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Abstract

We argue that the input-output network of investment goods across sectors is an
important propagation mechanism for understanding business cycles. First, we show
that the empirical network is dominated by a few “investment hubs” that produce the
majority of investment goods, are highly volatile, and are strongly correlated with the
cycle. Second, we embed this network into a multisector model and show that shocks to
investment hubs have large aggregate effects while shocks to non-hubs do not. Finally,
we measure realized sector-level productivity shocks in the data, feed them into our
model, and find that hub shocks account for a large and increasing share of aggregate
fluctuations. This fact allows the model to match the decline in the cyclicality of labor
productivity and other business cycle changes since the 1980s. Our model also implies
that investment stimulus policies increase employment throughout the economy but
have unequal effects across sectors.
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1 Introduction

The defining feature of business cycles is the comovement of production across the different

sectors of the economy. A recent body of work has shown that the degree of sectoral comove-

ment has fallen since the early 1980s and suggests that sector-specific shocks have become

more volatile relative to aggregate shocks.1 Our basic questions are how sector-specific shocks

are propagated to macroeconomic aggregates and whether the resulting fluctuations resem-

ble empirical business cycles. Of course, a large literature has studied how sector-specific

shocks are propagated through the input-output network of intermediate goods across sec-

tors. However, the input-output network of investment goods – which sectors produce in-

vestment goods and to which sectors those goods are sold – remains understudied, despite

the fact that investment is the most volatile component of GDP over the business cycle.

We argue that the investment network is an important propagation mechanism for un-

derstanding business cycle fluctuations. We make this argument in three steps. First, we

measure the empirical investment network and show that it is dominated by a small number

of “investment hubs” that produce the majority of investment goods, are highly volatile, and

are highly correlated with the aggregate cycle. Second, we embed this empirical network into

a standard multisector real business cycle model and show that shocks to investment hubs

have large aggregate effects while shocks to non-hubs do not. Finally, we measure realized

sector-level productivity shocks in the data, feed them into our model, and show that shocks

to investment hubs account for a large and increasing share of fluctuations over time. This

fact allows the model to match a number of changes in business cycle patterns since the

early 1980s, such as the declining cyclicality of labor productivity.

The first step of our analysis is to measure the input-output network of investment goods.

The investment network computes the amount of investment goods that are produced in

sector i and subsequently sold to sector j for each pair of sectors (i, j) in the economy. While

the BEA has released this information in the 1997 capital flows table, that table does not

include all types of capital goods and is not readily available for other years. We therefore

construct our own investment network using disaggregated data on sector-level purchases
1See, for example, Foerster, Sarte and Watson (2011) and Garin, Pries and Sims (2018).
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and production of various types of capital goods at the 35-sector level.

Our measured investment network is extremely sparse; four investment hubs – construc-

tion, machinery manufacturing, motor vehicles manufacturing, and professional/technical

services – produce nearly 2/3 of total investment even though they only account of 10-15%

of value added, employment, or intermediates production. These hubs are also more volatile,

more correlated with aggregates, and more strongly lead the aggregate cycle than non-hub

sectors, consistent with the central role of investment in cyclical fluctuations.

The second step of our analysis is to embed the empirical investment network into the

multisector real business cycle model in order to understand the role of the network in prop-

agating shocks. Each sector in our model produces gross output using capital, labor, and a

bundle of intermediate goods consisting of other sectors’ output; this bundle is computed

by a Cobb-Douglas aggregator which characterizes the intermediates input-output network.

Each sector also accumulates new capital using another Cobb-Douglas aggregator of invest-

ment goods, which characterizes our investment network. While other studies have used this

basic model structure, our innovations are to discipline the investment network with our new

measurement and explicitly study its role in propagating sector-specific shocks.

Our main new result from this model is that sector-specific shocks to investment hubs

have large effects on aggregate employment while shocks to non-investment hubs do not.

A positive shock to an investment hub directly increases production and employment at

the hub; because the shock also raises the supply of investment goods for the rest of the

economy, other sectors increase employment in order to produce more intermediate inputs

for the hub and facilitate their own capital accumulation. In contrast, a shock at a non-hub

has a small effect on investment supply and therefore generates smaller spillovers to the rest

of the economy.2

Changes in investment supply are key to propagating sector-specific shocks because they
2Our investment hub shocks are reminiscent of the investment-specific technology shocks studied in,

for example, Greenwood, Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010). A
common problem in that literature is that investment-specific shocks generate negative comovement between
investment- and consumption-producing sectors, decreasing the aggregate effect of these shocks. Our model
generates positive comovement through the intermediates network, which implies that investment-hub shocks
have large aggregate effects. In addition, this literature often measures investment-specific shocks using the
relative price of investment goods, which is weakly correlated with the aggregate cycle; we measure investment
hub shocks using sector-level productivity, which is strongly correlated with the cycle.
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weaken general equilibrium effects which dampen the response of employment to the shock.

In fact, in the version of our model without investment, employment is constant in response to

shocks due to these general equilibrium effects, regardless of the structure of the intermediates

network. In that model, a positive sector-specific shock leads to equal-sized but opposing

changes in the marginal product of labor and in the marginal utility of consumption (due

to our Cobb-Douglas preferences and technology as well as the fact that consumption is the

only final use of output). In equilibrium, the marginal utility of consumption is equal to

the price of the sector’s output, so these two forces leave the marginal revenue product of

labor – and therefore equilibrium employment – unchanged. In our model with investment, a

sector-specific shock increases both consumption and investment, which dampens the decline

in the marginal utility of consumption – especially for shocks to investment hubs. Hence, the

investment network propagates sector-specific shocks in a fundamentally different way than

the intermediates network.

We show that three key testable implications of our main result hold in the data. First,

the volatility of sector-level employment is higher at investment hubs than at non-investment

hubs, consistent with the idea that investment hub shocks generate larger changes in employ-

ment than non-hub shocks. Second, value added growth at investment hubs predicts changes

in aggregate employment much more strongly than value added growth at non-hubs, con-

sistent with the idea that hub shocks have larger effects on aggregate employment. Third,

sectors which supply intermediate inputs to the investment hubs comove more strongly with

the hubs than sectors which do not supply the hubs with intermediates. This finding is con-

sistent with the role of the intermediates network in propagating investment hub shocks to

other sectors.

The third step of our analysis is to use this model to understand the aggregate effects

of changes in the process for sector-level productivity shocks since 1984. We measure the

realized time series of sector-level productivity in our data using the Solow residual approach.

We find that the covariance of productivity across sectors has fallen substantially but that

the variance within sectors has not, which we interpret as a rise in the volatility of sector-

specific shocks relative to the volatility of aggregate shocks (consistent with Foerster, Sarte

and Watson (2011) and Garin, Pries and Sims (2018)’s findings using value added). We feed
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the realized time series of these shocks into our model and simulate the model’s decision

rules over the entire postwar sample. In order to isolate the role of the change in the shock

process, we hold all other parameters of the model (including the investment network) fixed

over time; changes in these parameters are second-order for our results in the sense that our

results are robust to allowing these parameters to change as well.

We find that this rising importance of sector-specific shocks, when propagated through

the investment network, quantitatively generates a number of changes in aggregate business

cycle patterns since 1984, including the declining cyclicality of labor productivity. This re-

sult can be understood in two steps. First, the rising importance of sector-specific shocks

implies that shocks to investment hubs account for the majority of aggregate fluctuations

post-1984 (because sector-specific shocks to non-hubs have small aggregate effects). Second,

aggregate labor productivity is countercyclical in response to shocks to investment hubs be-

cause these shocks have strong spillovers onto the production of others sectors, as described

above. These other sectors increase their employment by more than value added because

their productivity is unchanged and labor is subject to decreasing returns to scale; in to-

tal, aggregate employment increases by more than GDP, decreasing labor productivity. In

contrast, the pre-1984 sample was dominated by aggregate TFP shocks, which generates

procyclical labor productivity almost by construction.

We document two new empirical results that support the idea that the changes in business

cycle patterns reflect the rising importance of shocks to investment hubs. First, the changes

in business cycle patterns have not occurred within individual sectors of the economy, but

are due to changes in the comovement of activity across sectors. For example, sector-level

labor productivity is still highly procyclical within sector; instead, the entire decline in the

cyclicality of aggregate labor productivity is due to changes in the covariance of value added

and employment across sectors. This finding is consistent with the idea that the comovement

of shocks across sectors is the key force driving changes since 1984. Existing explanations for

the declining cyclicality of labor productivity largely abstract from sectoral heterogeneity and

therefore do not speak to this result. Our second finding is that the volatility of investment

relative to the volatility of GDP has substantially increased since 1984, consistent with the

idea sector-specific shocks to investment hubs play an increasingly important role over time.

5



We show that our model quantitatively replicates both of these empirical findings.

We conclude that the investment network is an important mechanism in propagating

sector-specific shocks; we also briefly use the model to illustrate how the investment network

propagates investment stimulus policies, such as investment tax credits or the bonus depre-

ciation allowance. These policies increase the demand for investment goods, which directly

increases production and employment at the hubs; in turn, the hubs demand intermediates

from other sectors, which increases their employment as well. However, the change in other

sectors’ employment is relatively small, so most of the increase in aggregate employment

is concentrated among investment hubs and their intermediate goods suppliers. Hence, de-

spite the fact that the stimulus subsidizes investment purchases equally for all sectors, the

sparseness of the investment network implies that its effect on investment production and

employment is unequally distributed across sectors – resembling industrial policy.

Related Literature Our paper is most closely related to three lines of research. The first

is the large and growing literature which studies how the rich structure of the intermediates

input-output network amplifies the effect of idiosyncratic shocks. The first wave of these

papers studies the role of sector-level linkages while the second further studies firm-to-firm

linkages.3 Another set of papers endogenizes the network as an optimal firm-level choice of

input suppliers.4 In order to allow for a rich intermediates network, these papers typically

use static models which abstract from investment. Our contribution to this literature is

to use a dynamic model to study the role of investment and its network structure across

sectors.5 We show that the investment network propagates shocks fundamentally different

from the intermediates network; without investment, sector-specific shocks would have no

effect on employment due to general equilibrium effects, no matter how concentrated the
3See, for example, Acemoglu et al. (2012), Acemoglu, Ozdaglar and Tahbaz-Salehi (2017), Baqaee and

Farhi (2017), Baqaee and Farhi (2019), Bigio and La’o (2019), or the survey in Carvalho and Tahbaz-Salehi
(2019).

4See, for example, Oberfield (2012), Lim (2018), or Taschereau-Dumouchel (2019).
5A natural benchmark in these static models is Hulten’s theorem, which states that the Domar weight

of a sector is a sufficient statistic to compute the effect of a shock to that sector on aggregate GDP. In our
model, a sector-specific shock has a different effect on aggregate GDP, aggregate employment, and aggregate
investment, suggesting that one weight cannot be a sufficient statistic for all three effects. While it may be of
interest to try to show whether a Hulten’s theorem-type result holds in our model, and how the investment
network enters that result, we do not pursue it here.
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intermediates network is.

The second strand of related literature uses the multisector real business cycle model

to embed input-output networks in a dynamic setting.6 Foerster, Sarte and Watson (2011)

and Atalay (2017) quantify versions of this model and argue that sector-specific shocks

can generate aggregate fluctuations. Foerster, Sarte and Watson (2011) additionally argue

that the volatility of sector-specific shocks has risen relative to the volatility of aggregate

shocks since the 1980s and that this fact accounts for the decline in GDP volatility. These

papers primarily focus on the role of the intermediates network while we focus on the role

of the investment network.7 We make three main contributions to this literature. First, we

calibrate the model using our empirical investment network, which is more sparse than other

calibrations in the literature (see footnote 7). Second, we show that shocks to investment hubs

have large aggregate effects while shocks to non-hubs do not. Third, we show that the rising

importance of sector-specific shocks, when filtered through our investment network, generates

a number of changes in business cycle patterns beyond the decline in GDP volatility.

The final strand of related literature studies how business cycle patterns have changed

since the 1980s.8 A large subset of that literature focuses on the declining cyclicality of labor

productivity in particular and has suggested roughly three sets of explanations. The first set

of explanations is that the aggregate shock process has changed over time.9 The second set
6Seminal contributions to this literature include Long Jr and Plosser (1983), Horvath (1998, 2000), and

Dupor (1999).
7Both Foerster, Sarte and Watson (2011) and Atalay (2017) include an investment network in their mod-

els, but because of the nature of their questions, neither paper focuses on the role of this network in driving
their results and, therefore, neither paper studies the mechanism we emphasize in this paper. In addition,
Foerster, Sarte and Watson (2011) and Atalay (2017) calibrate the investment network using the BEA capital
flows data from 1997; under this network, they are forced to make an adjustment to ensure their model is
invertible but which reduces the importance of investment hubs. A contribution of our paper is to carefully
measure the network over the entire sample in order to precisely quantify the strength of investment hubs.
Our network does not require any adjustment to ensure that the model is invertible; hence, it may be of
interest to other modelers in this literature as well.
In a complementary recent paper, Foerster et al. (2019) use a related multisector model to study trends in
sector-level productivity rather than deviations around trend. Quantitatively, they find that capital accu-
mulation in investment-producing sectors plays an important role in aggregating sector-specific trends into
the aggregate growth rate, complementary with the role of investment hubs in propagating shocks which we
study in this paper. Like Foerster, Sarte and Watson (2011), Foerster et al. (2019) calibrate the investment
using the 1997 capital flows table.

8The first strand of this literature studies the declining volatility of aggregate GDP since the early 1980s;
see, for example, the early review in Stock and Watson (2003) and the papers that follow.

9For example, Galí and Gambetti (2009) and Barnichon (2010) argue that the volatility of demand shocks
has changed since the 1980s, while Garin, Pries and Sims (2018) argue that reallocation shocks have become
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is that firms and/or workers can now more easily adjust labor inputs in response to shocks.10

The third is that there has been no actual change in the cyclicality of labor productivity,

but that mismeasurement of those objects has changed.11 This literature typically constructs

models without sectoral heterogeneity and therefore cannot speak to our empirical fact that

the entire decline in the cyclicality of labor productivity is due to changes in the covariance

of activity across sectors.12

Road Map Our paper is organized as follows. In Section 2, we measure the empirical

investment network and document the cyclical behavior of investment hubs. We then de-

scribe our version of the multisector real business cycle model and calibrate it to match our

measured investment network in Section 3. We use a simplified two-sector version of the

model to show that shocks to investment hubs have large aggregate effects while shocks to

non-hubs do not in Section 4. We also show that key testable implications of that mechanism

hold in the data. In Section 5, we show two sets of empirical results that motivate our main

quantitative application of the model: the correlation of sector-level productivity has fallen

since 1984 and the changes in aggregate business cycle patterns since 1984 have not occurred

within sectors but are driven by changes in the comovement of activity across sectors. In

Section 6, we feed in the realized series of sector-level productivity shocks into our model

and show that the model endogenously replicates the changes in business cycle patterns. We

briefly analyze the effect of investment stimulus policy in Section 7. Section 8 concludes.

more important.
10Barnichon (2010) and Galí and Van Rens (2014), among others, argue that labor market frictions have

declined since the 1980s. Koenders and Rogerson (2005), Berger (2012), and Bachmann (2012) build models
in which frictions individual firms’ hiring and firing decisions interact with the declining aggregate volatility
to generate the declining cyclicality of labor productivity and/or the emergence of jobless recoveries.

11One strand of this literature argues that utilization is not correctly measured in productivity data;
see, for example, Fernald and Wang (2015). Another strand argues that intangible capital is not correctly
measured in the output data; see, for example, McGrattan and Prescott (2014) or McGrattan (2017).

12We are aware of one paper which studies the declining cyclicality of labor productivity in a model with
sectoral heterogeneity: Garin, Pries and Sims (2018). We view their paper as complementary to our paper;
we both study the rise of sector-specific shocks, but focus on different mechanisms which propagate those
shocks to the aggregate. In Garin, Pries and Sims (2018)’s two sector model, a negative sector-specific shock
induces costly worker reallocation to the other sector, so employment falls by more than value added and
labor productivity increases. This mechanism implies that employment in the two sectors comoves negatively,
especially post-1984; however, in the data, employment comovement is positive and stable. Hence, to our
knowledge, our model is the only explanation for the declining cyclicality of labor productivity that is driven
by the changes in comovement patterns that we document in the data.
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Table 1
The 35 Sectors Used in the Analysis

Mining Utilities
Construction Wood products
Non-metallic minerals Primary metals
Fabricated metals Machinery
Computer and electronic manufacturing Electrical equipment manufacturing
Motor vehicles manufacturing Other transportation equipment
Furniture and related manufacturing Misc. Manufacturing
Food and beverage manufacturing Textile manufacturing
Apparel manufacturing Paper manufacturing
Printing products manufacturing Petroleum and coal manufacturing
Chemical manufacturing Plastics manufacturing
Wholesale trade Retail trade
Transportation and warehousing Information
Finance and insurance Professional and technical services
Management of companies and enterprises Administrative and waste management services
Educational services Health care and social assistance
Arts, entertainment, and recreation services Accommodation and food services
Other services

Notes: list of sectors used in our empirical analysis. See Appendix A for details of the data construction.

2 Descriptive Evidence on the Investment Network

2.1 Data Sources

We combine three sources of sector-level data for our empirical work. First, we construct the

investment network using the BEA Fixed Assets and Input-Output databases for a sample

of 35 private non-farm sectors from 1947-2017 (our construction of the investment network

is described below). Second, we use the BEA GDP-by-Industry database to obtain value

added and employment for the same set of sectors; however, since this data only records

employment at our level of disaggregation starting in 1977, we extend the data back to 1948

using historical supplements to the data. Our combined dataset contains annual observations

of value added, investment, and employment for the 1948 - 2017 period. Appendix A contains

details of the construction of our dataset.

