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Abstract

This paper measures the role of liquidity provision by buy-side customers in corporate bond
markets via a structural vector autoregression (SVAR). Unobservable shocks to the willing-
ness of customers and bond dealers to provide liquidity affect the choice of bond dealers,
in opposite directions, between market-making (principal) and matchmaking (riskless prin-
cipal) transactions. Exploiting this distinction, the SVAR, disentangles these two shocks
and reveals two episodes of high level of liquidity provision by customers in corporate bond
markets: (i) the 2008 “flight-to-safety” and (ii) the 2014-2015 “requests for quotations” tech-
nology developments. Furthermore, yield spreads for bonds of different credit ratings respond
differentially to shocks in liquidity provision by dealers and customers. My empirical identifi-
cation strategy for the SVAR is motivated using a theoretical model of decentralized liquidity
provision.

Keywords: corporate bond; customer liquidity provision; structural vector autoregression;
sign restrictions
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1 Introduction

US corporate bond markets have long been a focal point of both academics and regulators
in their search for liquidity providers in this (largely) over-the-counter (OTC) market, the
size of which has grown to over $9.2tn in 2018, compared to $5.5tn in 2008." Furthermore,
the structure of bond market trading has been substantially affected by regulatory and tech-
nology developments since the financial crisis, including the Volcker Rule, the Basel banking
accords, and the emergence of electronic trading platforms. These developments raise the
questions of who provides liquidity in this market sector and how such liquidity provision
changes during market stress events. Liquidity provision by customers has attracted con-
siderable attention, as bond dealers might have become increasingly reluctant to provide
liquidity due to regulatory changes.

This paper provides a structural vector autoregression (SVAR) to measure the willing-
ness of buy-side customers to provide liquidity in corporate bond markets. My SVAR as-
sociates the willingness of customers to provide liquidity to the amount of riskless principal
transactions conducted by bond dealers. In riskless principal transactions, dealers buy from
customers and immediately sell to other customers who are the ultimate liquidity providers,?
whereas in inventory transactions, dealers provide liquidity and hold the resulting inventory.

The amount of riskless principal transactions, however, reflects the competing willingness
of customers versus dealers to provide liquidity. A separation of these two potential influences
relies on an investigation of the movements of bid-ask spreads charged by bond dealers. A
decrease in the risk-taking willingness of both dealers and customer liquidity providers weakly
increases the bid-ask spreads for inventory transactions, but they affect the amount of riskless
principal transactions in opposite directions.

At the core of the SVAR are the following three time series: (i) the bid-ask spreads implied
by inventory transactions, (ii) the bid-ask spreads implied by riskless principal transactions,
and (iii) the fraction of riskless principal transaction volume over total trading volume. These
observable trading activities are among the popular quantities that have been studied by the
literature about liquidity in corporate bond markets.?

The SVAR is governed by shocks to three structural variables, which are the risk-taking

willingness of (i) customers who demand liquidity (hereafter “hedgers”), (ii) customer lig-

1See https://www.sifma.org/resources /research /fixed-income-chart /.

2Dealers help customers search for potential customer liquidity providers and get compensated for their
efforts in the searching process.

3See, for example, Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), Harris (2015), Trebbi
and Xiao (2019), Goldstein and Hotchkiss (2019), Choi and Huh (2019), and Anderson and Stulz (2017).
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uidity providers, and (iii) bond dealers. Structural shocks to the risk-taking willingness of
dealers and customer liquidity providers are taken to be my new measures of liquidity.

What is the rationale to include these variables in the SVAR, and what are the eco-
nomic connections between the structural shocks and the observed trading activities? First,
the market-making willingness of bank-affiliated broker dealers might have been compro-
mised by the above-noted regulatory changes, resulting in lowered capital commitments
(Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018)); this is a shock lowering
their risk-taking willingness. Another example is the run on the repo market in 2008 and
the deterioration of the securitized banking system (Gorton and Metrick (2012)). When the
required return on capital is high due to capital constrains, bond dealers tend to conduct
riskless principal transactions and charge higher bid-ask spreads for inventory transactions.

Second, the risk-taking willingness of customer liquidity providers is my measure of cus-
tomer liquidity. What distinct insights can this measure provide? The empirical literature
has focused on post-crisis regulatory shocks to bank-affiliated bond dealers and the resulting
high demand for liquidity provision by buy-side customers (Choi and Huh (2019)). Distinct
from this perspective, my measure captures the supply side dynamics. One important ex-
ample of supply side dynamics is capital inflows into fixed income mutual funds, which may
lead to an increased willingness to buy distressed bonds at favorable prices. In such cases,
more riskless principal transactions will be conducted.

Third, the risk-taking willingness of hedgers approximates their eagerness to liquidate the
bond. For instance, unexpected losses due to natural disasters force insurance companies
to liquidate their positions (Chaderina, Miirmann, and Scheuch (2019)). Shocks that lower
the risk-taking willingness of hedgers lower their reservation prices and, thus, increase the
bid-ask spreads due to the market power of bond dealers.

I separately estimate the SVAR for investment-grade bond markets and high-yield bond
markets. The derived patterns of the structural shocks are sensible and instructive about
important historic events. Bond dealers aggressively built inventory before the 2008 crisis
when “too big to fail” guarantees incentivized dealers toward excessive risk-taking activities
(Bessembinder, Spatt, and Venkataraman (2019)). Conversely, bond dealers were much less
willing to provide liquidity during the collapse of Lehman Brothers and the post-regulation
periods.

In sharp contrast, customer liquidity provision increases for investment-grade bond mar-
kets during the post-regulation period, consistent with the view that recently launched alter-
native trading systems (ATSs), a new but growing mechanism that is parallel to the classic

OTC market-making mechanism, manage to locate more customer liquidity providers. The



assets traded in ATSs tend to be liquid bonds with investment-grade ratings. My measure
also uncovers an increase in customer liquidity provision during the 2008 financial crisis,
especially for investment-grade bonds. Evidence suggests that customer liquidity providers
crowd into corporate bond markets during the crisis. This is a “flight-to-safety” phenomenon,
as documented by Dick-Nielsen, Feldhiitter, and Lando (2012).

Measuring customer liquidity provision has potentially significant welfare implications.
Theoretically, bank-affiliated dealers who face stringent regulations tend to increase invest-
ments on matchmaking technology (Saar, Sun, Yang, and Zhu (2019)). Improved match-
making technology could reach more customer liquidity providers such that bond dealers
can fulfill more orders from customers who have hedging demands but otherwise would not
trade. Complementary to this theory, my contribution is to provide empirical evidence that

developments in matchmaking technology, indeed, attract more customer liquidity providers.

Customer liquidity provision could potentially supplement aggregate liquidity when the
willingness of bond dealers to provide liquidity contracts. In contrast, aggregate market lig-
uidity could be largely suppressed if the willingness of both dealers and customers to provide
liquidity decreases. Therefore, measuring the supply of liquidity provision by customers is
important from the perspective of regulators and investors. Overall, my proposed SVAR
approach can be utilized as a tool in understanding and evaluating market conditions and

the associated impact on the tendency of dealers versus customers to provide liquidity.

Furthermore, 1 study the pricing implications of my derived liquidity measures. The
question asked is whether my measures are related to time-series changes in yield spreads
of corporate bonds. My analysis reveals that changes in yield spreads for bonds of different
credit ratings respond differentially to my measures of liquidity. High quality (above A-rated)
corporate bonds are more exposed to my measure of customer liquidity, whereas lower quality

bonds (below A-rated) are mostly subject to my measure of dealer liquidity.

The differential impact of shocks to dealers versus customer liquidity providers also trans-
lates into different exposures of yield spreads in response to recent regulations (decrease in
liquidity provision by dealers) and technology developments (increase in liquidity provision
by buy-side customers). Raising concerns for regulators, the mixed consequence of stringent
regulations and technology improvements could point to an outcome that safer bonds become
more liquid, whereas markets are even thinner for bonds that are riskier and, likely, already
illiquid. For example, Bao, O’Hara, and Zhou (2018) document that illiquidity of down-
graded bonds is even more severe after the implementation of the Volcker Rule. Acharya,
Amihud, and Bharath (2013) show that prices of investment-grade bonds increase, while

prices of speculative-grade bonds fall during illiquidity periods. My paper attributes such



effects to the conflicting exposures of corporate bonds to my measures of customer liquidity
providers and bond dealers.

Empirically, the identification of a SVAR requires certain restrictions that need to be
justified by economic theory. To motivate my identification strategy, I present a theoretical
model of segmented markets. In each market, there is a market maker and two types of
customers (hedgers and customer liquidity providers). Customers can trade only with the
local market maker, and all market makers strategically trade in a centralized system. A
market maker may buy from hedgers, sell a fraction to customer liquidity providers (riskless
principal transactions), sell in the interdealer market, and keep the remaining as inventory.

This model sheds light on the three identification restrictions required in the SVAR. The
risk-taking willingness of neither dealers nor customer liquidity providers will affect the bid-
ask spreads for riskless principal transactions. The intuition is that dealers’ own capital is
not involved. In addition, an increase in customer liquidity provision improves both the bid
and the ask prices in parallel, but not the bid-ask spreads. The third restriction is that the
fraction of riskless principal transaction volume responds only to the relative changes in the
risk-taking willingness among customers and dealers. In other words, this fraction remains
stagnant when the risk-taking willingness of all market participants increases in proportion.

In addition, I exploit an alternative empirical method to identify the SVAR, which im-
poses sign restrictions on the impulse response functions (Uhlig (2005)), called the “agnostic
method.” The method focuses on the shock of interest (either hedgers, dealers, or customer
liquidity providers) but remains agnostic about other shocks; only partial identification is
achieved under this method. The advantage is that the imposed restrictions exploit relatively
weak prior beliefs on the impulse response functions, and there restrictions are independent
from the three equality restrictions. This agnostic method, as a safeguard, yields similar

outcomes, compared with the full identification approach.

2 An SVAR approach

This section discusses the SVAR approach. This approach can help explain the source of
shocks that affect the observed market trading patterns. My design of the SVAR separately
yields measures of shocks to customer liquidity providers and shocks to bond dealers.

The SVAR incorporates three market-wide aggregate time series: (i) bid-ask spreads from
riskless principal transactions (denoted by SpreadtRPT), (ii) bid-ask spreads from inventory
transactions (denoted by Spread{¥"), and (iii) fraction of customer-dealer-customer riskless

principal transaction volume over total customer-dealer volume (denoted by %RPT).



Let the vector y¢ contain the three series: y¢ = [log (SpreadR*™), log (Spread!¥"), %RPT] T
The SVAR specification? reads as

b1 b1z big el
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where €; = [e{l , e{‘, e‘ti]T is a vector of unit variance orthogonal shocks to hedgers (efl),

customer liquidity providers (el), and dealers (e?). A positive innovation in any element

in €; means that the corresponding group of participants in aggregation becomes more risk

averse and less willing to provide liquidity.

I assume the orthogonality conditions in my main analysis. Internet Appendix D presents
a case in which the orthogonality conditions are violated. In that case, the recovered struc-
tural shocks can be interpreted as shocks to hedgers, shocks to dealers that are orthogonal
to the shocks to the hedgers, and shocks to customer liquidity providers that are orthogonal
to the other two types of shocks.

The SVAR does not incorporate proxies for the dynamics of information asymmetry,
which could be a potential concern for market makers to charge bid-ask spreads. Empiri-
cal literature, however, shows that adverse selection is not a significant component for the

effective bid-ask spreads in corporate bond markets.?

2.1 What is the expected impact of structural shocks?

The specification in equation (1) links the dynamics of unobserved structural shocks to
various market participants (€g) to the observable market trading patterns of interest (yg)
to academics and regulators. The matrix B governs these links and determines the direction
and the magnitude of the impact of each shock. My hypotheses on the directions of the

elements in B are summarized below.

