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Abstract

In developing economies with large productivity gaps, reallocation of workers both
across space and sectors is crucial for economic development as it allows for a more
efficient allocation of human capital. In this paper, we examine how rising tempera-
tures affect the pace of reallocation of workers within local labor markets. Specifically,
relying on six decades of district-level census data from India, we explore how decadal
changes in temperature have affected urbanization and structural transformation within
districts. We find evidence that rising temperatures are associated with lower rates of
urbanization, higher shares of workers in agriculture, and lower shares of workers in non-
agriculture. These effects are concentrated in districts with sparse road infrastructure
networks, suggesting that higher temperatures exacerbate liquidity constraints faced
by rural, isolated households, and subsequently limit rural-urban and sectoral mobil-
ity. Our findings demonstrate that the impacts of climate change can be unequal even
within a country, and are aggravated by underdevelopment.
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1 Introduction

It is well-established that developing economies are characterized by large productivity gaps

across the economy—for example, between rural and urban areas (Lewis, 1954; Young, 2013)

and between agricultural and non-agricultural sectors (McMillan et al., 2014; Gollin et al.,

2014; Gollin and Rogerson, 2014). Reallocation of workers both across space and sectors is

thus crucial for economic development as it allows for a more efficient allocation of human

capital. At the same time, rising temperatures under climate change may potentially impede

the pace of labor reallocation in developing economies, where the vast majority of workers

engage in rural agriculture. Higher temperatures adversely impact crop yields (Schlenker

and Roberts, 2009), and thus, in presence of liquidity constraints and costly switching, it is

possible that higher temperatures may slow labor reallocation.

In light of this, this paper addresses two related empirical questions. The first question

explores whether rising temperatures under climate change affect the pace of reallocation

of workers within local labor markets — namely through urbanization and structural trans-

formation — with important implications for economic growth. The second question in-

vestigates the extent to which access to transport infrastructure modulates the relationship

between rising temperatures and reallocation. Importantly, for spatial or sectoral arbitrage

to take place, there must be both a productivity gap and a sufficiently low cost of mobility.1

We are thus interested in understanding whether extensive transport infrastructure — well-

developed road networks, in particular — can facilitate the reallocation of workers from low

to high productivity sectors in the presence of climate change.

We address these questions in the context of India, where rural-urban mobility is low

(Munshi and Rosenzweig, 2016) and structural transformation, particularly the movement

from agriculture to manufacturing, is slow and “stunted” (Binswanger-Mkhize, 2013). We
1A large literature has highlighted various barriers to spatial and/or sectoral reallocation of workers.

This includes credit constraints (Banerjee and Newman, 1993), information frictions (Bryan et al., 2014),
dependency on insurance networks in rural areas (Munshi and Rosenzweig, 2016), state boundaries (Kone
et al., 2018) and poor transport infrastructure (Asher and Novosad, 2019; Shamdasani, 2019).
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are particularly interested in local labor market responses, so we focus on rural-urban and

sectoral movements within a district. We develop a simple model that highlights how rising

temperatures can affect local labor reallocation, and how the presence of road infrastructure

can modulate this relationship. We then assemble a district-level panel data set spanning

six decades, combining measures of urbanization rates and worker shares across agricultural

and non-agricultural sectors with decadal temperature and precipitation variables that are

constructed using monthly gridded weather data. We further incorporate a baseline district-

level measure of road network density in order to explore the role of transport infrastructure

in modulating these relationships. Our identification strategy relies on the assumption—

in line with the recent climate–economy literature (Dell et al., 2014)—that, conditional on

district and region-by-year fixed effects, decade-to-decade fluctuations in weather are quasi-

random.

We find two main results. First, we find that rising temperatures inhibit urbanization and

structural transformation in Indian districts. The magnitude of these effects are economically

meaningful—a 1◦C increase in mean decadal temperatures in an average Indian district

leads to a 5.6% decline in the share of the total population residing in urban areas, a 5.9%

increase in the share of the total population engaged in agriculture and a 7.4% decline in

the share of the total population engaged in non-agriculture. Second, we find that transport

infrastructure plays an important role in mitigating these effects. While higher temperatures

lead to an increase in the agricultural labor share and a reduction in urbanization and non-

agricultural worker share in districts with sparse road networks, they lead to a decline in the

agricultural labor share and no change in the urbanization rate and non-agricultural worker

share in districts with dense road networks.

Our results are consistent with lower agricultural incomes under higher temperatures

leading to binding liquidity constraints for rural, isolated households in sparsely connected

districts. This, in turn, reduces the ability of these workers to move from rural to urban

areas and/or to move out of agriculture into non-agriculture. On the other hand, workers in
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densely connected districts are able to move out of agriculture when they experience lower

agricultural incomes under higher temperatures. Taken together, these results suggest that

the impacts of rising temperatures can be unequal even within a country, and are exacerbated

by underdevelopment.

Our paper contributes to two strands of the economics literature. First, we contribute to

the literature that studies the response of rural-urban and sectoral movements to changes in

weather and climate. Regarding rural-urban movements, Henderson et al. (2017) document

that long-term increases in dryness have no average impact on urbanization in Sub-Saharan

Africa, but that they do increase urbanization in the subset of regions with manufacturing

centers. Cattaneo and Peri (2016) document that higher temperatures reduce rural-to-urban

migration rates in low-income countries, consistent with binding liquidity constraints. Peri

and Sasahara (2019) find that higher temperatures lead to a reduction in rural-to-urban

migration in low-income countries, and an increase in rural-to-urban migration in middle-

income countries.2 Regarding sectoral reallocation, Emerick (2018) finds that transitory

high rainfall shocks in India increase the non-agricultural labor share, due to an increased

demand for local non-tradables. Also looking at India, Colmer (2019) finds that short-term

increases in temperature are associated with a reduction in the agricultural labor share at

the district level. The discrepancy between our results and Colmer (2019) may be due to

the difference in the sample period used (1961–2011 vs. 2003–2008), but is also in line

with existing literature that suggests the long-run impacts of higher temperatures may differ

from short-run impacts (Hornbeck, 2012; Auffhammer and Schlenker, 2014; Dell et al., 2014;

Moore and Lobell, 2014; Burke and Emerick, 2016).

Second, we contribute to the expansive literature on the effects of transport infrastructure.

The papers most relevant to our current study examine the interactions between transport

infrastructure and either sectoral reallocation or weather shocks. Regarding sectoral reallo-

cation, Asher and Novosad (2019) show that the construction of paved roads in rural India
2Our findings on urbanization are consistent with Peri and Sasahara (2019), who classify India as a

low-income country.
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leads to reallocation of workers from agriculture to non-agriculture. Shamdasani (2019) finds

that this sectoral reallocation is heterogeneous across space—households within close prox-

imity to town centers move out of agriculture, while remote, isolated households still remain

in agriculture. Regarding infrastructure and weather shocks, Burgess and Donaldson (2010)

show that railroad access in colonial era India mitigates the impact of short-run adverse

weather shocks on famines by enabling openness to trade.