Table 1 lists the sectors available in our dataset.13 The main advantage of this data is
13We exclude real estate because its value added is dominated by imputations of owner-occupied housing.
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that it is a long time series, which is necessary to analyze changes in business cycle patterns

over time. In addition, the partition of sectors provides fairly broad coverage of the economy.

We cannot disaggregate the sectors more finely in a consistently-defined way over time.

For the remainder of the paper, references to “value added” and “investment” generally

refer to real value added and real investment, unless otherwise noted. We measure real value

added and real investment using the index numbers provided by the BEA.

2.2 Empirical Investment Network

The investment network records the share of total investment expenditure of a given sector

j that is purchased from another sector i for each pair of sectors (i, j) in the data. While the

BEA capital flows tables report these pairwise shares, they are only available for a handful of

years, are not coded for a consistent set of sectors, are not computed for a consistent definition

of investment goods over time, and do not include the majority of intellectual property. We

therefore construct our own measure of the investment network which is consistently defined

over time, includes intellectual property, and is available for the entire 1947-2017 sample.14

Our procedure allocates the production of roughly thirty types of disaggregated capital goods

to a particular mix of sectors, and allocates the purchases from a particular sector using that

industry mix. Appendix A contains the details of our procedure.15 We compute the network

for each year in the sample and then average it over time. Appendix A discusses how the

network has changed over time and Appendix G shows how those changes over time impact

our model results.16

14We include all of intellectual property capital in our analysis following the most recent BEA convention.
However, our results – both in the data and the quantitative model – are stronger if we focus only on
equipment and structures.

15Our measured investment network includes imports from outside of the U.S. as well. Hence, our measure-
ment incorporates the fact that the share of imported capital has increased over time (see House, Mocanu
and Shapiro (2017)). See footnote 24 for a discussion of how this measurement relates to our closed-economy
model.

16As discussed in footnote 7, Foerster, Sarte and Watson (2011) and Atalay (2017) add a correction to the
investment network implied by the 1997 BEA capital flows table to ensure their models are invertible. This
correction is meant to account for maintenance investment that is done out of own-sector output. While there
is evidence that maintenance investment is sizable (see McGrattan and Schmitz Jr (1999)), there are not
comprehensive estimates of how much comes from own-sector output. Therefore, we do not add an artificial
correction for maintenance investment in our baseline analysis. Appendix G does add such a correction and
shows that our key model results also hold in this version of the model.
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Figure 1: Heatmap of Empirical Investment Network
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Notes: heatmap of empirical investment network. Entry (i, j) computes share of total investment
expenditure in sector j that is purchased from sector i, averaged over the 1948 - 2017 sample.

Figure 1 plots a heat map of our estimated investment network. Four sectors supply

investment goods to most other sectors in the economy: construction, which supplies the

majority of structures; machinery manufacturing and motor vehicle manufacturing, which

supply the majority of equipment; and professional/technical services, which supplies a ma-

jority of intellectual property. We refer to these four sectors as investment hubs.17

Table 2 shows that the investment hubs account for approximately 2/3 of all investment

produced in the economy both before and after the 1984 breakpoint in business cycle pat-

terns.18 In contrast, hubs only account for approximately 15% of value added production,

intermediates production, or employment, and even less of investment purchased. The fact
17Professional/technical services is different from the other hubs in two ways. First, it primarily produces

intellectual property, while the other hubs produce equipment and structures. Second, its share of investment
supply has grown substantially over the sample relative to the other hubs. All of our empirical results
regarding investment hubs hold using only construction, machinery manufacturing, and motor vehicles.

18We split the sample in 1984 because it is a commonly used break point in the literature on changes in
business cycle patterns. We do not have the statistical power to estimate a structural break because our data
is at the annual frequency.
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Table 2
Shares of Activity at Investment Hubs

Investment Hubs Other Sectors
Pre-1984 Post-1984 Pre-1984 Post-1984

Investment produced 0.67 0.61 0.33 0.39
Value added produced 0.16 0.17 0.84 0.83
Intermediates produced 0.12 0.15 0.87 0.85
Employment 0.14 0.14 0.86 0.86
Investment purchased 0.10 0.12 0.90 0.88

Notes: share of nominal investment produced, nominal value added produced, nominal intermediates
produced, employment, and nominal investment purchased by investment hub sectors and other sectors in
the economy. Investment hubs are construction, machinery manufacturing, motor vehicles manufacturing,
and professional/technical services. “Pre-1984” refers to average values in 1948 - 1983 subsample and
“post-1984” refers to averages in 1984-2017 subsample.

Table 3
Volatility of Activity at Investment Hubs

Investment Hubs Non-Hubs
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yst) 6.62% 8.27% 4.78% 4.02%
σ(lst) 4.33% 3.39% 2.73% 2.22%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added at sector s, HP-filtered with smoothing parameter 6.25. lst is logged real value
added at sector s, HP-filtered with smoothing parameter λ = 6.25. “Investment hubs” compute the
unweighted average the value of these statistics over s = construction, machinery manufacturing, motor
vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average
over the remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and
“post-1984” performs this analysis in the 1984 - 2017 subsample. To avoid endpoint bias from the HP filter,
we omit the first and last three years of data of the entire sample in computing these figures.

that this small number of hubs produce the majority of investment indicates that the in-

vestment network is highly skewed; in fact, Appendix A shows that the investment network

is three times more skewed than the intermediates network according the skewness of their

eigenvalue centralities or weighted outdegrees.
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Figure 2: Correlogram of Sector-level Value Added with Aggregate Employment
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Notes: correlation of value added at sector s in year t− h, yst+h, with aggregate employment in year t, Lt.
Both yst+h and Lt are logged and HP-filtered with smoothing parameter 6.25. x-axis varies the lag
h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average the value of these statistics over
s = construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical
services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2017 subsample.
Aggregate employment is defined as the sum of employment in each of our sectors and is logged and
HP-filtered. To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the
entire sample in computing these figures.

2.3 Investment Hubs are Highly Cyclical

We now show that these four investment hubs are more cyclical than other sectors, consistent

with their central role in driving fluctuations in our model. Table 3 shows that value added

and employment at the investment hubs are more volatile over the business cycle than value

added and employment at non-hub sectors; in both the pre- and post-1984 subsamples, the

investment hubs are approximately 1.5 - 2 times as volatile as non-hub sectors. This difference

in value added volatility is larger in the post-1984 subsample.

Figure 2 shows that investment hubs are also more correlated with the aggregate business

cycle. We compute the correlogram of HP-filtered sector-level value added in year t+h with

HP-filtered aggregate employment in year t (Appendix B shows that similar results hold

using aggregate GDP rather than aggregate employment). Investment hubs’ value added is

more correlated with aggregate employment at most horizons and the difference is stronger

in the post-1984 subsample, consistent with the idea that hubs shocks have become more
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important for aggregate fluctuations over time. In addition, investment hubs more strongly

lead aggregate employment than non-hubs.

Appendix B contains two additional results about the cyclical behavior of investment

hubs. First, we show that non-hub manufacturing sectors’ behavior is more similar to the

non-hub sectors than they are to the investment hubs. This result allays the concern that

our results may be fundamentally driven by higher cyclicality of manufacturing sectors, and

the fact that manufacturing just happens to be over-represented in our set of investment

hubs. Second, we show that, on average, each sectors’ value added and employment comoves

more strongly with investment hubs than non-hubs.

3 Model and Calibration

We now calibrate a version of the multisector real business cycle model in order to match

our empirical investment network.

3.1 Model Description, Equilibrium, and Solution

The specification of the model is standard (see, for example, Foerster, Sarte and Watson

(2011)).

Environment Time is discrete and infinite. There are a finite number of sectors indexed

by j = {1, ..., N}, where N = 35 as in our data. Each sector produces gross output using

the production function

Qjt = Ajt

(
K

αj

jt L
1−αj

jt

)θj
X

1−θj
jt (1)

where Qjt is output, Ajt is total factor productivity, Kjt is capital, Ljt is labor, Xjt is a

bundle of intermediate goods, and αj and θj are parameters. TFP Ajt follows the AR(1)

process

logAjt+1 = ρj logAjt + εjt+1, (2)

where ρj is the persistence parameter and εjt are innovations (which can be correlated across

sectors). We solve the model by linearization, so the covariance matrix of these innovations
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does not affect the decision rules. In our quantitative analysis in Section 6, we simply feed

in the empirical time series of realized shocks into the decision rules.

The bundle of intermediate inputs Xjt consists of other sectors’ output, aggregated

through the economy’s intermediates input-output network

Xjt = ΠN
i=1M

γij
ijt , where

N∑
i=1

γij = 1, (3)

where Mijt is the amount of sector i’s output used by sector j and γij are parameters. Con-

stant returns to scale in intermediate bundling implies that, within sector j, the parameters

γij sum to one. Each period, firms in sector j observe the TFP shock Ajt, use their pre-

existing stock of capital Kjt, hire labor Ljt from the competitive labor market, and purchase

intermediates Xjt in competitive markets in order to produce gross output Qjt.19

After production, each sector accumulates capital for the next period using a bundle of

inputs that are aggregated through the economy’s investment network. The capital accumu-

lation technology is

Kjt+1 = (1− δj)Kjt + Ijt (4)

where δj is the depreciation rate of capital in sector j and Ijt is the bundle of investment

goods.20 The bundle is given by

Ijt = ΠN
i=1I

λij

ijt , where
N∑
i=1

λij = 1, (5)

where Iijt is the amount of sector i’s output used by sector j and λij are parameters. Invest-
19The specification of our production function imposes two simplifications. First, the elasticity of substi-

tution between capital and labor is one. We view this as a useful benchmark; most empirical estimates of
the elasticity are less than one, but some estimates are greater than one. An elasticity less than one would
strengthen our results because it makes capital and labor more complementary in production, and therefore
changes in investment would spill over more strongly to changes in employment. Second, the elasticity of
substitution between intermediates and the primary inputs is also one. Atalay (2017) argues that this elas-
ticity is likely below one; however, we nevertheless view our choice as a useful benchmark for two reasons.
First, Atalay (2017)’s estimates are not readily available at our level of sectoral aggregation. Second, our
results would be stronger with a lower elasticity because an investment hub shock would generate a larger
increase in intermediates demand and, therefore, even stronger spillovers to other sectors in the economy.
See Section 4 for a detailed discussion of these channels.

20We do not include capital adjustment costs in our baseline for the sake of expositional clarity; however,
Appendix G shows that our main results also hold with adjustment costs.
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ment hub sectors i have high λij for many purchasing sectors j.

There is a representative household who owns all the firms in the economy and supplies

labor to those firms. The household’s preferences are represented by the utility function

E0

∞∑
t=0

βt

(
logCt − χ

L
1+1/η
t

1 + 1/η

)
, where Ct = ΠN

j=1C
ξj
jt and

N∑
j=1

ξj = 1 (6)

where β is the discount factor, χ controls the disutility of labor supply, η is the Frisch

elasticity of labor supply, and ξj are parameters governing the importance of each sector’s

consumption good in aggregate consumption.21

Equilibrium We study a competitive equilibrium. There are two sets of market clearing

conditions in that equilibrium. Output market clearing for sector j ensures that gross output

is used for final consumption, investment, or an intermediate in production: Qjt = Cjt +∑N
i=1 Ijit +

∑N
i=1Mjit. Labor market clearing ensures that aggregate labor demand equals

labor supply:
∑N

j=1 Ljt = Lt. The equilibrium is efficient, so we characterize it using the

social planner’s problem.

Solution Method We solve the model by log-linearization. A key advantage of lineariza-

tion is that it is efficient enough to handle a model of this size (with several hundred en-

dogenous variables). As discussed above, the solution features certainty equivalence, which

allows us feed in the realized sector-level shocks without estimating how the entire covari-

ance structure of shocks has changed over time. However, linearization implies that we do

not capture potential nonlinearities that arise due to the investment network, such as size-
21Our preferences impose two additional simplifying assumptions. First, there are no frictions to reallo-

cating workers across sectors; in our quantitative work, we find that we do not need these frictions to match
the comovement of employment across sectors at the business cycle frequency. We interpret the comovement
across sectors in our model as primarily reflecting movement in and out of non-employment within sec-
tors. Second, the elasticity of substitution between consumption of different sectors’ output is one; we view
this choice as a useful benchmark and is broadly consistent with estimates in the literature. For example,
Herrendorf, Rogerson and Valentinyi (2013) estimate the elasticity between agriculture, manufacturing, and
services to be around 0.9, while Oberfield and Raval (2014) estimate the elasticity between finely disaggre-
gated manufacturing sectors to be between 0.8 and 1.1. Note that our elasticity of substitution is lower than
the elasticity between detailed varieties of goods, which is the typical level of aggregation in DSGE models,
because we have a relatively small number of sectors.
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or state- dependent responses to shocks.22

3.2 Calibration

We calibrate the parameters of the model so that the model’s steady state matches key

empirical targets averaged over the postwar sample. For now, we leave the process for sector-

level shocks unspecified; we will feed in the realizations of the shocks from the data in Section

6.

A model period is one year. We identify the sectors in our model with those in our

empirical work, and therefore use the BEA input-output database to infer the parameters of

the production function. The share of primary inputs in production θj is given by the ratio

of sector j’s value added to its gross output, averaged over time. The labor share 1 − αj is

given by the average labor compensation (adjusted for taxes and self employment) as a share

of total costs.23 See Appendix C for the calibrated values of these parameters. Finally, the

parameters of the intermediates network γij are given by sector j’s average expenditure on

intermediates from sector i as a share of its total intermediates expenditure.

We infer the parameters of the investment technology using the BEA fixed asset tables

and our measured investment network. The depreciation rates δj are average annual depre-

ciation of capital goods, aggregated to the sector level weighted by the average amount of

each type of good used in sector j. We construct the investment network using the procedure

described in Section 2 (and in detail in Appendix A).

Figure 3 compares the heatmaps of our calibrated intermediates network and investment

network (the investment network is reproduced from Figure 1). The intermediates network

has a strong diagonal element, capturing firms’ purchases of intermediates from within their

own sector, but is also populated off the diagonal, capturing intermediates purchased from

other sectors. In comparison, the investment network is much more sparse, as discussed in

Section 2.24

22See Baqaee and Farhi (2017) for an analysis of the types of nonlinearities that arise in a rich static model
with an intermediates input-output network.

23Labor compensation is only available in the BEA GDP by Industry database starting in 1987. In order
to compute labor shares before 1987, we extend the series back to 1987 using historical tables and harmonize
the two series using the Fort and Klimek (2016) crosswalk. See Appendix C for details.

24Our measured intermediates and investment input-output networks account for goods that are imported
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Figure 3: Heatmaps of Input-Output Networks
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Notes: heatmaps of intermediates input-output network γij and the investment input-output network λij

constructed as described in the main text and Appendix C. The (i, j) entry of each network corresponds to
parameter γij and λij , i.e., the amount of sector i’s good used in sector j.

18



Finally, we infer the parameters of the utility function using the BEA’s final use table.

The consumption shares ξj are given by the average consumption expenditure on sector j

output as a fraction of total consumption expenditure. We set the discount factor to β = 0.96.

We normalize the disutility of labor parameter, χ = 1. We take the Frisch elasticity η → ∞

to capture indivisible labor at the individual level, as in Rogerson (1988).25

4 Role of Investment Network in Propagating Sector-

Specific Shocks and Testable Implications for the Data

We now show the main implication of our concentrated investment network: sector-specific

shocks to the investment hubs have large aggregate effects while shocks to non-hubs do not.

We also show that key testable implications of this result hold in the data and relate the

result to the investment-specific technology shock literature (e.g. Greenwood, Hercowitz and

Krusell (2000) and Justiniano, Primiceri and Tambalotti (2010)).

Special Case of the Model To clarify the exposition, we use a simple N = 2 sector

version of the model; we perform a quantitative analysis of the full model in Section 6.

The network structure of this special case mirrors the structure of the empirical networks;

sector 1 is the investment hub of the economy which produces all its investment goods

(λ11 = λ12 = 1), but both sector 1 and sector 2 use each others’ goods in equal proportion

(1 − θj = 0.4, γ11 = γ22 = 0). We set the remaining parameters, which are unimportant to

this discussion, to values similar to the full calibrated model (β = 0.96, ξ1 = 0.1, δ = 0.10,

η → ∞).

Each of the two sectors j has productivity

logAjt = logAt + log Âjt (7)

from sectors outside the U.S. Therefore, our model’s decision rules for factor demand correctly account for
trade with the result of the world; however, the model counterfactually assumes that all factor supply is
produced domestically. While extending our model to an open economy framework would be an interesting
exercise, it is outside the scope of this paper. Our measured productivity shocks, discussed in Section 6,
are derived from purely domestic sources; hence, foreign demand shocks do not directly enter the exogenous
shocks that we feed into the model.

25We use indivisible labor preferences due to our focus on employment fluctuations in the empirical analysis.
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where At is an aggregate shock common across the two sectors and Âjt is an idiosyncratic

shock independently distributed across the two sectors. We assume that these shocks follow

AR(1) processes in logs, so that logAt = ρ logAt−1+εt and log Âjt = ρÂjt−1+εjt. We set the

persistence of the process to ρ = 0.7, similar to the average persistence of TFP across sectors

in the data. For illustrative purposes, we set the volatility of the shocks to σ(εt) = 0.01 and

σ(εjt) = 0.01.

4.1 Role of Investment Network in Propagating Shocks

We primarily analyze the effects of sector-specific shocks εjt on employment because their

effects on value added are fairly mechanical. After optimizing its choice of intermediates,

sector j’s value added is given by:

log Yjt =
1

θj
logAjt + αj logKjt + (1− αj) logLjt for j ∈ {1, 2}. (8)

The shock exogenously increases value added through its effect on the production function;

by construction, this component only affects value added in sector j. In addition, the shock

endogenously increases value added by increasing the use of the primary inputs Kjt and Ljt;

because capital Kjt is predetermined upon impact, these effects primarily operate through

employment Ljt.

