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e-mail: damian.kozbur@econ.uzh.ch

Lucciano Villacorta

Central Bank of Chile

Agustinas 1180, Santiago, Chile

e-mail: lvillacorta@bcentral.cl

Abstract: This paper proposes a cluster-based inferential procedure. Observations

are grouped into clusters which are learned using a unsupervised learning algorithm

given a dissimilarity measure. We consider a set of cluster-based inference procedures

on the learned clusters. We give conditions under which our procedure asymptotically

attains correct size. We illustrate the finite sample validity and apply our procedure

to an empirical example.

Key Words: Unsupervised Learning, Cluster-based Inference, HAR inference.

JEL Codes: C1.

∗First version: October 2018. This version is of January 1, 2020. Christian Hansen would like to thank

the National Science Foundation as well as The University of Chicago Booth School of Business for financial

support of this research. Damian Kozbur would like to thank The University of Zürich for financial support
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1. Introduction

Much empirical work in economics relies on observational data that seems likely to be

dependent. For example, empirical work often considers serial dependence in the analysis

of time series, and cross-sectional or spatial dependence in cross-sectional and panel data.

Failing to account for dependence generally leads to invalid inferential statements. This

paper studies inferential procedures that are robust to weak dependence.

To conduct valid inference, many solutions exist in the literature such as HAR variance es-

timation. Among all, one class of inferential methods, typically called cluster- or group-based

inference procedures, are particularly popular among empirical researchers. Cluster-based

methods work from taking a clustering structure C = {Cg}Gg=1 which partitions the obser-

vations. For those methods, inference proceeds by ignoring covariance between observations

that fall in different clusters. Conceptually, those methods are exactly analogous to trun-

cation or downweighting of autocovariances in traditional time series HAR. In this paper,

we consider group-based inference with small or moderate number of large groups. Much

work has been done in this literature. For example, Bester, Conley, Hansen (2008) [5] (here-

after BCH) present a simple method for conducting inference using the cluster covariance

matrix estimator (CCE) under asymptotics that treat the number of groups as fixed and

the number of observations within a group as large. Ibragimov and Müller (2006) [14] (IM)

provides a formal treatment of the famous Fama-Macbeth procedure by Fama and Mac-

Beth (1973) [10], focusing upon properties of t-tests using point estimates from all clusters.

Canay, Romano, Shaikh (2017) [6] (CRS) develops a theory of randomization tests under an

approximate symmetry assumption, i.e., when the classes of transformations applied to the

original data do not change the distribution. Those methods have been shown to be very

robust in simulations.

However, one practical issue remaining is that the choice of clustering structures is typ-

ically ad-hoc and the chosen clustering often does not align with the “natural structure”.

For example, in the case of spatial dependence, it is not obvious how the researcher should

cut the map, because many options seem to be plausible. In this case, we essentially have to

pin down two tuning parameters, the number of groups G, and the partition of observations

given G. The goal of this paper is to provide practical, data-driven methods to help make

these choices. We propose to use clustering methods from the machine learning literature

to partition observations given number of groups, and to use simulation to choose number

of groups based on inferential properties.

To make sense of the usage of clustering methods, we consider a case where a measure

of dissimilarity is available to the researcher, and this measure is informative about the

underlying correlation structure in the sense that dependence between quantities goes away

when the distance between them is large. There are many ways to construct groups from

measures of dissimilarity. Such problems fall under “unsupervised learning.” See [13] for a

general review. Within unsupervised learning, there are several commonly used clustering

algorithms. In this paper we will focus on k-medoids.
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In the paper we propose a three-step inferential procedure: (i) Given observations loca-

tions, generate sequence of partitions {C(G)}ḠG=2; (ii) estimate a parametric covariance model

using scores and simulate inferential objects (e.g. size/power) to choose partition structure

C∗; (iii) perform partition-based inference using C∗. Although our methods are readily gen-

eralizable, in this paper we focus on k-medoids in Step 1, a damped cosine covariance model

in Step 2, and IM or CRS inference in Step 3. We first consider the estimation of means and

then generalize it to the OLS and IV cases.

Our main theoretical results concern the behavior of cluster-based inference such as IM

and CRS with fixed number of groups, each of which is determined by a data-driven cluster-

ing method. Our regularity conditions involve moment and mixing rate restrictions, weak

homogeneity assumptions on second moments of regressors and unobservables across groups,

and restrictions on group boundaries. These moment and mixing conditions are implied by

routine assumptions necessary for use of central limit approximations and the required

homogeneity is less restrictive than covariance stationarity. Thus our assumptions are no

stronger than those routinely made with the plug-in HAC approach or in the CRS approach.

We also give two important properties of clustering algorithm that can be of great use

in inference and are new to the unsupervised learning literature. Namely, we show that the

clustering structures produced by k-medoids are balanced and have small boundaries. We

give formal definitions of those properties and show their usage in cluster-based methods.

Moreover, our theoretical results contribute to the growing literature on inference with

spatial data; that is, data in which dependence is indexed in more than one dimension.

Examples of papers in this literature are Conley (1996, 1999) [8], [9], Kelejian and Prucha

(1999, 2001) [18], [19], Lee (2004, 2007a, 2007b) [23] [24] [25], and Jenish and Prucha (2007)

[15]. We note that analysis of spatially dependent data is not a trivial extension of results

for scalar-indexed (time series). Complications arise due to such concerns as set boundaries

being of large order of magnitude relative to set sizes and the number of potential neighbors

of any particular point increasing rapidly with the dimension in which dependence increases.

We provide formal conditions under which inference based on the CCE remains valid in very

general settings.

We present simulation evidence on the performance of our estimator in the panel data

context in both OLS and IV cases. The simulations illustrate that inference procedures that

ignore cross-sectional dependence, such as clustering based on only location, are severely

size distorted: Even modest serial or spatial dependence needs to be accounted for in order

to produce reliable inference. Moreover, it demonstrates that plug-in spatial-HAC inference

procedures may suffer from substantial size distortions. However, provided the number of

groups is small and correspondingly the number of observations per group is large, our

proposed test procedure has actual size close to nominal size and good power properties.

Finally, we apply our procedure to Condra, Long and Shaver (2018) [7] to investigate the

effect of insurgent attack on voter turnouts.

The remainder of the paper is organized as follows. Section 2 presents our proposed in-

ferential procedure. Section 3 studies the conditions under which cluster-based estimators
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are asymptotically normal and asymptotically independent. Section 4 studies the properties

of clustering algorithms and gives formal results on our procedure. Section 5 presents simu-

lation evidence regarding the performance of the proposed procedures and related methods.

Section 6 applies our method to an empirical example. Section 7 concludes. Proofs are

relegated to the appendix.

2. Methodology: Inference with Unsupervised Cluster Learning

In this section we present our proposed inferential procedure. Throughout, we consider the

hypothesis of the type H0 : β0 = 0, where β0 ∈ R. The most important input into the infer-

ential procedure is a dissimilarity measure dn which captures key aspects of dependence of

observables across observations. In the following sections, we will assume in a precise sense

that the degree of dependence between observations decreases sufficiently quickly, as dis-

similarity increases. There are many possible sources for generating dissimilarity measures.

Leading examples include geographic distance, notions of economic distance ([8], [9], see also

measures of economic distance constructed from input-output tables), displacement in time,

and combinations of the above. As it is described in Algorithm 1 we use dn to produce a

fixed number of clusters by applying an unsupervised clustering procedure to the data (more

details below). Then, we use an inferential procedure over fixed clusters, i.e., an inferential

procedure which, if a good clustering of the data which captured relevant dependence in

observations was known ex ante, could be applied to produce approximate inference.

The general procedure proposed by this paper can be described by three steps: (i) learn a

finite sequence of clustering structures C = {C(2), . . . , C(Ḡ)} by some unsupervised learning

method from a dissimilarity measure over the data, (ii) choose the optimal clustering C∗ ∈ C

based on a correlation model and some criterion of size-power tradeoff, (iii) perform cluster-

based hypothesis testing using C∗. This procedure is described below and formally collected

in Algorithm 1. Implementation details are in Appendix A.

Algorithm 1
Inputs. Data Dn = {Wi}ni=1; an n × n dissimilarity measure over observations given by a metric space
(Xn, dn); a significance threshold α; a user specified upper bound Ḡ for the number of clusters.
Procedure.

1. Apply an unsupervised clustering using (Xn, d) and produce a sequence of clustering structures
{C(G)}G∈G with G = {2, ..., Ḡ} where G 6 Ḡ is the number of clusters.

2. Simulate size and power (against interesting alternative or weighted average power against inter-
esting family of alternatives) for each C(G) and choose the one that minimizes loss over size and
power. To achieve this, first estimate a (possibly misspecified) covariance structure of scores using
some parametric model.

3. Apply CCE, CRS, or IM using the selected clustering.

Outputs. T ∈ {0, 1}.
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2.1. Clustering

Given the dissimilarity measure dn, we use k-medoids (KM) to produce a sequence of clus-

tering structures {C(2), . . . , C(Ḡ)}.1 k-medoids is a popular clustering technique which is

related to k-means and in many cases produces very similar clustering results as k-means

does. Because we deal with a dissimilarity which does not necessarily arise from a Euclidean

space, k-means centroids are not necessarily defined. Instead assigning the geographic cen-

ters to be centroids of clusters as in k-means, k-medoids requires that cluster ‘centers’ be

themselves elements of Xn. For a detailed description of k-medoids see Hastie, Tibshirani,

and Friedman (2009) [13]. We reproduce a k-medoids algorithm here for convenience. Let

the cost of a cluster C with center x be

cost(C, x) =
∑
x′∈C

d(x, x′)2.

The total cost is defined by

total cost =
∑
C∈C

cost(C, xC)

with xC being the center of C. Then the algorithm of k-medoids is given by Algorithm 2.

Algorithm 2 k-medoids Clustering
Inputs. An n× n dissimilarity measure over a finite metric space (Xn, dn); the number of groups G.
Procedure.

1. Initialize cluster centroids {x1, ..., xG} ⊂ Xn:

2. While total cost decreases,

a. for each k 6 G, for each z /∈ {x1, ..., xG} compute the cost with new medoids
{x1, ..., xk−1, z, xk+1, ...xG};

b. assign new medoids and membership if the new set of medoids has lower total cost.

Outputs. A clustering structure C(G) with G groups.

Algorithm 2 produces one clustering structure each time. To produce a sequence of clus-

terings with different number of groups, we run k-medoids for each G ∈ {2, . . . , Ḡ}, where

Ḡ =
⌈
n1/3

⌉
. The maximum number of clusters is chosen such that the size of each cluster

is going to infinity.

2.2. Size-power tradeoff

To simulate size and power, we need an estimator for the covariance structure. This can be

done by using QMLE to estimate a simple covariance model for scores si. In the example of

linear regression, si = x̃iûi/(n
−1
∑
j x̃j ûj), where x̃i is typically the partialed-out param-

eter of interest and ûi is the regression residual. We note that our results do not require

the consistency of the estimated covariance function in order to control size. As a result,

1Other clustering algorithms apply as long as the resulting clustering structures satisfy Assumption C3.

Results on a penalized version of hierarchical clustering is available on request.
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misspecification in our model for dependence leads only to potential loss of power. We focus

on a simple and intuitive specification with damped-cosine correlation structure. FOr ex-

ample, in a spatial setting, we can consider the class of covariance functions parameterized

by b = (b1, b2, b3)′ and given by{
cov(si, sj ; b) = b1 exp

(
−
(
‖Li − Lj‖2

b2

))
cos

(
‖Li − Lj‖2

b3

)}
b∈R3

+

,

where Li is the location of observation i. Each b gives rise to an implied covariance matrix

Σb of (s1, . . . , sn)′. Gaussian QMLE yields estimates

b̂ ∈ arg min
b∈R3

+

det
(

Σ
−1/2
b

)
exp

(
−1

2
s′Σ−1

b s

)
.

We can then generate samples drawn from N
(
0,Σb̂

)
or N

(
b,Σb̂

)
and calculate the Type-I

and Type-II error using the cluster-based testing procedure in Section 2.3 with the clustering

C. The framework can be readily extended to a panel setting, which will be illustrated in

Appendix A.