Our paper makes several contributions to the literature. First, we provide evidence

of sectoral labor reallocation in response to slow onset changes in climate. These findings

complement the existing literature, which has to date focused either on the response of rural-

urban movements to slow onset changes in climate (Cattaneo and Peri, 2016; Henderson et al.,

2017; Peri and Sasahara, 2019) or of sectoral reallocation to short-term (annual) weather

fluctuations (Emerick, 2018; Colmer, 2019). Second, our use of sub-national data allows us

to track local labor market responses, focusing on movements within a district. This margin

has been shown to be especially important in the context of India (Kone et al., 2018) and

hence our results complement earlier work that has studied movements over greater distances.

Third, we provide evidence that, in the modern era, access to well-developed transport

infrastructure networks can modulate local labor market responses to higher temperatures,

complementing existing evidence on the role of infrastructure in modulating rainfall shocks

during the colonial period (Burgess and Donaldson, 2010). Lastly, our data allows us to

examine whether regions within a country respond differently to rising temperatures. We find

that the effects of higher temperatures are spatially heterogeneous, which suggests that there

are important within-country dynamics to consider when thinking about the implications of

climate policy.

Our findings demonstrate that underdevelopment—measured here by sparse road infras-

tructure networks—exacerbates the negative impacts of climate change by hindering poten-

tial reallocation of workers from low to high productivity sectors. Recent work has found

that trade (movement of goods) is going to be a significant margin of adaptation to climate
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change (Gouel and Laborde, 2018). We argue that, in the context of India, worker mobility

within local labor markets—movement of human capital between rural and urban areas, as

well as between agricultural and non-agricultural sectors—could serve as an important form

of adaptation to climate change. Furthermore, given that earlier work has documented that

mobility costs such as state boundaries act as significant barriers to labor mobility (Kone

et al., 2018), our work emphasizes the importance to reconsider and adjust mobility barriers,

such as sparse road networks, in light of climate change.

The rest of this paper is organized as follows. In Section 2, we describe a two-period Roy-

Borjas model that relates agricultural productivity to rural-urban and sectoral movements

at varying levels of switching costs. In Section 3, we detail our data sources and present

descriptive statistics. In Section 4 we describe our empirical specification. In Section 5, we

discuss our results and present robustness checks. In Section 6, we conclude.

2 Model

2.1 Set-up

We develop a simple, two-period Roy-Borjas model (Roy, 1951; Borjas, 1987) that explores

the costs and benefits to individuals of choosing sectors within an economy and captures the

potential existence of binding liquidity constraints. More specifically, individuals compare

their potential incomes (dependent on weather conditions) in different sectors, and make the

switching decision based on income differentials net of switching costs. Cattaneo and Peri

(2016) present a similar model that explains the hump-shaped relationship between migration

rates and income across countries. Our model, however, focuses on the optimizing choices

of workers selecting between sectors within a district (e.g. rural vs. urban, agricultural vs.

non-agricultural). In addition, we integrate heterogeneity in switching costs and explore how
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it affects workers’ sectoral switching decisions.3

To begin, consider a district with two sectors, “agriculture” and “non-agriculture,” in-

dicated by the superscripts A and N , respectively.4 Here we use A and N for notation

purposes. The two sectors can be generalized to any “low” and “high” productivity sectors

such as urban and rural sectors; therefore, in addition to sector switching between agriculture

and non-agriculture, the model can also be used for binary choices such as within-district

rural-urban migration. In the first period, each individual works either in the agricultural

or non-agricultural sector and earns the wage for that sector. Individuals differ in their

skills, and their wages in either sector depend on their skills. At the start of the second

period, individuals in the agricultural sector choose between remaining in their initial sector

or switching to the other sector, depending on the potential wages they would earn in each

sector in the second period. Workers in the agricultural sector A earn wA
i , while workers in

the non-agricultural sector N earn wN
i . To simplify the model, we assume that individuals

have a zero discount rate. We also assume that the wages in a given sector are identical

across the two periods. The wage of individual i in sector J (J = A,N) in the first and

second periods is given by:

wJ
i = µJ + βJεi (1)

where µJ is the baseline wage in sector J earned by a typical worker (with median skills),

and βJεi captures the portion of wage attributed to individual i’s de-meaned value of skills.

Median wages in both sectors depend on temperature T , which we write as µJ(T ). The

dependence of wages on temperature is motivated by empirical evidence that higher temper-

atures reduce agricultural productivity (Schlenker and Roberts, 2009; Taraz, 2018) and also

agricultural wages (Colmer, 2019). The productivity of each sector varies from the other

and the non-agricultural sector is more productive than the agricultural sector (Gollin et al.,
3In our empirical analysis, we will exploit spatial variation in road network densities as a source of

heterogeneity in switching costs.
4We abstract away from sectoral switching across different districts, as cross-district migration rates in

India are relatively low (Kone et al., 2018).
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2014), which is reflected in the fact that: µN(T ) > µA(T ),∀T , or, in other words, for any

given temperature the median wage in the non-agricultural sector will always be higher than

the median wage in the agricultural sector at that same temperature.5 In the Indian context,

there is also empirical evidence that higher temperatures reduce non-agricultural productiv-

ity (Somanathan et al., 2015), but that these reductions are smaller in magnitude than the

impacts on the agricultural sector (Jain et al., 2019).6 Mathematically, we can summarize

these assumptions as:
∂µA

∂T
<
∂µN

∂T
< 0 (2)

In equation 1, the term βJ captures the return to skills in sector J and the term εi

represents the skills of individual i. Without loss of generality, we assume that εi is normally

distributed with an average of 0 and a standard deviation of 1. For simplicity, we assume that

the skills of an individual are perfectly transferable from the agricultural sector to the non-

agricultural sector. However, the returns to skills in the non-agricultural sector are different

than that in the agricultural sector. Following evidence from the existing literature (Kijima,

2006; Azam, 2012), we assume that the returns to skills are higher in the non-agricultural

sector than the agricultural sector: βN > βA.

Additionally, we assume that there is a cost C to switching between agriculture and

non-agriculture. To simplify the analysis, we express switching costs C in “time-equivalent”

terms, c; that is, c = C/wA
i . This switching cost could capture informational frictions and

search costs more broadly (Bryan et al., 2014), or could capture specifically the cost to

switch sectors due to poor transport infrastructure. Based on existing empirical literature

(Asher and Novosad, 2019; Gertler et al., 2019), we assume that increasing the quality of

road networks (r) reduces sectoral switching costs. Thus we can write switching costs as a

decreasing function of road networks: c(r), and we have ∂c
∂r
< 0. As in Grogger and Hanson

5Similarly we can assume that the urban sector is more productive than the rural sector (Henderson et al.,
2017)

6This India-specific evidence is consistent with cross-country evidence that, in poor countries, the agricul-
tural sector is more sensitive to higher temperatures than the non-agricultural sector, but that both respond
negatively to higher temperatures (Dell et al., 2012).