Main Result Figure 4 shows our main result: employment in either sector, and therefore

in the aggregate, is substantially more responsive to the sector 1-specific shock than the

sector 2-specific shock. While this result is quantitative in nature, it holds for a large set of

parameter values. To explain the economic mechanisms underlying the result, we will use

the following condition, which characterizes the economy’s allocation of labor:

ξ1
MPL1t

C1t

= χ (L1t + L2t)
1
η = ξ2

MPL2t

C2t

(9)

where MPLjt is the marginal product of labor in sector j. This condition equates the

marginal disutility of supplying labor to the market with the marginal product of labor
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Figure 4: Impulse Responses of Employment to Sectoral Shocks, Two-Sector Model
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Notes: response of sector-level employment to a sector-specific TFP shocks εjt = 0.01 in the two-sector
model. We solve the model by linearization. See main text for description of the model.

in each sector times the marginal utility of consumption of that sector’s output. In equilib-

rium, these marginal utilities are decentralized through the relative prices of the two goods

pjt = ξj/Cjt and the wage wt = χ (L1t + L2t)
1
η . In our quantitative work, we take the Frisch

elasticity η → ∞, so the marginal disutility of labor supply is a constant χ.

Role of Investment In order to understand the role of the investment network in driving

this result, it is useful to first consider the model without investment. In this case, we show

a stark irrelevance result; sector-specific shocks have literally zero effect on employment in

either sector:

Theorem 1. Suppose αj = 0 for all j, i.e. there is no capital in the economy and

Qjt = AjtL
θj
jtX

1−θj
jt

Qjt = Cjt +
N∑
i=1

Mjit

where Xjt =
∏N

i=1M
γij
ijt . Then employment in each sector Ljt is constant in response to

aggregate or sector-specific shocks to Ajt.

Proof. See Appendix D. ■
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Figure 5: Decomposing Effect of Sector 1-Specific Shock
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Notes: response of sector-level variables to a sector 1-specific shock ε1t = 0.01 in the two-sector model. We
solve the model by linearization. Components of employment response are given the individual terms in the
decomposition (10). Employment response is equal to the sum of the other responses.

In this benchmark model without investment, a shock generates no change in employment

because general equilibrium forces completely offset the effects of the shock. This result is

the consequence of two sets of assumptions. First, Cobb-Douglas production and preferences,

together with the fact that consumption is the only final use of production, implies that

consumption Cjt is proportional to gross output Qjt in each sector. Second, under our growth-

consistent preferences, this property implies that a shock leads to equally sized-sized income

and substitution effects on labor supply which leaves employment in (9) unchanged.

Our model with investment breaks this irrelevance result by weakening the dampening

effects of general equilibrium, especially for investment hub shocks. Because consumption

is not the only final use of production, consumption Cjt is no longer strictly proportional

to gross output Qjt. A sector-specific shock increases both investment and consumption,

so consumption Cjt increases less than proportionally to gross output Qjt. This fact then

weakens the income effect relative to the substitution effect on labor supply, generating an

increase in employment. Because this force is stronger for the investment hub sector 1, shocks

to that sector have a larger effect on employment than shocks to sector 2.
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Channels of Propagation To more deeply understand how a sector 1-specific shock is

propagated in our model, Figure 5 rearranges (9) into:

d logLjt =
1

1− θj(1− αj)
[−d logCjt + d logAjt + αjθjd logKjt + (1− θj)d logXjt] , (10)

where “d log” denotes log-deviations from steady state. In the model without investment, em-

ployment is constant in response to the shock because d logCjt = d logAjt+(1−θj)d logXjt.

Due to investment, we now have d logCjt < d logAjt + (1 − θj)d logXjt, so employment

increases.

The intermediates network generates spillovers from the sector 1-specific shock onto sector

2’s employment. These spillovers can be understood through the two first-order conditions

for intermediates:
ξj
Cjt

= MPX−jt
ξ−j

C−jt

(11)

where there is one equation for each j ∈ {1, 2}, MPXjt is the marginal product of interme-

diates, and −j denotes the sector other than j. These conditions equate the marginal cost

of foregone consumption with the marginal benefit of using the output as an intermediate

in the other sector. These two conditions can be used to understand an “upstream” and a

“downstream” effect of the shock on intermediates usage. The upstream effect occurs because

the marginal product of intermediates in sector 1, MPX1t, increases, which then increases

its use of intermediate inputs from sector 2; because employment is complementary to inter-

mediates, this force further increases employment.26 The downstream effect occurs because

the marginal utility of consumption in sector 1 (and therefore the price of its output) falls,

inducing sector 2 to use more intermediates and increasing its employment as well.

Figure 6 shows that the sector 2-specific shock generates larger changes in the marginal

utility of consumption and therefore stronger general equilibrium dampening effects on em-

ployment. These changes also dampen the response of intermediates usage through the

equations (11). In our quantitative model, individual non-hub sectors have an even smaller

spillover onto aggregate investment, and therefore their shocks have an even smaller effect
26Appendix D also shows that without investment, this upstream effect would be zero because the change

in the marginal utility of consumption would offset the increase in the marginal product of intermediates.
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Figure 6: Decomposing Effect of Sector 2-Specific Shock
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Notes: response of sector-level variables to a sector 1-specific shock ε2t = 0.01 in the two-sector model. We
solve the model by linearization. Components of employment response are given the individual terms in the
decomposition (10). Employment response is equal to the sum of the other responses.

Table 4
Simulation of Two-Sector Model

Aggregate shocks εt Sector 1 shocks ε1t Sector 2 shocks ε2t
σ(lt)/σ(yt) 0.77 1.17 0.42
Corr(yt − lt, yt) 0.88 -0.52 0.99

Notes: simulated business cycle statistics in the two-sector model. All variables have been logged and
HP-filtered. yt refers to aggregate value added and lt refers to aggregate employment. “Aggregate shocks”
refers to a simulation in which there are only aggregate shocks (σ(εt) = 0.01). “Sector 1 shocks” refers to a
simulation in which there are only sector 1-specific shocks (σ(ε1t) = 0.01). “Sector 2 shocks” refers to a
simulation in which there are only sector 2-specific shocks (σ(ε2t) = 0.01).

on employment.

Implications for Aggregate Labor Productivity Table 4 simulates the model in order

to relate this mechanism to the dynamics of aggregate labor productivity. An aggregate pro-

ductivity shock generates procyclical labor productivity essentially by construction; because

the shock enters the production function of both sectors, it increases value added by more

than employment in both sectors, increasing aggregate labor productivity. In contrast, a

sector 1-specific shock only affects the production function in sector 1, but increases employ-
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Table 5
Sector-Level Employment Volatility and Labor Productivity Cyclicality

Investment Hubs Non-Hubs
σ(lst)
σ(yst)

0.81 0.59
Corr(yst − lst, yst) 0.53 0.79

Notes: business cycle statistics at investment hubs and non-hubs. yst is logged real value added at sector s,
HP-filtered with smoothing parameter 6.25. lst is logged real value added at sector s, HP-filtered with
smoothing parameter λ = 6.25. “Investment hubs” compute the unweighted average the value of these
statistics over s = construction, machinery manufacturing, motor vehicles manufacturing, and
professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. To
avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in
computing these figures.

ment in both sectors; therefore, aggregate employment responds by more than value added,

decreasing labor productivity. The sector 2-specific shock has a small effect on aggregate

employment relative to value added, generating procyclical labor productivity.

4.2 Testable Implications for the Data

We now examine three testable implications of our main result for the data.

Employment More Volatile at Hubs The first implication is that the response of

employment to shocks is larger at investment hubs than at non-hubs (because shocks to

investment hubs generate weaker general equilibrium dampening effects). Table 5 shows

that the volatility of employment relative to the volatility of value added is approximately

1/3 higher at investment hubs than at non-investment hubs. Since employment is more

volatile at investment hubs, labor productivity – value added per worker – should also be

less correlated with value added at investment hubs. Table 5 shows that this is indeed the

case; that correlation is more than 1/3 lower at investment hubs than non-hubs.

Hubs Forecasting Aggregate Employment Better than Non-Hubs The second

implication we test is that value added growth at investment hubs should forecast future

aggregate employment better than value added growth at non-hubs to the extent that value

added growth reflects productivity shocks. We estimate a simple Jordà (2005)-style forecast-
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Figure 7: Forecasting Power of Hubs vs. Non-Hubs for Aggregate Employment
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Notes: results from estimating the forecasting regression (12) on our dataset. Left panel plots the coefficient
γh on the growth rate of investment hubs’ value added growth as a function of the forecasting horizon h,
together with a 95% confidence interval. Middle panel plots the coefficient βh on the growth rate
non-investment hubs’ value added together with a 95% confidence interval. Right panel plots the marginal
increase in R2 from including either term. “Due to hub” is the difference in R2 between the joint regression
and the regression with non-hubs only. “Due to non-hub” is the difference in R2 between the joint
regression and the regression with hubs only.

ing regression

logNt+h− logNt = αh+γh(log yhub,t − log yhub,t−1)+βh(log ynon,t − log ynon,t−1)+εt+h (12)

where h = 1, 2, 3, 4 is the forecasting horizon, Nt is aggregate employment, yhub,t is real

aggregated value added across the non-hubs, and ynon,t is real aggregated value added across

the hubs. In order to make the coefficients interpretable, we standardize the growth rates of

the two right-hand side variables. We estimate these forecasting regressions separately for

the different forecasting horizons h.

Figure 7 shows that investment hubs’ value added has much stronger predictive power

for aggregate employment than non-hubs’ value added. A one standard deviation increase in

investment hubs’ value added growth predicts a persistent one percent increase in aggregate

employment over the next few years. In contrast, non-hubs’ value added is a statistically

insignificant predictor of aggregate employment, and including non-hubs in the regression

has no impact on its R2.

Appendix E shows that investment hubs’ value added also predicts future aggregate
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Figure 8: Comovement of Intermediate Suppliers with Investment Hubs
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Notes: correlation of sector-level activity (logged and HP-filtered) with investment hubs’ value added. The
x-axis of each graphs computes, for each sector s, the share of gross output that is supplied to an
investment hub as an intermediate, weighted by the share of investment produced by that hub. Left panel
plots the correlation of sector s employment with the hubs’ value added. Right panel plots the correlation
of sector s intermediates production with the hubs’ value added. To avoid endpoint bias from the HP filter,
we omit the first and last three years of data of the entire sample in computing these figures.

employment better than aggregate GDP; in fact, aggregate GDP is statistically insignificant

once investment hubs are included in the regression. Hence, the data suggest that all the

predictive power of GDP for employment growth is driven by the investment hubs.

Intermediates Suppliers Comove Strongly with Hubs The third implication we

test is that the intermediates network propagates investment hub shocks to other sectors

through upstream effects, i.e. by increasing demand for intermediates at the hubs. We mea-

sure “supplier importance” as the average share of a given sector’s gross output that is sold

as intermediate inputs to investment hubs. We then compute the correlation of sector-level

employment or intermediates production with the investment hubs’ value added and study

how this correlation depends on the measure of supplier importance.

Figure 8 shows that sectors which supply intermediates to investment hubs indeed comove

more strongly with the hubs. The left panel shows a clear positive relationship between the

supplier importance to the hubs and the correlation of sector-level employment with hubs’

value added; the R2 of the regression line is approximately 23%. The right panel shows an

even stronger positive relationship of supplier importance and the correlation of intermediates
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Figure 9: Impulse Responses of Employment to Sector 1-Specific Shock,
Our Two-Sector Model vs. “Investment-Specific Shock” Model
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Notes: response of sector-level employment to a sector-specific TFP shocks εjt = 0.01 in the two-sector
model. We solve the model by linearization. See main text for description of the model. Left panel plots
response in our two-sector model. Right panel plots response in “Investment-specific shock” model, which
refers to special case of our model in which sector 1’s output is not used for consumption (ξ1 = 0) and
there is no intermediate network (θj = 0).

production with hubs’ value added; the R2 is approximately 30%.

4.3 Comparison to Investment-Specific Shock Literature

The role of investment hub shocks in driving fluctuations in our model is reminiscent of

the large literature on investment-specific technology shocks (see, for example, Greenwood,

Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). In fact, that

class of models can be viewed as a special case of our two-sector model in which there is no

intermediate network (θj = 0).27 This literature studies whether idiosyncratic shocks to the

investment-producing sector can generate large aggregate effects.

A key issue in this literature is that an investment-specific shock does not generate pos-

itive comovement between the consumption- and investment-producing sectors. The right

panel of Figure 9 illustrates this problem in the special case of our model. Without the inter-

mediates network, a sector 1-specific shock has literally zero effect on employment in sector
27One could also set the consumption share of sector 1 to ξ1 = 0, but this change has a small quantitative

effect on the results.
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Table 6
Simulation of Two-Sector Model vs. “Investment-Specific Shock” Model

Sector 1-Specific Shocks Only
Baseline Model IST Shocks Model

σ(lt) 0.96% 0.56%
Corr(yt − lt, yt) -0.52 0.63

Notes: simulated business cycle statistics in the two-sector model with sector-specific shocks to sector 1
only. All variables have been logged and HP-filtered. yt refers to aggregate value added and lt refers to
aggregate employment. “Baseline model” refers to two-sector model described in main text. “IST Shocks
Model” refers to special case of baseline model in which sector 1’s output is not used for consumption
(ξ1 = 0) and there is no intermediate network (θj = 0).

2.28 Therefore, value added of the two sectors – corresponding to measured consumption

and investment – will not comove either (similar to the Barro and King (1984) comovement

problem). Due to this lack of comovement, the investment-specific shock also has a smaller

effect on aggregate employment as well; in fact, Table 6 shows that aggregate employment

is about half as responsive to the shock as in our full model.

Our model solves the comovement problem through the intermediates network; the hub-

specific shock also increases the supply of and demand for intermediates from the non-hub

sector, raising that sector’s employment and value added.29 Table 6 shows that the hub

shock generates twice as much fluctuations in aggregate employment in our model than in

the model without intermediates; in fact, the fluctuations in employment are larger than

those in GDP, generating countercyclical movement in labor productivity. In contrast, the

investment-specific shocks literature uses other nominal or real rigidities overcome the neg-

ative comovement problem.30

28The fact that comovement is zero rather than negative reflects our use of an infinite Frisch elasticity
η → ∞; with finite Frisch η, equation (9) shows that the increase in sector 1-employment also increases
the marginal disutility of supplying labor to sector 2, which would then decrease employment in sector 2
and generate negative comovement. See Kim and Kim (2006) for further discussion of the role of the Frisch
elasticity η in determining sectoral comovement.

29See Hornstein and Praschnik (1997) and Ascari, Phaneuf and Sims (2019) for related models which solve
the “Barro and King (1984) curse” using roundabout production.

30Another debate in this literature concerns how to measure the investment-specific technology shock. One
approach is to use the price of investment goods relative to consumption goods; however, this price series is
only weakly correlated with the aggregate cycle, so it is difficult to generate large fluctuations with it. In our
model, investment-specific shocks can be directly measured as the productivity at investment hub sectors.
In Section 6, we show that these shocks generate substantial business cycle fluctuations.
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5 Application: Changes in Business Cycles Since 1984

We now apply the insights developed in Section 4 to study the role of the investment net-

work in determining the changes in business cycle patterns since 1984. The key driving force

that sector-level shocks have become less correlated across sectors over time, which we doc-

ument in Section 5.1. We show in Section 6 that this change, when propagated through the

investment network, endogenously generates a number of well-known changes in business

cycles patterns. We document those business cycle patterns in Section 5.2 and show two new

results which support our explanation of them. First, the changes in business cycle patterns

have not occurred within sector; instead, they are driven by changes in the comovement of

activity across sectors. Second, the volatility of aggregate investment has risen relative to

the volatility of GDP.

5.1 Changes in Sector-Level Productivity Shocks

We measure sector-level productivity as the Solow residual of value added net of the primary

inputs:31

log Ãjt = log Yjt − αjt logKjt − (1− αjt) logLjt (13)

where Yjt is value added.32 In our model, this value added-based productivity measure is

isomorphic to the gross output-based productivity Ajt through the equation Ãjt = A
θj
jt . We

measure productivity using the value added approach in order to make our results more

comparable to existing literature. Abusing notation, we will refer to the value added-based

productivity as “TFP” Ajt for the rest of the paper.

Of course, changes in the measured Solow residual may reflect changes in technology

shocks or changes in other non-technology forces, such as allocational efficiency or the uti-

lization of resources (see, for example, Basu, Fernald and Kimball (2006)). We view our

simple exercise as a natural first step in quantifying the role of the investment network in
31We allow the factor shares αjt to change year-by-year to ensure that changes in our measured productivity

are not driven by changes in the production technology. This choice creates a slight inconsistency with our
model, in which the factor shares are constant over time. Appendix G shows that our main model results
are robust to allowing these parameters to change over time.

32This equation assumes optimality of firm’s intermediates input choice in order to express value added
as a function of the primary inputs capital and labor.
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Table 7
Decomposition of Shock Volatility

Measured TFP Value Added
Pre-84 Post-84 Pre-84 Post-84

1000Var(xt) 0.21 0.07 0.52 0.19
Variances 0.04 0.03 0.06 0.04

Covariances 0.18 0.03 0.46 0.14

Notes: results of the decomposition (14) in the pre-1984 sample (1948-1983) and post-1984 sample
(1984-2017). “Variances” refers to the variance component

∑N
j=1(ω

y
jt)

2Var(logAjt), weighted by sector j’s
average value added share in the relevant subsample. “Covariances” refers to the covariance component∑N

j=1

∑
o̸=j ω

y
jtω

y
otCov(logAjt, logAot). “Measured TFP” refers to doing the analysis on HP-filtered log

measured TFP logAjt. “Value added” refers to doing the analysis on HP-filtered (smoothing parameter
λ = 6.25), log-value added yjt. To avoid endpoint bias from the HP filter, we omit the first and last three
years of data of the entire sample in computing these figures.

propagating sector-specific shocks. The insights we develop here are relevant in the propa-

gation of other non-technology shocks as well.33

We need to detrend sector-level TFP because our model does not feature trend growth.