2.3. Group-based hypothesis testing

In the development of this paper, we focus on the procedure of Ibragimov and Muller (2010,

IM) and Canay Romano and Shaikh (2017, CRS) . Other examples of group-based procedure

include the cluster covariance estimator as in Bester, Conley and Hansen (2011, CCE), whose

performance is studied in the simulation section.

2.3.1. IM

The IM procedure by [14] uses properties of t-statistic of heterogeneous independent normal

random variables. The idea is that when group-level estimates are asymptotically indepen-

dent and normal, a t-test can be performed in order to control size under some assumptions.

2.3.2. CRS

CRS is an asymptotic analogue of a randomization testing procedure. In CRS, a random-

ization test is obtained by recomputing a test statistic over the set of transformations under

which the distribution of the test statistic is invariant (e.g. permutation of the data). A full

exposition of the CRS testing procedure is in Appendix A.3.2.

3. A Central Limit Theorem with a small number of groups

In this section, we give conditions under which group-level estimators are asymptotically

normal and asymptotically independent. Our analysis is based on a simple condition over
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dissimilarity matrices, which is related to the notion of Ahlfors regularity. We give mixing

conditions which are directly analogous to those in Jenis and Prucha (2009) [16]. We define

a notion of cluster balance and boundary and show they are the key to the asymptotic

properties of the group-level means.

We first consider a simple setting with {{Zi,n}ni=1,Xn}∞n=1, where we observe scalar data

{Zi,n}ni=1 in the space Xn and are interested in the mean of Zi,n. In Section 3.4 we extend

to the OLS and IV case by relating the scores to Zi,n.

3.1. Formal Conditions on an Increasing Sequence of Dissimilarity Measures

This section describes assumptions on increasing sequences of dissimilarity measures over

which clustering will take place. We assume that the researcher has access to some set of

dissimilarity measures which are denoted (Xn, dn). We begin by making the assumption

that the triangle inequality holds for each Xn. In other words, the dissimilarity measures are

genuine metric spaces. In addition, they satisfy the following regularity condition.

Definition 1. Let |X| be the carnality of X. A finite metric space X is (C, δ)-finite-Ahlfors

regular if |X|∨C−1rδ 6 |BX,r(x)| 6 Crδ∧1 for any r > 0, for any x in any X, where BX,r(x)

is the r-ball centered at x in the space X.

(C, δ)-finite-Ahlfors regularity is a modification of the notion of Ahlfors regularity encoun-

tered in the theory of metric spaces equipped with a Borel measure (in which case |BX,r(x)|
is replaced by µ(B,r(x)) and the conditions |X| ∨ ... and ... ∧ 1 are dropped). This notion

has several advantages, relative to assuming that Xn be a subset of a Euclidean space. First,

the definition refers only to intrinsic properties of the space. Second, this simple condition

is sufficient both for realizing mixing central limit theorems, and for analyzing clustering.

Not every dissimilarity measure Xn satisfying (C, δ)-finite-Ahlfors regularity admits an

isometric embedding into Rr for some r. It is not even sufficient to guarantee that X admit a

bi-Lipschitz embedding (defined so that the maximum distortion is bounded by a constant).

However, the condition is strong enough to ensure that X can be “regularized.” The derived

space (X, d1−ε) is a metric space for all ε ∈ (0, 1) and is called the ε-snowflake of X. The

exponent ε serves to regularize the distance d so that it can be embedded into Rr with

bounded distortion.

Throughout our analysis, we will refer to the following assumption. In particular, this

assumption defines our spatial asymptotic frame.

Assumption C1. (Ahlfors Regularity) The sequence of spaces Xn is a uniformly Ahlfors

sequence of finite metric space with n elements.

The utility of this notion is that gives enough structure to allow us to simultaneously

(1) study the performance of several leading clustering techniques analytically, (2) derive

dependent central limit theorems and laws of large numbers. It is also simple to express.
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3.2. Mixing conditions

We first consider In this section, we list mixing conditions on the array of variables

{{Zi,n}ni=1,Xn}∞n=1.

Definition 2 (Mixing coefficients). Let {{Zi,n}ni=1, (Xn, dn)}∞n=1 be an array of random

variables on a probability space (Ω,F,P) with spatial indeces given by Xn. Let A and B be

two (sub-)σ-algebras of F and let α(A,B) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ A, B ∈ B}.
For U ⊆ Xn let σn(U) = σ(Zi,n; i ∈ U), and let αn(U, V ) = α(σn(U), σn(V )). Let

αk,l,n(r) = sup {αn(U, V ), |U | 6 k, |V | 6 l, d(U, V ) > r} ,

ᾱk,l(r) = sup
n
αk,l,n(r).

Assumption C2. (Mixing) Let {{Zi,n}ni=1, (Xn, dn)}∞n=1 be an array of random variables

on a probability space (Ω,F,P) with spatial indeces given by Xn satisfying Condition C1 with

Ahflors constants C, δ. Let ν = 4
3 × 833δ log(3C2). Alternatively, if (Xn, dn) embed isomet-

rically into RN for some common N , then ν = N may be taken. Let σ2
n = var(

∑n
i=1 Zi,n).

There exists an array of positive constants {{ci,n}ni=1}∞n=1 and a positive µ > 0 such that

(i) E[Zi,n] = 0.

(ii) limk→∞ supn supi∈Xn E[|Zi,n/ci,n|2+µ1|Zi,n/ci,n|>k] = 0.
∣∣∣

(iii)
∑∞
m=1 ᾱ1,1(m)mν×µ+2

µ −1 <∞.
∣∣∣

(iv)
∑∞
m=1m

ν−1ᾱk,l(m) <∞ for k + l 6 4.
∣∣∣

(v) ᾱ1,∞(m) = O(m−ν−
4
3µ).

∣∣∣
(vi) infn |Xn|−1(maxi∈Xn c

−2
i,n)σ2

n > 0.
∣∣∣

The conditions are similar to those given for the mixing central limit theorem in Jenis

and Prucha (2012) [17], but with abstract index sets identified with Xn. By contrast, Jenis

and Prucha (2009) require Xn be a possibly uneven lattice in a finite dimensional Euclidean

space with a minimum separation between all points. In our formulation, appearance of

the ambient dimension of the Euclidean space is in all cases replaced by ν. Note that our

Condition C2 automatically implies a minimum separation between points. Note also that

in the case that Xn embed isometrically into Rν , the only difference between our conditions

and the conditions for Corollary 1 of JP are that we require ᾱ1,∞(m) = O(m−ν−
4
3µ) rather

than the slightly weaker ᾱ1,∞(m) = O(m−ν−µ).

Proposition 1. Suppose that conditions C1 and C2 hold for {{Zi,n}ni=1, (Xn, dn)}∞n=1.

Then

σ−1
n

n∑
i=1

Zi,n
d→ N(0, 1).

The proposition can be proven by regularizing Xn using the snowflake construction de-

scribed above with ε = 1/4, on which the JP central limit theorem can then be applied.
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The proof is carried out in detail in the appendix. The same argument can be carried out

more generally for other ε ∈ (0, 1/2), however we reference the single ε = 1/4 snowflake for

added concreteness.

3.3. Balance and Small Common Boundary Conditions

The key property which allows inference in BCH is that cluster sizes are balanced and that

their boundaries are small. In this section, we formalize this requirement and then show

that both unsupervised clustering methods satisfy the desired property.

Assumption C3. A sequence of clusterings {Cn}n≥2 on Xn is asymptotically balanced with

small boundaries if:

(i) (Balanced) The ratio of minimial cluster size to n is bounded away from zero uniformly,

i.e.,

lim inf
n→∞

min
C∈Cn

|C|
n
> 0.

(ii) (Small Boundaries) There is a r̄ = r̄(n)→∞ so that

max
C∈Cn

|{x ∈ C : d(x,X \ C) 6 r̄}| = o(n).

This definition differs slightly from the definition of small boundary given in BCH. In

particular, BCH leverage the fact their their spatial domain is a subset of the integer lattice

to define neighbor orders for pairs of locations. Their definition of small boundaries entails

a bound on the number of first order neighbors from C to X \ C. BCH assume that their

given spatial clusters are contiguous and use that fact to bound the number of higher order

neighbors from C to X \ C. In this context, there is no available definition of first order

neighbor since Xn can be irregular (even non-Euclidean). As a result, we work instead with

an asymptotic notion of boundary which entails a sequence r̄ which allows boundaries to

widen as n → ∞. A high-level implication of having asymptotically balanced with small

boundaries clusterings is the following proposition.

Proposition 2. Suppose that Xn, Zi,n, and Cn satisfy C1, C2, and C3. Consider any

Cn,Dn ∈ Cn for each n with Cn 6= Dn. Let σ2
n,Cn

= var
(∑

i∈Cn Zi,n
)

and σ2
n,Dn

=

var
(∑

i∈Dn Zi,n
)
. Then

cov

(
σ−1
n,Cn

∑
i∈Cn

Zi,n, σ
−1
n,Dn

∑
i∈Dn

Zi,n

)
→ 0.

The proof is related but not identical to the argument BCH. Whereas BCH count points

in “shells” around the boundaries of clusters, our arguments instead rely on the doubling

structure implied by the fact that Xn are Ahfolrs regular. Both our argument and BCH

leverage a bound on covariances cov(Zi,n, Zj,n) for sufficiently far spatial as implied by the

mixing conditions stated in C2.
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The condition C3 acting as a high-level assumption on clusterings will also be sufficient

for asymptotically valid inference in the proposed procedure. In the next section we verify

C3 for various clusterings under the assumption that Xn satisfy C1.

3.4. Extension to OLS and IV

Previous propositions show the asymptotic normality and diminishing across-group correla-

tion for means. Now we extend our results to OLS and IV estimators.

Consider a linear model where ∀i ∈ Xn,

yi,n = x′i,nβ0,n + ui,n

and

E[wi,nui,n] = 0,

for scalars yi,n and ui,n, and K-dimensional vectors xi,n and wi,n. We suppress the sub-

scription n for notation simplicity, i.e., xi = xi,n. Note that everything is a function of n.

The IV estimator for β0 within some set C ⊂ Xn is given by

β̂n,C =

(
1

|C|
∑
i∈C

wix
′
i

)−1(
1

|C|
∑
i∈C

wiyi

)
.

The OLS model is a special case where wi = xi.

Let {Cn}n≥1 be a sequence of clusterings with G groups. For some n, let Cn =

{C1, . . . ,CG}. For some C ∈ Cn, define Vn,C = Q−1
n,CΩn,C(Q−1

n,C)′, where

Qn,C = E

[
1

|C|
∑
i∈C

wix
′
i

]

and

Ωn,C = var

[
1

|C|
∑
i∈C

wiui

]
.

Let Vn = Diag(Vn,C1
, . . . , Vn,CG), i.e., Vn is an (GK)× (GK) block-diagonal matrix with the

i-th diagonal block being Vn,Ci . Let

Sn =


√
|C1|(β̂n,C1

− β0)
...√

|CG|(β̂n,CG − β0)


and

sn =


1√
|C1|

∑
i∈C1

wiui

...
1√
|CG|

∑
i∈CG wiui

 .
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Define ηi = wix
′
i − E[|C|−1

∑
i∈C wix

′
i] and

qn =


1√
|C1|

∑
i∈C1

ηi

...
1√
|CG|

∑
i∈CG ηi

 .

Let ηi,j and qn,j be the j-th column of ηi and qn, respectively.

In Definition 2, we redefine σn(U) = σ({yi,n, xi,n, wi,n, ui,n}; i ∈ U).

Assumption C2*. Let {{yi,n, xi,n, wi,n, ui,n}ni=1, (Xn, dn)}∞n=1 be an array of random ele-

ments on a probability space (Ω,F,P) with spatial indeces given by Xn satisfying Condition

C1 with Ahflors constants C, δ. Let ν = 4
3 × 833δ log(3C2). Alternatively, if (Xn, dn) embed

isometrically into RN for some common N , then ν = N may be taken. Let λmin(·) and

λmax(·) be the minimal and maximal eigenvalue of a matrix, respectively. There exists an

array of positive constants {{ci,n}ni=1}∞n=1 and a positive µ > 0 such that

(i) E[wi,nui,n] = 0.