8



(2011) and Cattaneo and Peri (2016), we assume that individuals’ preferences are linear in

their net wages (wages net of sectoral switching costs). An individual will choose to switch

sectors if and only if the income earned in the non-agricultural sector (net of switching costs)

exceeds the net income earned in the agricultural sector.7 In particular, an individual i in

the agricultural sector A will choose to switch to the non-agricultural sector N if:

µN(T ) + βNεi − c(r) > µA(T ) + βAεi. (3)

Rearranging, we can solve this inequality to see that an individual will choose to switch to

the non-agricultural sector if:

εi >
µA(T )− µN(T ) + c(r)

βN − βA
(4)

Following Cattaneo and Peri (2016), we can think of equation 4 as an “incentive-compatibility”

constraint: individuals from the agricultural sector will switch to the non-agricultural sec-

tor only if their income differentials gained from the switch (non-agricultural wages minus

their agricultural wages) exceed the switching cost. In light of the Borjas (1987) selection

model, equation 4 predicts positive selection, since the returns to skills are higher in the non-

agricultural sector (βN − βA > 0). In other words, all the individuals that choose to switch

sectors will have skills above some threshold determined by sector productivity differentials,

switching costs and the difference in returns to skills. Ceteris paribus, if the non-agricultural

sector is more productive than the agricultural sector by a bigger margin, if switching costs

are lower, or if the returns to skills are higher in non-agriculture by a bigger margin, then a

bigger fraction of the agricultural workers will switch sectors.

An individual’s decision to switch sectors must also satisfy a second constraint: a “feasi-
7In general, an individual will choose to switch sectors if and only if the potential income differential

exceeds the switching costs. However, in our specified model, no individual will switch from the non-
agricultural sector to the agricultural sector since wN

i > wA
i ; therefore the (negative) income differential

from sector N to A will never afford the switching costs.
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bility” constraint. Let us assume that sectoral switching happens at the start of the second

period, that individuals cannot borrow due to a liquidity constraint, and that sectoral switch-

ing costs must be paid up front. Then, an individual can switch sectors only if the costs

of switching do not exceed their total savings at the end of period 1. Given our simplified

model, with no income sources except for labor, the total savings can be no greater than wA
i .

Thus, we can write the “feasibility constraint” as:

µA(T ) + βAεi > c(r), (5)

which we can rearrange to write as:

εi >
c(r)− µA(T )

βA
(6)

Equation 6 is also a positive selection equation where only individuals in the agricultural

sector with skills above the threshold determined by their wages, switching costs and returns

to skills in agriculture will be able to afford the switch. Ceteris paribus, if the agricultural

productivity is higher, if switching costs are lower, or if the returns to skills in agriculture

are higher, then a bigger fraction of the agricultural workers can overcome the liquidity

constraint and switch sectors if they choose to do so.

2.2 Propositions

The fraction of individuals who will switch from the agricultural sector to the non-agricultural

sector is equal to one minus the cumulative density of a normal distribution at the highest

of the two thresholds defined in Equations 4 and 6. For any given district, only one of the

two thresholds can be binding, and thus we derive the following proposition:

Proposition 1. The overall effect of a temperature increase on the rate of sectoral switching

is ambiguous. If the incentive-compatibility constraint binds, then an increase in average

10



temperature will be associated with an increase in the rate of sectoral switching to the non-

agricultural sector. If, on the other hand, the feasibility constraint binds, then an increase

in average temperature will be associated with a decrease in the rate of sectoral switching to

the non-agricultural sector.

Proof. For districts where the feasibility-compatibility constraint binds, the share of people

switching to the non-agricultural sector is equal to the share of the population with skills

above that threshold, given by the expression:

1− Φ

(
c(r)− µA(T )

βA

)
(7)

where Φ is the CDF of a standard normal distribution. The expression is increasing in µA(T ),

because the CDF Φ is a monotonically increasing function. Given our earlier assumption

that increases in temperature T decrease µA(T ), we have that the expression is decreasing

in T .

On the other hand, for districts where the incentive-compatibility constraint binds, the

share of people switching to the non-agricultural sector is equal to the share of the population

with skills above that threshold, given by the expression:

1− Φ

(
µA(T )− µN(T ) + c(r)

βN − βA

)
(8)

where Φ is the CDF of a standard normal distribution. The expression is decreasing in

µA(T ) − µN(T ), because the CDF Φ is a monotonically increasing function. Given our

earlier assumption that increases in temperature T decrease µA(T ) more than µN(T ), we

have that the expression is increasing in T .

Given our interest in road network quality, we also present some propositions related

to road network heterogeneity. If the returns to skill in the non-agricultural sector are

sufficiently higher than the returns to skill in the agricultural sector then, for any given
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initial temperature T , there is a value of road quality r∗, such that the incentive compatible

and feasibility thresholds are equal. We consider this value as marking the difference between

high quality (H) and low quality road network districts (L).8 Given the distinction between

these two types of districts, we generate the following two predictions:

Proposition 2. For districts with a sufficiently low quality road network, an increase in

average temperature is associated with a decrease in the rate of sectoral switching.

Proof. For districts whose road quality is lower than r∗, defined as low quality road network

districts, L, only the feasibility threshold (6) is binding. Hence the share of people switching

to the non-agricultural sector is equal to the share of individuals with skills above that

threshold, given by:

1− Φ

(
c(r)− µA(T )

βA

)
(9)

As derived above, we have that this expression is decreasing in T . Hence, for districts with a

sufficiently low quality road network, an increase in average temperature is associated with

a decrease in the rate of sectoral switching.

Proposition 3. For districts with a sufficiently high quality road network, an increase in

average temperature is associated with an increase in the rate of sectoral switching.

Proof. For districts whose road quality is higher than r∗, defined as high quality road network

districts, L, only the incentive-compatibility threshold (6) is binding. Hence the share of

people switching to the non-agricultural sector is equal to the share of individuals with skills

above that threshold, given by:

1− Φ

(
µA(T )− µN(T ) + c(r)

βN − βA

)
(10)

As derived above, we have that this expression is increasing in T . Hence, for districts with a

8The specific value is given by c(r∗) = µA(T )βN − µN (T )βA

βN − 2βA
.
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sufficiently high quality road network, an increase in average temperature is associated with

a increase in the rate of sectoral switching.

3 Data

3.1 Census Data

We use data from the decadal national Census of India, spanning the years 1961 to 2011.

