π̄2(π

`2) = π
(0)
2 , where π

(0)
2 < π`2 < π`1 < π

(0)
1 .

Notice that π̄−11 (π
(0)
1 ) = π`1 > π

(0)
2 = π̄2(π

`2) > π̄2(π
(0)
1 ). Define π1,r := π̄1(0). It follows that

0 = π̄−11 (π1,r) ≤ π̄2(π1,r). By continuity, there exists π∗1 ∈ (π
(0)
1 , π1,r] such that π̄−11 (π∗1) = π̄2(π

∗
1).

The point (π∗1, π̄2(π
∗
1)) is by definition the Nash equilibrium. Because π∗1 > π`1 and π̄2(π

∗
1) <

π̄2(π
`2) = π

(0)
2 < π`2 , we get the thesis.

Proof of Proposition 4.6

For i = 1, 2, define A∗i := {π∗i,1Z1 + π∗i,2Z2 + `i ≤ 0} and ASi := {πSi,1Z1 + πSi,2Z2 + `i ≤ 0}. Hence,

A∗liq := Aliq(π∗1, π
∗
2) = A∗1∪A∗2 and ASliq := Aliq(πS1 , π

S
2 ) = AS1 ∪AS2 . Similarly, A∗sim := Asim(π∗1, π

∗
2) =

A∗1 ∩ A∗2 and ASsim := Asim(πS1 , π
S
2 ) = AS1 ∩ AS2 . From Proposition 4.3 and Theorem 4.5 it follows

that π∗2,1 < πS2,1 < πS1,1 < π∗1,1. Because `1 and `2 are sufficiently close, these allocations belong to

the interval [12 ,
γ2

γ1+γ2
]. First, compare the events B1 := AS2 ∩ (A∗2)

c and B2 := A∗2∩ (AS2 )c, where Ac

denotes the complement of A. It follows from assumption A.1 and the inequality 1
2 ≤ π∗2,1 < πS2,1
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that P (B1) ≥ P (B2). Since A∗sim ⊂ (ASsim \B1) ∪B2, we get that P (A∗sim) < P (ASsim).

Next, compare the events C1 := A∗1 ∩ (AS1 )c and C2 := AS1 ∩ (A∗1)
c. From Assumption A.1 and

the fact that 1
2 ≤ πS1,1 < π∗1,1, it follows that P (C1) ≥ P (C2). Since ASliq ⊂ (A∗liq \ C1) ∪ C2, we get

that P (A∗liq) > P (ASliq), which concludes the proof.

Proof of Theorem 5.1

Notice that TC(π) = 2P (π) − S(π). From the proof of Theorem 4.5 we know that ∂
∂π1

(2P −
S)(π

(0)
1 , π`1) < 0. From the convexity of TC(·), it follows that there exists a unique π

(1)
1 such that

∂
∂π1

TC(π
(1)
1 , π`1) = 0, where π

(1)
1 > π

(0)
1 . Similarly, ∂

∂π2
TC(π`2 , π

(1)
2 ) = 0 for π

(1)
2 < π

(0)
2 . Hence,

π
(1)
2 < π

(0)
2 < π`2 < π`1 < π

(0)
1 < π

(1)
1 .

Given π2, let π̄SP1 (π2) be the minimizer of TC(·, π2), i.e., ∂
∂π1

TC(π̄SP1 (π2), π2) = 0. As in

the proof of Theorem 4.5, differentiating the left and right hand side with respect to π2 yields
∂2

∂π1∂π2
TC(π̄SP1 (π2), π2) + ∂2

∂π2
1
TC(π̄SP1 (π2), π2)× ∂

∂π2
π̄SP1 = 0. It follows that

∂

∂π2
π̄SP1 = −

∂2

∂π1∂π2
TC(π̄SP1 (π2), π2)

∂2

∂π2
1
TC(π̄SP1 (π2), π2)

= −
∂2

∂π1∂π2
P (π̄SP1 (π2), π2)

∂2

∂π2
1
(P − 1/2S)(π̄SP1 (π2), π2)

<
∂

∂π2
π̄1 < 0.

Therefore, 0 > ∂
∂π1

(π̄SP1 )−1 > ∂
∂π1

π̄−11 . Since π̄SP2 (π`2) = π
(1)
2 < π

(0)
2 = π̄2(π

`2) and ∂
∂π2

π̄SP1 <
∂
∂π2

π̄1, we get π̄SP2 < π̄2 on [π`2 , 1]. Analogously, (π̄SP1 )−1 > π̄−11 on [π`1 , πSP1,r ], where πSP1,r :=

π̄SP1 (0). By continuity, there exists π∗,SP1 ∈ (π
(1)
1 , πSP1,r ] such that (π̄SP1 )−1(π∗,SP1 ) = π̄SP2 (π∗,SP1 ) and

π∗,SP1 > π∗1. This completes the proof of the theorem.