(ii) For some zi = wiui or qi,j , ∀j,

lim
k→∞

sup
n

sup
i∈Xn

E[‖n−1/2zi/ci,n‖2+µ
1{‖n−1/2zi/ci,n‖ > k}] = 0.

(iii)
∑∞
m=1 ᾱ1,1(m)mν×µ+2

µ −1 <∞.
∣∣∣

(iv)
∑∞
m=1m

ν−1ᾱk,l(m) <∞ for k + l 6 4.
∣∣∣

(v) ᾱ1,∞(m) = O(m−ν−
4
3µ).

∣∣∣
(vi) infn n|Xn|−1(maxi∈Xn c

−2
i,n) > 0.

(vii) infn λmin(var(sn)) > 0 and var(sn) = O(1).

(viii) infn λmin(var(qn,j)) > 0 and var(qn,j) = O(1), ∀j.

Proposition 3. (Asymptotic normality) Under the model, C1, C2*, C3 imply asymptotic

normality

V −1/2
n Sn

d→ N(0, IGK).

4. Group-based Testing with Learned Clustering

In this section, we formally describe the clustering procedure that yields the desired cluster-

ing properties. Together, these ingredients give the main theorem which verifies asymptotic

validity of the inferential procedure described above.

4.1. Clustering Procedures and their Propoerties

We investigate k-medoids in simulations and in the empirical application below. We show

that the small boundary and balance conditions are satisfied under regularity conditions.

The next proposition derives relevant properties of this version of k-medoids algorithm.
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Proposition 4. Assume condition C2 holds for Xn. Assume the following additional con-

vexity condition holds. There is a constant K independent of n such that (1) Xn is K-

coursely isometric2 to a subset of a Euclidean space with dimension N = N(K), and (2)

for any two point x, y ∈ Xn and any a ∈ [0, 1] there is an interpolant z ∈ Xn such that

|d(x, z) − ad(x, y)| 6 K and |d(y, z) − (1 − a)d(x, y)| 6 K. Then the k-medoids algorithm

described in the text satisfies C3.

4.2. Analysis of Group-based Inference

In this section, we provide formal results on the asymptotic validity of the proposed infer-

ential procedures with unsupervised cluster learning.

Given some clustering structure C = {C1, . . . ,CG}, some scalar parameter θ0, and its

within-group estimators {θ̂n,Cg}Gg=1, define

Sn,C =


√
|C1|(θ̂n,C1

− θ0)
...√

|CG|(θ̂n,CG − θ0)

 .

For example, θ0 can the an entry of β0 in the IV model and θ̂n,C is the corresponding entry

of the IV estimator using only observations in C.

Given some C ∈ C = (C1, . . . ,CG), let τ2
n,C = var(

√
|C|(θ̂n,C−θ0)) be the variance of some

entry of Sn,C . Let R∗G ∼ N(0, IG) be G-dimensional standard joint normal random vector

with independent entries. Note that R∗G is not a function of n. For R∗G = (r1, . . . , rG), define

S∗n,C = (τn,C1
r1, . . . , τn,CGrG), i.e., S∗n,C is obtained by multiplying each entry of R∗G by the

standard deviation of the corresponding entry in Sn,C .

4.2.1. IM

Now we give regularity assumptions for IM and the formal theorem:

Assumption R1. (Regularity assumptions for IM)

(i) The significance level α ≤ 2Φ(−
√

3) = 0.08326 . . . , where Φ is the cumulative distri-

bution function of a standard normal random variable.

(ii) With probability one,

lim sup
n→∞

sup
C∈Cn

|S̄∗n,C | <∞,

lim inf
n→∞

inf
C∈Cn

|se(S∗n,C)| > 0,

and

lim sup
n→∞

sup
C∈Cn

|se(S∗n,C)| <∞.

2 f : (Y, dY)→ (Z, dZ) is a K-course isometry if dZ(f(y), f(y′))−K 6 dY(y, y′) 6 dZ(f(y), f(y′)) +K.
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(iii) With probability one,

lim inf
n→∞

inf
C∈Cn

||t(S∗n,C)| − cvG(α)| > 0,

where G = |C|.

Theorem 1. Let Xn, Zi,n,Cn satisfy C1, C2, and C3. Suppose R2 holds. Suppose Zi,n are

observable functions of data Dn ∼ Pn. Suppose further that ψ is the IM test result and is

based on Sn,C = Sn,C(Dn) for some C ∈ Cn. Then under Algorithm 1,

sup
C∈Cn

(EPn [ψ(Sn,C)]− α)+ → 0.

4.2.2. CRS

We formalize assumptions for CRS to be a valid inferential procedure by the following set

of conditions:

Assumption R2. (Regularity assumptions for CRS)

(i) supn supC⊂Xn τ
2
n,C <∞.

(ii) With probability one,

lim inf
n→∞

inf
C∈Cn

inf
g 6=g′
|T (g(S∗n,C))− T (g′(S∗n,C))| > 0,

where g, g′ ∈ GC and GC is the set of transformations associated with clustering C.

Theorem 2. Let Xn, Zi,n,Cn satisfy C1, C2, and C3. Suppose R1 holds. Suppose Zi,n are

observable functions of data Dn ∼ Pn. Suppose further that φ is the CRS test result and is

based on Sn,C = Sn,C(Dn). Then under Algorithm 1,

sup
C∈Cn

|EPn [φ(Sn,C)]− α| → 0.

5. Simulation

In this section, we study the finite sample performance of inference with learned clusters in

a series of simulation experiments. We consider a N × T panel from the following process:

yit = α0 + θ0xit + w′itγ0 + uit,

where the parameter of interest is θ0, and wit is a vector of control variables. For each i, we

observe a coordinate vector Li, which is taken from our empirical example. Details of the

data generating process will be provided below.
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5.1. Inferential procedures

As benchmarks, we consider several alternative inferential methods: cluster covariance esti-

mator only by location i (LOCA), spatial HAC estimator from [33] with optimal bandwidth

selection described in [22] (SK), and U -statistic type subsampling test as in [32] and [26]

(SL).

Out proposed method is described by Algorithm 1 and consist of three steps: (i) learning

a sequence of clustering structures {C(2), . . . , C(Ḡ)}, (ii) choosing the optimal clustering C∗

with the optimal cluster number G∗ based on some criterion of size-power tradeoff, (iii)

given C∗, performing cluster-based hypothesis testing including IM, and CRS. Details on

implementation are given in Appendix A. We also consider the commonly used method CCE

with the learned clustering, which often turns out to be over-rejecting. Besides, we consider

an procedure (OPTI) that gives the highest simulated power among CCE, IM, and CRS.

5.2. Settings and results

We consider both OLS and IV estimation. For each setting, we implement 1000 replications.

The nominal rejection rate is α = 0.05.

5.2.1. OLS

The results for OLS are in Table 1. We consider the following configurations:

BENCHMARK In this benchmark case, we let (N,T, p) = (820, 2, 10). The empirical ex-

ample only has 205 locations. We manually generate three more copies of the original map

in the neighboring area in order to keep the feature of naturally-formed locations. For some

generic variable z (u or any entry of (x,w′)′), the correlation between two observations is

given by

cov(zit, zjs) = exp

(
−
(
‖Li − Lj‖2

κ
+
|t− s|
ρ

))
, (5.1)

where κ = 3 is the strength of spatial correlation and ρ = 1 is strength of serial correlation.

Let the corresponding correlation matrix of vectorization of z be Σ. The correlation between

any pair of regressors in (xit, w
′
it)
′, is set to 0.5. The marginal distribution of any regressor

or the error term uit is N(0, 1). The error term u is exogenous. The data is generated

by Equation (5), with the parameter of interest θ0 = 0 and (α0, γ
′
0)′ = (1, . . . , 1)′. Other

configurations are deviations from this benchmark case.

NON-STA This non-stationary case differs from the benchmark case only for the marginal

distribution of the regressors. Instead of being one, the variance of each regressor is now

(2
√
‖Li − L̄‖2 − 4)2 with L̄ being the “center” of all locations.
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SAR In this setting, we assume the cross-sectional interdependence comes from a spatial

auto-regression process (SAR). Define W to be an N × N weighting matrix with entry

Wi,j = 1{‖Li − Lj‖2 < 0.3}. Let Ut = (u1t, . . . , uNt)
′ for t = 1, 2, whereU1 = (I − κW )−1V1

U2 = ρU1 +
√

1− ρ2(I − κW )−1V2.

and (
V1

V2

)
∼ N

(
0, INT

)
.

We set the spatial correlation κ = 0.14 and the serial correlation ρ = exp(−1). The spatial

correlation κ is chosen to match the benchmark case in terms of the performance of the

näıve method (LOCA). Each regressor follows the same SAR process and the correlation

between any pair of V1’s (or V2’s) of different regressors is set to 0.5.

DISCRETE This setting differs from the benchmark case only for the marginal distribution

of xit. We transform the standard normal variable into a discrete one using a monotonic

function such that the marginal distribution coincides with that in the empirical example.

SMALL-N We only use the original 205 locations in this setting.

LOW-SPA We let κ = 0.5 in the setting.

LOW-D We generate only p = 1 control variable in this setting. The coefficient is then

(α0, β0, γ0) = (1, 0, 1).

From Table 1, we find IM and CRS perform well in general and are correctly-sized in

the low spatial correlation case. In the cases with high spatial correlation, IM and CRS are

typically slightly over-sized while being powerful. CCE in general over-rejects unless the

spatial correlation is low. For the three benchmark cases, LOCA and SK are always over-

sized, and SL essentially has no power except for the case with only one control variable.

5.2.2. IV

The results for the IV cases are in Table 2. We consider the following configurations:

BENCHMARK In this benchmark case of IV, the data is generated using the following

process: yit = αy0 + θ0xit + w′itγ
y
0 + uyit,

xit = αx0 + π0zit + w′itγ
x
0 + uxit,

where xit is the endogenous variable and zit is the instrument. The marginal distribution of

zit and each entry of the control vector wit is N(0, 1). For the error terms, we first generate(
V y