Specifically, we extract outcome measures from the Primary Census Abstract (PCA) Data

Tables, which provide summaries of district-level demographic and economic indicators.9

For each census year, we construct three key outcome measures at the district level: the

share of the total population residing in urban areas, the share of the total population who

are agricultural laborers, and the share of the total population who are non-agricultural

workers.10

To account for the fact that districts split and boundaries are adjusted over time, we

use concordance tables from Kumar and Somanathan (2017) to construct consistent district

boundaries that span the same area between 1961 and 2011. Specifically, we map every

district in each census year to its parent district in 1961.11 This results in 288 consistent

districts, as illustrated in Figure 1a. The various splits and boundary changes between 1961
9For the years 1961-1991, we use data from Vanneman and Barnes (2000). For the years 2001 and 2011,

we use data from the Census website. The data can be accessed at http://www.censusindia.gov.in/
DigitalLibrary/Tables.aspx.

10We define non-agricultural workers as the sum of workers across two census categories: household in-
dustry workers and other workers. The 2011 Census defines household industry as “an industry conducted
by one or more members of the household at home or within the village in rural areas and only within the
precincts of the house where the household lives in urban areas”, and other workers as “workers other than
cultivators, agricultural laborers or workers in Household Industry”. Examples given for the latter category
include workers engaged in the public sector, manufacturing, construction, trade, business etc.

11For example, Kancheepuram and Thiruvallur districts in Tamil Nadu were formed when Chengalpattu
district split in 2001. In this case, we designate Chengalpattu as the consistent district from 1961 to 2011.
There are also instances where a district does not have a unique parent district— this happens when a
district is carved out of two or more original districts. For these cases, we create a “greater” parent district
which is the superset of all parent districts. As an example, Narmada district in Gujarat was carved out
of two districts— Vadodara and Bharuch— in 2001, therefore we designate “Vadodara and Bharuch” as the
consistent district boundary from 1961 to 2011.
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and 2011 can be deduced from the grey boundaries that trace out the 2011 Census districts

delineation. Figure 1b highlights the 287 districts across six regions that form our analysis

sample.12

3.2 Weather Data

We use gridded monthly data on temperature and precipitation from the Terrestrial Precip-

itation: Monthly Time Series (1900–2014), version 4.01, and the companion Terrestrial Air

Temperature data set.13 We match the grid points to each of our districts by taking the

weighted average of all grid points within 100 kilometers of each district’s centroid, using

weights that are the inverse of the squared distance between the grid point and the district

centroid. We focus on temperature and precipitation during the main agricultural growing

season months (June through February) as these have the greatest impacts on agriculture.

Given our interest in responses to slow-onset changes in climate, we aggregate the monthly

weather variables to ten-year averages.

3.3 Yield Data

We use data on yields from the Village Dynamics in South Asia Meso Dataset (VDSA),

compiled by researchers at the International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT, 2015), spanning the years 1996 to 2010. We construct an aggregate yield

measure that quantifies yields across all the crops in VDSA that have non-missing price

data,14 using 1966-1970 crop prices as weights. We also construct yield measures separately

for rice and wheat.
12We classify districts into six regions based on the Government of India’s administrative regional classi-

fication. Lakshadweep is dropped from the analysis sample due to lack of weather records.
13Willmott, C. J. and K. Matsuura (2015). Terrestrial Precipitation: 1900-2014 Gridded Monthly Time Se-

ries (1900 - 2014) (V 4.01), http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.
GlobalTsP2014.html, Willmott, C. J. and K. Matsuura (2015). Terrestrial Air Temperature: 1900-2014
Gridded Monthly Time Series (1900 - 2014) (V 4.01), http://climate.geog.udel.edu/~climate/html_
pages/Global2014/README.GobalTsT2014.html

14These crops are rice, wheat, sugarcane, cotton, groundnut, sorghum, maize, pearl millet, finger millet,
barley, chickpeas, pigeon pea, sesame, rapeseed and mustard, castor, and linseed.

14

http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsP2014.html
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsP2014.html
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GobalTsT2014.html
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GobalTsT2014.html


3.4 Infrastructure Data

We use data on road infrastructure from the Village Dynamics in South Asia Meso Dataset

(VDSA), compiled by researchers at the International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT, 2015). In particular, we use the total length of roads in kilometers

in each district in 1970— the earliest year for which this data is available. We construct a

district-level road density measure by dividing the total length of roads by the total surface

area, computed in ArcGIS from the consistent district boundaries outlined in Figure 1a.

Figure 2a summarizes the distribution of the road density measure across all districts.

We create a binary measure that takes the value one if road density in a district is above

the median level of the full distribution (0.11km/km2, as indicated by the solid vertical line

in the figure), and zero otherwise. Figure 2b plots a heat map of the road density measure

across all districts, with shades of red denoting districts with above median road density,

and shades of blue denoting districts with below median road density. Districts with above

median road density are scattered across the country, with a greater concentration in two

regions: the East and the South.

3.5 Descriptive Statistics

Table 1 provides summary statistics across the three data sets, reported for each census year.

We report means and standard deviations of key variables for all districts in the sample, and

separately for districts with below and above median road density.

First, the table describes the road density measure. The first row in Panel A shows that

road density is 0.183km/km2 on average across all districts in 1970. There is significant

heterogeneity in this measure— the mean road density in districts above the median level

is 0.316km/km2 (Panel C), which is more than five times higher than 0.0552km/km2, the

mean road density in districts below the median level (Panel B).

Next, the table summarizes the weather variables. The second row in Panel A confirms

that temperatures have been rising over time. The growing season average monthly temper-
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ature is 0.43 ◦C higher in 2011, relative to 1961. On the other hand, the third row in Panel A

suggests that growing season average monthly precipitation has not changed monotonically

over time— in fact, we see a decline of 9mm over the same time period. These patterns are

similar for both subgroups in Panels B and C.

Finally, the table summarizes the three outcome measures from the Census. The share of

total population residing in urban areas is 15.5% on average in 1961, and increases steadily

over time. By 2011, this share has increased to 26.3%. Agricultural labor shares and non-

agricultural worker shares have also increased over the decades. At each point of time, the

three measures are lower in districts with below median road density in Panel B, relative

to districts with above median road density in Panel C. It is interesting to note, however,

that agricultural labor shares increased at a faster pace in districts with below median road

density (107% growth between 1961 and 2011, compared to 67% growth in districts with

above median road density during the same period), while non-agricultural worker shares

increased at a faster pace in districts with above median road density, reaching 18% in 2011

(15.2% in districts with below median road density).