However, a log-linear trend does not fit well to sector-level data because sectors typically

grow and shrink in nonlinear ways. We take out a log-polynomial trend in order to capture

these nonlinearities. We choose degree 4 in order to strike a balance between flexibility in

the trend and not overfitting the data; Appendix C shows how various degrees fit the data

and justifies our use of a fourth-order trend. Furthermore, Appendix G shows that our main

results hold for other degrees of this polynomial trend. Foerster et al. (2019) study how these

types of nonlinear trends aggregate to determine the aggregate growth rate in the economy

and how that growth rate has changed over time.

The left panel of Table 7 characterizes how the covariance of TFP shocks have changed

over time by performing the following statistical decomposition:

Var(logAt) =
N∑
j=1

(ωy
jt)

2Var(logAjt)︸ ︷︷ ︸
Variances

+
N∑
j=1

∑
o ̸=j

ωy
jtω

y
otCov(logAjt, logAot)︸ ︷︷ ︸
Covariances

(14)

33These is also a practical reason that we do not correct for utilization; consistent measures of hours-per-
worker in each sector, which are required to perform the Basu, Fernald and Kimball (2006) correction, are
not available in our data.
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where logAjt is HP-filtered log TFP. We compute this decomposition separately for the pre

vs. post 1984 subsamples. The volatility of aggregate TFP has fallen by 2/3 since 1984,

consistent with the “Great Moderation” of aggregate volatility. The entire decline in ag-

gregate volatility is accounted for by a decline in the covariance of TFP across sectors; the

within-sector component has remained comparatively stable.

We interpret these changes as reflecting a decline in the variance of aggregate shocks

with a relatively stable variance of sector-specific shocks. A helpful special case of our shock

process to develop that intuition is

logAjt = logAt + log Âjt,

where At is an aggregate shock common to all sectors and Âjt is independent across sectors.

In this special case, the only source of covariance is the aggregate shock At, so the decline in

covariances in the decomposition (14) maps directly into a decline in Var(At). Appendix C

performs a more general principal components analysis and yields a similar conclusion; the

volatility of the first principal component – the “aggregate shock” – declines substantially

since 1984 and accounts for the entire decline in volatility. Foerster, Sarte and Watson (2011)

and Garin, Pries and Sims (2018) make a similar argument based on the comovement patterns

of sector-level value added rather than measured productivity; the right panel of Table 7

shows that our results hold for value added as well.

5.2 Changes in Aggregate Business Cycle Patterns

The left panel of Table 8 documents the key changes in aggregate business cycle patterns

that we will analyze using our model in Section 6. The volatility of GDP is 40% lower in

the post-1984 sample than in the pre-1984 sample (the “Great Moderation”). The cyclicality

of labor productivity, measured as the correlation of HP-filtered GDP per worker with HP-

filtered GDP, fell by more than 50% in the post-1984 sample.34 In addition, the volatility
34The post-1984 cyclicality of labor productivity in our data is higher than in other datasets. There are

at least three possible reasons for this difference. First, we measure labor productivity using output per
worker, while many studies use output per hour. Second, our data measures value added using income-side
accounting, while other data often uses expenditure-side accounting. Third, our data includes nonprofit
organizations, while other data typically includes on nonfarm business companies.
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Table 8
Changes in Business Cycle Patterns

Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.27% 1.36% 3.58% 3.00%
Corr(yt − lt, yt) 0.65 0.26 0.73 0.71
σ(lt)/σ(yt) 0.75 1.02 0.65 0.65
σ(it)/σ(yt) 1.94 2.91 2.76 2.84

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017). yt
is log value added, lt is log employment, and it is log investment. “Aggregated” aggregates value added and
investment across sectors using a Tornqvist index weighted by nominal value added shares, aggregates
employment as the simple sum, HP-filters each series with smoothing parameter λ = 6.25, and computes
the statistics. “Within-sector” HP-filters each sector-level series with smoothing parameter λ = 6.25,
computes the statistics, and then averages them weighted by the average share of nominal value added
within that sub-sample. To avoid endpoint bias from the HP filter, we omit the first and last three years of
data of the entire sample in computing these figures.

of both employment and investment rose by approximately 1/3 relative to the volatility of

GDP. To our knowledge, we are the first to note the increased relative volatility of invest-

ment. Appendix F shows that the rising volatility of employment accounts for the entire

decline in the cyclicality of labor productivity; intuitively, since employment and GDP are

highly correlated in both subsamples, the time-series behavior of their ratio depends on the

more volatile component.35 The fact both employment and investment became more volatile

is consistent with the idea that shocks to investment hubs account for a larger share of

fluctuations in both variables since 1984.

The right panel of Table 8 shows that these changes in aggregate cycles do not occur

within the average sector of the economy. The cyclicality of sector-level labor productivity

– the correlation of sector-level value added per worker with sector-level value added – and

the relative volatilities of sector-level employment and investment are essentially constant

across the two sub-samples. While the volatility of sector-level value added does fall post-
35One can see the source of this result using the identity (derived in Appendix F):

Corr(yt, yt − lt) =
1− σ(lt)

σ(yt)
Corr(yt, lt)√

1 + σ(lt)2

σ(yt)2
− 2 σ(lt)

σ(yt)
Corr(yt, lt)

. (15)

Since output and employment are highly correlated both before and after 1984, the decline in the cyclicality
of labor productivity is driven by the increase in the relative volatility of employment.
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1984, its magnitude is about half as large as the decline in the volatility of GDP. Appendix

F shows that these findings are robust to using various weighting schemes to compute the

within-sector average and to using first-differences to detrend the data.

Since the changes in the aggregate cycle do not occur within sector, they must be driven

by changes in the covariances of activity across sectors. We formalize this argument using

the following decomposition (derived in Appendix F):

Var(lt)
Var(yt)

≈ ωt︸︷︷︸
variance weight

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)︸ ︷︷ ︸
variances

+(1− ωt)

∑N
j=1

∑
o ̸=j ω

l
jtω

l
otCov(ljt, lot)∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)︸ ︷︷ ︸

covariances

(16)

where yjt is HP-filtered log value added of sector j, ljt is HP-filtered log employment of sector

j, and yt and lt are aggregate value added and employment. We present this decomposition

for the relative volatility of employment because its rise accounts for the declining cyclicality

of labor productivity. The decomposition (16) breaks the variance of employment relative to

the variance of GDP into two components. The first “variances” component is the average

variance of employment relative to the average variance of value added within sectors. The

second “covariances” component is the average covariance of employment across all pairs of

sectors relative to the average covariance of value added across pairs. The “variance weight”

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt) ensures that the averages of these ratios add up to the

ratio of aggregate variances.

Table 9 shows that 90% of the increase in the relative volatility of aggregate employment

is accounted for by an increase in the covariances term; in contrast, the within-sector aver-

age variances are stable, consistent with the results in Table 8. Appendix F shows that the

changes in covariances reflect two patterns in the data. First, the covariance of value added

across sectors fell in the post-1984 sample, decreasing the volatility of aggregate GDP. In

contrast, the covariance of employment across sectors remained comparatively stable, stabi-

lizing its aggregate volatility and therefore raising its volatility relative to output. Appendix

F shows that similar results hold when decomposing the volatility of investment; approxi-

mately 80% of the increase is in that relative volatility is accounted for by the covariance

terms.
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Table 9
Decomposition of Relative Employment Volatility

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.57 0.94 100%

Variances 0.40 0.39 13%
Covariances 0.59 1.10 87%

Variance Weight 0.11 0.23
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (16) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Variances” refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the

covariance component
∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). To avoid endpoint bias from the HP filter, we omit the first and last three years of data of
the entire sample in computing these figures.

We conclude from this evidence that a good explanation for the declining cyclicality

of aggregate labor productivity should be driven by changes in sectoral comovement, not

changes occurring within sectors. Our model naturally generates these facts because the

volatility of sector-specific shocks has remained relatively constant, but the volatility of

aggregate shocks has fallen and generated the changes in comovement patterns across sectors.

In contrast, nearly all existing explanations for the declining cyclicality of labor productivity

in the literature abstract from sectoral heterogeneity, so they do not speak to these empirical

results.

Appendix F contains five additional pieces of analysis of this decomposition in order to

ensure that the results are robust features of the data. First, it shows that the changes in

covariance patterns we discuss are broad-based and not driven by outliers. Second, it shows

that the results also hold using first-differences rather than the HP-filter to detrend the data.

Third, it shows that the changes in covariances are reflected in changes in correlations, rather

than variances. Fourth, it shows that the approximation inherent in the decomposition (16)

is accurate. Fifth, it shows that the results of this decomposition also hold for the finer

450-sector partition of manufacturing in the NBER-CES database.
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6 Quantitative Analysis of Changes Since 1984

We now argue that the rising importance of sector-specific shocks caused the changes in

business cycle patterns using by feeding in our measured sector-level productivity series into

the model. We assume all the other parameters are fixed over time in order to isolate the role

of the shocks in driving the changes in business cycle patterns. However, Appendix G shows

that our results are similar if we allow those parameters to change over time, indicating that

changes in the shock process is the key change over this period.

We use the following procedure to feed the realized TFP shocks into our model. We first

estimate the persistence ρj using maximum likelihood over the entire sample. These param-

eters, along with the others parameters calibrated in Section 3, are sufficient to compute

the decision rules in our model because the decision rules do not depend on the covariance

matrix of shocks (due to certainty equivalence of the linearized solution). We simulate the

decision rules given the realized history of shocks, starting from the non-stochastic steady

state.36

6.1 Model Matches Changes in Aggregate Cycles

Table 10 shows that the model matches key business cycle patterns both before and after

the 1984 breakpoint. In our model, the cyclicality of aggregate labor productivity falls by

0.45 points in the post-1984 sample, compared to 0.39 points in the data.37 Consistent

with that fact, the standard deviation of aggregate employment relative to GDP increases

by approximately 25% in our model, compared to a 34% increase in the data (recall that

the rise in this relative volatility accounts for the decline in labor productivity cyclicality).

The relative volatility of investment also increases, consistent with the rising importance of
36An alternative approach is to estimate the covariance matrix of innovations separately for the pre vs.

post 1984 subsamples of our data and then compute the implied population moments of the model. However,
we cannot estimate full-rank covariance matrices since the number of sectors is larger than the number of
time-series observations in the two subsamples. In Appendix G, we collapse the partition of sectors to N = 28,
which allows us to estimate full rank covariances matrices and compute population moments corresponding
to the two subperiods. Those results are similar to the results in the main text.

37The pre-1984 level of labor productivity cyclicality is substantially higher in our model than the data.
Other mechanisms could decrease the overall level, such as other aggregate shocks or even measurement error
in the data, without affecting our conclusions here.
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Table 10
Changes in Business Cycle Patterns, Model vs. Data

Data Model
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.27% 1.36% 2.60% 2.24%
ρ(yt − lt, yt) 0.65 0.26 0.90 0.45
σ(lt)/σ(yt) 0.76 1.02 0.74 0.92
σ(it)/σ(yt) 1.94 2.91 3.92 4.67

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“Data” refers to our empirical dataset (and replicates the results of Table 8). “Model” refers to model
simulation starting from steady state and feeding in realizations of measured TFP over the sample. yt is log
GDP, lt is log aggregate employment, and it is log aggregate investment. To avoid endpoint bias from the
HP filter, we omit the first and last three years of data of the entire sample in computing these figures.

investment hub shocks.38

Figure 10 shows that the model also matches the timing of the decline in the cyclicality of

labor productivity. We compute the dynamics of this statistic using 14-year forward-looking

rolling windows in both the data and in our model. The two series track each other quite

closely. The cyclicality of labor productivity is fairly stable until the early 1980s, when it

drops sharply after the Volcker recession. The cyclicality then recovers somewhat in the

1990s but then drops again during the 2008 financial crisis and its aftermath. By the end of

the sample, the cyclicality of labor productivity has fallen by a similar amount in the model

and in the data.

Role of Investment Network Table 11 compares a simulation of the model with shocks

only to the investment hubs to a simulation with shocks only to the non-investment hubs.

The hub shocks account for a larger share of aggregate fluctuations in the post-1984 data and

generate countercyclical fluctuations in aggregate labor productivity. Hence, a reallocation

of volatility to investment hub-specific shocks will decrease the cyclicality of aggregate labor
38The model only generates a 0.36 percentage point decline in the volatility of GDP compared to a

0.91pp decline in the data. We therefore conclude that changes in the shock process alone only capture
approximately 40% of the “Great Moderation” of aggregate volatility. Appendix G shows that allowing the
other parameters of the model to change accounts for the remaining decline in aggregate volatility without
significantly affecting our other results.
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Figure 10: Dynamics of Labor Productivity Cyclicality Over Time

Notes: rolling windows of Corr(yt − lt, yt) where yt is HP-filtered log aggregate value added and lt is HP
filtered log aggregate employment (each filtered with smoothing parameter λ = 6.25). Rolling windows
have length of 14 years and are forward-looking (e.g. 1950 data point computes the correlation between
1950-1963). “Data” corresponds to aggregated version of our dataset. “Model” corresponds to aggregated
version of model simulation under measured realizations of sector-level TFP shocks. Both series have been
normalized to zero in 1950. To avoid endpoint bias from the HP filter, we omit the first and last three years
of data of the entire sample in computing these figures.

Table 11
Role of Investment Hub Shocks in Changing Business Cycles

Non-Hub Shocks Only Hub Shocks Only
Pre-84 Post-84 Pre-84 Post-84

σ(yt) 1.83% 1.29% 0.87% 1.35%
σ(lt) 1.23% 1.04% 0.82% 1.37%
Corr(yt − lt, yt) 0.93 0.68 0.41 -0.11

Notes: business cycle statistics in our model in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Hub Shocks Only” refers to setting all non-investment hub shock realizations to zero.
“Non-Hub Shocks Only” refers to setting all the investment hub shock realizations to zero. yt is log GDP
and lt is log aggregate employment.
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productivity, as shown above.39,40

Figure 11 further decomposes the effects of sector-specific shocks for individual sectors,

obtained by separately feeding in measured TFP realizations for each individual sector. The

top panel plots the standard deviation of aggregate employment relative to the standard devi-

ation of the shock, which can be loosely interpreted as a reduced-form elasticity of aggregate

employment to a sector-specific shock. The four investment hubs have high elasticities due

to their large effects on aggregate employment described Section 4. Also consistent with

that discussion, shocks to sectors which supply intermediates to investment hubs – primarily

the manufacturing sectors in the left of figure – generate larger effects on employment than

other non-hub sectors.41 The bottom panel of the figure plots the cyclicality of aggregate

labor productivity induced by shocks to each of these sectors. A shock to most investment

hubs generate countercyclical fluctuations in labor productivity because they increase ag-

gregate employment by more than GDP. The exception is professional/technical services,

which generates procyclical labor productivity; however, those fluctuations are substantially

less procyclical than other service sectors.42

We therefore conclude that changes in the process for sectoral TFP shocks, when filtered

through the investment network, are the key driver of these changes in business cycle patterns

over time. Much of the literature has argued that the declining cyclicality of labor productiv-

ity implies that TFP shocks are unimportant in explaining business cycle fluctuations. Our

results suggest caution in that interpretation. In our model, the declining cyclicality reflects

changes in how sector-level TFP shocks are propagated through the economy’s investment

network, not that they are unimportant altogether.
39The cyclicality of labor productivity in response to non-hub shocks also falls in the post-1984 sample.

This finding reflects the fact that some non-hubs are still investment producers and that shocks to these
sectors and shocks to suppliers of investment hubs also become more important over time; see Figure 11
below for further discussion.

40The hub shocks generate procyclical labor productivity in the pre-1984 sample because shocks to profes-
sional/technical services account for a larger share of those fluctuations in that period, and labor productivity
is procyclical in response to shocks to professional/technical services. See Figure 11 below for further discus-
sion.

41Shocks to the wholesale trade sector also have a large effect on employment; Appendix G shows that
this result is because wholesale trade is a large share of value added.

42Professional/technical services generates procyclical labor productivity because it also supplies inter-
mediate goods to many sectors in the economy. Therefore, a professional/technical services-specific shock
generates a larger increase in value added than in employment, increasing labor productivity.
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Figure 11: Aggregate Dynamics Driven by Shocks to Individual Sectors
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Notes: results from simulating model with empirical shocks to only one sector at a time (the remaining
sectors’ shocks are set to zero). Top panel: standard deviation of aggregate employment nt relative to the
standard deviation of the sectors’ productivity Ajt. Bottom panel: the correlation of aggregate labor
productivity with aggregate GDP, Corr(yt − lt, yt). All variables have been logged and HP-filtered with
smoothing parameter 6.25. Investment hubs are highlighted in red.
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Table 12
Divergence of Aggregate and Sectoral Cycles

Data Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.27% 1.36% 3.58% 3.00%
ρ(yt − lt, yt) 0.65 0.26 0.73 0.71
σ(lt)/σ(yt) 0.76 1.02 0.65 0.65

Model
σ(yt) 2.60% 2.24% 4.03% 4.18%
ρ(yt − lt, yt) 0.90 0.45 0.82 0.80
σ(lt)/σ(yt) 0.74 0.92 0.48 0.51

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“Data” refers to our empirical dataset (and replicates the results of Table 8). “Model” refers to model
simulation starting from steady state and feeding in realizations of measured TFP over the sample. yt is log
value added and lt is log employment. “Aggregated” aggregates value added across sectors using a Tornqvist
index weighted by nominal value added shares, aggregates employment as the simple sum, HP-filters both
series with smoothing parameter λ = 6.25, and computes the statistics. “Within-sector” HP-filters each
sector-level series with smoothing parameter λ = 6.25, computes the statistics, and then averages them
weighted by the average share of nominal value added within that sub-sample. To avoid endpoint bias from
the HP filter, we omit the first and last three years of data of the entire sample in computing these figures.