V x

)
∼ N

(
INT ρvINT

ρvINT INT

)
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Table 1
OLS

Power Size-adjusted Power

Method Mean RMSE Size -4se -2se +2se +4se -4se -2se +2se +4se

BENCHMARK LOCA 0.006 0.20 0.42 1.00 0.85 0.86 1.00 0.91 0.50 0.53 0.93

SK 0.006 0.20 0.36 1.00 0.83 0.84 1.00 0.94 0.49 0.52 0.94

SL 0.006 0.20 0.03 0.04 0.03 0.03 0.04 0.06 0.04 0.05 0.05

CCE 0.006 0.20 0.15 0.96 0.59 0.64 0.97 0.88 0.42 0.41 0.89

IM 0.000 0.12 0.10 1.00 0.84 0.84 1.00 1.00 0.77 0.76 1.00

CRS 0.000 0.12 0.08 1.00 0.83 0.82 1.00 1.00 0.77 0.75 1.00

OPTI 0.004 0.18 0.14 0.97 0.70 0.72 0.98 0.91 0.48 0.50 0.92

NON-STA LOCA 0.002 0.17 0.39 0.99 0.82 0.83 0.99 0.91 0.49 0.51 0.92

SK 0.002 0.17 0.38 1.00 0.82 0.83 0.99 0.93 0.50 0.53 0.93

SL 0.002 0.17 0.03 0.04 0.03 0.03 0.03 0.05 0.04 0.04 0.04

CCE 0.002 0.17 0.13 0.94 0.58 0.59 0.94 0.83 0.36 0.36 0.83

IM -0.002 0.11 0.07 1.00 0.81 0.79 1.00 1.00 0.78 0.76 1.00

CRS -0.001 0.11 0.07 1.00 0.79 0.78 1.00 1.00 0.70 0.71 0.99

OPTI 0.000 0.16 0.13 0.95 0.62 0.62 0.95 0.85 0.38 0.39 0.86

SAR LOCA 0.000 0.11 0.46 1.00 0.91 0.91 1.00 0.97 0.52 0.54 0.97

SK 0.000 0.11 0.29 1.00 0.82 0.84 0.99 0.95 0.51 0.54 0.95

SL 0.000 0.11 0.04 0.06 0.04 0.04 0.06 0.08 0.06 0.06 0.08

CCE 0.000 0.11 0.13 0.95 0.61 0.64 0.95 0.90 0.46 0.45 0.88

IM -0.001 0.06 0.05 1.00 0.94 0.93 1.00 1.00 0.94 0.92 1.00

CRS -0.001 0.06 0.05 1.00 0.92 0.91 1.00 1.00 0.93 0.92 1.00

OPTI -0.001 0.10 0.12 0.98 0.71 0.72 0.98 0.95 0.54 0.54 0.94

DISCRETE LOCA -0.001 0.11 0.41 1.00 0.89 0.87 1.00 0.95 0.55 0.55 0.95

SK -0.001 0.11 0.34 0.99 0.86 0.86 0.99 0.96 0.57 0.56 0.95

SL -0.001 0.11 0.05 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03

CCE -0.001 0.11 0.15 0.97 0.67 0.66 0.96 0.87 0.44 0.43 0.88

IM 0.000 0.07 0.07 0.99 0.87 0.87 0.99 0.99 0.84 0.84 0.99

CRS -0.001 0.06 0.08 1.00 0.88 0.87 1.00 1.00 0.84 0.83 1.00

OPTI -0.002 0.10 0.14 0.98 0.76 0.75 0.97 0.92 0.53 0.54 0.91

SMALL-N LOCA -0.003 0.29 0.51 1.00 0.91 0.90 1.00 0.95 0.51 0.52 0.94

SK -0.003 0.29 0.38 1.00 0.87 0.86 0.99 0.94 0.45 0.47 0.92

SL -0.003 0.29 0.04 0.05 0.04 0.04 0.05 0.06 0.06 0.06 0.08

CCE -0.003 0.29 0.19 0.96 0.64 0.66 0.95 0.80 0.36 0.36 0.81

IM -0.001 0.20 0.08 0.95 0.71 0.72 0.94 0.92 0.58 0.59 0.92

CRS 0.000 0.20 0.07 0.96 0.67 0.67 0.96 0.97 0.64 0.64 0.96

OPTI -0.004 0.29 0.18 0.96 0.67 0.67 0.95 0.79 0.37 0.37 0.79

LOW-SPA LOCA 0.002 0.07 0.21 1.00 0.78 0.79 1.00 0.98 0.52 0.55 0.98

SK 0.002 0.07 0.13 0.99 0.68 0.70 0.99 0.98 0.52 0.54 0.98

SL 0.002 0.07 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.06

CCE 0.002 0.07 0.05 0.94 0.44 0.47 0.93 0.95 0.45 0.48 0.94

IM 0.001 0.06 0.04 0.98 0.54 0.56 0.98 0.99 0.59 0.60 0.99

CRS 0.000 0.06 0.04 0.97 0.52 0.53 0.97 0.98 0.55 0.55 0.98

OPTI 0.002 0.06 0.05 0.96 0.48 0.52 0.96 0.96 0.47 0.50 0.95

LOW-D LOCA -0.004 0.21 0.34 0.99 0.84 0.83 0.99 0.94 0.51 0.52 0.93

SK -0.004 0.21 0.33 1.00 0.85 0.84 0.99 0.96 0.55 0.56 0.94

SL -0.004 0.21 0.04 0.34 0.06 0.06 0.35 0.41 0.09 0.09 0.40

CCE -0.004 0.21 0.09 0.96 0.56 0.56 0.94 0.92 0.46 0.47 0.91

IM -0.005 0.17 0.07 0.99 0.74 0.73 1.00 0.99 0.67 0.67 0.99

CRS -0.005 0.17 0.06 0.99 0.71 0.70 0.99 0.99 0.65 0.64 0.98

OPTI -0.001 0.21 0.09 0.97 0.57 0.59 0.94 0.93 0.50 0.51 0.92

Notes: All other settings are deviations from BENCHMARK. The true parameter is 0. Alternatives for power
calculation depend on the standard deviation of the full-sample least square estimator and are thus different
across settings. Size-adjusted power is calculated by adjusted p-value threshold such that the hypothesis is
rejected in 5% of the replications.

and then form Uy = Σ−1/2V y,

Ux = Σ−1/2V x,
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Fig 1. Power curves in BENCHMARK of OLS with K-medoids clustering.

where Uy and Ux are the vectorization of uyit and uxit, respectively. The level of endogeneity

ρv is set to 0.6, and Σ is the correlation matrix specified in Equation (5.1). The level of first

stage strength π0 is set to 0.5. Other settings are the same as in the benchmark case of OLS.

HIGH-ENDO This case is different from the benchmark case only for ρv = 0.9.

HIGH-RELEV This case is different from the benchmark case only for π0 = 1.

EMPIRICAL This case is similar to the setting of our empirical application. In this case,

the endogenous variable xit is transformed into a discrete variable, whose marginal distri-

bution matches that of the empirical example. Also, the number of location is N = 205.

In the results table, we provide the median and the median absolute deviation (MAD)

of the simulated estimates because the IV estimator does not have finite sample moments

under just identification. In general, sizes are well-controlled by our cluster-based methods.

A possible explanation is that tests are conservative under just-identification in the IV

settings. Compared with CCE and CRS, IM is less powerful. CRS is slightly more powerful

than CCE at large alternatives, which is shown in Figure 2. As in the OLS cases, LOCA

and SK are in general over-sized except for SK in EMPIRICAL, and SL is correctly-sized

but essentially has no power.
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Table 2
IV

Power Size-adjusted Power

Method Median MAD Size -4mad -2mad +2mad +4mad -4mad -2mad +2mad +4mad

BENCHMARK LOCA 0.024 0.70 0.20 0.90 0.86 0.86 0.90 0.88 0.81 0.82 0.88

SK 0.024 0.70 0.09 0.90 0.84 0.85 0.90 0.89 0.82 0.83 0.88

SL 0.024 0.70 0.03 0.25 0.06 0.07 0.25 0.29 0.07 0.10 0.29

CCE 0.024 0.70 0.02 0.86 0.79 0.79 0.87 0.88 0.83 0.83 0.89

IM 0.031 1.87 0.02 0.90 0.78 0.78 0.88 0.91 0.83 0.83 0.90

CRS 0.042 1.84 0.06 0.93 0.84 0.84 0.92 0.93 0.84 0.84 0.92

OPTI 0.036 1.53 0.04 0.84 0.75 0.75 0.84 0.85 0.77 0.78 0.85

HIGH-ENDO LOCA 0.029 0.83 0.20 0.89 0.83 0.85 0.89 0.86 0.79 0.80 0.87

SK 0.029 0.83 0.10 0.88 0.83 0.83 0.89 0.87 0.81 0.81 0.88

SL 0.029 0.83 0.03 0.17 0.04 0.05 0.17 0.20 0.05 0.07 0.21

CCE 0.029 0.83 0.03 0.85 0.78 0.76 0.85 0.86 0.80 0.80 0.88

IM 0.032 1.10 0.02 0.88 0.75 0.75 0.88 0.90 0.79 0.78 0.90

CRS 0.028 1.59 0.06 0.91 0.82 0.80 0.90 0.91 0.82 0.80 0.89

OPTI 0.037 1.43 0.04 0.81 0.73 0.70 0.80 0.82 0.75 0.72 0.83

HIGH-RELEV LOCA 0.006 0.21 0.31 0.92 0.86 0.84 0.90 0.88 0.78 0.76 0.87

SK 0.006 0.21 0.15 0.91 0.83 0.81 0.89 0.89 0.77 0.76 0.87

SL 0.006 0.21 0.03 0.05 0.02 0.04 0.04 0.06 0.03 0.05 0.06

CCE 0.006 0.21 0.04 0.87 0.72 0.71 0.85 0.88 0.75 0.73 0.86

IM 0.013 0.74 0.02 0.74 0.52 0.53 0.75 0.78 0.57 0.59 0.78

CRS 0.014 0.74 0.06 0.79 0.61 0.61 0.81 0.78 0.59 0.60 0.80

OPTI 0.006 0.55 0.05 0.78 0.63 0.63 0.79 0.79 0.63 0.63 0.79

EMPIRICAL LOCA 0.022 0.77 0.09 0.88 0.83 0.83 0.89 0.87 0.82 0.82 0.87

SK 0.022 0.77 0.04 0.87 0.81 0.82 0.88 0.88 0.82 0.82 0.88

SL 0.022 0.77 0.03 0.45 0.17 0.18 0.42 0.50 0.21 0.22 0.47

CCE 0.022 0.77 0.03 0.84 0.77 0.76 0.85 0.87 0.81 0.81 0.86

IM 0.074 8.01 0.02 0.89 0.81 0.80 0.89 0.92 0.84 0.84 0.91

CRS 0.077 7.89 0.05 0.88 0.81 0.81 0.88 0.89 0.82 0.82 0.89

OPTI 0.023 0.93 0.03 0.84 0.77 0.77 0.83 0.86 0.80 0.80 0.85

Notes: All other settings are deviations from BENCHMARK. The true parameter is 0. MAD is the median
absolute deviation. Alternatives for power calculation depend on the variation of the full-sample IV estimator
and are thus different across settings. Size-adjusted power is calculated by adjusted p-value threshold such that
the hypothesis is rejected in 5% of the replications.

5.2.3. Clustering

In this subsection we look at the performance of our clustering algorithm. The results are

shown in Table 3, where we look at the benchmark cases with L standing for 820 locations

and S for 205 locations. For example, OLS-L is exactly the BENCHMARK case in the OLS

settings. The maximum of numbers of clusters considered is Ḡ = 6 for the small-sample case

(OLS-S) and 10 for the two large-sample cases (OLS-L and IV-L).

For the small-sample case, the optimal number of clusters (G∗) is always chosen at 6 by the

size-power tradeoff. CCE being over-sized indicates that the procedure often underestimates

the spatial correlation and thus the size, so that the size-power tradeoff tends to pick a large

number of clusters to achieve a high power, resulting in over-rejection. This is also true for

the large-sample case of OLS.

6. Empirical Application: The Logic of Insurgent Electoral Violence

In this section, we apply our inference procedure based on learned clusters to an empirical

example which is likely to present spatial dependence. We revisit the effect of insurgent
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Fig 2. Power curves in BENCHMARK of IV with K-medoids clustering.

Table 3
Clustering

G∗ Size (fixed G) Estimated Size Estimated Power

Setting Method Size Power q25 q50 q75 G=2 G=6 G=10 q25 q50 q75 q25 q50 q75 Optimal

OLS-L CCE 0.15 0.22 9 10 10 0.07 0.12 0.15 0.05 0.05 0.05 0.13 0.18 0.25 0.61

IM 0.10 0.26 9 10 10 0.05 0.07 0.09 0.04 0.04 0.05 0.12 0.16 0.21 0.08

CRS 0.08 0.24 8 9 10 0.00 0.05 0.09 0.05 0.05 0.05 0.13 0.18 0.24 0.31

OLS-S CCE 0.19 0.24 6 6 6 0.06 0.20 - 0.05 0.05 0.05 0.12 0.16 0.25 0.87

IM 0.08 0.15 6 6 6 0.07 0.09 - 0.02 0.03 0.04 0.09 0.12 0.18 0.09

CRS 0.07 0.15 6 6 6 0.00 0.07 - 0.02 0.03 0.04 0.07 0.10 0.14 0.04

IV-L CCE 0.02 0.14 10 10 10 0.03 0.02 0.02 0.05 0.05 0.05 0.10 0.16 0.30 0.54

IM 0.02 0.27 8 10 10 0.03 0.02 0.02 0.04 0.04 0.05 0.10 0.14 0.25 0.08

CRS 0.06 0.32 8 9 10 0.00 0.04 0.06 0.05 0.05 0.05 0.11 0.15 0.27 0.38

IV-S CCE 0.03 0.12 6 6 6 0.03 0.04 - 0.05 0.05 0.05 0.12 0.19 0.28 0.87

IM 0.02 0.30 6 6 6 0.03 0.02 - 0.02 0.03 0.04 0.10 0.15 0.21 0.08

CRS 0.05 0.34 6 6 6 0.00 0.05 - 0.02 0.03 0.04 0.08 0.13 0.21 0.05

Notes: L is the large-sample case with N = 820 and S is with N = 205. For all columns, q25,q50, and q75 are 25-, 50-, and
75 quantiles of quantities across replications. G∗ is the number of clusters chosen by the criterion on size-power tradeoff.
The last column “Optimal” is the frequency of a particular method achieving the highest simulated power among all three
methods in the setting.

attacks on voter turnouts studied in Condra et al. (2018) [7]. In Condra et al. (2018) [7], the

authors study the impact of direct morning attacks on voter turnouts in the first and second

rounds of the 2014 election in Afghanistan. To do so, the authors estimate the following linear
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model both by OLS and IV:

Yd,e = α+ β1Attacksd,e + β2Xd,e + εd,e, (6.1)

where Yd,e is the turnout in district d and election round e, Attacksd,e is the number of

morning attacks in district d and election round e. The covariates in Xd,e include election

round fixed effects, voting hour wind conditions, population, a measure of precipitation and

ambient temperature and the average of predawn and morning wind conditions during the

preelection period. In order to overcome possible endogeneity, the authors use early morning

wind conditions as an instrument for Attacksd,e.