Figure 3 plots the spatial distribution of changes in the long-run climate and outcome

variables from 1961 to 2011, by district.15 Inland India has experienced much larger increases

in temperature, relative to the coastal areas (panel a). Perhaps unsurprisingly, inland India

has also experienced larger declines in precipitation compared to areas closer to the coast

(panel b). It is evident that temporal changes in the Census outcomes (panels c-e) are het-

erogeneous across space. The share of total population residing in urban areas has increased

by more than 17 percentage points in one-sixth of the districts, while another one-sixth of

the districts have experienced less than a 4 percentage points increase. The biggest gains in

agricultural labor shares over the decades appear to be concentrated among districts in the

Eastern, Central, and Southern regions, while the lower half of the Western and Northern

regions have experienced the smallest gains.
15Detailed plots of each of these measures in each decade can be found in Appendix B.
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4 Empirical Specification

To estimate the effect of climate on urbanization and structural transformation, we estimate

a regression of the form:

lnYjsrt =βlnTjsrt + γlnPjsrt + αj + αrt + εjsrt, (11)

where Yjsrt represents the outcome of interest — share of the total population residing in

urban areas, share of agricultural laborers or share of non-agricultural workers — in district

j, located in state s and region r, in year t (= 1961, 1971, 1981, 1991, 2001, 2011). Tjsrt

is the average temperature measured in ◦C over the growing season months (June through

February) in the past decade ending in year t, and Pjsrt is the average precipitation measured

in millimeters over the growing season months in the past decade ending in year t. αj is

a vector of district fixed effects that controls for any time-invariant district-specific factors

that may be correlated with climate or local economic patterns. αrt is a vector of region-

decade fixed effects that controls for any unobserved region-specific factors that may be

correlated with climate or local economic patterns over time. Lastly, εjsrt is an idiosyncratic

error term. We cluster our errors at the district level to allow for potential serial correlation

over time within each district. We also report Conley standard errors that allow for spatial

correlation up to 500km and arbitrary serial correlation in the error term (Conley, 1999).16

Additionally, we present results where we include state-specific linear time trends that control

for any smoothly varying changes over time that may be occurring at the state level.

Following Cattaneo and Peri (2016), the dependent variable in the regression is the

natural logarithm of Yjsrt, and it depends on the logarithm of Tjsrt and Pjsrt. The identifying

assumption is that, conditional on the inclusion of district and region-year fixed effects, along

with state-specific linear time trends, any remaining variation in decadal temperature and

precipitation is essentially random. This in turn allows for a causal interpretation of the β
16To implement Conley standard errors, we use Stata routines from Hsiang (2010) and Fetzer (2014).
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and γ coefficients as the effect of slow-onset changes in climate on urbanization and structural

transformation.

As described in Section 2, predictions for the sign of the coefficient of interest β are

theoretically ambiguous. If higher temperatures reduce agricultural productivity and sub-

sequently, the demand for agricultural labor, this should result in an outflow of workers

from agriculture to non-agriculture, as well as prompt rural-to-urban migration. Under this

scenario, we would expect β > 0 in regressions where urbanization or the non-agricultural

worker share is the dependent variable, and β < 0 in regressions where the share of agri-

cultural laborers is the dependent variable. On the other hand, lower agricultural incomes

under higher temperatures can lead to binding liquidity constraints, which in turn, reduce

the ability of workers to move across sectors and/or from rural to urban areas. (Cattaneo

and Peri, 2016; Peri and Sasahara, 2019). Under this scenario, we would find the opposite

results: β < 0 in regressions where urbanization or the non-agricultural worker share is the

dependent variable, and β > 0 in regressions where the share of agricultural laborers is the

dependent variable.

To examine whether transport infrastructure plays a role in modulating the effect of

climate change on urbanization and structural transformation, we allow for the net effects

of temperature and precipitation to vary based on the extent of road connectivity in a given

district. We interact the weather variables with a binary measure for road density and

estimate a regression of the form:

lnYjsrt =βlnTjsrt + γlnPjsrt + βDlnTjsrt ∗Dj + γDlnPjsrt ∗Dj

+ αj + αDt + αrt + εjsrt,

(12)

where Dj is a binary variable that takes the value 1 if the road density in district j is above

the median of the distribution across all districts in 1970, and 0 otherwise. We also include

αDt, heterogeneous-group-by-year fixed effect, which allows for each subgroup (districts with

below-median road density and districts with above-median road density) to have different
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unobserved shocks over time. All other terms are as defined above. In this specification, β

and γ capture the effects of decadal changes in temperature and precipitation respectively in

districts with sparse road networks, while β + βD and γ + γD capture the effects of decadal

changes in temperature and precipitation respectively in districts with dense road networks.

5 Results

5.1 Main Effects

Table 2 presents the main effects of temperature and precipitation on three key outcomes

— urbanization, share of agricultural laborers, and share of non-agricultural workers. For

each outcome, the first column presents regression estimates using Equation 11, while the

second column presents regression estimates with the inclusion of state-specific linear time

trends. We report results with standard errors clustered at the district level in parentheses

and with Conley standard errors that allow for spatial clustering up to 500km and arbitrary

serial correlation in brackets.

In Columns 1 and 2 of Table 2, we find a strong, negative effect of rising average tem-

peratures on urbanization rates. The estimated coefficient in Column 2 indicates that a 1%

increase in decadal temperature is associated with a 1.4% reduction in the share of the total

population residing in urban areas, and this effect is statistically significant at the 1% level.

This translates to a 5.6% decline in the urbanization rate for an average district in our sam-

ple, if the mean decadal temperature were to increase by 1◦C. At the same time, we find that

changes in decadal precipitation has no detectable impact on urbanization rates. Further,

the estimated coefficient is very small in magnitude — a 1% increase in decadal precipitation

is associated with a 0.01% reduction in the share of the total population residing in urban

areas. This is in line with recent studies that have documented significantly larger impacts

of temperature on agricultural production relative to rainfall in the Indian context (Burgess

et al., 2017; Colmer, 2019).
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Next, in Columns 3 and 4 of Table 2, we find a positive, statistically significant effect of

rising average temperatures on the share of agricultural laborers — a 1% increase in temper-

ature leads to a 1.4% increase in the share of the population engaged in agriculture. Finally,

in Columns 5 and 6 of Table 2, we find a strong, negative effect of rising average tempera-

tures on the share of non-agricultural workers that is statistically significant at the 1% level.

The estimated coefficient indicates that a 1% increase in temperature is associated with a

1.8% reduction in the share of the total population engaged in non-agriculture. Thus, if the

mean decadal temperature were to increase by 1◦C, this would result in a 5.9% increase in

the share of agricultural laborers and a 7.4% decline in the share of non-agricultural workers

for an average district in our sample. Consistent with the idea that temperature has larger

impacts on agricultural production relative to rainfall, we find that rising average precipi-

tation has a small, negative effect on the share of agricultural workers, and no detectable

effect on the share of non-agricultural workers.17

Taken together, these results are consistent with higher temperatures negatively impact-

ing agricultural yields and incomes. This, in turn, causes liquidity constraints to bind and

reduces the ability of workers to move from rural to urban areas and/or to move out of agri-

culture into non-agriculture. Rising temperatures thus appear to inhibit urbanization and

structural transformation in Indian districts. While the temperature-yield relationship has

been established previously in the literature, we replicate this result using data from our em-

pirical context in Appendix Table A1. Across three different yield measures, we consistently

find a strong, negative effect of rising average temperatures on yields — for example, a 1%

increase in temperature is associated with a 0.586% reduction in yields aggregated across all

crops in VDSA.
17We run an additional test where we run the same regression in Equation 11, dropping precipitation.