6.2 Changes in Cycles Driven by Changes in Comovement

We now show that the changes in business cycle patterns are driven by changes in the sectoral

comovement and not changes within sectors, as we documented in Section 5. We focus on the

cyclicality of labor productivity and relative volatility of employment. Table 12 shows that

the changes in business cycle patterns do not occur within sectors of our model, consistent

with the data; both sector-level labor productivity and the relative volatility of sector-level

employment are stable over both subsamples. In our model, the sector-level patterns are

stable because sector-specific shocks are the dominant source of fluctuations within sector

and the volatility of these shocks has remained stable over time. However, the propagation

of these shocks to other sectors has become relatively more important post-1984 because

aggregate shocks become less volatile. The resulting changes in sectoral comovement then

account for the changes in aggregate cycles.

Table 13 formalizes this argument by replicating the decomposition (16) on our model-
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Table 13
Decomposition of Relative Employment Volatility, Model vs. Data

Data Model
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.57 0.94 100% 0.55 0.84 100%

Variances 0.40 0.39 13% 0.47 0.47 11%
Covariances 0.59 1.10 87% 0.56 0.92 89%

Variance Weight 0.11 0.23 0.11 0.18
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))
Model, No Investment Net.
Pre-84 Post-84 Contribution

of entire term
Var(lt)
Var(yt) 0.55 0.59 100%

Variances 0.45 0.39 250%
Covariances 0.57 0.69 -150%

Variance Weight 0.15 0.33

Notes: results of the decomposition (16) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Data” refers to our empirical dataset (and replicates the results of Table 8). “Model” refers
to model simulation starting from steady state and feeding in realizations of measured TFP over the
sample. “Model, No Investment Net.” refers to version of the model in which we have eliminated the
investment network by assuming sectors accumulate capital out of their own output only. “Variances”
refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the within-sector row) and the contribution of the second term (in
the between-sector row). To avoid endpoint bias from the HP filter, we omit the first and last three years of
data of the entire sample in computing these figures.

simulated data; for convenience, the decomposition is

Var(lt)
Var(yt)

≈ ωt︸︷︷︸
variance weight

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)︸ ︷︷ ︸
variances

+(1− ωt)

∑N
j=1

∑
o ̸=j ω

l
jtω

l
otCov(ljt, lot)∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)︸ ︷︷ ︸

covariances

In the data, the covariance terms account for 87% of the increase in the relative volatility

of employment (and, therefore, the decrease in the cyclicality of labor productivity); in our

model, the covariance terms account for 89% of the increase. The changes in these covariance

terms reflect two patterns in both the model and the data. First, the covariance of value added
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Table 14
Average Pairwise Correlations, Model vs. Data

Data Model
Employment Value added Employment Value added

Pre-1984 0.55 0.36 0.88 0.35
Post-1984 0.51 0.17 0.84 0.19
Difference -0.04 -0.19 -0.04 -0.17

Model, no investment net.
Employment Value added

Pre-1984 0.39 0.28
Post-1984 0.20 0.10
Difference -0.19 -0.18

Notes: average pairwise correlations (17). “Pre-1984” computes ρxτ in the 1948-1983 subsample and
“post-1984” computes ρxτ in the 1984-2017 subsample. “Data” refers to the data, “Model” to the model,
and “Model, no investment net.” to a version of the model in which the investment network has been
eliminated (by assuming that all investment is done using own-sector output). To avoid endpoint bias from
the HP filter, we omit the first and last three years of data of the entire sample in computing these figures.

across sectors falls after 1984 because the covariance of productivity falls; this fact decreases

the volatility of aggregate GDP. Second, the covariance of employment across sectors is stable

over this period, which stabilizes the volatility of aggregate employment. Together, these two

facts drive up the relative volatility of employment and therefore drive down the cyclicality

of labor productivity.

Table 14 further studies these comovement patterns by computing the change in the

average correlation of value added and employment across pairs of sectors:

ρxτ ≡
∑N

i=1

∑N
j=i+1 ω

x
i ω

x
jCorr(xjt, xjt|t ∈ τ)∑N

i=1

∑N
j=i+1 ω

x
i ω

x
j

(17)

where xjt is either employment or value added and ωj are value added or employment

shares. The correlation of value added falls nearly in half, generating most of the decline

in the covariances in the decomposition (16); in contrast, the correlation of employment is

essentially stable, generating the stability of the between sector covariances as well.43 To our
43The fact that the correlation of employment across sectors is higher in our model than the data is driven

by our choice of an infinite Frisch elasticity η → ∞; this assumption implies that the marginal disutility of
labor supply is constant, so an increase in one sector’s employment does not affect the incentives to supply
labor to other sectors. With a finite Frisch elasticity η < ∞, an increase in one sector’s employment increases
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Figure 12: Model Fit of Sector-Pair Level ∆Cov(ljt, lot)−∆Cov(yjt, yot) (R2 = 27%)
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Notes: model fit to sector-pair (j, o) value of ∆Cov(ljt, lot)−∆Cov(yjt, yot), where ∆Cov(ljt, lot) is the
covariance of log HP-filtered employment in the post-1984 sample relative to the pre-1984 sample, and
∆Cov(yjt, yot) is the covariance of log HP-filtered value added in the post-1984 sample relative to the
pre-1984 sample. Horizontal axis is the value of that statistic in the data while the vertical axis is the value
in the model. The solid line is the regression line across all sectors, which has an R2 of 0.27. In the plot,
circle size is proportional to the product of the pair’s share of value added over the entire sample. To avoid
endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in
computing these figures.

knowledge, our model is the only only explanation for the declining cyclicality of aggregate

labor productivity that is consistent with these facts in the data.

Tables 13 and 14 also show that the investment network is crucial to generating stable

employment comovement and, therefore, the declining cyclicality of labor productivity over

this period. We eliminate the investment network by assuming that all sectors invest out

of their own output, i.e. the network is the identity matrix. In this case, the correlation

of employment across sectors counterfactually falls by as much as the correlation of value

added. Therefore, aggregate employment volatility falls by as much as GDP volatility, and

there is no decline in the cyclicality of labor productivity (it slightly falls from 0.93 to 0.82).

Finally, Figure 12 shows that our model provides a good fit of not only the average change

the disutility of supply labor to other sectors, decreasing the level of employment comovement. However,
allowing for a finite Frisch still implies that the correlation of employment across sectors is constant over
time (in results not reported). We focus on the infinite Frisch as our baseline in order to focus on changes in
employment; Appendix G shows that our main results are robust to allowing for η < ∞.
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in covariances over this period, but the changes at the sector-pair level as well. We summarize

the sector-pair level change with the “diff-in-diff” ∆Cov(ljt, lot)−∆Cov(yjt, yot). On average,

this object is positive because employment covariances change by less than the value added

covariances, and larger values correspond to a larger divergence between employment and

value added covariances over time. Although neither of these objects were targeted in the

calibration, the model explains 27% of the variation in the data.

Appendix G contains a number of additional exercises to show that these model results are

robust. First, we allow the other parameters of the model – those governing the production

structure, networks, and consumption shares – to change over time.44 Second, we estimate

the covariance matrix of shocks and compute the model’s population moments over the

two sub-samples. Third, we use alternative degrees of polynomial trends when measuring

TFP. Fourth, we allow for adjustment costs of capital and maintenance investment in the

computation of the investment network. Our results continue to hold in all of these cases.

7 Implications of Network for Stimulus Policy

The analysis so far has focused on how the investment network propagates sector-specific pro-

ductivity shocks; we now briefly study how it propagates investment stimulus policies, such

as investment tax credits or bonus depreciation allowance. We model investment stimulus

as an exogenous shock to the cost of capital:

(1− subt)× νjt, (18)

where νjt is the marginal cost of producing investment goods and subt is the policy shock.

Winberry (2018) shows that a number of actual policies map into this reduced-form shock.45

We assume that the policy shock is financed from outside the economy in order to focus on
44An alternative approach would be to estimate a process for the changes in parameters over time, and use

the extended path algorithm from Maliar et al. (2015) to compute the changes in business cycle fluctuations.
While that approach has merit, we do not pursue it here for the sake of simplicity.

45The key intuition behind this result is that, without financial frictions, the present value of tax savings
per unit of investment is a sufficient statistic to capture the effects of these policies on investment.
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Table 15
Effects of 1% Investment Purchase Subsidy

Baseline No intermediates
∆it 8.82% 8.52%
∆nt 1.77% 1.68%
∆nhubs

t 3.93% 4.65%
∆nnon-hubs

t 1.28% 0.67%

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text.
“Baseline” refers to full model and “No intermediates” refers to model without intermediate goods (i.e.
θj = 1 for all sectors j). ∆it is the percentage change in aggregate investment, ∆nt is the percentage
change in aggregate employment, ∆nhubs

t is the percentage change in employment at the investment hubs,
and ∆nnon-hubs

t is the percentage change in employment at the non-hubs.

how it affects investment incentives.46

Table 15 shows that the investment stimulus increases employment in many sectors of

the economy. A 1% subsidy shock increases aggregate investment by nearly 9%. Most of this

increased investment is produced by investment hubs, whose employment increases by about

4%. Employment at non-hubs also increases by about 1.3% in order to supply intermediates

to the investment hubs (similar to the effects of hub-specific productivity shocks described

above). The right column of Table 15 shows that, without these spillovers from the interme-

diates network, employment at the non-hubs increases by about half as much.47 Hence, the

intermediates network propagates the effects of the stimulus throughout the economy.

Figure 13 shows that the effects of the stimulus shock on employment are unevenly dis-

tributed across sectors of the economy. Over 40% of the increase in aggregate employment is

concentrated in the four investment hubs because they produce the majority of investment.

There is also a sizable increase in employment in the sectors which supply intermediates to

investment hubs (primarily the manufacturing sectors in the left of the figure). However,

the sectors which do not supply intermediates to the hubs see virtually no change in their

employment. Figure 13 also shows that, in a counterfactual version of the model without
46Of course, since the equilibrium of our model is efficient, all stimulus policies are strictly welfare-reducing.

We think our model nevertheless provides useful insights about the positive effects of these policies. These
effects will be important forces in a normative exercise using richer models in which the policies may be
welfare-improving.

47The fact that non-hubs’ employment increases even without the intermediates network reflects the fact
that they also produce some investment goods.
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Figure 13: Distributional Effects of Investment Stimulus

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text. Each
bar plots the change in employment at that particular sector, divided by the change in aggregate
employment. The sum of all the bars equals 100% of the change in aggregate employment. Red bars are the
investment hubs’ response in our baseline model, blue bars are the non hubs’ response in our baseline
model, and transparent grey bars are the responses in a version of the model in which we eliminate the
investment network by assuming all investment is done out of own-sector output.

the investment network, the effect of the policy is more uniformly distributed across sec-

tors.48 Hence, the sparseness of the investment network implies that investment stimulus

policies have very unequal effects on employment across various sectors in the economy –

resembling industrial policy.49 These distributional implications occur despite the fact that

policy subsidizes the purchases of investment equally across sectors, and may be seen as

a negative consequence to policymakers who wish to avoid the appearance of conducting

industrial policy.50

48Without the investment network, the service sectors (in the right of the plot) account for a larger share
of the aggregate response than the non-service sectors. This result simply reflects the fact that service sectors
are larger and therefore mechanically account for a larger share of employment fluctuations; Appendix G
shows that the percentage change in employment within sectors, which is not mechanically related to size,
is fairly uniformly distributed across sectors in the model without the investment network.

49These uneven effects across sectors are minimized by our choice of an infinite Frisch elasticity η → ∞; as
discussed in footnote 43, a finite Frisch elasticity η < ∞ implies that an increase in one sector’s employment
increases the disutility of supplying labor to other sectors, increasing the dispersion of employment growth
across sectors.

50House, Mocanu and Shapiro (2017) build a model in which investment stimulus has a different effect on
the purchases and production of investment due to imported investment goods. While our model does not
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8 Conclusion

In this paper, we have argued that the investment network plays an important role in propa-

gating sectoral shocks into aggregate fluctuations. Our argument had three main components.

First, we showed that the empirical investment network is dominated by four investment hubs

that produce the majority of investment goods, are highly volatile at business cycle frequen-

cies, and are strongly correlated with the aggregate cycle. Second, we embedded this network

into a standard multisector business cycle model and showed that shocks to the investment

hubs have strong propagation onto other sectors and, therefore, onto aggregates. Third, we

measured sector-level productivity shocks in the data, fed them into the model, and found

that shocks to investment hubs accounted for a large and increasing share of aggregate fluc-

tuations. Since shocks to these hubs generate more volatile movement in employment than

value added, this shift accounts for the decline in the cyclicality of aggregate labor productiv-

ity and other changes in business cycle patterns since the early 1980s. We also showed that

investment stimulus policies, applied equally across sectors, primarily increase production

at investment hubs and their intermediate goods suppliers but not in other sectors of the

economy.

In order to isolate the role of the investment network, we have embedded it into a pur-

posely simple multisector real business cycle model. A natural next step would be to add

the rich set of nominal and real rigidities which the DSGE literature has argued are relevant

for business cycle analysis. We kept our quantitative exercise simple by focusing on sector-

level productivity shocks measured as a simple Solow residual. While we do not think that

the role of the investment network as a propagation mechanism is specific to productivity

shocks – other non-technology shocks may have similar effects – another next step would

be to understand what drives the variation in our measured shocks and incorporate other

shocks. Our analysis of investment stimulus policy was purely positive because our model

does not feature the externalities which motivate the use of these policies in a first place. A

natural next step for policy analysis would be to incorporate these frictions and perform a

normative analysis. The insights developed in our model would be useful for that exercise.

incorporate imports, it allows us to study the distributional effects of the policy across sectors within the
domestic economy.
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A Construction of Dataset and Investment Network

A.1 Dataset

We use data from the BEA’s GDP by Industry Database to construct a dataset covering 35

non-government, non-farm sectors covering the years 1948-2017. Our data also omits the real

estate sector, as it is not possible to consistently separate imputations for owner-occupied

housing from value added in this sector over time. Industries are defined according to NAICS

codes; a full list of all 35 industries is available in Table 1.

Data on nominal and real measures of value added by industry are directly available from

the BEA.51 For employment data from 1998 to the present, we use data directly measured

in NIPA Table 6.4D, which reports the total number of full-time and part-time employees

by industry, where industries are defined according to NAICS codes. Unfortunately, data in

NIPA Tables 6.4B and 6.4C report employment by industry according to SIC definitions of

industries and are not directly comparable.

We construct NAICS-denominated employment data using historical employment data

from the BEA from 1948-1997. These data only provide employment for 16 of the 35 sectors

we consider for the full time series. The reason that these data have fewer industries is

that, prior to 1977, manufacturing is collapsed into durable and non-durable manufacturing

sectors (compared to the 19 subsectors we use in our analysis). To obtain a full time series

of employment in these 19 manufacturing subsectors, we take SIC coded employment data

from the GDP by Industry Database covering 1947-1997 and convert the data to NAICS

industries using the concordance provided in Fort and Klimek (2016).52 We then combine

this data with the existing data for these manufacturing subsectors from 1977-1997, scaling

our converted data pre-1977 to be consistent with post-1977 data.53

51Because the base year used for the quantity index measures of real value added differs across data for
pre- and post-1997, we rescale these data to be consistent over time.

52This concordance is based off of LBD data with detailed SIC and NAICS codes. We convert SIC-coded
employment to NAICS coded proportionally on the basis of employment in each SIC industry.

53We rescale by backcasting the 1977-1997 data using the growth rate of employment in each sector as
obtained from the SIC converted data.
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A.2 Construction of Investment Network

The investment network that we construct records the share of investment expenditures

of sector j that were purchased from sector i for each pair (i, j) of the 35 sectors in our

dataset and for each year in our 1947 - 2017 sample. While the BEA has published this

information in its publicly available capital flows tables, these tables are only available for a

handful of years, they do not include the majority of intellectual property, their classification

procedures are not consistently defined across years, and they are recorded at inconsistent

levels of sectoral disaggregation over time.

We therefore construct our own investment network to overcome these issues with the

capital flows tables. Our investment network is available for each year in the 1947-2017

sample, includes all of intellectual property, are based on consistent classification procedures,

and are consistently recorded at our 35-sector level of disaggregation. The main challenge

is to estimate the share of total production in each sector i that is bought by sector j. The

publicly available BEA does not report these pairwise transactions; instead, we only observe

the total expenditures on each 30 type of disaggregated investment goods (from the fixed

asset table) and total production of broadly defined structures, equipment, and intellectual

properties (from the input-output data) for each sector in our data.

We address this challenge in three main steps. First, we construct a bridge file that

computes, for each of 30 types of capital goods, the share of total production of that good

accounted for by a given sector i. Second, we compute the total amount of each good pur-

chased by sector j, and assume that the sector purchases that good proportionally from the

sectors which produce it.54 Finally, we aggregate across the different types of capital goods to

arrive at our investment network.55 Our construction of these bridge files closely follows the

methodology the BEA has used to produce similar the capital flows tables and is consistent

with the approach used in McGrattan (2017) to create a capital flows table for the year 2007.

The remainder of this appendix describes how we construct the bridge files which com-
54The BEA also makes this assumption in the construction of its capital flows tables.
55Following BEA practice, our investment network covers private new investment but excludes used and

scrapped goods. We also exclude residential investment in structures because production of residential in-
vestment is not reported separately in the input-output data prior to the year 1997. However, residential
structures is almost entirely sold to the real estate sector, which we omit from our analysis (due to its value
being dominated by imputations for owner-occupied housing).
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putes the share of production of each type of capital good that is accounted for by each

sector in the economy. We describe this procedure separately for equipment, structures, and

intellectual property capital goods. Given these bridge files, it is straightforward to aggregate

up to the investment network displayed in Figure 1 in the main text.