+ 0
ye=Ao+) Ajyi-i+ | + + el |, (2)
i ? +

4Logarithmic transformation is applied in order to be consistent with the conclusions drawn from the
model in Section 5. Empirical results are economically similar without the logarithmic transformation.

5See Bessembinder, Maxwell, and Venkataraman (2006), Friewald and Nagler (2019), and Lu, Lai, and
Ma (2017).



There are five priors (marked as “+” or “~”) and two zero restrictions (marked as “07);
the associated economic intuitions are discussed below. The directions of the remaining two

elements (marked as “?”) are undetermined. I solicit answers based on the empirical data.

e? captures the eagerness of hedgers to liquidate a bond position due to certain exogenous
liquidity shocks or changes in the desired inventory level. Positive shocks enlarge the gap of
the reservation prices between hedgers and (both dealer and customer) liquidity providers.%

dtRPT, when conducting offsetting

Thus, profit-optimizing bond dealers charge higher Sprea
transactions between two customers; that is, b; > 0. Besides, this widened gap entices
bond dealers to charge higher Spread{VT because risk-averse dealers take more inventory

and require higher compensation: bg 1 > 0.
d

A positive €} captures increased cost of market-making during the 2008 financial crisis
and the post-regulation period. Facing such shocks, bond dealers conduct more riskless prin-
cipal transactions (%RPT;) and request more compensations for market-making (Spread{VT).
Therefore, I hypothesize b3 >0 and bg 3 >0. Choi and Huh (2019) show economically in-
significant difference between Spread?PT in the pre-crisis period (when market-making cost
is low) and that in the post-regulation period. The cost of market-making (efl), thus, does
not directly relate to Spread?PT, namely, b1 3 =0.

The shock etL is considered as a parallel shift of the supply curve of aggregate customer
liquidity due to various reasons. For instance, cash flows shift between equity markets and
fixed income markets. Another reason is that bond dealers invest in matchmaking technology
so that they can easily find a customer liquidity provider and conduct more riskless principal
transactions. Higher e];, or less customer liquidity provision, is expected to lower %RPT:
b3 2 <0. Note that such an impact is distinct from a shock to dealers who choose the optimal
quantities along the supply curve of customer liquidity.

The shock ef does not affect Spread{{PT, specifically b1 9 = 0. Customer liquidity providers
trade (indirectly) with hedgers because of their differential reservation prices. el affects
neither of the two reservation prices. Hence, it is optimal for a dealer to charge the same
Spread?PT7 despite the shifts of both the bid and the ask prices.

The two zero restrictions are important in estimating the SVAR. The other priors are
not used in the estimation procedure, but they serve the purpose of testing the soundness of

the SVAR, as predicted by economic intuitions and my theoretical model.

6 A reservation price is the marginal price at which a participant would be optimal if she does not trade.
Reservation prices for bond dealers and customer liquidity providers are not impacted by the structural
shocks because they enter the market without initial endowment.



2.2 Estimation procedure for the SVAR

The following three restrictions on B are imposed to identify the SVAR:

b1,2 = O, b1’3 = O, and b3,1 + 53,2 + b3 =0. (3)

I restrict that b12 =013 =0 because egl and 6{‘ have no impact on SpreadFPT. The third
restriction (b3 1+bs2+bs =0) obeys the intuition that %RPT depends on the relative change
in shocks between dealers and customers. If the risk-taking willingness of hedgers, dealers,
and customer liquidity providers were all halved, the equilibrium prices would improve, but
all volumes would remain the same. When every participant becomes proportionally less
willing to hold this bond,” hedgers are more eager to sell, and dealers and customer liquidity
providers become reluctant to hold this bond. Dealers and customer liquidity providers

will still buy the same units of the bond from hedgers since the change is proportional. In

. 0%RPT, , 0%RPT, , 0%RPT, _
Section 5, I show that 3Togd) T dlog@r) T dlog®g)

of risk-taking willingness of the corresponding market participants, and logarithms of the &s
represent €; in the SVAR.

0, where &g, 61, and &4 are the inverse

Assuming the restrictions stated in equation (3), the SVAR is estimated in two steps
(Liitkepohl, 2005, p. 372). In the first step, loadings on the lagged y terms, A= [Ao...AI],
are estimated via ordinary least squares (OLS). The optimal number of lags I is determined
by the Schwarz-Bayesian information criterion (SBIC). Next, loadings on the structural

shocks, B, are estimated by maximizing the log-likelihood,

T T : .
log £.(B) = constant — - log|B|— trace (B-'B7'%,), (4)

where X2, is the covariance matrix estimated from the residuals in the first step.
In closing, T present the design of a SVAR in analyzing trading activities in corporate
bond markets. In doing so, I outline my priors for coefficients in matrix B and the procedure

for estimation.

3 Data

This section introduces the academia TRACE data and the steps to clean the database.
[ describe the method that I use to classify each customer-dealer transaction in TRACE
as a riskless principal transaction or an inventory transaction. My focus is on aggregating

the transaction level data into (i) the bid-ask spreads from riskless principal transactions

7 Assume a positive net supply of the asset.



(SpreadfFT), (ii) the bid-ask spreads from inventory transactions (Spread{''), and (iii) the
vratio of riskless principal transaction volume over total customer-dealer volume (%RPTy).

These time-series are inputs into the SVAR.

3.1 Academia TRACE

The Trade Reporting and Compliance Engine (TRACE) is a FINRA-developed vehicle for
mandatory reporting in OTC markets. It collects all the secondary market transactions
conducted by FINRA registered broker-dealers in the U.S. corporate bond markets. The
standard TRACE contains a limited set of information for each transaction, including capped
transaction quantity, transaction price, execution date and time, indicator for dealer/client
buy and sell, among others.

In addtion to that information, the academia TRACE provides uncapped transaction
quantity and, importantly, masked identifications of the dealers that facilitate the transac-
tions. Those fields allow me to identify riskless principal transactions conducted by the same
dealers within a short time period.

The academia TRACE provides two fields: (a) Reporting Market Participant Iden-
tifier is the dealer who reports the transaction and likely the dealer who executes the transac-
tion. (b) Contra Identifier could be either the contra-party dealer, if the field is populated
by a masked dealer ID, or a customer denoted by a letter C. According to these two fields
I can find riskless principal transactions, provided that the buyer in one transaction is the
seller in the other transaction and that other transactional information matches.

I take care of the exceptions that the reporting party is not the party that executes
the transaction, that is, “locked in” and “give up” transactions. In those cases, the addi-
tional fields Reporting Side Give Up Participant Identifier and/or Contra Give Up
Identifier are populated.®

Table 1 lists the main steps that I implement for data cleaning. The database contains
more than 159 million transactions for 106,873 distinct issues facilitated by 3,815 unique
dealers over the entire sample period from 2002 to 2015. T apply the procedure from Dick-
Nielsen (2014) to clean duplicated records in TRACE when a dealer attempts to cancel or

modify a reported transaction, resulting in a total of 113 million transaction records.

80ne example is that Dealer A hires Dealer B to report transactions conducted by Dealer A. In the
example, Reporting Side Give Up Participant Identifier is Dealer A, and Reporting Market Participant
Identifier is Dealer B. Another example is that two dealers transact in an alternative trading system (ATS).
The ATS, on behalf of two dealers, reports the transaction to TRACE. Overall, the dealers in the Give Up
fields should be treated as the actual buyer or seller in the transactions whenever the Give Up fields are
populated.



I focus on non-puttable US Corporate Debentures and US Corporate Bank Notes as
identified by FISD bond type (CDEB or USBN) after the end of phase-in period (Dec 31,
2005). Here I adopt two exclusionary criteria. First, I exclude transactions that occur
within 30 days of the offering date. Second, I eliminate affiliated transactions in which a
FINRA member dealer transfers its inventory to an affiliated party for bookkeeping purposes.
Affiliated transactions are identified as those offsetting transactions conducted by a dealer
at the exact same prices for both legs, and the dealer makes zero profits.?

The cleaned sample consists of 24,754 unique Cusips and approximately 54 million trans-
actions conducted by 3,389 unique dealers. The cleaned TRACE data is merged with Mergent
Fixed Income Securities Database (FISD) for information of bond characteristics and credit

ratings.

3.2 Classifying riskless principal transactions

I follow the “last in, first out” (LIFO) method in Choi and Huh (2019) to classify riskless
principal transactions. In general, a set of transactions on a single Cusip are considered as
riskless principal transactions if the following conditions are satisfied:

o The transactions are conducted by the same dealer.

e The dealer buys and sells within a small time interval.

o The total volumes of buys and sells are approximately equal.

Internet Appendix E lists the detailed steps in identifying riskless principal transactions.

Based on the outcome of this algorithm, every customer-dealer transaction is classified
based on the identity of the counterparty in the offsetting transaction. I focus on two types
of transactions: (i) customer-dealer-customer riskless principal transactions (RPTs) and (ii)
customer-dealer-customer inventory transactions (IVTs).

In a pair of RPTs, a customer sells to a dealer and the dealer sells to another customer
within 15 minutes. In IVTs, a customer sells to a dealer and this dealer takes no selling
action in the next 15 minutes. Transactions in which a dealer buys from a customer and
sells to another dealer immediately are not considered. If a transaction partially follows
the categories above, the classification is based on the largest portion. For instance, if a
customer sells to a dealer 1,000 shares, and the dealer sells 800 shares to another customer

immediately, it is considered an RPT.

9The detailed identification procedure is described in Internet Appendix A of Choi and Huh (2019).
TRACE started to require reporting dealers to indicate affiliated transactions on 11/02/2015. This affiliated
transaction indicator only covers the last two months of the data, so that I opted not to use it.



3.3 Computation of bid-ask spreads and trading volume

This subsection describes my method of computing the bid-ask spreads and presents the
summary statistics of the monthly average bid-ask spreads and trading volume for RP'Ts and
IVTs. Bid-ask spreads are computed for transactions with par value greater than (inclusive)
$100K. The full bid-ask spread is twice the difference between the traded price and the
reference price, which is the volume-weighted average interdealer prices for the same bond

on the same day.

I focus on the largest dealers, which tend to be bank-affiliated dealers, selected based on a
K-mean clustering method. The number of selected dealers per month is between 10 and 15
during the sample period of 2006 to 2015. Figure A-3 in Internet Appendix demonstrates the
resulted clusters. These numbers are consistent with the top 70% sample in Bessembinder,

Jacobsen, Maxwell, and Venkataraman (2018).

K-mean clustering is an algorithm to partition observations into K clusters so that the
total distance between each observation and the mean of the belonged cluster is minimized.
The advantage of the K-mean clustering method is to jointly consider multidimensional ac-
tivities of each dealer, including the customer-dealer trading volume, the interdealer trading
volume, and the amount of offsetting transactions. It is better than a fixed threshold because
there are large banks that enter and exit the market, and the aggregate trading volume is
time-varying. The method excludes interdealer brokers that arrange agency trades only for
dealers.

Table 2 presents the summary statistics for the trading activities. T first average the
bid-ask spreads and volumes for all transactions over a given month and then report the
mean, standard deviation and percentiles for these monthly aggregated quantities.

In investment-grade (IG) bond markets, the mean of Spread{VT is 47.46bps, while the

dFPT is 22.12bps. In an average month, there are $16.8 billion par value and

average of Sprea
1,588 distinct Cusips transacted for IVTs and $1.3 billion par value and 252 distinct Cusips
transacted for RPTs. The average number of transactions per month with par value above
(inclusive) $1MM is 2,674 for IVTs and 173 for RPTs.