The coefficients on temperature are very similar: -1.342 (with urbanization as the dependent variable), 1.515
(with agricultural labor share as the dependent variable), and -1.750 (with non-agricultural worker share as
the dependent variable).
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5.2 Heterogeneous Effects

Table 3 presents heterogeneous effects of temperature by baseline road network density

on three key outcomes—urbanization, share of agricultural laborers, and share of non-

agricultural workers. For each outcome, the first column presents regression estimates using

Equation 12, while the second column presents regression estimates with the inclusion of

state-specific linear time trends. As before, we report results with standard errors clustered

at the district level in parentheses and with Conley standard errors that allow for spatial

clustering up to 500km and arbitrary serial correlation in brackets.

In Columns 1 and 2 of Table 3, we find that the strong, negative effect of rising average

temperatures on urbanization rates documented in Table 2 is concentrated among districts

with below median road density at baseline. The estimated coefficient indicates that a

1% increase in temperature in districts with sparse road networks is associated with a 2%

reduction in the share of the total population residing in urban areas, significant at the 1%

level. This would translate to a 8.3% decline in the urbanization rate for an average below-

median district in our sample, if the mean decadal temperature were to increase by 1◦C. On

the other hand, a 1% increase in temperature in districts with dense road networks has no

detectable impact on the urbanization rate—the p-value of the sum of coefficients is 0.6539.

Next, in Columns 3 and 4 of Table 3, we find contrasting effects of rising average tem-

peratures on the share of agricultural laborers across the two subgroups—we find a positive

effect in districts with below median road density at baseline, and a negative effect in dis-

tricts with above median road density at baseline. The estimated coefficient indicates that a

1% increase in temperature in districts with sparse road networks is associated with a 2.2%

increase in the share of the total population engaged in agriculture, significant at the 5%

level. On the other hand, the estimated coefficient indicates that a 1% increase in tempera-

ture in districts with dense road networks is associated with a 3.3% decline in the share of

the total population engaged in agriculture, significant at the 5% level.

Finally, in Columns 5 and 6 of Table 3, we find that the strong, negative effect of ris-
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ing average temperatures on the share of non-agricultural workers documented in Table 2

is driven entirely by districts with below median road density at baseline. The estimated

coefficient indicates that a 1% increase in temperature in districts with sparse road net-

works is associated with a 2.2% reduction in the share of the total population engaged in

non-agriculture, significant at the 1% level. This would translate to a 9.2% decline in the

share of non-agricultural workers for an average below-median district in our sample, if the

mean decadal temperature were to increase by 1◦C. On the other hand, a 1% increase in

temperature in districts with dense road networks has no detectable impact on the share of

non-agricultural workers—the p-value of the sum of coefficients is 0.8855.

Notice that the average effects of rising temperatures in districts with sparse road net-

works are larger than the average effects in the full sample. This suggests that underde-

velopment amplifies the impacts of rising temperatures on the degree of urbanization and

structural transformation in Indian districts. These results also demonstrate that transport

infrastructure networks within a district play an important role in mitigating the impacts of

rising temperatures.

5.3 Robustness Checks

Tables 4 and 5 present results from a series of robustness tests, outlined below.

In our main analysis, we restrict our sample to districts for which the dependent variable

is non-missing in all years. In Panel A of Table 4, we report results using the full unbalanced

sample. The estimated coefficients and significance levels are largely unchanged under the

inclusion of these unbalanced districts.

Next, in order to maximize power, our main empirical specification uses a binary variable

that takes the value one if road density in the district is above the median of our sample

distribution. In Panel B of Table 4, we use an alternate cutoff—we define High Road Density

as 1 if the road density measure is within the top 30th percentile of our sample distribution.

We find that the results are robust to this alternate cutoff. Finally, we show in Panel C of
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Table 4 that the results are also robust under a more conservative clustering of standard errors

at the state level, though we do lose precision on some of the estimates—for example, the

coefficient on the share of agricultural workers is now significant at the 5% level (compared

to 1% level when clustering at the district level).

In defining long-run changes in climate, we use decadal averages of temperature and

precipitation. In Panel A of Table 5, we show that our results are robust to using averages

defined over a five-year window instead — under this scenario, we compute long-run average

temperature and precipitation for outcomes in year t using monthly data from years t − 4

to t.18 Finally, in Panel B of Table 5, we show that the results also hold under an alternate

construction of the temperature and precipitation variables — here, we take the average

weather across all grid points that overlap with a district’s boundary.

6 Conclusion

As temperatures rise, productivity in the agricultural sector will drop relative to productivity

in other sectors, and it may be beneficial for individuals to move from agricultural to non-

agricultural sectors and/or from rural to urban areas. Earlier work on India has demonstrated

that individuals do switch sectors in response to short-term weather shocks, and that such

switching has important economic benefits (Emerick, 2018; Colmer, 2019).

In this paper, we add to this base of knowledge by exploring responses to slow-onset

changes in temperature, measured using decadal averages. Exploiting panel data spanning a

60-year period, we find that higher temperatures inhibit urbanization and structural trans-

formation in Indian districts, and that effects are heterogeneous across space. Specifically,

in districts with low road density, higher temperatures lead to an increase in the share of

the population engaged in agriculture and a reduction in urbanization rates and the share of

the population engaged in non-agriculture. On the other hand, in districts with high road

density, higher temperatures lead to a decline in the share of the population engaged in agri-
18Our results are also robust to using alternate (e.g. six-, seven-, eight-year etc. long) windows.
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culture, while urbanization rates and the share of the population engaged in non-agriculture

remain unchanged.

Our results add to a growing climate–economy literature, and support the idea that pub-

lic infrastructure can be a key element to facilitate private individual-level adaptation to

climate change. Future work should explore the interaction of higher temperatures, struc-

tural transformation and transport infrastructure in other low- and middle-income countries.

Another beneficial avenue for future work would be to investigate the role of other public

infrastructure and publicly funded assets in facilitating individual adaptation to climate

change.
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(a) Consistent district boundaries, 1961-2011

(b) Districts in agricultural states, by region

Figure 1: Figure illustrates the 288 consistent district boundaries over 1961-2011 in panel a,
and the 287 districts by region used in the analysis in panel b.