Structures

We allocate production of all structures investment commodities to the construction sector

except for the production of mining structures (which are allocated to the mining sector).

This allocation is consistent with how the BEA constructs its own capital flows tables, as

described in McGrattan (2017). We have verified that the production of structures implied

by this bridge file is consistent with the production of structures recorded in the input-output

data.56

Intellectual Property

We allocate the production of intellectual property products based on the BEA practices

discussed in McGrattan (2017). There are four detailed types of intellectual property com-

modities: prepackaged software, own and custom software, research and development and

artistic originals. We allocate the production of pre-packaged software to the Information

sector (particularly NAICS sector 5112 Software Publishers), the production of own and

custom software and R&D investment to the Professional and Technical Services sector, and

split the production of artistic originals between the Information sector (which includes sub-

sectors like radio and TV communication and motion picture publishing) and the Arts and

Entertainment Services Sector.57

We also adjust our allocation to account for the fact that Wholesale Trade, Retail Trade,
56The only exception concerns the real estate sector, which is omitted from our analysis anyway. In

particular, between the years of 1997-2017 roughly 2.5% of reported production of structures investment
comes from sectors other than construction (almost exclusively real estate). These contributions account for
broker’s commission payments for sales of non-residential structures. These contributions are also omitted
from the BEA capital flows tables (see Meade, Rzeznik and Robinson-Smith (2003)).

57We determine the split of artistic originals using the yearly Input-Output data on total intellectual prop-
erty products produced by the Arts and Entertainment sector and the Fixed Assets data on total purchases
of artistic originals to construct the fraction of all artistic originals produced by Arts and Entertainment
Services. The residual fraction of artistic originals (the majority) is allocated to Information.

55



and Transportation/Warehousing Services play a role in the delivery of new intellectual

property to customers (the expenses incurred in this delivery are often called “margins” on

purchases). The 2007 and 2012 data provide detail about the allocation of margins, and

show that pre-packaged software publishing is the only intellectual property product with

margins. We therefore allocate a fraction of pre-packaged software purchases to Wholesale

Trade, Retail Trade, and Transportation/Warehousing Services in order to account for the

margins. Our implied production of intellectual property products by each sector aligns with

the data in the Input-Output database.

Equipment

Constructing a bridge file for equipment investment commodities is the most difficult task

because there are 25 detailed equipment commodities reported in the Fixed Assets data and

the share of production of these commodities are allocated to a different mix of sectors in

each year. Because of varying data availability from the BEA, we describe how we construct

the bridge file for equipment investment separately for 1997-2017, for 1987 and 1992, and

for the remaining years (1947-1981, 1988-1991, 1993-1996).

For 1997-2017, the BEA already provides a detailed bridge file for equipment commodities

as part of its Input-Output data; therefore, no further work on the bridge file is needed.58

The BEA also provides a bridge file for 1987 and 1992, but it is coded using SIC rather

than NAICS sector classifications; we convert the SIC to NAICS definitions using the cross-

walks defined in Fort and Klimek (2016).59 One disadvantage of this bridge data is that we
58For these years, and for all years of data, however, we do need to make one adjusted to the Fixed

Assets data on investment purchases. The Fixed Assets data does not separately split out the purchases of
used or scrap goods, and thus it does not neatly correspond to the Input-Output accounting framework,
which separately splits out used and scrap goods. These differences are generally small, however, for some
equipment commodities, especially vehicles (autos, trucks, boats, etc.), the discrepancies are substantial,
since the volume of capital transactions in used vehicle markets is high. To address this inconsistency, we
symmetrically scale up in each sector the total purchases of equipment capital to match the total production
amounts reported in the bridge data file for each year from 1997-2017. For equipment commodities, this
adjustment is negligible. For years prior to 1997, we used the median scaling factor for each sector to make
this adjustment.

59We allocate SIC codes to NAICS codes on the basis of total shipments by sector in the Fort and Klimek
(2016) crosswalk. We make one small adjustment to this crosswalk to be consistent with Input-Output data.
Converting from SIC to NAICS, for a few commodities, the bridge implies they contribute to equipment
production, whereas the Input Output data reports a zero for total equipment investment production. Any
time the converted bridge file implies that a sector is contributing to the production of a capital good when
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do not have much detail in terms of the margin sectors, and failure to adjust these results in

unreasonable differences in the margin allocations compared to the data from 1997 onward.

As a result, we take the total reported margins for each commodity and allocate it according

to the distribution of margins reported in the years 1997-2001.60

To obtain bridge data for all years prior to 1987 and for 1988-1991 and 1993-1996 (in

which there are no publicly available bridge files), we interpolate existing data and discipline

that interpolation to ensure it matches the total production of equipment investment by

sector from the Input-Output data. We can write the total production of equipment capital

by sector i as the following:

Iit =
∑
c

ωcitÎct

where Îct is the level of investment purchased of equipment commodity c, ωcit is the fraction

of that commodity produced by sector i (the bridge data) and Iit is the production of all

equipment capital by sector i. We have data on Îct and Iit for all years from Fixed Assets

and Input-Output data, but we do not know the value of the bridge data ωcit for most years

prior to 1997.

To obtain interpolated values for the bridge data ωcit for the years without a bridge file,

we start with an approximation of production of equipment investment by sector, given by:

Ĩit =
∑
c

ω̄ciÎct

where ω̄ci is an approximate guess for the bridge relationship. In practice, ω̄ci is either the

bridge data from the last available year (for years prior to 1987) or a moving average of

the two nearest bridge files (1987 and 1992 for years 1988-1991 and 1992 and 1997 for years

the Input-Output data reports that sector generated zero production of equipment capital, we edit the SIC
to NAICS crosswalk to not allocate value to that sector.

60Fortunately, although there are substantial changes in sector codes, there are minimal changes in the
classification of capital commodities over these years, making it straightforward to map these margin allo-
cations over time. The only difference between investment commodity classifications between the 1997 and
earlier data is that there is no further detail on instruments (nonmedical vs. medical in 1997), trucks (light vs.
other in 1997), or tractors (construction vs. agriculture in 1997). We are constrained to assume that the pro-
duction allocation of these equipment commodities is identical pre-1997. In the cases of tractors, since these
are allocated to either construction or agricultural machinery in the level of detail available for the bridge
files for 1997 onward, we allocate these expenditures proportionally based on the amount of expenditures on
each type of tractor by each sector in each year.
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1993-1996).

However, the true level of investment production is given by Iit = kitĨit = kit
∑

c ω̄ciÎct,

where kit is a scaling factor. The idea here is that some change in the production of equipment

investment by sector may be captured by changes in the distribution of equipment purchases

across commodities according to some fixed bridge file (changes in the distribution of Îct over

c), and that anything not captured by those changes must show up in this residual scaling

constant, kit. Given that we can directly observe actual production of all equipment capital

sector and construct the approximate production of equipment, we can solve for kit in every

year.61

Given a value of kit, we can construct the approximate bridge relationship for each

equipment commodity, sector and year, ω̃cit, as:

ω̃cit =
kitωcit∑
j kjtωcjt

Thus, although this relies heavily on the most recent observations of the bridge data, it is

constrained to be consistent with overall changes in the distribution of equipment production

by sector. The key assumption here is that any changes in this distribution of equipment

capital by sector apart from those captured by changes in the distribution of investment

purchases over commodities (changes in the distribution of Îct over c), are generated by

symmetrically proportional changes in the bridge file for each sector.62

Following this approach, we construct bridge data for equipment investment for all years

prior to 1997.63 We then combine all the bridge files we have constructed to construct the

aggregate investment matrix.
61In practice, we do this by matching to the growth rate of actual investment. We do this since the margin

totals may not exactly equate to the fixed asset data for the years 1987 and 1992, and thus we do not want
to strictly impose this in levels.

62An additional assumption needed here is that there are no sectors which previously contributed to
production of any equipment commodity that no longer contribute in the first year that bridge data is
available.

63We also use this approach to update the existing bridge files for 1987 and 1992 to be consistent with
Input-Output data.
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Table 16
Skewness of Investment and Intermediates Networks

Eigenvalue Centrality Weighted Outdegree
Investment net. 3.09 2.40
Intermediates net. 1.29 0.74

Notes: Eigenvalue centrality is defined as the eigenvector associated with the largest eigenvalue of the
matrix. The weighted outdegree is defined as the sum over columns of the network matrix. Skewness of
each of these centrality measures is computed as the sample skewness.

A.3 Additional Analysis of Investment Network

We now present additional analysis of the investment network referenced in Section 2 of the

main text.

Changes in the network over time Figure 14 compares the heatmaps of the invest-

ment network in the pre and post 1984 samples. Our four investment hubs are the primary

suppliers of investment goods in each subsample. The main difference across subsamples is

that professional/technical services accounts for a larger share of investment production in

the post-1984 period, consistent with the well-known rise of intellectual property. Appendix

G shows that our main model results are robust to allowing the network to differ in the pre

and post 1984 sample.

Comparing skewness of investment and intermediates networks Table 16 shows

that the investment network is significantly more skewed than the intermediates input-output

network according two typical measures of network skewness. Carvalho and Tahbaz-Salehi

(2019) discuss both of these measures of skewness; intuitively, they compute a measure

of centrality for each sector, which determines how important of a supplier it is to other

sectors, and then compute the skewness of these centrality measures across industries. A

highly skewed set of centrality measures indicates that the network is dominated by a small

number of highly important sectors, or hubs. For both measures of centrality, the investment

network is roughly three times more skewed than the intermediates input-output network,

suggesting that it is much more sparse and thus potentially more powerful in propagating
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Figure 14: Heatmaps of Investment Network, Pre/Post 1984
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Notes: Heatmaps of the investment input-output network λij are constructed as described in the main text.
The (i, j) entry of each network corresponds to parameter γij and λij , i.e., the amount of sector i’s good
used in sector j. The pre-84 network corresponds to the years 1947-1983 and the post-84 network
corresponds to the years 1984-2017.
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Figure 15: Correlogam of Sector-level Value Added with Aggregate GDP
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Notes: correlation of value added at sector s in year t− h, yst+h, with aggregate GDP in year t, Yt. Both
yst+h and Yt are logged and HP-filtered with smoothing parameter 6.25. x-axis varies the lag
h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average the value of these statistics over
s = construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical
services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2017 subsample.
To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire
sample in computing these figures.

sectoral shocks than the input-output network.

B Additional Results on Descriptive Evidence of In-

vestment Hubs

This appendix present additional pieces of evidence regarding the behavior of investment

hubs referenced in Section 2 in the main text.

Correlogram with GDP Figure 15 presents the correlogram between sector-level value

added and aggregate GDP rather than aggregate employment as in Figure 2. As in that

figure, hubs are more correlated with aggregate GDP fluctuations than non-hubs, and this

difference between hubs is larger in the post-1984 sample.
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Table 17
Volatility of Activity, Hubs vs. Manufacturing

Investment Hubs Non-Hubs Non-Hub Manuf.
Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84

σ(yst) 6.62% 8.27% 4.78% 4.02% 6.03% 4.84%
σ(lst) 4.33% 3.39% 2.73% 2.22% 2.97% 2.53%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added at sector s, HP-filtered with smoothing parameter 6.25. lst is logged real value
added at sector s, HP-filtered with smoothing parameter λ = 6.25. “Investment hubs” compute the
unweighted average the value of these statistics over s = construction, machinery manufacturing, motor
vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average
over the remaining sectors. “Non-hub manufacturing” computes the average over manufacturing sectors
other than machinery and motor vehicles. “Pre-1984” performs this analysis in the 1948 - 1983 subsample
and “post-1984” performs this analysis in the 1984 - 2017 subsample. To avoid endpoint bias from the HP
filter, we omit the first and last three years of data of the entire sample in computing these figures.

Figure 16: Correlogam of Sector-level Value Added with Aggregate Employment, Hubs vs.
Manufacturing
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Notes: correlation of value added at sector s in year t− h, yst+h, with aggregate employment in year t, Lt.
Both yst+h and Lt are logged and HP-filtered with smoothing parameter 6.25. x-axis varies the lag
h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average the value of these statistics over
s = construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical
services. “Non-hubs” compute the unweighted average over the remaining sectors. “Non-hub
manufacturing” computes the average over manufacturing sectors other than machinery and motor
vehicles. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this
analysis in the 1984 - 2017 subsample. To avoid endpoint bias from the HP filter, we omit the first and last
three years of data of the entire sample in computing these figures.
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Table 18
Sectoral Comovement with Investment Hubs

Hubs Non-Hubs
Pre-1984 Post-1984 Pre-1984 Post-1984

Value added 0.46 0.32 0.31 0.18
Employment 0.62 0.62 0.53 0.52

Notes: computes ρiτ (x) ≡
∑

j ̸=i ω
x
j Corr(xit,xjt|t∈τ)∑N

j=i+1 ωx
j

where xjt is logged + HP-filtered variable of interest,
τ ∈ {pre 1984,post 1984} is time period, and ωx

iτ are sectoral shares. To avoid endpoint bias from the HP
filter, we omit the first and last three years of data of the entire sample in computing these figures.

Results not driven by manufacturing sectors One concern with our results may be

that the behavior of hubs is driven by the fact that two of four hubs are manufacturing

sectors, and that manufacturing is more cyclical than other sectors. We present two pieces

of evidences against this concern. First, Table 17 shows that the non-hub manufacturing

sectors are significantly less volatile than the investment hubs. Second, Figure 16 shows that

the correlation of non-hub manufacturing sectors with aggregate employment is close to that

of the other non-hubs, and lower than the correlation of the investment hubs.

Other sectors comove more strongly with hubs than non-hubs Table 18 shows

that the average correlation between fluctuations in hubs’ value added or employment with

all other sectors is higher than the correlation of non-hubs’ value added or employment with

those sectors. This finding is consistent with evidence from correlograms, suggesting that

fluctuations in hub sectors are closely aligned with fluctuations in other sectors and the

aggregate.

C Details of Model Calibration

We now describe the details of our model’s calibration.

C.1 Parameters Other Than Shocks

We begin with all the parameters other than those pertaining to the TFP shocks.
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Figure 17: Calibrated Value Added Shares θj
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Notes: Values for the value-added shares θj are computed as the ratio of value added to gross output in
each sector, averaged across the entire sample, 1947-2017.

Value added shares We calibrate the share of intermediate inputs in production, 1− θj,

using the BEA input-output database. Given the Cobb-Douglas structure of our production

function, the shares θj are pinned down by the ratio of value added to gross output at the

firm level. We obtain this ratio for each year in our 1947-2017 sample and then compute

their average value over time (empirically, the shares are fairly stable over time anyway).

Figure 17 plots our calibrated share θj.

Labor shares We pin down the labor share 1−αj using the ratio of sector-level labor costs

to sector-level income (i.e. nominal value added). The BEA provides data on compensation

by sector in NAICS codes back to the year 1987; for years prior to 1987, we convert SIC based

data to NAICS using the crosswalk in Fort and Klimek (2016).64 We also correct for the fact

that sector-level compensation in the BEA data does not include self-employed income; we

use BEA data on the number of self-employed workers by industry from 1987-2017 to and

we multiply industry compensation by one plus the ratio of self-employed employment to

total part-time and full-time employment in the industry (implicitly assuming that average
64To allocate compensation by industry in the Fort and Klimek (2016) crosswalk, we use the crosswalk

data for payroll by industry.
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Figure 18: Calibrated Labor Shares 1− αj
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Notes: Values for the labor share 1− αj are computed from sectoral data on compensation (adjusted for
self-employment) divided by value added (with indirect taxes and subsidies removed), averaged across all
years in the data, 1947-2017.

compensation for self-employed workers is the same as non-self-employed workers).65 How-

ever, our results are robust to making no adjustments for self-employment. Labor share by

industry in each year is then computed as the ratio of adjusted compensation to value added

in that industry minus indirect taxes and subsidies.

Figure 18 plots the calibrated labor shares 1 − αj for each sector, averaged over 1947 -

2017. Of course, it is well-known that the labor share has also changed over time; Appendix

G shows that our key model results are robust to allowing theses parameters to change over

time.

Depreciation rates Depreciation rates by industry are taken directly from the Fixed As-

sets database, which computes implied depreciation rates by industry for each year from

1947-2017. We set the depreciation rate in each industry, δj, equal to the average implied
65The BEA data on self-employment by sector covers a coarse set of sectors, so we apply the self-

employment to employment ratio to each industry based on the finest available industry in the self-employed
data. The one exception is for the management of companies and enterprises, for which we assume that
there is no self-employment. If we allowed for self-employment in that industry, the implied labor share is
frequently in excess of one.
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Figure 19: Calibrated Depreciation Rates δj
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Notes: Values for sector-level depreciation rates δj are taken as each sector’s average implied depreciation
rate from BEA Fixed Assets data, averaged from 1947-2017.

depreciation rate from 1947-2017; these are plotted in Figure 19. These values have slightly

risen over time due to the rise of intellectual property products, which have higher depre-

ciation rates. Appendix G shows that our key model results are robust to allowing theses

parameters to change over time.

Consumption shares We pin down the the Cobb-Douglas preference parameters weight-

ing consumption in different sectors’ output, ξj using the BEA Input-Output data on total

private consumption by sector. We also account for consumption of new residential struc-

tures; without this correction, the consumption share of the construction sector would be

essentially zero, and significantly raise its volatility relative to the data.66 In order to make

this correction, we use data from 1997-2017 which separately splits out the final use of each

industry’s output into residential and non-residential structures. We compute the average

fraction of structures production in each industry which is allocated to residential structures.