The number of districts D is 205 and the number of observations used in the regression

is 410 (considering the two rounds). For inference purposes the authors use cluster standard

errors (CCE) at the district level which are robust to within-district correlation (LOCA).

In this section we use our learned cluster-based methodology to perform inference on

β1 allowing for between-district spatial dependence. Specifically, after selecting the groups

based on some distance measure, we perform inference considering all three cluster-based

testing procedures CCE, IM, and CRS. Those procedures are implemented in the same way

as described in Section 5 and described in detail in Appendix A.

6.1. Selection of groups/clusters based on geographic distance

The first step is to produce groups based on some observable distance measure. We think

that both, the instrument and shocks that affect voting, might be spatially correlated across

districts that are geographically close. We use data on latitude and longitude coordinates

to calculate a measure of geographical distance dij between district i and district j.

Then, we group observations into clusters according to our distance measure. To group

the data we use k-medoids (KM). Since we are working with 205 cross-sectional units, we

allow for a maximum of six groups and a minimum of 25 cross-sectional units in each group.

The procedure generates a sequence of group structures {C(2), . . . , C(6)}.
Tables 4 reports the IV and first-stage estimates of β1 for the six subgroups generated

using KM. Column labeled full sample reproduces the results in Condra et al. (2018) [7] using

all the observations in the sample. Condra et al. (2018) [7] found a significant negative effect

(-0.145) of violence over voter turnout. Columns 3 to 8 in Table 4 display the IV and first

stage estimates for each of the six subgroups generated by KM. The row labeled IV displays

the second stage estimate of β1 using the full sample and the six sub-samples generated

by the KM algorithms. The row labeled First Stage displays the first stage estimates using

early morning wind conditions as an instrument. Rows labeled s.e. and t-stat display cluster

standard errors by location (we have two rounds of voting for each location) and t-statistic

for the full sample and the six subsamples.

From Table 4, we can see that there is a clear deterioration in both the strength of the

instrument in the first stage and the IV estimate in the second stage, when we look at the

subgroups. For example, in the full sample, the t-statistic associated with the instrument in
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Table 4
Impact of Early Morning Attacks on Voter Turnout during the 2014 Election

Within 6 subgroups using k-medoids

Full sample (1) (2) (3) (4) (5) (6)

IV -0.145 -0.180 0.054 0.021 0.085 -1.498 0.063

s.e. 0.061 2.384 0.134 0.073 0.071 2.590 0.617

t-stat 2.385 0.075 0.404 0.288 1.196 0.578 0.102

First Stage 0.281 -0.020 0.272 0.420 0.432 0.132 0.098

s.e. 0.086 0.214 0.232 0.490 0.180 0.231 0.257

t-stat 3.252 0.092 1.173 0.858 2.402 0.573 0.379

Note: The table reports IV and first stage estimates of β1 and their associated stan-
dard errors and t-statistic for the full sample and for six groups generated using
k-medoids based on geographic distance. Column labeled “Full sample” reproduces
the results in Condra et al. (2018) [7]. Columns 3–8 display the IV and first stage
estimates for each of the 6 sub-groups generated by k-medoids.

the first stage is 3.252 whereas in the subsamples the t-statistic is less than 1 in 4 of the six

subgroups selected by the KM . In the same line, the IV estimate in the second stage is not

significant in any of the subgroups selected using KM.

The resulting clustering as in the map is shown in Figure 3.
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Table 5
Inference Based on Selected Clusters

t-stat p-value C.I. G∗

LOCA 2.385 0.018 [-0.265, -0.025] 205

CCE 1.291 0.253 [-0.433, 0.144] 6

IM 0.954 0.384 [-0.896, 0.411] 6

CRS - 0.564 [-1.496, 0.084] 6

Note: The table reports the results of the inference procedure based on selected
clusters. Row labels indicate which procedure is used. Column labeled t-stat
reports t-statistic of the IV estimate of β1 for each of the procedures. Column
p-value reports the rejection rate evaluated at the null: β1 = 0. Column C.I
reports confidence intervals of the IV estimate of β1 for each of the procedures.
Column G∗ indicates the number of clusters used in each procedure.

6.2. Results

Table 5 shows the results of our inference procedure based on selected clusters. Row labels

indicate which procedure is used. Row labeled LOCA uses cluster standard errors at the district

level as in Condra et al. (2018) [7]. Row labeled CCE uses cluster standard errors for groups

selected by the k-medoids algorithm based on geographic distance. Row labeled IM reports the

IM inference procedure using groups selected by the k-medoids alghorithm based on geographic

distance. Row labeled CRS reports the CRS inference procedure using groups selected by the k-

medoids alghorithm based on geographic distance. Column labeled t-stat reports t-statistic of the

IV estimate of β1 for each of the procedures. Column p-value reports the rejection rate evaluated

at the null: β1 = 0. Column C.I. reports confidence intervals of the IV estimate of β1 for each of the

procedures. Column G∗ denotes number of groups used in each procedure. The optimal number of

cluster G∗ based on the size-power trade-off is 6 in CCE, IM, and CRS. Looking at the t-stat and

p-value columns, we see that when considering spatial dependence beyond within-district

dependence, the effect of violence over voter turnout is no longer significant. Each of the

confidence intervals for the IV estimator of β1 constructed using our inference procedure

is considerably wider than the confidence interval constructed with cluster standard errors

at the district level. More importantly, when we consider between-district spatial dependence, the

confidence intervals for the IV estimator of β1 in each of our inferential methods include

positive values for the estimated marginal effect of violence on voter turnout.

7. Conclusion

This paper proposes a cluster-based inferential procedure. Observations are grouped into

clusters which are learned using a unsupervised learning algorithm given a dissimilarity

measure. We consider a set of cluster-based inference procedure on the learned clusters. We

give conditions under which our procedure asymptotically attains correct size. We illustrate

the finite sample validity and apply our procedure to an empirical example.
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Appendix A: Implementation

In this section we present the details of the proposed procedure we use in the simulation

and applications sections. In those settings a panel data of N × T is given, along with the

geographical coordinates of N locations. We consider a linear model

yit = θ0xit + w′itγ + uit,

along with a scalar instrument variable zit, where θ0 ∈ R is the parameter of interest. For

the rest part of the section, we only consider this IV model and take the OLS case as an

special case where zit = xit.

Generally, our method is described by Algorithm 1 and consists of three steps: (i) learning

a sequence of clustering structures C , (ii) choosing the optimal clustering C∗ with the optimal

cluster number G∗ based on some criterion of size-power tradeoff, (iii) performing cluster-

based hypothesis testing using C∗. Details are given in the following subsections.

A.1. Clustering

We only cluster on the location and always assign different time periods of a single location

to the same cluster. We choose Ḡ =
⌈
N1/3

⌉
. For each G ∈ {2, . . . , Ḡ}, we run k-medoids

with G clusters, using the squared Euclidean distance of the locations as the input. This

step generates the sequence of clustering structures C = {C(2), . . . , C(Ḡ)}.

A.2. Size-power tradeoff

Let ỹit, x̃it, and z̃it be the partialed-out variables from wit, i.e. ỹit is the resid-

ual of regressing yit on wit, and same for x̃it and z̃it. Then, we have θ̂ − θ0 =

((NT )−1
∑
i,t z̃itx̃it)

−1(NT )−1
∑
i,t z̃itûit. Define the score by

sit =
z̃itûit

1
NT

∑
j,r z̃jrx̃jr

.

Next, we estimate a covariance model for the scores. Namely, We consider the class of

covariance functions parameterized by b = (b1, b2, b3, b4)′ and given by{
cov(sit, sjr; b) = b1 exp

(
−
(
‖Li − Lj‖2

b2
+
|t− r|
b3

))
cos

(
b4

(
‖Li − Lj‖2

b2
+
|t− r|
b3

))}
b∈R4

+

,

and estimate b by Gaussian QMLE. Let the resulting covariance matrix estimator be Σ̂ ∈
R(NT )×(NT ).

Fix a certain cluster-based testing procedure such as IM or CRS, and the significance

level α. Given a clustering structure C, we can now simulate the Type-I error t1(C) and

Type-II error t2(C, p; θ) against a certain alternative θ0 = θ, where p ≤ α is the p-value
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threshold, i.e. we allow the threshold to be smaller than α in order to make the test more

conservative. To simulate data, note that the vector of group-level means can be written as

ACs =

 1

|Cg|
∑

(i,t)∈Cg

sit


Cg∈C

,

where s = (sit)i=1,...,N,t=1,...,T is the vector of all scores. Thus, the distribution of the vector

of group-level means can be approximated by N(0, ACΣ̂AC). We generate 10000 observations

from this distribution and calculate the rejection rates to form the estimates for Type-I and

Type-II errors.

Finally, we solve

(C∗, p∗) = arg min
C∈C ,p∈(0,α]

1

J

J∑
j=1

t2(C, p; θj)

s.t. t1(C, p) ≤ α

That is, we select the clustering structure with the highest (simulated) power among those

whose (simulated) sizes are controlled. The set of interesting alternatives {θj}Jj=1 is chosen

to be {0.25se, 0.75se, 1.25se, 1.75se, 2.25se, 2.75se}, where se is the White standard error of

θ0 estimator.

A.3. Group-based hypothesis testing

We consider three testing procedures: the t-statistic based test as in [14] (IM), and the

randomization test as in [6] (CRS). The procedures are given here for reference.

A.3.1. IM

The IM procedure is given as follows. For some x ∈ RG, define x̄ = G−1
∑G
i=1 xi and

se(x) =
√

(G− 1)−1
∑G
i=1(xi − x̄)2. The t-statistic is defined by t(x) =

√
Gx̄/se(x). Let

cvG(α) be the critical value of usual two-sided t-test of level α with G−1 degree of freedom.

Let S ∈ RG be a vector of within-group estimators for a scalar parameter, i.e., the i-th entry

of S is the resulting estimator using only the data from the i-th group. At significance level

α, the IM test is given by

ψ(S) = 1{|t(S)| > cvG(α)}.

A.3.2. CRS

We now describe the specific version of CRS used in this paper. Consider the following

setting with observed data

Dn ∼ Pn ∈ Pn
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where Pn is a set of distributions on a sample space Xn and i = 1, ...n indexes observations.

We assume that Dn = {Wi,n}ni=1 where Wi,n are real vector valued random variables.

Consider a hypothesis testing problem:

H0 : Pn ∈ Pn,0 vs H1 : Pn ∈ Pn \Pn,0 at level α ∈ (0, 1).

The tests constructed in CRS require that the distribution of the observed data exhibits

approximate symmetry. To make this precise, Let T be a real valued test statistic, such that

large values of T provide evidence against H0. Let H be a finite group along with an action

Dn 7→ hDn for all h ∈ H.

Let C be a partition of {1, ..., n} withG clusters C = (C1, ...,CG). We assume that T factors

through a function S which takes the form Sn(Dn) = (Sn,1(Dn), ..., Sn,G(Dn)). Therefore,

by an abuse of notation, we may write T (Dn) = T (Sn(Dn)). Further, each component g

of Sn depends only on {Wi,n}i∈Cg . That is, Sn,g(Dn) = Sn,g({Wi,n})i∈Cg . We assume that

the action of H respects Sn in the sense that the action can be equivalently expressed

hDn = hSn(Dn).