28



(a) Histogram

(b) Spatial Distribution

Figure 2: Figure plots the road density (km/km2) measure across all districts in panel a, and
illustrates the distribution of the same measure across space in panel b. The solid vertical
line in panel a denotes the median in the distribution (0.11km/km2).
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(a) Temperature (b) Precipitation

(c) Urbanization (d) Agricultural Labor Share (e) Non-Agricultural Worker
Share

Figure 3: Figure illustrates long-run changes in the ten-year average growing season tem-
perature (panel a) and precipitation (panel b), urbanization (panel c), share of agricultural
laborers (panel d) and share of non-agricultural workers (panel e) across all balanced dis-
tricts. These changes are computed by subtracting the value of each variable in 1961 from
the corresponding value in 2011.
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Table 1: Summary Statistics by Year

Panel A: All districts 1961 1971 1981 1991 2001 2011 Total
Road Density (continuous) - - - - - - 0.183

(0.352)

10-Year Avg. GS Temperature (Celsius) 23.88 23.97 24.04 24.05 24.11 24.31 24.06
(2.992) (3.056) (3.094) (3.121) (3.138) (3.117) (3.085)

10-Year Avg. GS Rainfall (100 mm) 1.246 1.123 1.279 1.153 1.123 1.153 1.180
(0.608) (0.560) (0.601) (0.575) (0.566) (0.608) (0.589)

Urbanization 0.155 0.168 0.198 0.219 0.235 0.263 0.206
(0.123) (0.126) (0.130) (0.137) (0.150) (0.164) (0.144)

Agricultural Labor Share 0.0708 0.0985 0.0952 0.0879 0.108 0.130 0.0983
(0.0511) (0.0528) (0.0562) (0.0514) (0.0575) (0.0661) (0.0588)

Non-Agricultural Worker Share 0.115 0.0907 0.102 0.108 0.149 0.165 0.122
(0.0503) (0.0475) (0.0497) (0.0523) (0.0646) (0.0692) (0.0621)

Panel B: Districts with below median road density 1961 1971 1981 1991 2001 2011 Total
Road Density (continuous) - - - - - - 0.0552

(0.0287)

10-Year Avg. GS Temperature (Celsius) 23.29 23.42 23.45 23.49 23.55 23.80 23.50
(3.920) (4.009) (4.038) (4.073) (4.099) (4.082) (4.027)

10-Year Avg. GS Rainfall (100 mm) 1.201 1.070 1.271 1.100 1.063 1.058 1.127
(0.464) (0.430) (0.523) (0.435) (0.457) (0.478) (0.471)

Urbanization 0.142 0.156 0.186 0.208 0.221 0.244 0.193
(0.114) (0.118) (0.120) (0.127) (0.136) (0.155) (0.133)

Agricultural Labor Share 0.0570 0.0833 0.0749 0.0703 0.0923 0.118 0.0826
(0.0407) (0.0471) (0.0498) (0.0425) (0.0528) (0.0642) (0.0535)

Non-Agricultural Worker Share 0.110 0.0853 0.0951 0.101 0.134 0.152 0.113
(0.0499) (0.0470) (0.0493) (0.0507) (0.0600) (0.0657) (0.0588)

Panel C: Districts with above median road density 1961 1971 1981 1991 2001 2011 Total
Road Density (continuous) - - - - - - 0.316

(0.467)

10-Year Avg. GS Temperature (Celsius) 24.49 24.55 24.66 24.64 24.69 24.85 24.65
(1.247) (1.303) (1.359) (1.400) (1.404) (1.393) (1.353)

10-Year Avg. GS Rainfall (100 mm) 1.294 1.179 1.287 1.208 1.186 1.252 1.234
(0.727) (0.667) (0.675) (0.691) (0.657) (0.708) (0.687)

Urbanization 0.168 0.181 0.211 0.230 0.250 0.283 0.220
(0.131) (0.134) (0.140) (0.147) (0.162) (0.172) (0.153)

Agricultural Labor Share 0.0852 0.114 0.116 0.106 0.125 0.142 0.115
(0.0569) (0.0539) (0.0548) (0.0536) (0.0577) (0.0661) (0.0597)

Non-Agricultural Worker Share 0.120 0.0963 0.109 0.117 0.165 0.179 0.131
(0.0504) (0.0477) (0.0494) (0.0528) (0.0656) (0.0705) (0.0641)

Note: Table presents summary statistics for the road density measure, weather variables and
Census outcome variables over time for the full sample of balanced districts (Panel A, N=270),
for below median road density districts (Panel B, N=132), and for above median road den-
sity districts (Panel C, N=126). Road density data is missing for 12 districts in the sample.
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Table 2: Effect of Rising Temperatures on Urbanization and Structural Transformation

Urbanization Ag Labor Share Non-Ag Worker Share

(1) (2) (3) (4) (5) (6)
ln T -0.7318 -1.3525 2.2330 1.4282 -2.0964 -1.7737

(0.7552) (0.4411)*** (0.6109)*** (0.5722)** (0.4905)*** (0.5108)***
[0.7602] [0.4741]*** [0.8501]*** [0.7950]* [0.4715]*** [0.4957]***

ln P 0.0130 -0.0148 -0.2711 -0.1891 -0.0103 -0.0484
(0.0509) (0.0505) (0.0692)*** (0.0677)*** (0.0350) (0.0356)
[0.0533] [0.0498] [0.1179]** [0.1023]* [0.0377] [0.0333]

State-specific linear time trends N Y N Y N Y
Observations 1,596 1,596 1,542 1,542 1,614 1,614

Note: The dependent variable is the natural logarithm of urbanization rates in Columns (1) and (2), of the share
of agricultural laborers in Columns (3) and (4), and of the share of non-agricultural workers in Columns (5) and
(6). All columns include district and region-by-year fixed effects. We restrict our sample to districts for which
the dependent variable is non-missing in all years. We present standard errors clustered by district in parenthe-
ses, and Conley standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation in
brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3: Effect of Rising Temperatures on Urbanization and Structural Transformation: Heterogeneity by Road Network Density

Urbanization Ag Labor Share Non-Ag Worker Share

(1) (2) (3) (4) (5) (6)
ln T -1.3010 -2.0088 2.7877 2.2242 -2.1518 -2.2030

(0.6473)** (0.4403)*** (0.7926)*** (0.5915)*** (0.5984)*** (0.6564)***
[0.7887]* [0.5647]*** [1.0664]*** [0.8645]** [0.5646]*** [0.6140]***

ln T x High Road Density 2.0247 2.5960 -4.6168 -5.5046 0.6268 2.3359
(1.4815) (1.3755)* (1.8081)** (1.8139)*** (1.0633) (1.0973)**
[1.5052] [1.3326]* [2.5192]* [2.1091]*** [1.3125] [1.0994]**

ln P -0.0552 -0.1076 -0.3108 -0.1860 0.0230 -0.0142
(0.0788) (0.0803) (0.0995)*** (0.0966)* (0.0486) (0.0484)
[0.0730] [0.0717] [0.1626]* [0.1457] [0.0455] [0.0437]

ln P x High Road Density 0.1721 0.1870 0.1860 0.0603 -0.0372 -0.0157
(0.1081) (0.1108)* (0.1439) (0.1315) (0.0750) (0.0728)
[0.1003]* [0.0932]** [0.1918] [0.1645] [0.0770] [0.0686]