We then add to private consumption by each industry this industry-specific fraction of struc-

tures investment that is in residences to capture new housing expenditures in consumption.
66Our results are robust – in fact even stronger – if we do not make this correction for consumption of

residential structures.
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Figure 20: Calibrated Consumption Shares ξj
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Notes: Values for consumption preference ξj are constructed as the fraction of total nominal consumption
expenditures on each sector’s goods or services, averaged over the entire sample 1947-2017.

The only sector this meaningfully impacts is the construction sector. With this addition to

private consumption, ξj is set to the fraction of all consumption expenditures accounted for

by each industry averaged over the years 1947-2017. These values are plotted in Figure 20.

Investment and Intermediates Networks We discuss the calibration of the investment

network in the main text and in Appendix A. The parameters of the intermediates network

γij are pinned down by the share of total intermediates expenditures in sector j that is

purchased from some other sector i from the BEAs’ use table. We compute these shares for

each year of our data and then average it across the years 1947-2017.

C.2 Measured sector-level productivity

We now describe how we measure sector-level productivity. We perform this measurement

using a Solow residual approach using value added net of primary inputs. For notational

convenience, we consider a renormalization of our original production function to associate
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TFP directly with value added:

Qjt =
(
AjtK

αj

jt L
1−αj

jt

)θj
X

1−θj
jt

Using this approach, we then estimate TFP from the data as the Solow residual based

on the following equation:

logAjt = log Yjt − αjt logKjt − (1− αjt) logLjt

Annual industry value added and employment are measured as described in Appendix A.

We construct the capital stock for each industry in each year using the perpetual inventory

method, using the nominal year-end capital stock for each industry in 1947 as our starting

point (from BEA Fixed Assets data). We then use the annual implied depreciation rates and

real quantities of investment for each industry to iterate forward the capital accumulation

process and generate a time series of capital for each industry. We allow the parameter αjt

to vary period by period (taking the two period average constructing TFP in growth rates)

in order to isolate changes in productivity rather than the production function; however, our

results are robust to using a fixed parameter value to compute TFP.

We detrend our model using a log-polynomial trend because log-linear trends provide a

poor fit to sector-level TFP. Figure 21 plots the time-series of sector-level TFP for two exam-

ples, construction and machinery manufacturing. Construction TFP evolves nonlinearly over

time, and a third or fourth order polynomial trend is required to capture these nonlinearities.

In contrast, machinery manufacturing evolves more linearly, but a polynomial trend contin-

ues to fit better than a linear one. We choose a fourth order trend for the main text in order

to balance these nonlinearities against overfitting the data. However, we show in Appendix

G that our main results are robust to using lower-order polynomials for detrending.

Given detrended values for log TFP, we estimate the autocorrelation parameter for each

sector’s TFP, ρj, by maximum likelihood. We then extract the innovations to log TFP, which

are then fed into the model. The values for these ρj parameters are plotted in Figure 22.
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Figure 21: Detrending Sector-Level Data
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Notes: The figure reports log sector level TFP for the Construction and Machinery Manufacturing
industries, normalized to zero in the year 1948. We also report a fitted polynomial trend lines for
polynomials of order 1-4, estimated via OLS.

Figure 22: Calibrated Persistence Parameters ρj
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Notes: Persistence parameters ρj of sector-level TFP are estimated from log polynomial (of order 4)
detrended TFP data using maximum likelihood.
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Table 19
Principal Components Analysis of Measured TFP

Sample period 1000Var(∆ logAt) Due to 1st component Residual
1949-1983 0.40 0.32 (81%) 0.08 (19%)
1984-2017 0.27 0.15 (56%) 0.12 (44%)

Notes: We estimate the loadings associated with the first principal component, and then multiply these by
each sector’s TFP series to construct our aggregate shock (1st component). We then regress aggregate TFP
on this constructed aggregate shock and report the explained sum of squares and R2 (the variance
attributable to the 1st component) and the sum of squared errors (the variance attributable to the
residual, interpreted as sectoral shocks). We do this separately for the pre- and post-1984 periods.

Interpreting changes in sector-level productivity over time using principal com-

ponents analysis The key feature of the data which drives the changes in business cycle

patterns since 1984 is that sector-level productivity has become less correlated across sectors.

In the main text, we interpret this change as a decline in the variance in the volatility of

aggregate shocks which affect all sectors in the economy. We now provide further support for

this interpretation using a principal components exercise similar to Garin, Pries and Sims

(2018).

However, performing that principal components exercise requires us to estimate a full

rank covariance matrix for TFP pre- and post-1984, which we cannot do with 35 sectors and

less than 35 years of data post-1984.67 As a result, we collapse our data down to 28 sectors

by condensing all non-durable manufacturing sectors into one sector, and then do principal

components on log TFP growth for 28 sectors pre- and post-1984.68

The results of this principal components exercise are reported in Table 19. The first

principal component – which can be loosely interpreted as the aggregate shock – accounts

for 81% of the variance of aggregate TFP in the pre-1984 sample, but only 56% of the

variance in the post-1984 sample. Furthermore, the variance of the residual component –

which can be loosely interpreted as the sector-specific shocks – has remained fairly stable
67There are exactly 35 years of data pre-1984 when studying growth rates, since employment data only

begins in 1948.
68We could have alternatively collapsed other sectors to shrink the number of sectors low enough to

generate covariance matrices. We prefer this approach as aggregating within non-durable manufacturing
does not affect hubs, many non-durable manufacturing sectors are small, and the aggregate sector of non-
durable manufacturing is more intuitive than alternative aggregated sectors in services.
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over time.

D Proof of Theorem that Employment is Constant with-

out Capital

Theorem 1 Suppose that there is no capital in the economy, implying that production in

each sector and the market clearing condition for output are given by:

Yjt = AjtL
θj
jtX

1−θj
jt

Yjt = Cjt +
∑
i=1

Mjit

where Xjt =
∏N

i=1M
γij
ijt . With period by period household preferences of U(Ct, Lt) = log(Ct)−

χ
L
1+ 1

η
t

1+ 1
η

and aggregate consumption given by the Cobb-Douglas aggregate of Ct =
∏N

j=1C
ξj
jt ,

then employment in each sector, and thus total employment, will always be constant.

Proof. We prove this in two steps. First, we show that the level of nominal output in each

sector is constant over time given these assumptions. Then we show that a constant level of

nominal output implies a constant level of employment in each sector.

From the planner’s problem, the first order conditions for individual intermediate goods

and for sectoral consumption are given by:

µit = µjtθjγij
Yjt

Mijt

ξj
Cjt

= µjt

Using these first order conditions for intermediates and consumption, we can rewrite the

resource constraint as:
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Yjt = Cjt +
∑
i=1

Mjit

Yjt =
ξj
µjt

+
N∑
i=1

(
(1− θj)γjiµitYit

µjt

)

µjtYjt = ξj +
N∑
i=1

((1− θj)γjiµitYit)

The product of the multiplier µjt and real gross output Yjt gives us a measure of nominal gross

output for each sector. Given the above expression, we can stack market clearing conditions

for all sectors and write this in matrix form, getting:

⃗µtYt =



ξ1

ξ2
...
...

ξ3


︸ ︷︷ ︸

ξ

+


(1− θ1)γ11 (1− θ1)γ12 · · · (1− θ1)γ1N

(1− θ2)γ21 (1− θ2)γ22
...

... . . . ...

(1− θN)γN1 · · · · · · (1− θN)γNN


︸ ︷︷ ︸

Φ

⃗µtYt

⃗µtYt = (I − Φ)−1ξ

Thus, µjtYjt in each sector is a constant, depending on the consumption parameters ξ

and the Leontief inverse representing the input-output network for intermediates, (I−Φ)−1.

Given that µjt is equal to ξj/Cjt, this implies that the consumption to output ratio in each

sector will be perfectly constant as well.

We now relate this to employment. Turning to the first order conditions for employment,
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we have:

µjtθj
Yjt

Ljt

= χ

(
N∑
i=1

Lit

) 1
η

θjµjtYjt = χLjt

(
N∑
i=1

Lit

) 1
η

Given that nominal output, µjtYjt is a constant, this implies that Ljt

(∑N
j=1 Ljt

) 1
η must also

be constant.

Now, consider the ratio of the first order conditions for labor in two sectors k and j:

θjµjtYjt

θkµktYkt

=
χLjt

(∑N
i=1 Lit

) 1
η

χLkt

(∑N
i=1 Lit

) 1
η

θjµjtYjt

θkµktYkt

=
Ljt

Lkt

Given that nominal output is constant for all sectors, this implies that ratio of employment

in any two sectors will also be constant.

Finally, using this relationship, we can rewrite the original first order condition for labor

purely in terms of employment in sector j as follows:

θjµjtYjt = χLjt

(
N∑
i=1

Lit

) 1
η

θjµjtYjt = χLjt

(
N∑
i=1

θiµitYit

θjµjtYjt

Ljt

) 1
η

L
1+ 1

η

jt =
θjµjtYjt

χ
∑N

i=1
θiµitYit

θjµjtYjt

Given that the right hand side is a constant, employment in each sector must be constant

as well. Further, since aggregate employment is given by Lt =
∑

Lit, this further implies

that aggregate employment is also constant.

The key assumptions needed for this result are that consumption preferences and produc-
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tion technologies be Cobb-Douglas, implying constant expenditure shares, and that aggregate

preferences over consumption are given by log consumption, which implies that income and

substitution effects will exactly offset.

■

E Investment Hubs Forecast Employment Better than

GDP

We compare the forecasting power of investment hubs and aggregate GDP using the Jordà

(2005)-style forecasting regression

logNt+h − logNt = αh + γh(log yhub,t − log yhub,t−1) + βh(log Yt − log Yt−1) + εt+h (19)

where Yt is aggregate GDP and yhub,t is value added at investment hubs, aggregated as in

Section 4 above. In order to make the coefficients interpretable, we standardize the growth

rates of the two right-hand side variables. We estimate these forecasting regressions separately

for the different forecasting horizons h.

The top panel of Figure 23 shows the results from forecasting using only aggregate GDP

in (19). A one standard deviation increase in aggregate GDP growth predicts a one percent

increase in aggregate employment which reverts to zero after four years. Aggregate GDP

explains about 20% of one-year-ahead aggregate employment growth.

The bottom panel of Figure 23 shows that aggregate GDP becomes insignificant once

investment hubs are also included in (19). The coefficient on aggregate GDP falls to zero

and becomes statistically insignificant, implying that its univariate forecasting power came

from its correlation with investment hubs. In contrast, a one standard deviation increase in

investment hubs’ value added growth predicts a persistent 1-2 percent increase in aggregate

employment over the next four years. In addition, investment hubs explain more than 25%

of the variation in one-year-ahead aggregate employment growth.

Of course, economic forecasters use more sophisticated tools than our simple bivariate

regression, but we nevertheless believe that our results contain two useful insights. First, they
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Figure 23: Forecasting Power of Hubs vs. Aggregate GDP for Aggregate Employment
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Notes: top panel plots the results from estimating the forecasting regression (19) using aggregate GDP
only. Bottom panel plots the results from running the forecasting regression 19 using both aggregate GDP
and investment hubs’ value added (the grey lines represent point estimates from the results in the top
panel). The horizontal axis in each plot is the forecasting horizon h. The left panels plot the R2 of the
regression. The middle panels plot the coefficient on aggregate employment growth together with a 95%
confidence interval. The bottom right panel plots the coefficient on investment hubs’ value added growth
together with a 95% confidence interval.

show how moving beyond aggregate data can improve forecasts. Second, they show how the

structure of the investment network can help interpret the predictive power of various sectors.

These sectors are often combined together into reduced-form “factors” in Factor-Augmented

VAR models.

F Changes in Aggregate Cycles Driven by Changes in

Sectoral Comovement

We now show a number of results referenced in Section 5 of the main text.
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F.0.1 Changes in aggregate vs. within-sector cycles

We start by showing additional results concerning the finding that the changes in the aggre-

gate cycle are not reflected in changes in sector-level cycles within sector.

Declining cyclicality of labor productivity driven by rising volatility of em-

ployment We first show that the decline in the cyclicality of aggregate labor produc-

tivity is entirely accounted for, in a statistical sense, by the increase in the volatility of

employment relative to the volatility of output (as shown in equation 15 in the main

text). Of course, the definition of the correlation between labor productivity and output

is Corr(yt, yt − lt) =
Cov(yt,yt−lt)
σ(yt)σ(yt−lt)

. Using the linear properties of covariance and rearranging,

we can write this as:

Cov(yt, yt − lt)

σ(yt)σ(yt − lt)
=

Cov(yt, yt)
σ(yt)σ(yt − lt)

− Cov(yt, lt)
σ(yt)σ(yt − lt)

=

σ(yt)

σ(yt − lt)
− σ(lt)

σ(yt − lt)
Corr(yt, lt) =

σ(yt)

σ(yt − lt)

(
1− σ(lt)

σ(yt)
Corr(yt, lt)

)

We can write σ(yt − lt) as:

σ(yt − lt) =
√
σ(yt)2 + σ(lt)2 − 2Cov(yt, lt) = σ(yt)

√
1 +

(
σ(lt)

σ(yt)

)2

− 2

(
σ(lt)

σ(yt)

)
Corr(yt, lt)

Combining this expression with the previous one yields:

σ(yt)

σ(yt − lt)

(
1− σ(lt)

σ(yt)
Corr(yt, lt)

)
=

1− σ(lt)
σ(yt)

Corr(yt, lt)√
1 + σ(lt)2

σ(yt)2
− 2 σ(lt)

σ(yt)
Corr(yt, lt)

which is expression (15) in the main text. This expression makes clear that the correlation of

labor productivity with GDP depends only on two statistics: the correlation between output

and employment (Corr(yt, lt)) and the relative standard deviation of employment and GDP

( σ(lt)
σ(yt)

).

Table 20 shows that the correlation of employment and GDP is stable over time; there-

fore, the rising volatility of employment relative to GDP accounts for the entire decline in
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Table 20
Components of Aggregate Labor Productivity Cyclicality

Pre-1984 Post-1984
Corr(yt − lt, yt) 0.65 0.26
Corr(yt, lt) 0.81 0.83
Corr(yt, lt) only 0.65 0.66
σ(lt)/σ(yt) 0.76 1.02
σ(lt)/σ(yt) only 0.65 0.26

Notes: decomposition of the cyclicality of labor productivity in the pre-1984 sample (1948 - 1983) and
post-1984 sample (1984-2017). yt is log aggregate value added and lt is log aggregate employment, both
HP-filtered with smoothing parameter λ = 6.25. “Corr(yt, lt) only” computes the cyclicality of labor
productivity from (15) using the actual value of Corr(yt, lt) in each subsample but holding fixed
σ(lt)/σ(yt) at its value in the pre-1984 subsample. “σ(lt)/σ(yt) only” computes labor productivity from
(15) using the actual value of σ(lt)/σ(yt) in each subsample but holding fixed Corr(yt, lt) at its value in the
pre-1984 subsample. To avoid endpoint bias from the HP filter, we omit the first and last three years of
data of the entire sample in computing these figures.

Table 21
Changes in Business Cycles, First Differences

Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.39% 2.30% 5.71% 5.01%
ρ(∆yt −∆lt,∆yt) 0.68 0.40 0.77 0.74
σ(∆lt)/σ(∆yt) 0.74 0.93 0.62 0.63
σ(∆it)/σ(∆yt) 1.82 2.51 2.62 2.50

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017). yt
is log value added, lt is log employment, and it is log investment. “Aggregated” aggregates value added and
investment across sectors using a Tornqvist index weighted by nominal value added shares, aggregates
employment as the simple sum, first-differences each variable, and computes the statistics. “Within-sector”
first-differences each variable, computes the statistics, and then averages them weighted by the average
share of nominal value added within that sub-sample. For consistency with the HP-filtered moments, we
again restrict our sample by removing the first three and last three years of data from computed moments.

the cyclicality of labor productivity. Intuitively, since GDP and employment are so highly

correlated, the time-series behavior of their ratio just depends on which component is more

volatile.

Robustness of business cycle moments We now show that the business cycle moments

from Table 8 are robust to various choices in methodology. Table 21 show that those results
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Table 22
Within-Sector Business Cycle Statistics with Different Weights

Time-Varying (Baseline) Fixed Weights
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 3.58% 3.00% 3.32% 3.23%
ρ(yt − lt, yt) 0.73 0.71 0.72 0.73
σ(lt)/σ(yt) 0.65 0.64 0.65 0.65
σ(it)/σ(yt) 2.76 2.84 2.85 2.75

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017). yt
is log value added, lt is log employment, and it is log investment. “Baseline” first-differences each variable,
computes the statistics, and then averages them weighted by the average share of nominal value added
within that sub-sample. For consistency with the HP-filtered moments, we again restrict our sample by
removing the first three and last three years of data from computed moments. In “Fixed Weights,” we use
each sector’s value added share averaged for the entire sample window to weight sectoral moments both
pre- and post-1984.

hold using first-differences rather than the HP-filter to detrend the data. Table 22 shows that

the average value of the sector-level statistics is similar using time-varying weights rather

than fixed weights (as in the main text).

F.0.2 Sectoral Decomposition of Rising Relative Volatility of Employment

We now show additional results concerning the decomposition of the rising volatility of

aggregate employment relative to GDP in (16) in the main text.