The number of transactions used to compute Spreadf{PT is limited. Note that the level of
reference price, which is hard to accurately pinned down, is not important in the computation
of Spread,?PT. It does not necessarily require a large number of transactions to infer an
aggregate SpreadFPT. To further reduce noise, especially for Spread{VT, I also include more

transactions, that is, those with par value between $100K and $1MM. Transactions with

10



a size smaller than $100K tend to incur significantly higher bid-ask spreads, so they are

excluded from my aggregations.

Similar patterns are observed for high-yield (HY) bonds. HY bonds are more likely to
be transacted in RPT and dealers tend to charge higher bid-ask spreads for HY bonds.

Figure 1 plots the time series used for the SVAR. Presented are the monthly average

SpreadtRPT and Spread{VT for IG and HY bonds, based on Moody’s Corporation. Both

spreads reach the peak during the 2008 financial crisis. Spread{VT

RPT
dt

are always greater than
Spread?PT. The differences between Spread{VT and Sprea are widened during the post-
regulation period, relative to the pre-crisis period. Also presented is the ratio of riskless
principal transaction volume over total customer-dealer volume (%RPT). %RPT; is higher
during the post-regulation periods. These patterns are consistent with the observations in

Choi and Huh (2019).

4 Customer liquidity provision: Empirical results

To streamline my discussion, recall that my notation for the structural shocks is the following:
efl is the shock to hedgers, ef is the shock to customer liquidity providers, and 6? is the
shock to dealers. A positive shock represents a decrease in the risk-taking willingness of the
corresponding party.

This section implements the SVAR, introduces the estimates of B, and provides economic
interpretations. Then, T construct my measures of liquidity from the SVAR, which allows

me to address the following questions:

o How do my measures of liquidity, especially the measure of customer liquidity provision,
behave during significant historic events?
o« What are the economic connections between my measures of liquidity and the prices

of corporate bonds?

These questions are asked in light of the fact that dealers are subject to post-crisis
regulations and the demand for liquidity provided by customers is heightened. As I show, my
approach is supportive of the view that dealers have started to improve their matchmaking
technology in the hope of luring more customer liquidity providers (actions that improve
social welfare). Finally, I use my empirical setting to explore the asset pricing implications

of my new dealer and customer liquidity measures.

11



4.1 Estimates of B and economic interpretation

The SVAR in equation (1) is estimated using the three series presented in Figure 1 for IG
bonds and HY bonds, respectively. Selected based on the SBIC, the optimal number of
lagged terms is one for IG bonds and two for HY bonds. Table 3 reports the estimated
Bs. The sign of each estimated coefficient is allied with my hypotheses in Section 2.1 and is
consistent with economic intuition.

dEPT are only affected by ef{ via b1. The estimates of b1 are 0.23 and 0.14

for IG and HY bonds, suggesting that a positive ef increases SpreadfPT. They are both

statistically significant at the 1% level. Note that Spread}?PT enters into the SVAR in the

First, Sprea

logarithm format. The magnitudes of 23% and 14% movements of Spreadf*” for a standard

deviation change in ¢ are economically relevant.
¢

Second, the impacts of e? , e{‘, and e‘? on Spread{VT are not restricted in the SVAR.
The actual impacts are reflected in the second row ([32,1, ba, 32,3]) of B. For IG bonds,
the corresponding estimated coefficients are [0.08, 0.01, 0.12]. 52,1 and 52,3 are statistically
significant at the p = 1% level, whereas by is insignificant. One standard deviation of a
positive e (eP) will increase Spread!’™ by 8% (12%).

In contrast, for HY bonds, the corresponding estimated coefficients are [0.05, 0.05, 0.09].
All the coefficients are statistically significant at the p = 1% level. Interpreting the estimates
in the HY market, a positive shock to the risk-taking willingness for any of the three market
participants will increase Spread{VT. Among the three structural shocks, ef exhibits the

highest impact. A one standard deviation of increase in e‘t’z leads to 9% increase in Spread{VT,

while e{{ and ei have a marginal impact of 5% on Spread{VT.

Finally, the third rows in Bs demonstrate the impact of structural shocks on the fraction
of riskless principal trading volume (i.e., %RPT). For the IG bond market, the estimates are
[0.31, —1.26, 0.95]. My estimates imply that ef and 6? are the important drivers of %RPTy.

Building further on the economic insights, when customer liquidity providers receive a
one standard deviation positive shock, they are expected to provide less liquidity; that is,
%RPT; decreases by -1.26%. The impact is sizable, considering the average of %RPT; is
8.67% over the sample period. Providing complementary evidence, when dealers receive a
one standard deviation positive shock, %RPT; increases by 0.95%.

This finding is consistent with the literature that shows that dealers conduct more riskless
principal transactions both during the financial crisis and over the post-regulation periods

(e.g., Choi and Huh (2019)). Similar intuition can be garnered when considering the impact

12



of structural shocks on %RPT; for the HY market. Overall, my estimates of Bs are aligned

with theory and economic intuition.

4.2 What drives Spread}’ ' ?

Recall that the second row in B reflects the relationship between the three structural shocks
and Spread{VT. Spread{VT is an important object because it approximates the cost for
immediacy in an OTC market, i.e., the marginal cost that hedgers pay, compared with the
interdealer price. Since the structural shocks are orthogonal to each other, the fluctuation in

d{VT can be attributed to the variation of each shock. The impact of customer liquidity

IvT
dt

Sprea

provisions on Sprea can be determined in this setting.

In IG markets, my results suggest that most of the fluctuation (about 67%)'? in Spread{VT
is driven by ef, while the remaining 33% results from efl . In contrast, the total fluctuation
of Spread{VT in HY markets can be decomposed into shocks to the three market participants
such that 20% of the fluctuation is due to ef, 21% is resulted from ef, and the rest 59% is
explained by ef.

The markets of IG and HY bonds exhibit some commonalities. The majority of the
fluctuations of Spread{VT for both markets is driven by ef. The direction of such an impact
is consistent with the view that decreased dealers’ risk-taking willingness leads to higher
Spread{¥" (Duffie (2012)). I quantify the fraction of fluctuations in Spread!¥" with regard
to this type of shock.

The two markets are distinct, when considering the impact of 6{‘ on Spread{VT. Only in
HY markets, a positive e{‘ significantly increases Spread{VT, and e{‘ explains a meaningful
amount of fluctuations in Spread{VT. The results answer the question that shocks to customer
liquidity provision affect the Spread{VT. However, it suggests that the magnitude of impact

differs between IG and HY bond sectors.

In Section 5, my theoretical model provides an explanation to this divergence in results
in the two different bond sectors. In the model, I show that the marginal impact of e]t‘ on

Spread{vT

is nonlinear. It depends on the relative amount of liquidity provision between
dealers and customer liquidity providers. Change in customer liquidity provision exhibits
a stronger marginal impact on Spread{VT, when there is relatively more customer liquidity

provision on the market.

10Under the assumption that structural shocks are orthogonal, one can attribute the total variation of
b3

the unexpected change in y¢ into three components. For this specific case, 67% is computed by P
21 1t05%053
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The intuition is the following. Dealers charge Spread{VT for compensation for taking
inventory risk. The Spread%VT charged by a dealer is linear in the ultimate absolute inventory
level, which is nonlinear in the amount of customer liquidity provision. Interpreting this
nonlinearity in inventory level is the key to understanding the explanation of the nonlinear
impact of customer liquidity provision on Spread{VT.

If the aggregate level of customer liquidity provision is high, dealers’ relative inventory
level is low. When a shock hits customer liquidity providers, dealers quickly step in to provide
liquidity. Dealers’ inventory level moves significantly, as does Spread{VT. In contrast, if
dealers are responsible for most of the liquidity provision, incremental changes in customer
liquidity provision result in small changes in dealers’ inventory level and Spread{VT. Thus,
the relative level of liquidity provision, between dealers and customers, plays a large role in
the relative impact of liquidity shocks to dealers versus customers in a certain bond market
sector.

Empirically, the marginal impact of shocks to customer liquidity on Spread{vT is much
stronger in HY markets. In other words, dealers rely on customer liquidity provision to
a much greater degree in HY markets. As shown in Figure 1, the percentage of riskless
principal transaction volume (%RPTy) is consistently higher in the HY market (15%—33%)
than that in IG markets (3%-17%). Evidence supporting the empirical fact is documented in
Goldstein and Hotchkiss (2019), who find that the tendency of overnight holdings for dealers

are lower for HY bonds.

4.3 Evolution of historical structural shocks

Analyzing realized structural shocks yields insights on the conditions of corporate bond mar-
kets. The SVAR yields two separated liquidity measures for dealers and customer liquidity
providers. To demonstrate their usefulness, this subsection discusses the linkages between
the structural shocks and the most known historic events that affect corporate bond markets.

Figure 2 presents the backward accumulated structural shocks using a rolling window
of twelve months.!! Facilitating detected patters in Figure 2, Table 4 presents statistical
evidences, in which inferences are drawn based on a bootstrap method described in Inter-
net Appendix G.

I divide the sample into the following subperiods: pre-crisis period (Jan 2006 to Jun 2007),
the 2008 financial crisis (Jul 2007 to Apr 2009), the post crisis period (May 2009 to May 2012),
the Basel 2.5 period (Jun 2012 to Jun 2013), the Basel I1I period (Jul 2013 to Mar 2014), and

HFor example, the data point labeled 2009 captures the cumulative sum of {&} from Jan 2008 to Dec 2008.
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the Volcker Rule period (post Apr 2014). The selected dates follow Bessembinder, Jacobsen,
Maxwell, and Venkataraman (2018) and Bao, O’Hara, and Zhou (2018). I also include a
period of the collapse of Lehman Brothers (Aug 2008 to Dec 2008) which is nested in the

2008 financial crisis period.

A. During the pre-crisis period, negative effs are observed (i.e., expansion of dealer

liquidity provision). It reflects the aggressive market-making strategies for bond dealers.
Primary dealers accumulated up to $225B inventory in corporate assets at the end of Aug
2007, compared with a net position of $155B in Dec 2005.12 Bessembinder, Spatt, and
Venkataraman (2019) characterize this period with implicit “too big to fail” guarantees and

low costs for market-making, which may not be socially optimal.

B. In the 2008 financial crisis, no significant efls are observed during the overall period
of Aug 2007 to Dec 2008. The evidence shows that dealers were not reluctant to provide
liquidity, at least during the initial stage of the 2008 financial crisis.

Instead, positive efs and negative efs are observed. The evidence suggests that some
investors are eager to sell, whereas other customers are willing to provide liquidity, possibly
due to capitals from other markets that are riskier than corporate bond markets. These two
shocks drive the increase of bid-ask spreads and the amount of riskless principal transactions

during late 2007 and early 2008.

The findings of increased customer liquidity provision during the crisis are called “flight-

2

to-safety.” Friewald, Jankowitsch, and Subrahmanyam (2012) document this phenomenon
for IG bonds only. To interpret the distinction of customer liquidity provision between IG
and HY markets, it requires further investigation into the months following the collapse of
Lehman Brothers.
C. It was not until the collapse of Lehman Brothers that dealers become extremely
cautious in liquidity provision. The nested dummy of Lehman Brothers is significantly
positive for dealers. The aggregate net position for primary dealers on corporate securities
with time-to-maturity over one year dropped from $155B in May 2008 to $73B in December
2008. One explanation is that increased haircut in repo transactions and the resulting run
on repo limited the bond dealers’ ability to market the market.

At the peak of the crisis, e{‘ for HY turns significantly positive, while ef for IG does not.
The evidence shows that although customer liquidity providers tend to participate in the
riskier HY markets at the beginning of the crisis, they quickly flee away and shift toward

the higher quality IG markets.