State-specific linear time trends N Y N Y N Y
P-val, cluster: ln T + ln T x Road 0.5933 0.6539 0.2683 0.0566 0.0946 0.8855
P-val, Conley: ln T + ln T x Road 0.5884 0.6391 0.3804 0.0831 0.1966 0.8884
Observations 1,530 1,530 1,542 1,542 1,542 1,542

Note: The dependent variable is the natural logarithm of urbanization rates in Columns (1) and (2), of the share of
agricultural laborers in Columns (3) and (4), and of the share of non-agricultural workers in Columns (5) and (6).
High Road Density is a binary variable that takes the value 1 if the district has above median road density at baseline.
All columns include district and region-by-year fixed effects. We restrict our sample to districts for which the depen-
dent variable is non-missing in all years. We present standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation in brackets. * p < 0.10,
** p < 0.05, *** p < 0.01
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Table 4: Robustness Checks — Panel Specification

Urbanization Ag Labor Share Non-Ag Worker Share

Panel A: Unbalanced Panel (1) (2) (3) (4) (5) (6)
ln T -1.352∗∗∗ -2.232∗∗∗ 1.570∗∗∗ 2.221∗∗∗ -1.840∗∗∗ -2.193∗∗∗

(0.477) (0.553) (0.573) (0.590) (0.499) (0.655)

ln T x High Road Density 3.018∗∗ -6.246∗∗∗ 2.214∗∗
(1.400) (1.912) (1.055)

P-val: ln T + ln T x Road 0.545 0.0281 0.980
Observations 1684 1574 1680 1582 1694 1582

Panel B: Road Density Measure — 30th Percentile Cutoff
ln T -1.353∗∗∗ -1.683∗∗∗ 1.428∗∗ 1.982∗∗∗ -1.774∗∗∗ -2.044∗∗∗

(0.441) (0.384) (0.572) (0.523) (0.511) (0.602)

ln T x High Road Density 1.433 -5.245∗∗ 2.351∗
(1.515) (2.235) (1.301)

P-val: ln T + ln T x Road 0.865 0.132 0.796
Observations 1596 1530 1542 1542 1614 1542

Panel C: Clustering SE at State Level
ln T -1.353∗∗∗ -2.009∗∗∗ 1.428 2.224∗∗ -1.774∗∗∗ -2.203∗∗∗

(0.463) (0.676) (0.900) (0.834) (0.524) (0.659)

ln T x High Road Density 2.596∗ -5.505∗ 2.336∗
(1.413) (2.933) (1.152)

P-val: ln T + ln T x Road 0.647 0.249 0.895
Observations 1596 1530 1542 1542 1614 1542

Note: The dependent variable is the natural logarithm of urbanization rates in Columns (1) and (2), of the share of agri-
cultural laborers in Columns (3) and (4), and of the share of non-agricultural workers in Columns (5) and (6). High Road
Density is a binary variable that takes the value 1 if the district has above median road density at baseline in Panels A and
C. All columns include district, region-by-year fixed effects and state-specific linear time trends. We restrict our sample to
districts for which the dependent variable is non-missing in all years in Panels B and C. We present standard errors clustered
by district in Panels A and B, and by state in Panel C. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Robustness Checks — Alternative Definitions

Urbanization Ag Labor Share Non-Ag Worker Share

Panel A: 5-Year Average T & P (1) (2) (3) (4) (5) (6)
ln T -0.881∗ -1.364∗∗∗ 1.282∗∗∗ 2.048∗∗∗ -1.822∗∗∗ -2.309∗∗∗

(0.455) (0.409) (0.449) (0.467) (0.382) (0.504)

ln T x High Road Density 1.487 -3.772∗∗∗ 2.031∗∗
(1.017) (1.325) (0.860)

P-val: ln T + ln T x Road 0.896 0.157 0.700
Observations 1596 1530 1542 1542 1614 1542

Panel B: Grid Point Average T & P
ln T -1.414∗ -2.617∗∗∗ 0.715 1.124 -1.633∗∗∗ -1.920∗∗∗

(0.743) (0.690) (0.529) (0.759) (0.254) (0.171)

ln T x High Road Density 3.395∗∗ -4.460∗∗ 2.428∗∗∗
(1.493) (1.870) (0.935)

P-val: ln T + ln T x Road 0.559 0.0535 0.585
Observations 1560 1506 1518 1518 1572 1518

Note: The dependent variable is the natural logarithm of urbanization rates in Columns (1) and (2), of
the share of agricultural laborers in Columns (3) and (4), and of the share of non-agricultural workers
in Columns (5) and (6). High Road Density is a binary variable that takes the value 1 if the district has
above median road density at baseline. All columns include district, region-by-year fixed effects and
state-specific linear time trends. We restrict our sample to districts for which the dependent variable
is non-missing in all years. We present standard errors clustered by district in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01
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A Appendix: Supplementary Figures

Figure A1: Average growing season (June through February) temperature in Celsius (10-year
lagged)

36



Figure A2: Average growing season (June through February) precipitation in 100 mm (10-
year lagged)
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Figure A3: Urbanization
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Figure A4: Agricultural Labor Share
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Figure A5: Non-Agricultural Labor Share
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B Appendix: Supplementary Tables

Table A1: Effect of Rising Temperatures on Yields

Aggregate Rice Wheat

(1) (2) (3) (4) (5) (6)
ln T -0.4807 -0.5860 -0.9120 -0.9029 -0.3329 -0.5082

(0.1673)*** (0.2350)** (0.4690)* (0.4765)* (0.1361)** (0.2069)**
[0.1830]*** [0.2279]** [0.4563]** [0.4581]** [0.1605]** [0.2062]**

ln P 0.1909 0.2083 0.2027 0.2240 0.0508 0.0784
(0.0229)*** (0.0231)*** (0.0244)*** (0.0234)*** (0.0142)*** (0.0147)***
[0.0264]*** [0.0258]*** [0.0326]*** [0.0307]*** [0.0196]*** [0.0187]***

State-specific linear time trends N Y N Y N Y
Observations 11,820 11,820 11,117 11,117 10,343 10,343

Note: The dependent variable is the natural logarithm of aggregate yields in Columns (1) and (2), of rice yields
in Columns (3) and (4), and of wheat yields in Columns (5) and (6). All columns include district and year fixed
effects. We present standard errors clustered by district in parentheses, and Conley standard errors that allow for
spatial correlation up to 500km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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