Derivation of sectoral decomposition To derive the decomposition presented in Equa-

tion (16), we start by decomposing the aggregate variance of employment into within-sector

variances and between-sector covariances. We first take a first-order Taylor approximation

of aggregate employment, which yields

lt =
N∑
j=1

ωl
jtljt

where ωl
jt is the average share of sectoral employment in the aggregate for the time period

studied. The approximation reflects the facts that the log of the sum is not equal to the sum

of the logs and that the shares ωl
jt are not constant over time. Given this linear expression
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for aggregate employment, standard rules of variance and covariance imply the following

decomposition of aggregate employment variance:

Var(lt) ≈
N∑
j=1

(ωl
jt)

2Var(ljt) +
N∑
j=1

∑
o ̸=j

ωl
jtω

l
otCov(ljt, lot)

We perform a similar decomposition for aggregate GDP, and then we consider the ratio

of these two decompositions.69 This ratio is given by:

Var(lt)
Var(yt)

=

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt) +
∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)

+

∑N
j=1

∑
o ̸=j ω

l
jtω

l
otCov(ljt, lot)∑N

j=1(ω
y
jt)

2Var(yjt) +
∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)

This expression can be rewritten as:

Var(lt)
Var(yt)

=

∑N
j=1(ω

y
jt)

2Var(yjt)
Var(yt)

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)

+

∑N
j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)

Var(yt)

∑N
j=1

∑
o ̸=j ω

x
jtω

l
otCov(ljt, lot)∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)

And then, defining the “variance weight” as ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt), we obtain

the final relationship (16) in the main text.

Accuracy of sectoral decomposition As discussed in the derivation above, our decom-

position approximates the log of sums with a sum of the logs and assumes that the shares

of particular sectors in the aggregate are constant year-to-year. Table 23 shows that these

approximations are accurate. We compare the relative variance and standard deviation of

employment implied by the decomposition to the actual values in the data, and show that

the two are close to each other.

69Since aggregate GDP is obtained via a Tornqvist index, log changes in GDP are already given as a
weighted sum of log changes in industry GDP. Thus, the approximation only reflects the fact that the
weights are not constant over time.
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Table 23
Accuracy of the Decomposition

Pre-84 Post-84
Actual, variance 0.58 1.04
Approximation, variance 0.57 0.94
Actual, standard deviation 0.76 1.02
Approximation, standard deviation 0.75 0.97

Notes: Aggregate employment and value added are constructed from industry data as the sum of all
employment and a Tornqvist index of sectoral value added. The decomposition-based aggregate variance is
based on the decomposition derived in the Appendix text.

Figure 24: Scatterplot of Changes in Sector-Pair Covariances
(a) Sector-Pair Covariances (b) Within-Sector Variances
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Notes: panel (a) plots changes in the covariance for each pair of sectors (j, o) in our dataset. The horizontal
axis computes the change in the covariance of value added Cov(yjt, yot) in the post-1984 sample
(1984-2017) relative to the pre-1984 sample (1948-1983). The vertical axis computes the change in the
covariance of employment Cov(ljt, lot) over the same periods. Each point is weighted by the product of the
two sector-pair’s average nominal value added share over the whole sample. The blue solid line is the OLS
regression line. Panel (b) adds the change in within-sector variances to the plot (i.e. sets j = o). The red
solid line is the OLS line through the within-sector variances only.
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Table 24
Measuring Comovement with Correlations

Employment Value added
1951 - 1983 0.55 0.36
1984 - 2014 0.51 0.17
Difference −0.04 −0.18

Notes: computes ρiτ (x) ≡
∑

j ̸=i ω
x
j Corr(xit,xjt|t∈τ)∑N

j=i+1 ωx
j

where xjt is logged + HP-filtered variable of interest,
τ ∈ {pre 1984,post 1984} is time period, and ωx

iτ are sectoral shares. To avoid endpoint bias from the HP
filter, we omit the first and last three years of data of the entire sample in computing these figures.

Scatterplot of changes in sector-pair covariances In the main text, we argued that

the increase in the covariance term in the decomposition (16) reflects the fact that the

covariance of value added across sectors fell post-1984 while the covariance of employment

did not. Figure 24 illustrates those two patterns. First, the fact that covariance of value added

fell for most pairs of sectors in our data implies that most sectors are to the left of zero on the

x-axis; this force contributes to a decline in the volatility of aggregate value added. Second,

for 82% of pairs in our data, the change in the covariance of employment is smaller than

the change in the covariance of value added. The stable employment covariances stabilize

its aggregate volatility and, therefore, account for its increase relative to the volatility of

aggregate GDP.

The right panel of Figure 24 illustrates the stability of the within-sector variance of

employment relative to value added. It shows a positive relationship between the change in

the variance of employment and the variance of value added; in fact, the coefficient of the

regression line is approximately 0.3, similar to the overall level of their ratio in Table 9.70

Measuring comovement with correlations Table 24 reports the average comovement

between sectors’ employment and value added measured using the average correlation be-

tween sectors over time (weighting the average by nominal value added shares). Consistent

with Figure 24, the average correlation of sectors’ employment has remained stable pre- and

post-1984 but the average correlation in value added has dropped substantially.
70The difference in the slope of the regression line and the levels in the decomposition is due to differences

in how sectors are weighted.
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Table 25
Decomposition of Relative Employment Volatility, First Differences

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.55 0.87 100%

Variances 0.35 0.39 15%
Covariances 0.58 1.01 85%

Variance Weight 0.12 0.23
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (16) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Variances” refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the

covariance component
∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). In this case, the variables are first-differenced rather than HP-filtered. For consistency
with the HP-filtered moments, we again restrict our sample by removing the first three and last three years
of data from computed moments.

Other robustness of sectoral decomposition Table 25 shows that the results from

this decomposition hold when we use first-differences rather than the HP filer to detrend the

data. Table 26 shows that the result hold when we hold the sector-level weighs fixed over

time in order to isolate the changes in the sector-level behavior.

Decomposition results at other levels of sectoral disaggregation Table 27 shows

that our results hold using a finer disaggregation of sectors within the manufacturing sector

only. These data are from the NBER-CES database, which covers 469 manufacturing sectors

from 1959-2011. We still observe at this finely disaggregated level that the rise in the relative

variance of employment to GDP is almost exclusively due to changes in the covariance of

activity across sectors.

In contrast, Table 28 shows that these results no longer hold at a broadly aggregated

goods vs. services split of sectors. At this two sector level, the contribution of the variances

and covariances to the aggregate change in volatility is roughly the same. This result is

consistent with the fact that many changes are occurring within these sectors but across our
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Table 26
Decomposition of Relative Employment Volatility, Fixed Weights

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.60 0.81 100%

Variances 0.44 0.32 8%
Covariances 0.62 0.93 92%

Variance Weight 0.11 0.20
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (16) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Variances” refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the

covariance component
∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). To avoid endpoint bias from the HP filter, we omit the first and last three years of data of
the entire sample in computing these figures. In this case, the weights used in computing the variance,
covariance and within weight terms above correspond to the average shares of nominal value added or
employment for the entire period 1948-2017.

Table 27
Decomposition of Relative Employment Volatility, NBER-CES

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.40 0.57 100%

Variances 0.34 0.20 1.4%
Covariances 0.37 0.60 92.6%

Variance Weight 0.03 0.06
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes :results of the decomposition (16) using NBER-CES data for 469 manufacturing sectors. “Variances”
refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). To avoid endpoint bias from the HP filter, we omit the first and last three years of data of
the entire sample in computing these figures. Pre-1984 corresponds to the period 1958-1983; post-1984
corresponds to the period 1984-2011. Real value added is constructed using the gross output price deflator.
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Table 28
Decomposition of Relative Employment Volatility, Goods vs. Services

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.58 1.05 100%

Variances 0.56 0.96 51%
Covariances 0.61 1.17 49%

Variance Weight 0.57 0.58
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (16) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017) for two-sector level of aggregation: goods sectors include mining, construction, all
manufacturing sectors and utilities; services sectors are all remaining sectors. Employment is aggregated to
the two sector level by a simple sum; value added is aggregated using a Tornqvist index. “Variances” refers
to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). To avoid endpoint bias from the HP filter, we omit the first and last three years of data of
the entire sample in computing these figures.

more finely disaggregated set of sectors. Hence, this result suggests that our results are not

driven by a broad process of structural transformation, and that the precise structure of the

input-output networks are key to understanding our results.

Sectoral Decomposition of Investment Volatility Finally, Table 29 performs a similar

decomposition of the increase in the relative volatility of investment:

Var(it)
Var(yt)

≈ ωt︸︷︷︸
variance weight

∑N
j=1(ω

i
jt)

2Var(ijt)∑N
j=1(ω

y
jt)

2Var(yjt)︸ ︷︷ ︸
variances

+(1− ωt)

∑N
j=1

∑
o ̸=j ω

i
jtω

i
otCov(ijt, iot)∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(yjt, yot)︸ ︷︷ ︸

covariances

(20)

where ijt is real investment in sector j, it is aggregated real investment, and ωi
jt is the share

of total investment accounted for by sector j. As with employment, the average variance

of investment within-sector is fairly stable relative to the average variance of value added;

instead, more than 80% of the increase in the variance of aggregate investment is driven
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Table 29
Decomposition of Investment Volatility

Pre-84 Post-84 Contribution
of entire term

Var(it)
Var(yt) 3.77 8.49 100%

Variances 4.89 6.14 19%
Covariances 3.64 9.18 81%

Variance Weight 0.11 0.23
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (20) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017) where ijt is real investment and it is aggregated real investment (aggregated using a Tornqvist
index). “Variances” refers to the variance component

∑N
j=1(ω

i
jt)

2Var(ijt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the

covariance component
∑N

j=1

∑
o ̸=j ωi

jtω
i
otCov(ijt,iot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” column computes the contribution of the
first term of the decomposition (16) (in the variance row) and the contribution of the second term (in the
covariance row). To avoid endpoint bias from the HP filter, we omit the first and last three years of data of
the entire sample in computing these figures.

by an increase in the comovement term. Furthermore, as with employment, the increase in

this covariance term is driven by the fact that the covariance of investment across sectors is

stable over time (not reported).

G Additional Quantitative Model Results

In this section, we present several additional results from our full quantitative model to

ensure that its conclusions are robust.

Computing population moments The results presented in the main text feed in the

realized time-series of sectoral TFP shocks; here, we show that the results also hold if we

estimate the covariance matrix of those shocks separately for the pre vs. post 1984 subsamples

and compute population moments from those two estimates. The main challenge is that we

cannot estimate a full-rank covariance matrix with 35 sectors and less than 35 years of

data pre- and post-1984. Therefore, following the same procedure described for the principal
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Table 30
Population Moments, Baseline Model vs. Changing Parameters

Population Moments Changing Structure
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.68% 2.12% 3.13% 1.85%
ρ(yt − lt, yt) 0.85 0.47 0.85 0.54
σ(lt)/σ(yt) 0.77 0.91 0.79 0.88
Variance contribution to change 15% 38%
Covariance contribution to change 85% 62%

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“Population moments” refers to estimated the covariance matrix of TFP shock innovations separately on
each subsample (as described in the Appendix text) and analytically computing HP-filtered moments.
“Changing structure” refers to computing those population moments, but also allowing the other
parameters of the model to change: the investment and intermediate networks, consumption shares, labor
shares, intermediates shares, depreciation rates, and persistence of TFP. “Variance contribution to change”
refers to the first term in the decomposition (16). “Covariance contribution to change” refers to the second
term in (16).

components analysis in Appendix C, we collapse our data to 28 sectors by aggregating all

non-durable manufacturing sectors into a single sector. We then estimate the covariance

matrix of innovations to TFP separately for each subsample and analytically compute the

model’s HP-filtered population moments separately for the pre-1984 and post-1984 periods.

Table 30 show that the results are similar to those in the main text.

Allowing other parameters to change over time Table 30 show that our results are

robust to allowing the non-shock parameters of the model - those governing the investment

and intermediate networks, consumption shares, labor shares, intermediates shares, depre-

ciation rates, and persistence of TFP – to change over time. In particular, we compute the

average value of these parameters separately for the pre vs. post 1984 subsamples and com-

pute the implied population moments given the covariance matrix of shocks estimated as

above. Of course, a full analysis of these parameter changes would consider their full time

path as part of the structural transformation process, but that analysis is outside the scope

of this paper. These results simply show that our main results are robust to the simplest

way in which to estimate how parameter values have changed over time.
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Table 31
Quantitative Results, Alternative Orders of Polynomial Detrending of
TFP

3rd order 2nd order
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.55% 2.13% 2.45% 2.01%
ρ(yt − lt, yt) 0.91 0.52 0.93 0.62
σ(lt)/σ(yt) 0.72 0.90 0.69 0.87
Variance contribution to change 12% 11%
Covariance contribution to change 88% 89%

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“3rd order” refers to detrending the raw Solow residuals using a third-order log-polynomial before feeding
in detrended productivity to the model. “2nd order” refers to detrending the raw Solow residuals using a
second-order log-polynomial before feeding in detrended productivity to the model. “Variance contribution
to change” refers to the first term in the decomposition (16). “Covariance contribution to change” refers to
the second term in (16).

Robustness to alternative order of detrending for TFP Table 31 show that our

main results are robust to using a third or fourth order polynomial to detrend sector-level

TFP, rather than a fourth order polynomial as in the main text.

Maintenance Investment As discussed in footnote 7, previous studies using the 1997

BEA capital flows table were forced to make a correction to the investment network in

order to ensure the model is invertible. A motivation for this correction is to account for

“maintenance investment” that may be a large part of investment activity but which is not

accounted for in the BEA data (see McGrattan and Schmitz Jr (1999)). A key challenge in

adjusting for maintenance is that it is not clear from which sector maintenance investment

is purchased. One extreme is that maintenance is purchased from the same mix of sectors

as the new investment recorded in our investment network; in this case, the investment

network would not change. Another extreme is that all maintenance investment is purchased

out of own-sector output; Foerster, Sarte and Watson (2011) make this assumption, and

add a correction amounting to 25% of investment. Table 32 takes a case between these two

extremes – adding a 10% of maintenance investment from own-sector output – and shows

that our results continue to hold (similar results obtain with a larger 25% correction). The
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Table 32
Quantitative Results, Baseline Model vs. Maintenance Investment

Baseline Results Maintenance Investment
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.60% 2.24% 2.58% 2.16%
ρ(yt − lt, yt) 0.90 0.45 0.93 0.52
σ(lt)/σ(yt) 0.74 0.92 0.73 0.9
Variance contribution to change 11% 9%
Covariance contribution to change 89% 11%

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“Baseline results” refers to exercise in main text. “Maintenance investment” refers to that model, plus an
adjustment to the investment network to specify that 10% of investment is purchased from within
own-sector output. “Variance contribution to change” refers to the first term in the decomposition (16).
“Covariance contribution to change” refers to the second term in (16).

Table 33
Quantitative Results, Baseline Model vs. Adjustment Costs

Baseline Results Adjustment Costs
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.60% 2.24% 2.57% 2.18%
ρ(yt − lt, yt) 0.90 0.45 0.91 0.56
σ(lt)/σ(yt) 0.74 0.92 0.73 0.89
Variance contribution to change 11% 10%
Covariance contribution to change 89% 90%

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017).
“Baseline results” refers to exercise in main text. “Adjustment costs” refer to uniform quadratic adjustment
cost with parameter ϕ = 0.4 chose to match the correlation of investment across sectors. “Variance
contribution to change” refers to the first term in the decomposition (16). “Covariance contribution to
change” refers to the second term in (16).

fact that each sector now uses its own output for investment weakens the strength of the

investment hubs somewhat, but quantitative the model still generates a sizable decrease in

the correlation of labor productivity and aggregate GDP and a sizable increase in relative

employment volatility.

Capital adjustment costs Our baseline model does not include capital adjustment costs.

While our model matches the overall level of investment volatility, the correlation of invest-
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Figure 25: Aggregate Dynamics Driven by Shocks to Individual Sectors
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Notes: results from simulating model with empirical shocks to only one sector at a time (the remaining
sectors’ shocks are set to zero). Plots standard deviation of aggregate employment nt relative to the
standard deviation of the sectors’ productivity Ajt. To correct for sector size, the figure then divides by
steady state share of nominal value added. All variables have been logged and HP-filtered with smoothing
parameter 6.25. Investment hubs are highlighted in red.

ment across sectors is counterfactually low, reflecting the fact that investment is extremely

responsive to sector-specific shocks. We solve this problem by incorporating capital adjust-

ment costs at the sector-level:

Kjt+1 = (1− δj)Kjt + Ijt −
ϕ

2

(
Ijt
Kjt

− δj

)2

Kjt (21)

We set the adjustment cost parameter ϕ = 0.4 to match the roughly match the average

correlation of HP-filtered real investment across sectors. Table 33 shows that our results are

robust to allowing for capital adjustment costs.

Size-adjusted reduced-form elasticity of aggregate employment with respect to

sector-specific shocks Figure 11 in the main text plots the implied reduced-form elastic-

ity of aggregate employment with respect to shocks to individual sectors. Figure 25 computes

the same object but divides by the sector’s average share of value added in order to account

for the fact that some sectors are larger than others and, therefore, will mechanically have a
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Figure 26: Distributional Effect of Investment Stimulus

Notes: effect of a one-time subt = 0.01 shock to the stimulus policy shock described in the main text. Each
bar plots the percentage change in employment at that particular sector. Red bars are the investment hubs’
response in our baseline model, blue bars are the non hubs’ response in our baseline model, and
transparent grey bars are the responses in a version of the model in which we eliminate the investment
network by assuming all investment is done out of own-sector output.

larger effect on aggregate employment. The investment hubs continue to have a substantial

effect on aggregate employment. There are two main differences from Figure 11 in the main

text. First, the suppliers of investment hubs (the manufacturing sectors in the right of the

x-axis) now have a larger effect on aggregate employment. Second, the service sectors (to the

right of the x-axis) have a smaller effect on aggregate employment, reflecting the fact that

these sectors account for a larger share of value added.

Distributional effects of investment stimulus policy Figure 26 plots the percentage

change in sector-level employment in response to a 1% investment subsidy shock. Similarly

to Figure 13 in the main text, Figure 26 shows that employment at investment hubs and their

suppliers are the most responsive to investment stimulus. Without the investment network,

the effect of the investment stimulus is fairly uniformly distributed across sectors. The fact

that the effect is less uniformly distributed Figure 13 simply reflects the fact that the service

sectors (to the right of the x-axis) simply account for a larger share of economic activity.
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