2Data of the > 1 year holdings are from the Federal Reserve Bank of New York: https://www.newyorkfed.
org/markets/gsds/search.
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Overall, the results suggest that customers facilitate liquidity provision during the 2008
financial crisis, complementing the findings in Di Maggio, Kermani, and Song (2017) that
dealers are unwilling to expand their inventory, especially for those bonds that clients were

selling the most at that moment.

D. In the periods of Basel Accords, positive efs for HY bonds are detected in Figure 2
and Table 4. The effect is concentrated in the period of the Basel 2.5. There are two plausible
explanations. First, banks start to comply with Basel III before the actual implementation
date. Second, this finding agrees with the survey evidence in CGFS (2016): For the corporate
bond... (“Basel 2.57) were seen to have had the largest impact ... the Basel III requirements,

wn turn, was expected to have only a minor impact.

Note that significant impacts are only detected for HY bonds. Basel 2.5 and Basel 111
aim at mitigating the risk of banks’ portfolios, and thus lead to a stronger effect in the riskier
HY markets. For example, Basel 2.5 introduces an incremental risk capital charge, which
accounts for default and migration risk (Adrian, Fleming, Shachar, and Vogt (2017)). Basel

III requires banks to maintain a minimum liquidity coverage ratio, which differentially treats
IG and HY bonds.!?

E. The Volcker Rule, which went into effect on April 1, 2014, requires banks to report
inventory turnover as well as other statistics to ensure that banks do not engage in proprietary
trading. The initial purpose of the Volcker Rule is to prevent bank holding companies from
risky activities that take regulatory advantages, such as the FDIC insurance and “too big to
fail” guarantees. However, Duffie (2012) observes that the nature of market-making activities
is a form of proprietary trading and predicts that the implementation of the Volcker Rule
could potentially disincentivize liquidity provision by bond dealers. Consistent with this
prediction, it is shown that efs in my SVAR are positive; that is, dealers receive positive
shocks and become less willing to make the market.

The aftermath of the stringent regulations is also a period when dealers invest more in
matchmaking technology for more customer liquidity providers. Many electronic trading
systems emerge in corporate bond markets, mostly using a method called “requests for quo-
tations” (RFQs). Those platforms aim to attract more customer liquidity providers into
corporate bond markets. My contribution is to explicitly display this increase in the supply

of customer liquidity provision.

BThe liquidity coverage ratio is calculated by dividing the high quality liquid asset amount (HQLA) by
the total net cash flows of the bank over a 30-day stress period. All HY bonds are not considered HQLA,
while IG corporate debt securities issued by non-financial sector corporations are considered as Level 2
HQLA. See Bank for International Supervision (2013) for more details.
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In IG markets, the measure e{‘ exhibits a sharp decrease since July 2014. Note that
the plot presents a cumulative backward 12-month shock, and that data point captures the
raising of trading volume in the electronic platform in the second half of 2013 and early 2014.
Electronic trading of IG corporate bonds constitutes 8% of total market volume in 2013 and
16% in 2014 (SIFMA, 2016, p. 5). As the market share of electronic trading platforms grows,
e{“ keeps at a negative level (i.e., plentiful customer liquidity provision) until the end of my

sample.

In contrast, movements of etL in HY markets are mild and insignificant. In Panel C of
Figure 2, etL in HY markets does not increase until late 2015. This evidence is consistent
with the documentation in Hendershott and Madhavan (2015) that RFQs in MarketAxess

are more suitable for large size IG bonds.!*

In short, this subsection discusses the movements of the derived measures of liquidity
for both customers and dealers over the last decade. The behavior of these generated series
are consistent with the expected directions in the literature. My SVAR could be used to
measure future market conditions for regulators when data is available. For example, what is
the consequence of the undergoing back push that proposes to loosen the restrictions around
the Volcker Rule?

4.4 How do my measures relate to stress indicators?

It has been well documented that illiquidity of corporate bonds comoves with the aggregate
market conditions. In this subsection, I investigate the relation between the stress indicators
and my measures of liquidity. I show that efl and ef are positively correlated with the
stress indicators, whereas e{‘ is not, due to other driving forces such as the “flight-to-quality”

phenomenon and the improvement of matchmaking technology.

Bao, Pan, and Wang (2011) approximate the aggregate market condition using the
Chicago Board Options Exchange Volatility Index (VIX).!® In addition to the VIX, I relate
my measures to a volatility index for 30-year US Treasury bonds, called TVIX. Compared
to the VIX, the TVIX is more specific to the corporate bond markets. The volatility of the
Treasury bond prices has a larger exposure to the volatility of interest rates (Collin-Dufresne,

Goldstein, and Martin (2001)), which is also an important factor in corporate bond mar-

M)\ arket Axess reports a 85% market share in electronically facilitated corporate bond trading (Bessem-
binder, Spatt, and Venkataraman (2019). MarketAxess is a dominating electronic platform that accounts
for 20% (12%) of total TRACE trading volume for IG bonds in Dec 2015 (Jan 2014).

15 Also see Di Maggio, Kermani, and Song (2017), Collin-Dufresne, Goldstein, and Martin (2001), amd
Friewald and Nagler (2019).
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kets. Furthermore, most primary dealers in the Treasury bond market also make markets in
corporate bond markets. The risk-taking attitudes for dealers in the two markets are tied
closely.

Specifically, I consider the price of a volatility contract whose payoff is the squared return
of holding a fully collateralized 30-year Treasury bond futures for one period (approximately

a month) under the risk-neutral measure,

- Fi1)?
TVIX? =R, EY (log{Tt} ) (5)
where F; is the 30-year Treasury bond futures price at period ¢. The derivation of the TVIX
exploits the spanning engine in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan
(2003). A detailed description is available in Internet Appendix F.

Figure 3 plots the time series of my TVIX; also plotted is the VIX at the corresponding
dates. Although the correlation between the TVIX and the VIX is high (0.81), the two
indexes reflect different stress events. For instance, on Aug 24, 2015, world stock markets
plunged due to the drop in commodity prices. This global equity market disaster, which
caused a spike in the VIX, did not propagate any fear in fixed income markets. In contrast,
the TVIX increased from 6.6 in Jun 2014 to 14.3 in Feb 2015, while the VIX did not change
much in the same period. This period corresponds to Federal Reserve’s decision to halt
the quantitative easing (QE) purchases.'® Hence, it is necessary to investigate the relation

between the shocks from SVAR and the two indexes, respectively.

I investigate the relation between €&¢ and the volatility indexes. Table 5 presents the

results from the following regression:

t t t

H A ad
yi+1 = Constant + 1 Z €e 1+ P2 Z € 1_;+Ps Z € 1, +uy, (6)
s=t—-1-1 s=t—-1-1 s=t—-I1-1

where y;41 is VIX41 or TVIX41 and [ =1,3,6,0r12 is the length of the backward rolling

window. 17

Overall, evidence suggests that (—:’f and 6‘? are significantly correlated with VIX, whereas
6‘% is not. My measure of customer liquidity provision is orthogonal to the commonly used

stress indicators. It adds incremental value for the purpose of monitoring market conditions.

16The amount of outright holdings of Treasury bills and mortgage-backed securities approached the peak
of $4.2 trillion around October 2014 and remained stagnant afterwards. See data from https://fred.stlouisfed.
org/graph/?g=qHw.

1TTime subscripts are properly aligned so that y;,1 is the next available VIX¢,1 or TVIX¢,; following the
{€¢} up to time ¢. For instance, when [ =3, I use {€;} for the month of May, June, and July 2015 to predict
the VIX on August 31, 2015 and the TVIX on August 24, 2015.
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Panel A in Table 5 exhibits the results for IG bonds when the regressand is the VIX.
Jointly, the three e;s are able to explain a significant portion of the variation in VIX. The
Ridj is 0.31 (0.40) for a rolling window of three (six) months. When [ = 3, one standard

deviation increase in Y& (X &%) is related to an increase of 3.17 (3.61) in VIX. In contrast,
Y el always fails to provide incremental explanatory power in the fluctuations of the VIX.

Evidence from Panel B in Table 5, where the regressand is the TVIX, reinforces these
findings. The proposed measure of customer liquidity provision is not correlated with the
TVIX as well. One distinction is that the TVIX exhibits a stronger relation to Y &¢. When
[ =6, the coefficients of ¥.é? and Y& for the TVIX (VIX) are 2.43 (3.91) and 1.68 (4.62).
One explanation is that government policies impact dealers’ market-making behavior in both
corporate bond markets and Treasury markets. Hence, the stress indicator in the Treasury
market is more relevant to my measure of shocks to dealers.

Panels C and D provide results for the HY market. Patterns are mostly consistent with
those in the IG market. Closing this section, evidence suggests that the derived shocks to
dealers and hedgers are relevant to the stress indicators. My measure of customer liquidity
provision, however, is orthogonal to the stress indicators. In the next section, I present the

usefulness of the information contained in my measure of customer liquidity provision.

4.5 Liquidities and corporate bond yields

The willingness of market participants to provide liquidity affects not only market microstruc-
ture measures, but also equilibrium asset prices (Amihud and Mendelson (1986), Chen,
Lesmond, and Wei (2007), and Friewald and Nagler (2019)). In this subsection, I examine
the asset pricing implications of my liquidity measures of both customer liquidity providers
and dealers. The variable of interest is the yield spread of corporate bonds, denoted as YS; ¢,
which is the difference between the yield of a corporate bond i and the yield of a correspond-
ing Treasury bond of the same maturity. My prediction is that a decrease in risk-taking
willingness (or an increase in my measure of structural shocks) could potentially decrease
equilibrium asset prices and increase yield spreads.

To compute YS; ;, I use all transactions of a Cusip i that are executed during the second
half of the month ¢.!® To relieve market microstructure noises, I focus on transactions in

which the par value is greater than or equal to $100K and the maturity is greater than one

18The results are similar if using all transactions during the entire month, or the last ten transactions in
the month.
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month. The computation of yields is extremely sensitive to small change in prices when a

bond is close to maturity.'?

My analysis exploits the following panel regression:
AYS; ; = a; + f1Customer Liquidity, + feDealer; + fsHedger, + f4AX; ¢ + f5AX¢ +ujy, (7)

where Customer Liquidity;, Dealer;, and Hedger, are my SVAR-based measures of the will-
ingness of liquidity provision for customer liquidity providers, dealers and hedgers. In my
analysis, I use the three-month rolling sum of structural shocks and standardize the three-
month measures to zero mean and unit variance for better interpretation of the economic
consequences. AYS;; is measured in basis points (bps). a; is the Cusip fixed effect. AXj4
and AX; are systematic and firm level factors that explain yield spread changes, following
Collin-Dufresne, Goldstein, and Martin (2001). AX;¢ includes the market return of the is-
suers’ common equity.?? AXy includes the change in risk-free rate (10-year Treasure), the
squared change in risk-free rate, the change in the slope of the yield curve (10-year Treasure
minus 2-year Treasure), the change in the VIX, the S&P 500 return, and the jump factor
that captures the tail risks.

The aim is to evaluate the impact of my SVAR-based measures of dealers and customer
liquidity providers on changes in yield spreads. Table 6 reports the results for bonds in
different rating categories. Statistical inferences for the results are double-clustered at Cusip
and year-month level. Clustering at year-month level is crucial because it takes care of the
plausible comovements of the residuals between different bonds in the same month; that is,
cov(u;s,uj) #0 for bonds i and j. The literature has shown that a large fraction of the
change in yield spreads of corporate bonds is driven by a single component (Friewald and
Nagler (2019)).

Consistent with my prediction, the coefficients in front of the structural shocks are all
positive whenever they are statistically significant. However, the changes in yield spreads for
bonds of different credit ratings differentially respond to the measures of liquidity, featuring
the economic importance of customer liquidity provision, especially for high quality corporate
bonds.