Proof of Proposition 5.3

It is enough to observe that ECi(π) + Ti(π) − TC(π) does not depend on πi. Hence, for any π−i

the allocation πi that minimizes ECi(πi, π−i) + Ti(πi, π−i) also minimizes TC(πi, π−i).

Proof of Proposition 5.2

By symmetry, TC∗(d/2− ε) = TC∗(d/2 + ε). It follows that d
2 is a critical point for TC∗(·).

Notice that if ` (resp. `1) is the distance to liquidation for the bank with asset value w and

debt d (resp. w1 := w
2 and d1), then a bank with asset value w2 := w

2 and debt d2 := d − d1 has

distance to liquidation `2 := 2` − `1. Let π∗1(`1) and π∗2(`1) be the allocations in equilibrium for

bank 1 and bank 2 in a system with two banks of equal size w
2 and distance of liquidation `1 and

`2. Next, we prove that ∂
∂`1
π∗1|`1=` = − ∂

∂`1
π∗2|`1=`. Because π∗1(`1) and π∗2(`1) solve the system of

equations ∂
∂π1

P (π1, π2) = 0, ∂
∂π2

P (π1, π2) = 0, differentiating with respect to `1 yields

∂2

∂π1∂`1
P (π∗1, π

∗
2) +

∂2

∂π21
P (π∗1, π

∗
2)

∂

∂`1
π∗1 +

∂2

∂π1∂π2
P (π∗1, π

∗
2)

∂

∂`1
π∗2 = 0, (B.2)

∂2

∂π2∂`1
P (π∗1, π

∗
2) +

∂2

∂π1∂π2
P (π∗1, π

∗
2)

∂

∂`1
π∗1 +

∂2

∂π22
P (π∗1, π

∗
2)

∂

∂`1
π∗2 = 0.
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This is a linear system in ∂
∂`1
π∗1 and ∂

∂`1
π∗2. After evaluating its solution at `1 = `, and noticing

that π∗1(`) = π∗2(`), we get that ∂
∂`1
π∗1|`1=` = − ∂

∂`1
π∗2|`1=`.

Consider now TC∗ as a function of (`1, π1, π2). Recall that ∂
∂π1

TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) = 0,
∂
∂π2

TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) = 0. Furthermore, it can be easily verified that ∂2

∂`21
TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) =

0. It follows that, after evaluating at `1 = `, π1 = π∗1(`), π2 = π∗2(`),

d2

d`21
TC∗ = 2

∂2

∂`1∂π1
TC∗

∂

∂`1
π∗1 + 2

∂2

∂`1∂π2
TC∗

∂

∂`1
π∗2

+
∂2

∂π21
TC∗

(
∂

∂`1
π∗1

)2

+
∂2

∂π22
TC∗

(
∂

∂`1
π∗2

)2

+ 2
∂2

∂π1∂π2
TC∗

∂

∂`1
π∗1

∂

∂`1
π∗2

= 2

(
∂2

∂`1∂π1
TC∗ − ∂2

∂`1∂π2
TC∗

)
∂

∂`1
π∗1

+

(
∂2

∂π21
TC∗ +

∂2

∂π22
TC∗ − 2

∂2

∂π1∂π2
TC∗

)(
∂

∂`1
π∗1

)2

.

From Theorem 4.5 we get that ∂
∂`1
π∗1 < 0. Hence, we need to prove that

2

(
∂2

∂`1∂π1
TC∗ − ∂2

∂`1∂π2
TC∗

)
+

(
∂2

∂π21
TC∗ +

∂2

∂π22
TC∗ − 2

∂2

∂π1∂π2
TC∗

)(
∂

∂`1
π∗1

)
> 0.

Rewrite TC∗ as P + M = 2P − S, where P is the potential function, S the sum of idiosyncratic

terms in the potential function and M the mixed term. Since ∂
∂`1
π∗1 solves equations B.2, the

expression simplifies as

2

(
∂2

∂`1∂π1
M − ∂2

∂`1∂π2
M

)
−
(
∂2

∂π21
S +

∂2

∂π22
S

)(
∂

∂`1
π∗1

)
.

It is enough now to show that both terms are positive. ∂2

∂π2
1
S > 0 and ∂2

∂π2
2
S > 0 because the Nash

equilibrium minimizes the idiosyncratic terms of the potential function. For `1 = `, π1 = π∗1(`), π2 =

π∗2(`) we have

∂2

∂`1∂π1
M − ∂2

∂`1∂π2
M = −2w2

1((π∗1)2γ1 + (1− π∗1)2γ2)E[(Z1 − Z2)1{`+π∗1Z1+(1−π∗1)Z2≤0}].

Hence, we are left to show that the expectation is negative. This follows immediately from the fact

that π∗1 ≥ 1
2 .
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