Let M = |H| and let T 1(Dn) 6 T 2(Dn) 6 · · · 6 TM (Dn) denote the order statistics of the

orbit of {T (hDn) : h ∈ H}. Let k = M(1−α), M+(X) = |
{

1 6 j 6M : T j(Dn) > T kDn

}
|

and M0(X) = |
{

1 6 j 6M : T j(X) = T k(Dn)
}
|. Let a (Dn) = Mα−M+(Dn)

M0(Dn) . A random-

ization test is given by:

Reject if φ(Dn) = 1, φ(Dn) =


1 T (Dn) > T k(Dn)

a(X) T (Dn) = T k(Dn)

0 T (Dn) < T k(Dn)

In CRS it was shown that if (i) Sn(Dn)
d→ S under Pn, (ii) hS

d
= S for all h, (iii) for

distinct h, h′, either T ◦h = T ◦h′ or P(T (hS) 6= T (h′S)) = 1, (iv) T is contintuous and the

action of h is continuous for each h, then

EPn [φ(Sn(X))]→ α.

The result of CRS shows randomization inference under asymptotic approximate sym-

metry conditions is asymptotic valid. Our procedure is motivated by the fact that in many

applications (including regression and IV data), a partition of the data into clusters of

observations which are mostly independent leads to valid approximate inference.

A leading example of functions Sn includes the case when Dn = (yi, xi, wi)
n
i=1 is regression

data satisfying yi = β0xi + w′iγ0 + εi with scalar regressor xi, and

Sn (Dn) =
(√

n(β̂1 − β0), . . . ,
√
n(β̂G − β0)

)
as the G × 1 vector of OLS estimates of a parameter of interest using the data in each of

the G subsets of the data. Another leading case is for instrumental variables data Dn =

(yi, xi, wi, zi)
n
i=1 and again Sn (Dn) =

(√
n(β̂1 − β0), . . . ,

√
n(β̂G − β0)

)
as the G× 1 vector
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of IV estimates. In this paper, we will mainly be interested in the case H = {±1}G with

action

hSn(Dn) = (h1

√
n(β̂1 − β0), ..., hG

√
n(β̂G − β0)).

In those examples, the test statistic T can be simple average of the elements in Sn(Dn)

or hSn(Dn). Under common modeling and regularity assumption, H can be used for the

commonly encountered test H0 : β0 = 0.

Appendix B: Proofs of Results in Section 3

B.1. Supporting Results for Proposition 1

Here we show the metric embedding propositions and their Proofs.

Theorem 3 (Assoud). Let (X, d) be an arbitrary (non necessarily finite) metric space such

that K = dim2×(X) <∞. Let ε ∈ (0, 1). Then there exists an L-bi-Lipschitz map (X, dε)→
Rr for some L, r which depend only on ε and K.

Ahlfors regularity of X implies constant doubling. In this context, we have the following

proposition.

Proposition 5. Suppose that X satisfies C, δ-finite-Ahlfors regularity. Then the doubling

dimension dim2×(Xn) is bounded by dim2× 6 δ log2(3C2).

This notion of regularity implies that, coursely, X have the same dimension in all locations.

This can be generalized slightly as the following example illustrates.

Proposition 6. Suppose that X can be decomposed as a finite disjoint union X = X(1)t ...t
X(m). Suppose that separately, X(j) satisfy Cj , δj-finite-Ahlfors regularity. Then dim2×(Xn)

is bounded by dim2×(X) 6 2
∑m
j=1 δj log2(3C2

j ).

Finite bounds on Assoud’s theorem are given in [27]. See also [31] and Assoud’s original

dissertation [2].

Proposition 7. Let (X, d) be C, δ-regular. Then (X, d3/4) has an L-bi-Lipschitz map into

Rr where r 6 833δ log(3C2) and the Lipschitz constant L depends only on C, δ.

Proof. The proof follows from Assoud’s Theorem as well as the fact that X has constant

doubling by the previous proposition. The proof is completed by chasing the constants in [27].

Preliminaries in [27] notation (note that δi is a distinct new quantity here): τ = εθ

32(logK)θ
,

θ set to 1/3. r
δi

= 4τ
−3
1−ε

(
4ε
c∗γ

) −1
1−ε

.

Bounds on c∗:

Case I

c∗ =
τ

1−τ(
64 logK
τ1+1/(1−ε)

)1−ε (
logK
ε

)1+θ
6

τ

1− τ
6

1

16
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Case II

c∗ 6 1

Need :

e

(
ε

logK

) 1
2 c logK (

K4+2 log2(r/δi) + 1
)
6 1

Sufficient is that

16(4 + 2 log2(r/δi))
1

log2 logK + log 1
ε

6 c

Next bound log2(r/δi).

log2(r/δi) 6 20 + 4

(
log2

(
1

ε

)
+ log2(c∗) + log2 log(K)

)
Sufficient that

16

[
4 + 2

(
20 + 4

(
log2

(
1

ε

)
+ log2(c∗) + log2 log(K)

))]
1

log2 logK + log2
1
ε

6 c

Sufficient that

704 + 128 (1 + log2(c∗)) 6 c

Sufficient that c = 833 to deal with integer problems.

B.2. Proof of Proposition 1

In this section we show the proof of mixing CLT over arrays of uniformly Ahlfors domains.

Proof. In the case that Xn embed isometrically into Rν , the conditions imply those required

for JP Corollary 1, which has the same conclusion as the conclusion of this proposition.

(Condition C2(v) in the text is stronger than what is required for JP, who only ask that

ᾱ1,∞(m) = O(m−ν−µ) rather than ᾱ1,∞(m) = O(m−ν−
4
3µ).

In the case that Xn do not embed isometrically, let L be the bi-Lipschitz constant from

the maps (Xn, d
1−1/4
n ) → X̃n ⊆ Rν1 where ν1 can be taken ν1 6 d833δ log(3C2)e. The

process {{Zi,n}ni=1}∞n=1 indexed on Xn yields a process {{Z̃i,n}ni=1}∞n=1 indexed on X̃n. It

is sufficient to check the conditions of Corollary 1 in Jenis and Prucha (2009) for this

new process. We apply the same set array of constants ci,n to Z̃i,n. Assumption 1 in JP

is satisfied by the fact that distances are at least ρ0 in Xn for some ρ0 > 0 by Ahflors

regulartity. Note that L depends only on C, δ and in particular, does not change with n.

Then ∀i, j, d̃n(i, j) > L−1N−1/2ρ0 > 0 which also does not depend on n. Condition C2(ii)

is identical to Equation 3 in JP.

The next conditions in JP are mixing conditions. To verify these, let α̃k,l,n(r) and ¯̃αk,l,n(r)

denote the corresponding mixing coefficients for Z̃i,n over X̃n. Note that d̃(U, V ) > r ⇒
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d(U, V ) > L−1ν
−1/2
1 r

3
4 . Let c = L−1ν

−1/2
1 . Then ¯̃αk,l(r) 6 ᾱk,l(cr

3/4). To verify Equation 4

in JP, it is sufficient to show that

∞∑
m=1

¯̃α1,1(m)mν1×µ+2
µ −1 <∞.

Note that ¯̃α1,1(m) is nonincreasing and defined for nonnegative real m and mν1×µ+2
µ −1

is a polynomial in m. Thus, the above summation is bounded up to a constant by the

corresponding integral ∫ ∞
m=0

¯̃α1,1(m)mν×µ+2
µ −1dm

Substituting ¯̃α1,1(m) 6 ᾱ1,1(cm3/4) and a standard calculus change of variables m′ = cm3/4,

dm′ = 3
4cm

−1/4dm shows that it is sufficient to verify∫ ∞
m′=0

ᾱ1,1(m′)m′
4
3 (ν1×µ+2

µ −1)
m′

1/3
dm′ <∞.

This integral is in turn bounded by a constant times the summation

∞∑
m′=1

ᾱ1,1(m′)m′
4
3ν1×

µ+2
µ −1

=

∞∑
m′=1

ᾱ1,1(m′)m′
ν×µ+2

µ −1
<∞

which is assumed to be finite under Condition C2(iii), thus verifying Equation 4 in JP.

Using similar arguments, Condition C2(iv) implies Assumption 4(2) in JP. Next, Condition

C2(v) implies that

¯̃α1,∞(m) 6 ᾱ1,∞(cm3/4) = O((cm3/4)
4
3 (ν1−µ)) = O(mν1−µ)

thus verifying Assumption 4(3) in JP. Finally, Condition C2(vi) implies Assumption 5 in

JP. This verifies the assumptions of Corollary 1 in JP. The conclusion of Corollary 1 in JP

is identical to the conclusion for this result.

B.3. Proof of Proposition 2

In this section we show that small boundaries give vanishing covariance.

Proof. We prove this in the case that |C| = 2 is which case for C ⊆ X, we take D = X \ C.

The general case follows by applying the same arguments, and by retracing boundaries

when necessary. By arguments in BCH (previously also given in Jenis and Prucha, (2009)

and Bolthausen (1982)), σ−1
n,Cσ

−1
n,Dn = O(1) and∣∣∣∣∣∣cov

σ−1
n,C

∑
i∈C

Zj , σ
−1
n,D

∑
j∈D

Zj

∣∣∣∣∣∣ 6 σ−1
n,Cσ

−1
n,D

∑
(i,j)∈C×D

ᾱ1,1(dd(i, j)e)µ/(2+µ)

= σ−1
n,Cσ

−1
n,D

∞∑
k=1

|{(i, j) ∈ C× D : k − 1 6 d(i, j) < k}|ᾱ1,1(k)µ/(2+µ).
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Note that

|{(i, j) ∈ C× D : k − 1 6 d(i, j) < k}| 6 |{(i, j) ∈ X× X : k − 1 6 d(i, j) < k}| 6 nCkδ

by Condition C1. By Condition C3 it also follows that

max
k6r
|{(i, j) ∈ C× D : k − 1 6 d(i, j) < k}| 6 o(n).

Then the original covariance is bounded by

σ−1
n,Cσ

−1
n,D

[
r∑

k=1

o(n)ᾱ1,1(k) +

∞∑
m=r

nCkδᾱ1,1(k)

]

The first term satisfies σ−1
n,Cσ

−1
n,D

∑r
k=1 o(n)ᾱ1,1(k) → 0 by

∑r
k=1 o(n)ᾱ1,1(k) 6∑∞

k=1 o(n)ᾱ1,1(k) < ∞ and σ−1
n,Cσ

−1
n,Do(n) → 0. The second term satisfies

σ−1
n,Cσ

−1
n,D

∑∞
m=r nCk

δᾱ1,1(k) → 0 by nσ−1
n,Cσ

−1
n,D = O(1),

∑∞
m=1 nCk

δᾱ1,1(k) < ∞ and

r →∞ =⇒
∑∞
m=r Ck

δᾱ1,1(k)→ 0. This concludes the proof.

B.4. Proof of Proposition 3

Proof. We prove in the case where Cn = {Cn,Dn}. General cases with G > 2 follow by

applying the same arguments. We suppress n for notation simplicity, i.e., C = Cn.

Step 1. We first show (
Ω
−1/2
C 0

0 Ω
−1/2
D

)
sn

d→ N(0, I2K)

where sn = ((|C|−1/2
∑
i∈C wiui)

′, (|D|−1/2
∑
i∈D wiui)

′)′.

Let vn = var(sn). We want to show v
−1/2
n sn

d→ N(0, I2K) by the Cramér-Wold device.

For λ ∈ R2K , let

zi =

 1√
|C|
wiui1{i ∈ C}

1√
|D|
wiui1{i ∈ D}

 .