For high quality bonds, I find that the coefficient in front of the customer liquidity
measure is 2.30 (2.15), with a p-value of 0.055 (0.065) for Aaa-rated (Aa-rated) bonds. One

19 Also excluded are erroneous transactions in which the reported yield is 200% higher or 80% lower than
both the preceding and subsequent transactions for this Cusip. For instance, the reported transaction yields
(in percentages) are 5, 30, 5.1 for the first, second and third transactions. In this case, the second transaction
will be excluded.

20T use the change in the leverage of the issuers produces similar results. Most of the fluctuations in the
change in leverage are due to the change in the market value of equities.
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standard deviation increase in customer liquidity provision decreases the yield spreads by
approximately 2.3bps. The economic significance is meaningful, considering that the median
of the absolute change in yield spread for both Aaa and Aa-rated bonds is 11bps.

For lower quality bonds (Baa-rated and below), the impact of customer liquidity measure
is still positive but lacks statistical power. In contrast, for A-rated bonds, my measures of
both dealers and customer liquidity providers are able to explain the movements of yield
spreads. When considering A-rated bonds and high-yield bonds, I find that both the measure
of dealers and the shock to hedgers are able to explain yield spread changes.

The coefficients in front of the control variables are all consistent with Friewald and
Nagler (2019). A negative stock return (R;;) leads to a higher probability of default and
increases the yield spreads, especially for lower quality bonds. Increases in the risk-free rate
(ARF;) also lower the yield spreads. The static effect of increased spot rate is to increase
the drift term of the stochastic process for the firm value and thus decreases the probability
of default (Longstaff and Schwartz (1995)). Other variables (RM;, AVIX;, AJump,) are not
statistically significant, thanks to the robust standard errors.

Table 7 shows that the observed patterns are the same for bonds of different maturity
groups. The explanatory power of the model in equation (7) is stronger for bonds with longer
maturities. For Aa-rated bonds, the Adjusted-R? is 54% for bonds with maturity over eight
years and 18% for bonds with maturity less than eight years. Yield spreads for shorter
maturity bonds are more sensitive to market microstructure noises, so that the changes in
yield spreads are harder to explain.

One standard deviation of my measure of customer liquidity will impact the yield spreads
of long-term IG bonds by 2.5bps. Considering a bond with a duration of 10 years, a change
of 2.5bps implies a price movement of 25bps, which is sizable for a transaction over $100K.
The magnitude is similar across bonds of lower ratings. In contrast, one standard deviation
of my measure of dealers will impact the price of a 10-year Aaa-rated (Baa-rated) bond by
14bps (64bps). Note that the focus is the monthly changes in yield spreads. Events that
introduce shocks over several months will lead to additive effects on the prices of corporate
bonds.

Overall, the messages conveyed in the results are that high quality (Aaa and Aa) bonds
are more exposed to my measure of customer liquidity, whereas lower quality bonds (below
Aa) are mostly subject to liquidity provision of dealers. The results are consistent with the
findings in Dick-Nielsen, Feldhiitter, and Lando (2012). They find that flight-to-quality is
confined to AAA-rated bonds during the subprime crisis. I explicitly attribute this effect to

customer liquidity providers, rather than to dealers.
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This differential impact of shocks to dealers versus customer liquidity providers translates
into different exposures of yield spreads in response to recent regulations (i.e., decrease in
liquidity provision from dealers) and technological developments (i.e., increase in liquidity
provision from buy-side customers). Regulations imposed on bank-afflicted dealers and recent
launches of ATSs could yield disproportional impact on bonds of different qualities. ATSs
tend to include more frequently traded bonds (potentially high quality), and further enhance
the liquidity of assets. In contrast, dealers who are restricted from market-making activities
become even more reluctant to trade illiquid assets.

Hence, the impact of recent regulations on the corporate bond market could be misun-
derstood if one only examines the aggregate conditions of corporate markets because data
on available transactions are biased even more toward liquid assets. The mixed consequence
of stringent regulations and technological improvements could point to an outcome that safe
bonds become more liquid, whereas the markets are even thinner for those bonds that are

riskier and, likely, already illiquid.

4.6 An alternative method: sign restrictions

The full identification of the SVAR relies on the equality restrictions specified in equation (3).
The restrictions are motivated by economic intuitions and my theoretical model, but they
cannot be empirically tested.

To examine the robustness of my full identification strategy, I consider an alternative
approach that imposes only sign restrictions, using the “pure-sign-restriction approach” in
Uhlig (2005). The advantage is that theories and economic intuitions can provide clearer
guidance for sign restrictions, compared with zero restrictions. For example, when consid-
ering the impact of shocks to customer liquidity providers, imposed restrictions are that an
increase in €l (i) decreases %RPTy (i.e., bgg <0) and (ii) weakly increases log(Spread!¥")
(i.e., b3 =0).

The limitation is that the procedure only achieves partial identification for the shock of
interest and remains agnostic about the impact of other structural shocks. In the rest of this
subsection, T briefly discuss this “agnostic” method,?! and show that the obtained shocks are
similar to my main results.

Recall that the object of interest in the SVAR, as stated in equation (1), is B, which
satisfies B[E[eteg]B’ =2,, where X, is the covariance matrix from the associated reduced

form VAR. The idea is to find an impulse vector b, which is a column element in B, such

21See Uhlig (2005) and Danne (2015) for a more detailed description.
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that the resulting impulse response functions, up to certain horizon, obey all prespecified

inequality restrictions. Specifically, the method can be summarized in the following steps.

1. Specify restrictions on the impulse response functions (for example, my shock of interest
has positive impact on y; and negative impact on yg up to horizon 3).

2. Run the SVAR using a Cholesky decomposition and denote the result as B, such that
BB’ = X,. This Cholesky decomposition has no economic meaning but is used as
elementary building blocks.

3. Randomly generate an impulse vector b, defined as b = Bf, where f is a vector ran-
domly drawn from the unit sphere. Use this b to generate the impulse response func-
tions.

4. Check whether the impulse response functions satisfy the sign restrictions in step (1).
If yes, keep this b, drop otherwise.

5. Repeat steps (3) and (4) until a desired number of satisfying impulse vectors is ob-
tained. Use each impulse vector to compute the impulse response functions and infer
the structural shocks.

6. Report the median and other percentiles of the posterior distribution of the impulse

response functions and structural shocks.

Bringing this method to my SVAR, I separately apply two inequality restrictions for each
of the three structural shocks to be recovered. To recover the shocks to hedgers, I impose the
restrictions that an increase in € increases log (Spreadf*?) (i.e., b1 = 0) and log(Spread" ")
(i.e., bg1=0). To obtain the shocks to dealers, I apply the restrictions that an increase in
ed increases %RPTy (i.e., by = 0) and log(Spread'") (i.e., bag = 0). Finally, to derive the
shocks to customer liquidity providers, I use the restrictions that an increase in efjl decreases
%RPT, (i.e., bo <0) and increases log(Spread!"") (i.e., b3 =0).

Figure 4 presents the obtained impulse response functions with sign restrictions for 1G
bond markets. Figure 5 exhibits the histograms of the initial impulse response functions
(t=0). The directions of these initial impulse response functions all agree with the estimates
based on my main results using equality restrictions (i.e., Table 3), providing robust evidence
that the restrictions I impose in equation (3) are effective.

eff and 6{‘ are positively associated with SpreadFPT for the median estimates, although
the 2.5th and 97.5th percentiles straddle zero. One explanation is that these two shocks are
positively correlated with efI , which will affect Spread?PT. Internet Appendix D shows that
my main SVAR is valid. The difference is that my main results recover the part of shocks
that are orthogonal to ef , whereas the agnostic method generates full shocks. Another

explanation is that, facing shocks to dealers or customer liquidity providers, bond dealers
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endogenously adjust their matchmaking costs, which is a determinant of Spread?PT, for

example, they put more effects to exploit their network to search for potential buyers.??

The left panel of Figure 6 compares the obtained monthly structural shocks from the full
identification strategy versus the same shocks from the agnostic approach in IG markets. All
the spots in the scatter plots are close to the diagonal line y = x, suggesting that the shocks
from the two methods are quantitatively the same. The correlation coefficients of the shocks
derived from the two methods are 0.86, 0.86, and 0.82 for e?, etL and ef, respectively.

Plots in the right panel exhibit the 12-month rolling sum time series for each shock. All
the described features over historic events are preserved for shocks recovered based on a
SVAR using inequality restrictions.

Therefore, T show that my liquidity measures of customer liquidity providers and dealers
are robust under the agnostic method with the least controversial restrictions. Using the
agnostic method, the analysis for HY markets in Figures A-4 and A-6 also yields similar

results, compared to the full identification method.

5 A model of dealer and customer liquidity supply

Frictions and searching in OTC markets render dealers market power to charge bid-ask
spreads. Empirical literature also documents the importance of network structure and re-
lationship.2? In this section, T present a simple setting, which sheds light on my empirical
treatment in this paper.

My model relates to the setup in Liu and Wang (2016), who model the behavior of a
monopoly market maker who deals with customer hedgers and customer liquidity providers.
Malamud and Rostek (2017) develop a decentralized exchange model in which privately
informed institutional investors strategically trade with each other under a generic network

structure. One can trade in certain clubs that consist of a subset of investors.

5.1 My setup

Consider K segmented markets and one tradable risky asset whose payoff is normally dis-

tributed V ~ N(V,02). All participants have the same information regarding the probability

22T thank Charles Calomiris for suggesting this point.

23See Hugonnier, Lesterz, and Weill (2016), Duffie, Garleanu, and Pedersen (2005), Li and Schiirhoff
(2019), Di Maggio, Kermani, and Song (2017), Hollifield, Neklyudov, and Spatt (2017), Hendershott, Li,
Livdan, and Schiirhoff (2017), among others.
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distribution of payoff for the tradable asset. They trade the risky asset with accessible
counterparties in the first period and the payoff realizes in the second period.

In each segmented market, there are three types of participants: a continuum of mass N,
atomistic customer liquidity providers, a continuum of mass Ny atomistic customers (called
hedgers) who suffer an exogenous shock and demand liquidity, and Ny = 1 designated market
maker. Customer liquidity providers and hedgers can only trade with this market maker.
This assumption attempts to capture the real-world customer-dealer relationship in which a
customer may only obtain favorable prices from a set of dealers with whom she has a strong
business tie, especially in the short run. For simplicity, it is assumed that customers can
trade only with one market maker.

Dealers and customer liquidity providers are endowed with zero unit of the asset before
trading occurs. Assume CARA utility functions for all participants and the risk aversions for
market makers, hedgers, and customer liquidity providers are 4 , 6g and d8r, respectively.
Figure 7 demonstrates the market structure with three market makers.

Hedgers in the k-th market are subject to a liquidity shock by receiving X units of
another non-tradable risky asset,?* which has a per-unit payoff of L ~ N (0,0%), and the
payoff has a covariance of o7, >0 (w.l.o.g) with the tradable asset.

All K market makers can trade in a centralized system by submitting their demand
schedules. Hence, hedgers can indirectly hedge across markets via the local market maker
and the interdealer network. The segmented dealer-customer markets and the interdealer
market are cleared simultaneously.

The k-th market maker observes atomistic customer demand schedule, denoted as O, 4, (P]’;“)
and Og (Xk,P,f), and sets the optimal quantities (prices). These demand schedules imply
that market makers can trade with customers at different prices P,f and P,f . Interpreting
this setup, the market maker knows the identity of customers or she can infer the type of cus-
tomers by observing their submitted demand schedules. In practice, dealers can differentiate

customers by whether the customer or the dealer initiates the transaction.?’

24The underlying data-generating process for {X, k}llle is not crucial. Only the actual realizations of {X k}le
matter. It is equivalent if hedgers are assumed to receive heterogeneous shocks and the market maker cannot
price discriminate these atomistic hedgers.

25Since the total number of outstanding issues is large, uninformed investors who do not hold the particular
issue pay little attention to this issue until being contacted by their dealers. For instance, Mahanti, Nashikkar,
Subrahmanyam, Chacko, and Mallik (2008) consider this type of customer liquidity as latent: “f a buy order
comes in to a dealer ... the dealer could 'work the order’ by contacting customers to ... convince someone to
sell her the bond.”
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The market maker sets P,f and Pf to clear the k-th market, resulting in an inventory
level B — ag, where ay, (PX,PH) = Yi-aLNi®f, and B (PE,PH) = Yi-a L Ni©;,, denoting
the aggregate amount, which the market maker transacts with the hedgers and the liquidity
providers in this market. If both B and aj are strictly positive, the market maker conducts
a typical customer-dealer-customer riskless principal transaction for the volume min (8, az),
generating a bid-ask spread for riskless principal transactions.

The market maker can hold a fraction of the resulted inventory for one period and trade
the rest in the interdealer market to exchange excessive inventory or provide liquidity to
other market makers. Assume symmetricity and conjecture the following demand curve for

each market maker:
My (X3, PP) =v—-nX, —yPP, (8)

where PP is the price in the interdealer market. The demand for the k-th market maker is

negatively related to the interdealer price PP and the local hedgers’ shock Xj.

Apply the market clearing condition in the interdealer market Z§=1M r =0, or

M, (Xk,PD) +y (v—nXl —)/PD) - 0. (9)
17k
The residual supply schedule is PP (m},) = 7% — %X_k + ﬁmk, where X_;, = ﬁZl;éle is

the average liquidity shock from other segmented markets.

In each market, denote the reservation prices for CARA hedgers and customer liquidity

providers as
P}, =V —by0;, X} and P}, =P} =V. (10)

Individual customers maximize their utilities as prices (PZ, P,’;‘) are given. Their demand

schedules are denoted as

1 RH pH 1 RL pL
Ogr=——7I|P,” —P and O = P —Py. 11
=5y (P =P Li =5 .oy

The market maker’s problem is
max E —e_‘sdwk] , (12)
PL PH my,
subject to
wp, = NH®H,kP;€{ +NL®L,kP]{; - my (X—QX_k+—mk
S ~ 2 Y v (K -1y
Proceeds from sales to customers d

Payments for purcahses from other dealers

+ (_NHG)H,k _NL®L,k + mk) V

~ J/

(13)

Realized portfolio value
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5.2 Equilibrium

Denote the quantity 271 = ( 2 Ny oy NL) 271! captures the total risk-bearing capacity in

64 )25 oL
the economy. The equilibrium transaction prices are as follows:
1 K-2 2
Pk = V- 5@a,vNH(TX b+ KXk) (14)
-1 K-2_ 2 01,00
Pl = V- 5@(TZUNH(TX_k + I_{Xk) - =5 X, and (15)
P? = V-90,,NgX, (16)

where X = I%ZX % is the average liquidity shock for all K markets. The equilibrium trading

quantities are as follows:

K-2 _ 2
—X_ —X 17
X Rt k), (17)

19 0,,Ng (K—Z 9 ) -

O, = =2 22X =Xy |- 2 x,, and 18

Hhk = 3%m o2 \ K - 'K g2k an (18)
1K -201,Ny

_ X, -X 1

Mk 2 K o2 (X k= X). (19)

0 3 1@0‘1UNH(
L,k - 2($L 0_%

The inventory level of the k-th dealer is

P o1,Ny (K-2, 2
Il H(—X pt—=Xi|. (20)

—NygOpg - N;® + =
HOm 191k mp X e

Y 6d o %
Units to Units to ~ Units from
hedgers  liquidity providers interdealer market

Internet Appendix A provides the proof.

Equation (14) presents the equilibrium price that a market maker charges the cus-
tomer liquidity providers. This price is equal to the reservation value of customer lig-
uidity providers V discounted by a quantity proportional to the size of liquidity shocks
(I%X' p+ I%X £). Since interdealer transactions propagate shocks across markets, the amount
of discount relates to the local shock X}, and the average of shocks from other markets X_p.
Price impact of dealers in the interdealer market prevents them from perfect risk sharing,
resulting in an extra weight on Xj.

The amount of discount depends on the size of covariance oj,, the mass of hedgers
who receive the shocks, and the total risk-bearing capacity in the market. If any of the

participants in the market are risk-neutral, 9 is zero, and there is no discount in P,f .
The price that the market maker charges hedgers PH is shown in equation (15). The

difference between PH and PL is 01”6’1 Xp. The market maker maximizes profits by setting the
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bid-ask spread as half of the gap in the reservation prices of hedgers and customer liquidity
providers. Equations (14) and (15) show that bid-ask spreads from customer-dealer-customer
riskless principal transactions are mainly driven by dg, but neither 64 nor . The result
supports my empirical identification strategy in the SVAR.

The interdealer price in equation (16) is equal to reservation price of market makers, dis-
counted by the average of shocks X multiplied by 20;, Ng. Equations (17) to (20) show the
equilibrium trading quantities and the inventory level of dealers. Equation (17) shows that
customer liquidity providers are buyers when the weighted average shock (22X _j, + 2X})
is positive. In such cases, the local market is hit by a positive shock X, and/or other
segmented markets receive an average positive shock X_j,.

The amount that hedgers trade are shown in equation (18). As indirect participants in
the global markets, hedgers play an additional role in absorbing global shocks, constituting
the first term in equation (18), which resembles the term for customer liquidity providers.
The second term in equation (18) shows that, as the actual receivers of the local shock,
competitive hedgers liquidate half of the shocks.

Equation (19) shows that market makers will buy in the interdealer market when the
local shock X}, is less than the average global shocks X_; (and vice versa). Dealers absorb
the market average shocks but are biased toward the local market.

In the following subsections, I demonstrate the intuition of the model by a numerical
example and provide comparative statics under the parameters chosen as below, unless oth-

erwise stated. The choice of parameters is harmless for most of the implications.

Parameter K Ny N V o2 o5, 64 6 0L
Value 3 1 1 100 1 1 2 2 2

5.3 A numerical example

Figure 7 presents an OTC market incorporated by three segmented markets. Hedgers in the
market of Dealer A receive a positive shock X4 =7, which is greater than the shocks Xp =4
and X¢ =-9. For hedging purposes, the hedgers in the markets of Dealers A and B would
like to sell and the hedgers in the market of Dealer C would like to buy. Customer liquidity
providers transact against their local hedgers.

All prices and volumes shown in Figure 7 are equilibrium quantities computed from

equations (14) to (19). Dealer A buys three units from hedgers at a price of 92 and then
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sells 0.5 (1.6) units at a price of 99 (99.7) to customer liquidity providers in the local market
(other dealers in the interdealer market), resulting in a net inventory of 0.9 units.

The market for Dealer A experiences a relatively severer positive shock so that the dealer
has to rely on both her own customer liquidity pool, where she works the orders with potential
customer buyers without liquidity shocks and trades with other dealers in the interdealer
market. In this example, Dealer A conducts 0.5 units of customer-dealer-customer riskless

principal transactions, and the spread for this transaction is 7.26

Hedgers with Dealer B receive a moderate shock. Therefore, they transact fewer quanti-
ties at a better price. Hedgers with Dealer C receive a negative shock, and they buy 4.3 units
from Dealer C at the price of 110.8, whereas customer liquidity providers partially provide
0.6 units liquidity to Dealer C at the price of 101.1. Dealer C purchases 2.5 units from the
interdealer market, leaving a net balance of negative 1.2 units on her own book.

The aggregate global shock is positive, whereas perfect risk-sharing is not achieved. Mar-
ket makers have monopoly power in local markets and face price impact in the interdealer
market. Dealers and customer liquidity providers, considered as a whole, provide liquidity
to hedgers and hold positive inventory. However, dealers and customer liquidity providers
in market C remain with negative inventory.

Due to the positive aggregate shock, the interdealer price is 99.7, providing a positive ex-
pected return. Since markets are segmented, difference transaction prices are observed from
different counterparties. Next, I discuss how to infer bid-ask spreads for riskless principal
transactions and inventory transactions from the model. The interdealer price is regarded
as the fundamental value of the asset at the first period. Note that the expected payoff of

the asset V =100 is not a good candidate of fair price in this model.

5.4 Customer-dealer-customer riskless principal transactions

RPTs are empirically defined as a set of transactions in which a dealer buys from some
customers and sells to other customers for appropriately equal quantities within a short
period. Bringing the context into my model, I define RPT volume as the smaller one of the

two absolute amounts that a dealer transacts with the two types of customers as follows:

min(Ng|®q x|, NLIOL £ 1oy, <0y 4<0- (21)

26For illustration purposes, the absolute level of spread 7 in the example is large, relative to the expected
payoff of the asset V =100. Ceteris paribus, increase in V would not impact the equilibrium spreads and
volumes. For instance, let V = 10,000 and the spread of 7 could be interpreted as approximately 7bps, within
a reasonable ballpark from empirical observations.
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The amount in excess of the RPT volume is considered inventory transactions. In the
numerical example, Dealer A conducts 2.5 units?” of inventory transactions (IVT) with
hedgers. In both RPT and IVT, hedgers sell at the price of 92.

This outcome, at first glance, seems counterintuitive. In fact, RPTs are traded at lower
spreads because dealers opt to offer favorable prices to customer liquidity providers. In this
example, the distance between interdealer price and liquidity provider price is smaller than
the distance between interdealer price and hedger price. The consequence is a wider spread
of 15.4 for IVT trades,?® compared with a RPT spread of 7. In the RPT, the dealer offers

the customer liquidity provider a negative half spread of -0.7.

The framework agrees with the intuition in Choi and Huh (2019): ... dealer might
find a non-dealer (C2) who is willing to provide liquidity for a fee (i.e., buying at a lower
price than the fundamental value of the bond) ... C2 pays an even smaller spread (a negative
spread in this scenario).... Evidence in their Table 2 supports my formulation of RPTs.
They document that the leg of a customer buy in pairs of RPTs is more likely to cross the
interdealer price. Customer buyers in corporate bond markets are usually viewed as liquidity
providers.

This framework differs from Grossman and Miller (1988), in which hedgers can either
trade immediately with the dealer for an inventory transaction at a higher spread or wait
until the dealer finds another potential buyer and trades as an RPT at a lower spread. Al-
ternatively, Grossman and Miller (1988) benchmark the transaction price with the expected
payoff. The delay of trading is not modeled in my paper. Equivalently, if the hedgers decide
to wait, my model implies that hedgers sell less to the dealer. My model emphasizes that

market makers do not price discriminate hedgers.

5.5 Comparative statics

Figure 8 provides comparative statics for the expectation of bid-ask spreads and transaction
volumes using a numerical method, in which liquidity shocks {X,lg}ff:1 are randomly and
independently drawn from identical and independent normal distributions. Computed are
the bid-ask spread for RPTs, the bid-ask spread for IVTs, the ratio of RPT volume over
total customer-dealer volume, and the average dealer inventory level. Internet Appendix B

describes the details in computing these quantities.??

273.0-0.5=25

28(99.7-92)x2=15.4

291 exclude the realizations of {Xk}ff:l in which local hedgers and customer liquidity providers trade in
the same direction. It occurs when the absolute level of X}, is small and hedgers effectively become liquidity
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Panel A of Figure 8 exhibits comparative statics when 64 increases. It mimics the scenar-
ios both during the 2008 financial crisis and the post-regulation periods, when dealer capital
is constrained. The left plot in Panel A of Figure 8 shows that the bid-ask spreads for RPTs
remain flat when 64 increases, whereas the spreads for IVTs increase. The increase of 64
leads to a higher risk aversion for the economy, that is, 2 in equations (14) and (15). Thus,
customer-dealer prices Pfs for different markets become more diverged. Since hedgers in
high X markets (e.g., Pf in Figure 7) conduct IVT sell, and hedgers in low X, markets
conduct IVT buy (e.g., Pg in Figure 7), the IVT spread (e.g., gap between Pifl and Pg)
becomes wider.