Then, it is equivalent to show
∑
i∈C∪D λ

′v
1/2
n zi

d→ N(0, 1) for any λ with ‖λ‖ = 1. To apply

Proposition 1, note that C2(i), (iii), (iv), and (v) are satisfied by C2*(i), (iii), (iv), and (v),

so it suffices to verify C2(ii) & (vi). To see C2(ii), note∣∣∣∣∣λ′v−1/2
n zi
ci,n

∣∣∣∣∣ ≤ ‖λ‖ · ‖v−1/2
n ‖F ·

∥∥∥∥ zi
ci,n

∥∥∥∥
≤ M

∥∥∥∥∥ wiui

ci,n min{
√
|C|,

√
|D|}

∥∥∥∥∥
≤ M

δ
‖n−1/2wiui‖, (B.1)
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where supn ‖v
−1/2
n ‖F < M for some M <∞ by C2*(vii) and lim infn→∞minC∈Cn |C|/n > δ

for some δ by C3. Thus, we have

lim
k→∞

sup
n

sup
i∈Xn

E[|λ′v−1/2
n zi/ci,n|2+µ

1{|λ′v−1/2
n zi/ci,n| > k}]

≤
(
M

δ

)2+µ

lim
k→∞

sup
n

sup
i∈Xn

E[‖n−1/2wiui/ci,n‖2+µ
1{‖n−1/2wiui/ci,n‖ > δk/M}]

≤
(
M

δ

)2+µ

lim
k→∞

sup
n

sup
i∈Xn

E[‖n−1/2wiui/ci,n‖2+µ
1{‖n−1/2wiui/ci,n‖ > k}]

= 0,

by C2*(ii). To verify C2(vi), note

var

(
n∑
i=1

λ′v−1/2
n zi

)
= λ′v−1/2

n var(sn)(v−1/2
n )′λ = 1,

so

inf
n
n|Xn|−1

(
max
i∈Xn

c−2
i,n

)
var

(
n∑
i=1

λ′v−1/2
n zi

)
= inf

n
n|Xn|−1

(
max
i∈Xn

c−2
i,n

)
> 0,

by C2*(vi). Therefore, Proposition 1 applies and we have

v−1/2
n sn

d→ N(0, 1) (B.2)

For some k ∈ {1, . . . ,K}, let w
(k)
i be the k-th entry of wi. Following the same argument

as in the proof of Proposition 2, we have∣∣∣∣∣cov

(
1√
|C|

∑
i∈C

w
(k)
i ui,

1√
|D|

∑
i∈D

w
(l)
i ui

)∣∣∣∣∣ ≤ n√
|C| · |D|

· 1

n

∑
(i,j)∈C×D

ᾱ1,1(dd(i, j)eµ/(2+µ)

≤ 1

δ
· o(1)

→ 0. (B.3)

The second inequality is by C3 and δ is the uniform lower bound of |C|/n.

Since (·)−1/2 is uniformly continuous on {A ∈ R2K : A = A′, λmin(A) > δ} for some

δ > 0, we have

v−1/2
n −

(
Ω
−1/2
C 0

0 Ω
−1/2
D

)

=


ΩC cov

(∑
i∈C wiui√
|C|

,

(∑
i∈D wiui√
|D|

)′)

cov

((∑
i∈C wiui√
|C|

)′
,
∑
i∈D wiui√
|D|

)
ΩD


−1/2

−

(
ΩC 0

0 ΩD

)−1/2

= o(1), (B.4)



J. Cao, C. Hansen, D. Kozbur and L. Villacorta / Inference with Cluster Learning 31

by C2*(vii).

Combining (B.2), (B.3), and (B.4), we have(
Ω
−1/2
C 0

0 Ω
−1/2
D

)
sn = (v−1/2

n + o(1))sn

= v−1/2
n sn + o(1)v1/2

n v−1/2
n sn

= v−1/2
n sn + o(1)O(1)Op(1)

d→ N(0, I2K).

The third equality is by C2*(vii).

Step 2. Let qi,C = wix
′
i − E[|C|−1

∑
i∈C wix

′
i] and Q̂n,C = |C|−1

∑
i∈C wix

′
i. By C2*(viii)

and the same reasoning as in Step 1,var

(∑
i∈C qi√
|C|

)
0

0 var

(∑
i∈D qi√
|D|

)

−1/2 1√

|C|

∑
i∈C qi

1√
|D|

∑
i∈D qi

 d→ N(0, I2K).

Therefore,

Q̂n −Qn =

 1√
|C|

0

0 1√
|D|

 1√
|C|

∑
i∈C qi

1√
|D|

∑
i∈D qi



=

 1√
|C|

0

0 1√
|D|


var

(∑
i∈C qi√
|C|

)
0

0 var

(∑
i∈D qi√
|D|

)


1/2

·

var

(∑
i∈C qi√
|C|

)
0

0 var

(∑
i∈D qi√
|D|

)

−1/2 1√

|C|

∑
i∈C qi

1√
|D|

∑
i∈D qi


= o(1)O(1)Op(1)

= op(1).

By uniform continuity of (·)−1 on {A ∈ R2K : A = A′, λmin(A) > δ} for some δ > 0, we

have (
Q̂−1

C 0

0 Q̂−1
D

)
−

(
Q−1

C 0

0 Q−1
D

)
= op(1).

Step 3. By Corollary F4 in [30] ,

V −1/2
n

(
Q−1

C 0

0 Q−1
D

)
sn =

[
V −1/2
n

(
Q−1

C 0

0 Q−1
D

)
v1/2
n

]
·
(
v−1/2
n sn

)
d→ N(0, I2K).

Then, combining previous steps, we have

V −1/2
n Sn = V −1/2

n

(
Q̂−1

C 0

0 Q̂−1
D

)
sn
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= V −1/2
n

((
Q−1

C 0

0 Q−1
D

)
+ op(1)

)
sn

= V −1/2
n

(
Q−1

C 0

0 Q−1
D

)
sn + V −1/2 · op(1) · sn

= V −1/2
n

(
Q−1

C 0

0 Q−1
D

)
sn + V −1/2 · op(1) · v1/2

n

(
v−1/2
n sn

)
= V −1/2

n

(
Q−1

C 0

0 Q−1
D

)
sn +O(1)op(1)O(1)Op(1)

d→ N(0, I2K).

Appendix C: Proof of Propositions 4

In this section we verify the balanced and small boundary conditions for k-medoids.

Proof. Let r̄n = log n. When possible, from this point on, n is excluded from notation.

Consider two points x, y ∈ X. Let M = {z : |d(x, z)−d(z, y)| 6 r̄}. Let M0 be an r̄2-net of M .

Suppose for sake of contradiction that |M | 6= o(n). Then |M0| 6= o(n/r̄2δ). Let A ⊆ [ 1
2 ,

9
10 ]

satisfy |a − a′| > r̄3/d(x, y) for each a, a′ ∈ A. Take |A| > 4
10
d(x,y)

2 /r̄3. For a ∈ A, let M ′a

consist of interpolants za such that |d(x, za)−ad(x, z)| 6 K and |d(za, z)−(1−a)d(x, z)| 6 K

for each z ∈M0. For a ∈ A, let Ma consist of interpolants za such that |d(x, za)−ad(x, z)| 6
K and |d(za, z) − (1 − a)d(x, z)| 6 K for each z ∈ M0. Then by trigonometry, ∪a∈AMa

is a 3r̄-separated for n sufficiently large and contains |A| × |M0| elements. This can be

checked in more detail, by constructing the line segments ι(x)ι(z) and ι(x)ι(z′) where ι is

the coarse isometry to Euclidean space E. Then there are points u, u′ which belong to the

above constructed line segments with distances dE(ι(za), u), dE(ι(z′a), u′) bounded. u, u′ are

then shown sufficiently separated to yield the claim. As a result,∣∣∣∣∣∣
⋃

a∈A,za∈Ma

Br̄(za)

∣∣∣∣∣∣ > |A| × |M0|C−1r̄δ >
4

20

d(x, y)

r̄3
|M0|C−1r̄δ.

But by |M0| 6= o(n/r̄2δ), it follows that the above quantity must be larger than n infinitely

often provided d(x, y) > r̄4+δ for n sufficiently large. This is impossible. Therefore, the small

boundaries result is shown once it is shown that k-medoids terminates with medoids x1, ..., xk

such that d(xk, xl) > (log n)4+δ for n sufficiently large. Again for contradiction, suppose

there is a sequence `n = o(1) such that for infinitely many n, there are two clusters C1,C2

with medoids x1, x2 satisfying d(x1, x2) < `nn
1/δ. By the pigeonhole principal, there must be

a cluster C3 with n/G members. Then diam(C3) must be at least C−1(n/G)1/δ. Let x3 be the

corresponding medoid. Then there must be x′3 ∈ C3 such that d(x3, x
′
3) > 1

4C
−1(n/G)1/δ and

d(x′3, xk) > 1
4C
−1(n/G)1/δ for any other medoid xk. Then consider the update in the par-

titioned medoid algorithm given by x2 ← x′3. This update is cost reducing for n sufficiently
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large. To see this, note that for elements, x ∈ B 1
4C
−1(n/G)1/δ(x

′
3) the total cost reduction

from being reassigned from a medoid centered around x2 to a medoid centered around x′3 is

at least |B 1
4C
−1(n/G)1/δ(x

′
3)| 14C

−1(n/G)1/δ > 1
4C
−1(n/G)1/δC−1( 1

4C
−1(n/G)1/δ)δ . The to-

tal cost increase from reassigning elements in C2 to C1 is at most `nn
1/δ|C2| 6 `nn

1/δn. The

difference between the above two quantities is a lower bound on the cost reduction for the

update. Comparing the above to quantities for n sufficiently large, the k-medoids algorithm

could not have stopped at a step with d(x1, x2) < `nn
1/δ giving the desired contradiction.

Finally, note that d(xk, xl) > `nn
1/δ for all medoids xk, xl, some `n bounded uniformly away

from 0, and for n sufficiently large implies the balanced clusters condition after applying

Ahflors regularity.

Appendix D: Proof of Theorem 1

D.1. High level proposition for Theorem 1

Assumption H1. (Almost sure representation) There exists {S̃n,C , S̃∗n,C}n≥1,C∈Cn and U

defined on a common probability space with P, such that ∀n ≥ 1 and ∀C ∈ Cn, S̃n,C =d

Sn,C , S̃
∗
n,C =d S

∗
n,C , supC∈Cn ‖S̃n,C − S̃

∗
n,C‖ → 0 with probability one, and U is uniformly

distributed on [0, 1] and independent of other random elements. In addition, for each n and

C, S̃∗n,C = (τn,C1
r1, . . . , τn,CGrG) where C = (C1, . . . ,CG), R̃∗G = (r1, . . . , rG), and R̃∗G is not

a function of n.

Assumption H2. (Normality) For each n and C, S∗n,C ∼ N(0, V ), with V is diagonal.

Proposition 8. Suppose H1, H2, and R2 hold. Then,

sup
C∈Cn

(EPn [ψ(Sn,C)]− α)+ → 0,

where ψ is the result of the IM procedure.

Proof. Let {S̃n,C , S̃∗n,C} be defined as in H1. By Theorem 1 of [14], H2 and R2(i) imply

EPn [ψ(S∗n,C)] ≤ α,

for each n and C. Note that

(EPn [ψ(Sn,C)]− α)+ ≤ |EPn [ψ(Sn,C)]− EPn [ψ(S∗n,C)]|+ (EPn [ψ(S∗n,C)]− α)+

= |EP[ψ(S̃n,C)]− EP[ψ(S̃∗n,C)]|,

so it suffices to show

sup
C∈Cn

|EP[ψ(S̃n,C)]− EP[ψ(S̃∗n,C)]| → 0.

Let En,C = {ψ(S̃n,C) = ψ(S̃∗n,C)}, i.e. En,C is the set where |t(S̃n,C)| and |t(S̃∗n,C)| are on

the same side of cvG(α). We follow the same strategy as in the proof of Proposition 3. Then,

it suffices to show that there exists Ω with P(Ω) = 1 such that for each ω ∈ Ω, there exists

Nω such that ∀n ≥ Nω and C ∈ Cn, ω ∈ En,C .

By H1, R2(ii)&(iii), there exists Ω with P(Ω) = 1 such that for each ω ∈ Ω,



J. Cao, C. Hansen, D. Kozbur and L. Villacorta / Inference with Cluster Learning 34

(i) supC∈Cn ‖S̃n,C − S̃
∗
n,C‖ → 0;

(ii) lim supn→∞ supC∈Cn |
¯̃S∗n,C | ≤Mω;

(iii) lim infn→∞ infC∈Cn se(S̃∗n,C) ≥ ηω > 0;

(iv) lim supn→∞ supC∈Cn se(S̃∗n,C) ≤ η̄ω;

(v) lim infn→∞ infC∈Cn ||t(S̃∗n,C)| − cvG(α)| > ηω, where G = |C|.