Dealers conduct more RPTs and hold less inventory when they become more risk averse,
as shown in the right plot in Panel A of Figure 8. It explains the findings in Choi and Huh
(2019) that the average bid-ask spreads do not increase due to higher RPT volume during
the post-regulation period.

Panel B of Figure 8 presents the comparative statics when §g increases and hedgers are
more eager to sell, for instance, the 2008 financial crisis and the Eurozone crisis. The left
plot in Panel B of Figure 8 demonstrates that 6z is an important determinant for both types
of bid-ask spreads.

One may not conclude that dz drives most of the fluctuations in the spreads for TVTs,
because the variations of gy and &4 are of different scales. Dealers sometimes could be
extremely risk averse. For instance, Chen and Wang (2018) let 64 be infinite in their model.

The message in Panel C of Figure 8 is that 67 does not impact the RPT spread. It
may impact the IVT spread, but the magnitude largely depends on selected parameters.
The right plot in Panel C of Figure 8 shows that fewer customer liquidity providers, or,
equivalently, an increase of d,, result in less riskless principal transactions and higher dealer
inventory.

Overall, the predictions from my model are consistent with the empirical findings in the
SVAR, as stated in equation 2.

6 Conclusion

This paper provides a measure of customer liquidity provision in corporate bond markets.

This measure incorporates the information contained in the trading activities when bond

providers. This exclusion is sensible, especially considering large dealers, who conduct much more dealer-
customer transactions than interdealer transactions. Figures A-2 in the Internet Appendix show that the
main results are the same without this exclusion.
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dealers conduct inventory transactions and make markets versus arrange riskless principal
transactions and match customer liquidity demanders and providers.

To infer this measure, I exploit a SVAR approach and decompose the changes in bid-ask
spreads in corporate bond market into structural shocks to the risk-taking willingness of
various market participants. This decomposition could be useful in monitoring conditions
of different market participants in the corporate bond market and understanding the actual
impact from regulatory events or market crises.

The obtained measures contain important information about the aggregate market condi-
tions. Customer liquidity provisions are shown to increase during the post-regulation period,
as suggested by Saar, Sun, Yang, and Zhu (2019), because dealers improve their technology
in matchmaking.

I employ my new measures of both customer liquidity providers and dealers to explain
the change in yield spreads for corporate bonds of different credit ratings. I show that yield
spreads of high quality bonds respond more to the measure of customer liquidity provision,
whereas yield spreads of riskier bonds are more exposed to the measure of dealers. It suggests
that the decrease of liquidity due to stringent regulation and the increase of liquidity due to

matchmaking technology might not be simply offset.
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Table 1: Main steps in data cleaning

This table documents the steps in cleaning and filtering the academia TRACE data. Reported are the
number of unique issues (Cusips), the number of total transactions, and the number of distinct dealers
after each step.

Issues #  Trades #  Dealers #

Corporate bonds in TRACE (2002-2015) 106,873 159,307,893 3,815
Remove cancellations and correct corrections based 104,857 112,303,179 3,611
on Dick-Nielsen (2014)

Keep only straight bonds (FISD bond type=CDEB 30,755 77,146,341 3,441
or USBN)

Exclude transactions in which execution date is be- 24,999 62,552,200 3,441

fore 12/31/2005

Exclude transactions in which execution date is 24,796 60,006,571 3,389
within 30 days of offering date

Exclude transactions in which dealers trade with af- 24,754 54,731,492 3,389
filiated counterparties

37



Table 2: Summary statistics for monthly average trading activities

This table reports the summary statistics for inventory transactions (IVT) and riskless principal trans-
actions (RPT) for investment-grade bonds and high-yield bonds. In each month, I compute average
bid-ask spreads, total trading volume, total number of unique traded Cusips, and total number of trans-
actions. Reported are mean, standard deviation, and percentiles of these monthly quantities. Only
customer-dealer transactions are considered. Average spreads are computed using transactions in which
the par value exceeds $100K. The sample period is January 2006 to December 2015.

mean std 5% 50% 95%

Ratings Variables Trade type
Investment-grade Average bid-ask spread (bps) IVT 47.46 24.24 2254  40.83 100.36
RPT 22.12 11.30 10.61 19.69  44.78
Volume ($M) IvT 16,857 4,986 8,981 17,794 23,506
RPT 1,304 574 531 1,311 2,308
Total number of issues VT 1,588 475 842 1,695 2,191
RPT 252 159 7 215 584
Total number of trades:
Volume >= $1M IvT 2,674 867 1,250 2,865 3,903
RPT 173 87 63 166 322
$100K <= Volume < $1M vT 2,401 1,027 764 2,712 3,887
RPT 115 150 11 54 490
Volume < $100K vT 5,907 2,722 1,905 6,281 9,702
RPT 302 367 33 162 1,182
High-yield Average bid-ask spread (bps) IVT 58.36 11.44 44.29 56.26  80.50
RPT 28.97 871 18.67 27.54 48.44
Volume ($M) VT 9,036 2,637 4,936 9,110 13,347
RPT 2,664 1,183 1,266 2,376 4,903
Total number of issues VT 752 220 408 736 1112
RPT 283 104 158 253 463
Total number of trades:
Volume >= $1M vT 2405 709 1,363 2,376 3,570
RPT 553 226 280 528 976
$100K <= Volume < $1M vT 1,187 663 451 961 2,324
RPT 57 37 23 47 129
Volume < $100K IvT 2482 1,696 675 1,628 5,250
RPT 121 96 31 71 294
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Table 3: Estimates of the B matrix

This table presents estimates for the B matrix in the system y¢ = Ag + Y ; Ajy¢-i + Beg for investment-
grade bonds and high-yield bonds, respectively, where y¢ is a vector that contains three variables:
log (Spreadf*'™), log(Spread!¥™), and %RPT;. log(SpreadR*™) is the monthly average bid-ask spread
computed based on riskless principal transactions. log (Spread%VT) is the monthly average bid-ask spread
computed based on inventory transactions. %RPT; is the ratio of customer-dealer-customer riskless
principal transaction volume over total customer-dealer volume. Timpose the following three restrictions:
b12=0,b13=0, and b3 1+b32+b3=0. Data from 2006 to 2015 are used to estimate the system. b;;
is expressed as b; when i = j. Associated standard errors are reported in parentheses. Asterisks denote
significance levels ( *** = 1%, ** = 5%, and * = 10%).

Panel A: Investment-Grade

bij(bi) j=1 2 3
1=1 .23***
(.02)
2 .08%** .01 J12%**

(.01) (.01) (.01)

3 317" -1.26™*" .95%*F
(.15) (.10) (.11)

Panel B: High-Yield

bij(bi) j=1 2 3
1=1 .14***
(.01)

2 .05 .05%** .09***
(.01 (.01) (.01)

3 40" -1l.61™* 1.20**"
(.19) (.12) (.14)
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Table 4: Historical evolution of structural shocks

This table presents the analysis for movements of structural shocks during the stressed periods. I regress
each series of structural shocks &, é&' and éP (accumulated over three months) on a set of dummies
variables indicating the pre-crisis period, the 2008 financial crisis, a nested period of Lehman Brothers
bankruptcy during the financial crisis, the post-crisis period, the implementation of Basel Accords 2.5
and III, and the Volcker Rule. Reported are the coefficients in front of the dummies, total number of
observations, and adjusted-R2s. Constant term is omitted in these regressions. In squared brackets are
bootstrapped P-values. Asterisks denote significance levels ( *** = 1%, ** = 5%, and * = 10%).

Panel A: IG Panel B: HY
& & & & & &

Pre-Crisis 0.17 -0.21 -0.77F*F -0.20 -0.15 -1.04*
Jan 2006-Jun 2007 [0.47] [0.18] [0.01] [0.41] [0.53] [0.07]
2008 Crisis 0.87* -0.93* 0.12 0.79%F¢  -0.76%*  -0.22
Jul 2007-Apr 2009 [0.08] [0.09] [0.77] [0.01] [0.01] [0.30]
Lehman Brothers 0.74 0.76 1.90%* 0.94%%% 1 .48%¥* 2 (3***
Aug 2008-Dec 2008 [0.13] [0.15] [0.03] [0.01] [0.00] [0.00]
Post-Crisis 0.05 0.49** -0.31% -0.26 0.45 0.15
May 2009-May 2012 [0.84] [0.01] [0.09] [0.18] [0.16] [0.45]
Basel Accords 2.5 -0.11 0.50* -0.17 -0.19 0.31 0.46*
Jun 2012-Jun 2013 [0.76] [0.06] [0.37] [0.38] [0.49] [0.08]
Basel Accords III  -0.34** 0.47 -0.13 -0.60* -0.33 -0.04
Jul 2013-Mar 2014 [0.04] [0.11] [0.60] [0.09] [0.27] 10.90]
Volcker Rule -1.08%HF  _0.44%*%  (.65%** -0.10 -0.31 -0.14
Apr 2014-Dec 2015 [0.00] [0.01] [0.00] [0.72] [0.39] [0.58]
N 116 116 116 115 115 115
R? 0.46 0.29 0.36 0.28 0.22 0.31

adj
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Table 5: How do structural shocks relate to market conditions?
This table reports the results from the following regressions:

v¢+1 = Constant + f1
s=t-[-1
where y;41 is VIXiy1 and TVIXi,q.

¢ t

~H AL N))
Y &l TP Zl let—1—>t+ﬁ3 Y &
s=t—L—
Regressors are the rolling sums of estimated structural shocks

obtained from the system y¢ = A+ ; Ajyi-i + Beg. The backward rolling window is [ =1, 3, 6, and 12
months. The three regressors are normalized to zero mean and unit standard deviation. Sample period
is from 2006 to 2015. Standard errors are based on Newey and West (1987) with 12 lags. Asterisks

t

+u
1—t¢ £
s=t-[-1

denote significance levels ( *** = 1%, ** = 5%, and * = 10%).