For notation simplicity, let s = S̃n,C and s∗ = S̃∗n,C . By supC∈Cn |s− s
∗| → 0 and uniform

continuity of se(·), there exists N1 such that ∀n ≥ N1, |(se)(s) − se(s∗)| < η
ω
/2, so by

R2(ii),

se(s)se(s∗) <
η2
ω

2
. (D.1)

By uniform continuity of ·̄ and se(·), there exists N2 such that ∀n ≥ N2, we have

|s̄− s̄∗| <
η2
ω
ηω

4(η̄ω +Mω)
(D.2)

and

|se(s∗)− se(s)| <
η2
ω
ηω

4(η̄ω +Mω)
. (D.3)

Thus, ∀n ≥ Nω = max{N1, N2}, ∀C ∈ Cn,

|t(s)− t(s∗)| =

∣∣∣∣ s̄ · se(s∗)− s̄∗ · se(s)

se(s)se(s∗)

∣∣∣∣
≤ |s̄ · se(s∗)− s̄∗ · se(s∗)|+ |s̄∗ · se(s∗)− s̄∗ · se(s)|

se(s)se(s∗)

≤ |s̄− s̄∗| · se(s∗) + |s̄∗| · |se(s∗)− se(s)|
se(s)se(s∗)

< ηω.

Thus, for n large enough, |t(s)| and |t(s∗)| are on the same side of the critical value. This

concludes the proof.

D.2. Proof of Theorem 1

Proof. See the proof of Theorem 2 for verifying H1. This also implies H2. Therefore, Propo-

sition 8 applies.

Appendix E: Proof of Theorem 2

E.1. Supporting lemma

Lemma 1. (Uniform Fatou’s Lemma) Let {fn,C}n≥1,C∈Cn be a set of measurable functions

that are uniformly bounded, i.e. ∃M s.t. |fn,C | ≤M , ∀n ≥ 1,∀C ∈ Cn. Assume Cn is a finite

set for each n. Then,

lim sup
n→∞

sup
C∈Cn

∫
fn,C ≤

∫
lim sup
n→∞

sup
C∈Cn

fn,C .
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Proof. Define gn = supm≥n supC∈Cm fm,C . Note that gn is measurable, non-increasing, and

bounded from below, so gn converges pointwise and

lim
n→∞

gn = lim sup
n→∞

sup
C∈Cn

fn,C .

Also, the monotone convergence theorem implies

lim
n→∞

∫
gn =

∫
lim
n→∞

gn =

∫
lim sup
n→∞

sup
C∈Cn

fn,C .

Note fn,C ≤ gn for each C, so
∫
fn,C ≤

∫
gn for each C and thus

sup
C∈Cn

∫
fn,C ≤

∫
gn.

Combining results, we have

lim sup
n→∞

sup
C∈Cn

∫
fn,C ≤ lim sup

n→∞

∫
gn =

∫
lim sup
n→∞

sup
C∈Cn

fn,C .

E.2. High level proposition for Theorem 2

This section presents a high level proposition and its assumptions for CRS with learned

clustering. Suppose the vector of group-level estimator is Sn,C with clustering C. The set of

invariance transformation is GC and the test statistic function is T . Note that this allows for

a sequence of clusterings with increasing number of groups, which is more general than the

settings considered in this paper.

Assumption H3. (Invariance transformation) Let GC be the set of transformations asso-

ciated with clustering structure C, and T be the test statistic function.

(i) ∀n ≥ 1,∀C ∈ Cn,∀g ∈ GC , we have g(S∗n,C) =d S
∗
n,C .

(ii) Let Ω0 = {T (gS∗n,C) 6= T (g′S∗n,C),∀n ≥ 1,∀C ∈ Cn,∀g, g′ ∈ GC , g 6= g′}, then P(Ω0) =

1.

(iii) ∀n ≥ 1,∀C ∈ Cn,∀g ∈ GC , T ◦ g is uniformly continuous.

(iv) {g : ∀n ≥ 1,∀C ∈ Cn, g ∈ GC} is finite.

Proposition 9. Suppose H1, H3, and R1 hold. Then,

sup
C∈Cn

|EPn [φ(Sn,C)]− α| → 0,

where φ is the result of the CRS procedure with transformation sets {GC} and test statistic

function T .

Proof. Let {S̃n,C , S̃∗n,C} and U be defined as in H1.
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By H3(i) and Theorem 2.1 in [6], EPn [φ(S∗n,C)] = α. Since ∀n ≥ 1 and ∀C ∈ Cn,

S̃n,C =d Sn,C , S̃
∗
n,C =d S

∗
n,C , we have EP[φ(S̃n,C , U)] = EPn [φ(Sn,C)] and EP[φ(S̃∗n,C , U)] =

EPn [φ(S∗n,C)]. Thus,

EPn [φ(Sn,C)]− α = EPn [φ(Sn,C)]− EPn [φ(S∗n,C)] = EP[φ(S̃n,C , U)− φ(S̃∗n,C , U)].

Thus, it suffices to show supC∈Cn |EP[φ(S̃n,C , U)− φ(S̃∗n,C , U)]| → 0.

Let En,C be the event where the orderings of {T (gS̃n,C) : g ∈ GC} and {T (gS̃∗n,C) : g ∈ GC}
correspond to the same transformations g(1), . . . , g(|GC|). Then,

|EP[φ(S̃n,C , U)− φ(S̃∗n,C , U)]| =|EP[φ(S̃n,C , U)1En,C + φ(S̃n,C , U)1Ecn,C

− φ(S̃∗n,C , U)1En,C − φ(S̃∗n,C , U)1Ecn,C
]|

=|EP[φ(S̃n,C , U)1Ecn,C
− φ(S̃∗n,C , U)1Ecn,C

]|

=|EP[(φ(S̃n,C , U)− φ(S̃∗n,C , U))1Ecn,C
]|

≤2EP[1Ecn,C
].

Thus, the goal is to show supC∈Cn EP[1Ecn,C
]→ 0. By H1, H3(ii), and R1(ii), there exist

Ω with P(Ω) = 1 such that for each ω ∈ Ω,

(i) supC∈Cn ‖S̃n,C − S̃
∗
n,C‖ → 0;

(ii) infn infC∈Cn infg 6=g′ |T (g(S̃∗n,C))− T (g′(S̃∗n,C))| > δω > 0;

(iii) ∀n ≥ 1,∀C ∈ Cn,∀g, g′ ∈ GC , g 6= g′, we have

T (gS̃∗n,C) 6= T (g′S̃∗n,C).

Now fix ω ∈ Ω. For each n ≥ 1 and C ∈ Cn, let g
(1)
n,C , . . . , g

(|GC|)
n,C be such that

T (g
(1)
n,C(ω)S̃∗n,C(ω)) < · · · < T (g

(|GC|)
n,C (ω)S̃∗n,C(ω)).

For some g ∈ GC , by uniform continuity of T ◦g as in H3(iii), there exists εω(g) > 0 such that

‖S̃n,C(ω)− S̃∗n,C(ω)‖ < εω(g) implies |T (gS̃∗n,C(ω))− T (gS̃∗n,C(ω))| < δω/2, for δω defined in

H3(iii). Let εω = min{εω(g) : ∀n ≥ 1,∀C ∈ Cn,∀g ∈ GC}, which is well-defined by H3(iv).

Thus, ‖S̃n,C(ω)− S̃∗n,C(ω)‖ < εω implies |T (gS̃∗n,C(ω))−T (gS̃∗n,C(ω))| < δω/2 for any g ∈ GC .
Since ω ∈ Ω1, there exists Nω such that ∀n ≥ Nω, we have supC∈Cm ‖S̃n,C(ω)−S̃∗n,C(ω)‖ <

εω. Therefore, ∀n ≥ Nω,∀C ∈ Cn,∀j = 1, . . . , |GC | − 1,

T (g
(j+1)
n,C (ω)S̃n,C(ω))− T (g

(j)
n,C(ω)S̃n,C(ω)) = T (g

(j+1)
n,C (ω)S̃n,C(ω))− T (g

(j+1)
n,C (ω)S̃∗n,C(ω))

+ T (g
(j+1)
n,C (ω)S̃∗n,C(ω))− T (g

(j)
n,C(ω)S̃∗n,C(ω))

+ T (g
(j)
n,C(ω)S̃∗n,C(ω))− T (g

(j)
n,C(ω)S̃n,C(ω))

> 0,

since the first and the third terms are smaller than δω/2 in absolute value and the second

term is greater than δω. That implies ω ∈ ∩C∈CnEn,C , ∀n ≥ Nω.
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By Lemma 1,

lim sup
n→∞

sup
C∈Cn

EP[1Ecn,C
] ≤ EP

[
lim sup
n→∞

sup
C∈Cn

1Ecn,C

]
= EP

[
lim sup
n→∞

1{ω ∈ ∪C∈CnEcn,C}
]

= EP

[
lim sup
n→∞

1{ω ∈ (∩C∈CnEn,C)
c}
]

= 0,

so we obtain supC∈Cn EP[1Ecn,C
]→ 0 as n→∞.

E.3. Proof of Theorem 2

Proof. To apply Proposition 9, we verify H1 and H3. Note that for each n, Cn =

{C(2)
n , . . . , C(Ḡ)

n } only has Ḡ− 1 clusterings. For each n, G corresponds to a unique C ∈ Cn.

Thus, we let Sn,G = Sn,C for G = |C|.

H1 Recall S∗n,G ∼ N(0,Diag(τ2
1 , . . . , τ

2
G)) with τ2

g = var(
√
|Cg|(θ̂n,g−θ0)) for some Cg ∈ C.

Define the normalized version of Sn,G and S∗n,G as

Rn,G =

(√
|Cg|(θ̂n,g − θ0)

τg

)
C∈C(G)

n

= Diag(τ1, . . . , τG)−1Sn,G

and R∗G ∼ N(0, IG), where G is the number of groups in a certain clustering. Note that R∗G
is not a function of n. Then, Theorem 3 implies

Rn,G
d→ R∗G,

as n → ∞ for any fixed G. By the almost-sure representation theorem (see Theorem 2.19

in [34] for example), there exist a common probability measure P, a scalar random variable

U , and {{R̃n,G}n≥1, R̃
∗
G}ḠG=1 such that

(i) R̃n,G =d Rn,G, R̃∗G =d R
∗
G,

(ii) ‖R̃n,G − R̃∗G‖ → 0 with probability one for each G,

(iii) U is uniformly distributed and independent of everything else.

For each n and C ∈ Cn with |C| = G, let S̃n,G = Diag(τ1, . . . , τG)R̃n,G and S̃∗n,G =

Diag(τ1, . . . , τG)R̃∗G, i.e., S̃n,G and S̃∗n,G are non-normalized version of R̃n,G and R̃∗G, re-

spectively. Then,

sup
C∈Cn

|S̃n,G − S̃∗n,G| ≤M sup
C∈Cn

|R̃n,G − R̃∗G| → 0,

for some M <∞ by R1(i).
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H3 (i) Since S∗n,C is a vector of zero-mean and independent normal random variables,

flipping the signs of a set of the entries does not change the distribution of S∗n,C .

(ii) For some n, C with |C| = G, and g, g′ ∈ GC with g 6= g′, V = {v ∈ RG|T (g− g′)v = 0}
is a linear subspace with dimensionality lower than G, so P(S∗n,C ∈ V ) = 0 by Gaussianity.

Since we have only countable combinations of (n, C, g, g′), there exists such Ω2.

(iii) T ◦ g is a linear transformation on Euclidean spaces and thus uniformly continuous.

(iv) Note that for different clusterings C with the same number of groups G, the sets of

transformations are the same. Thus, for some fixed N > Ḡ,

{g : ∀n ≥ 1,∀C ∈ Cn, g ∈ GC} = ∪C∈CNGC

is finite, since both CN and GC are finite.
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