Panel A: IG & VIX

Panel B: IG & TVIX

I=1 1=3 1=6 1=12 I=1 1=3 1=6 1=12
Const 20.81%F*  20.93%** 2] 1FF*k 2] GHFH* Const LLBIH% 11 58%k* 1] 72%%% 1] gg***
(2.03) (1.78) (1.52) (1.35) (1.01) (0.88) (0.73) (0.66)
t t
Y oefl  o232Fkr 3TRRr 4 2Rk 5 1R yefl, o 043 0.96%*  1.68%** 2 g***
t-1+1 i=l+1
(0.79) (0.99) (1.20) (1.35) (0.28) (0.48) (0.56) (0.60)
t t
el oo 1.05 1.61 0.29 e, 012 0.46 0.73* 0.20
t—1+1 t—Il+1
(0.45) (0.79) (0.99) (1.38) (0.26) (0.35) (0.39) (0.74)
t t
Y oeD .ok 31wk 391wk 9 GGk Yool 095wk 185wk 9 g3k ] gk
1 ST -1 ST
(0.84) (0.89) (1.04) (1.26) (0.25) (0.35) (0.54) (0.62)
N 118 116 113 107 N 117 115 112 106
2 2 =
R, 0.16 0.31 0.40 0.37 R, 0.06 0.25 0.42 0.38
Panel C: HY & VIX Panel D: HY & TVIX
I=1 1=3 1=6 1=12 I=1 1=3 1=6 1=12
Const 20.89%H* 21, 00%** 2] 21%*F 2] TIRH* Const 11.54%%%  11.62%%*  11.76%%* 12.03%**
(2.02) (1.60) (1.29) (1.11) (0.98) (0.75) (0.61) (0.62)
t t
Y e, o 246* 4.02%F 4. 80%%k g 11 Hk y e, o087 2,08k gk FHR
t—1+1 t—1+1
(1.41) (1.65) (1.57) (1.34) (0.53) (0.69) (0.68) (0.56)
t t
y e, 063 1.10 Q.74 9 (kK y e, o -02 0.37 0.78* 0.70
t—1+1 t—1+1
(0.47) (0.75) (1.03) (0.69) (0.21) (0.34) (0.46) (0.53)
t t
y e, o 188* 2.83%%  1.89%* -0.41 e, o 065 1.34%% 1. 31%* 0.49
t-1+1 t=l+1
(1.03) (1.26) (0.85) (0.92) (0.49) (0.58) (0.51) (0.62)
N 117 115 112 106 N 116 114 111 105
2 2
R2, 0.12 0.30 0.41 0.37 R2, 0.06 0.32 0.47 0.3

41



m@xﬁ w®> m®> mw\w mo.\ﬁ m®> m®> mw\ﬂ m@.\ﬁ m®> w®> m®> HA QGSO
1620 0£2°0 6820 €eT0 6,20 1620 90€°0 8820 €080 962°0 8120 6920 & poIsulpy
¥620¢  ¥620%  8L06C  RL0€C €699 €699  9LILY  9LILY 8.8 87,8 9807 9807 SUOTYRAIOS(| ()
(rre) (tvv)  (ggz) (e0e)  (z1)  (er1)  (e60)  (e0r)  (g20)  (ez0)  (690)  (19°0)
60°G 98°9 63°¢ vy 06°0 671 60°0- 91°0 €20- 0%°0- 280~ €60~ 'dumpy
(e61)  (s¢r)  (P171)  (¢60)  (gc0)  (¢g0)  (67°0)  (zg0)  (¢v0)  (pF0)  (L€0)  (6£0)
70'T- 18°0- vel ae'1 870 €70 89°0 8L°0 L€°0 670 €e0 P70 XIAV
(80¢)  (o1v) (#92) (162 (gz1) (1)  (160)  (00T)  (69°0)  (0L0)  (650)  (8¢°0)
LTG- 6£°9- 18°0- L6T- 9T'T- 19'T- 760 €0'T- L6°0- 88°0- $G0- 070~ N
(¢¥0) (¢ceo)  (rg0)  (ov0o)  (21o) (gg0)  (g¢10) (gro)  (oro) (oro)  (110)  (11°0)
**wDH ***ONH ***¢OH ***Nwﬂ ***ﬂmo ***mHH ***Nwo ***QQO ***NwO ***ﬂmo ***mmo ***wao “mmnMOWHmﬂ
(ev11)  (88e1)  (eg6)  (9001)  (v2e)  (61%)  (6¢@)  (e22)  (b21)  (121)  (ez1)  (9L1)
¢9'C 9T'L 197~ L9°T- e €8'C"  ,uG8'C  LFST wxxG8TF wwlET wexlTC  wanbLF- XY
(¢v0)  (1¢0) (ce0)  (#0)  (F1r0)  (8r°0)  (1T°0)  (¢1°0)  (80°0)  (80°0)  (600)  (60°0)
**@O.HI ***MHMW.HI ***N\H.HI ***wm.ﬂl ***H@.OI ***O%.OI ***OALJ.OI ***@A\W.OI ***wﬁ.OI ***HALJ.OI ***@ALJ.OI ***wm.OI wm‘mq
(¢eo)  (go)  (og0)  (eg0)  (FTO)  (¢r0)  (900)  (zo0)  (¢1r0)  (¢r0)  (LTO)  (LTO)
(19'8) (02°9) (zL1T) (¥8°1) (¥e1) (¥e1)
I 4 1 7 E6FT A ) 39T 181 12T 's1erea(]
(L1°9) (99°7%) (€6°1) (8¢°1) (90°1) (91°1)
z0°g eV 0L'1 L£8°T .86'T L0€°T !£&yrpmbryiewoisny
(97°2) (FL9) (ze2) (19°71) (12°71) (ze'1)
L90°€T L9211 09 8¢'T 0L0- 0T'T- 's108peH
a d eq eq rveq ved v A% vy vy rvey vey (sdq) peeadg protx v :1ep do(

(z1) (11) (o1) (6) (8) (2) (9) (¢) (¥) (¢) (c) (1)

(%01 = , PUR ‘UG = ., ‘U] = ,,, ) S[PA9] 90URDYIUSIS 9J0UaP SYSLIBISY "GT(F Ul SPUa pue 9007 Ul syIe)s sjdures oy ], [oAd]
yluow-1edod pue disny) e poroisn[o-o[qnop SIOLI prepur)s ore sosoyjuated ur pojrodoy -uwInidar )0¢ J23S 9Y) Pur “XIA 9Y) Ul a8ueyo
oY) ‘PAIND POIA oY) Jo odo[s o) Ul dFURYD O ‘V)RI YOIJ-¥SLI Ul o8URYD parenbs oy} ‘91el 9oIJ-ySLI Ul d3URYD oY) sepnpoul ¥y “A3mbo
TOWTWIOD SISNSST 9} JO UWINYOI J93IBW 97} PUR SIONSST 9] JO 9FRIOAJ o1} UI 28ueID o) sopnyoul ¥IXy 's108pey pue ‘siofesp ‘sioptaoid
Aypmbiy 1omogsno 10J uotstaoad Lpinbif jo sseudurim o3 Surinjded seinsesw ale L1o8pop] pue ‘Ardred(q ‘*AypInbr Jewojsn)) oIoym
¥in 4+ v ed + YIXVvd + *198pat € + f1ares (e + *Aypmbr dewogsn)Tg + fo = ¥IQXY :UOISSAIZT 9y} Jo sInsa1 o) sprodorx d[qe) STy,

Aypmbi| jo seanseowr pue soSueyd peaads POIA 9 S[qEL

42



Table 7: Yield spread changes and measures of liquidity: Different maturity

This table reports the results of the regression: AYS;; = a; + f1Customer Liquidity, + foDealer; +
PsHedger; + B4 AX ¢ + f5AXy +u; ¢, where Customer Liquidity;, Dealer;, and Hedger; are measures cap-
turing the willingness of liquidity provision for customer liquidity providers, dealers, and hedgers. AX;
includes the change in the leverage of the issuers and the market return of the issuers’ common equity.
AX; includes the change in risk-free rate, the squared change in risk-free rate, the change in the slope of
the yield curve, the change in the VIX, and the S&P 500 return. Reported in parentheses are standard
errors double-clustered at Cusip and year-month level. The sample starts in 2006 and ends in 2015.
Asterisks denote significance levels ( *** = 1%, ** = 5%, and * = 10%).

Panel A: Maturity: Long (over eight years)
(1) (2) (3) (4) (5) (6)

Dep Var: A Yield Spread (bps) Aaa Aa A Baa Ba B
Hedgers, -1.07  -0.90 0.91 3.15 6.88 8.33
(1.68) (1.48) (1.83) (2.25) (4.32) (5.37)
Customer Liquidity, 2.49*  2.31**  2.57F 2.27 5.05 4.67
(1.21) (1.14) (1.37) (L.75) (3.38) (4.01)
Dealers; 1.44 1.55  3.41* 6.37** 9.03** 14.06**
(1.58) (1.56) (2.04) (2.46) (4.06) (5.69)
Observations 1144 3533 20388 27108 6530 4342
Adjusted R? 0.519 0.542 0.465 0.393 0.327 0.324
Cusip FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Panel B: Maturity: Short (less than eight years)
SR ) 3) (4) (5) (6)

Dep Var: A Yield Spread (bps) Aaa Aa A Baa Ba B
Hedgers, -1.31  -0.69 1.42 5.65**  14.01"*  15.49*
(1.47) (1.19) (1.63) (2.55)  (6.59) (8.31)
Customer Liquidity, 1.87  1.94* 2.29 1.59 4.75 5.93
(1.30) (1.15) (1.51) (2.13) (5.32)  (6.77)
Dealers; 1.65 1.99 5.30*** 9.71*** 16.55** 26.15***
(1.60) (1.30) (1.85) (2.97) (7.03) (9.55)
Observations 933 5160 26584 40259 16512 15924
Adjusted R? 0.092 0.184 0.218 0.229 0.257 0.253
Cusip FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
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Figure 1: Monthly average bid-ask spreads and fractions of riskless principal trading vol-
umes

These figures plot the bid-ask spreads for inventory transactions, the bid-ask spreads for riskless principal
transactions, and the ratio of customer-dealer-customer riskless principal transaction volume over total
customer-dealer volume for investment-grade bonds and high-yield bonds, respectively. The detailed
algorithm to classify riskless principal transactions is documented in Internet Appendix E. The bid-ask
spread charged for every customer-dealer transaction is twice the difference between the dealer-customer
price and the benchmark interdealer price. Bid-ask spreads of each type are computed by averaging the
spreads for all transactions of each type with par value above (inclusive) $100K.
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Figure 2: Historical evolution of structural shocks

These figures present the forward cumulated structural shocks using a rolling window of 12 months
Yitle, e = [efl ek ef]T is a vector of unit variance orthogonal shocks to hedgers (ef), customer
liquidity providers (L), and dealers (e?). Each panel highlights the shocks to one of the three mar-
ket participants. They are estimated from the system y¢ = Ag+ Y ; Ajyt—i + Beg for investment-grade
bonds and high-yield bonds, respectively. y is a vector that contains three variables: log (SpreadFPT),
log (Spread{'"), and %RPT;. log(Spread®*T) is the monthly average bid-ask spread computed based on
riskless principal transactions. log (Spread{VT) is the monthly average bid-ask spread computed based
on inventory transactions. %RPT; is the ratio of customer-dealer-customer riskless principal transaction
volume over total customer-dealer volume. I impose the following three restrictions: b12=0, b13=0,

and b3 1+b3g+b3=0. Data from 2006 to 2015 are used to estimate the system.
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Figure 3: Volatility index for equity and 30-year Treasury bond futures

This table presents the time series of CBOE VIX and the volatility index for the 30-year Treasury bond
futures (TVIX). VIX is obtained from yahoo.com. TVIX is computed based on options on the 30-year
Treasury bond futures. Options data are obtained from the CME group. Sample begins in 2006 and
ends in 2015.

Summary statistics for TVIX:
Mean: 11.3 Std: 4.40
5%-th: 6.57 95%-th: 18.7
Correlation with VIX: 0.81
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Figure 6: Structural shocks from the agnostic method for investment-grade markets
These plots compare the obtained structural shocks based on the full identification method versus the
agnostic method. Panel A presents the scatter plots where each spot represents a pair of the shocks
based on the two methods in the same month. Also reported are the correlation coefficients of the
shocks generated by the two methods. Panel B exhibits the time series of 12-month rolling sum of the
structural shocks. Colored and solid lines are based on the sign restrictions, while gray and dashed lines
are based on the equality restrictions.
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Figure 8: Comparative statics

These figures report the comparative statics of equilibrium spreads for inventory transactions, spreads for
riskless principal transactions, fraction of riskless principal trading volume, and average dealer inventory
level. Results are simulated by liquidity shocks {Xk}fz that are randomly and independently drawn
100,000 times from identical normal distributions N(0,5) . In each trail, I compute the corresponding

quantities as described in Internet Appendix B. Reported are the average of each quantity over the
100,000 draws.
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I Internet Appendix

A Solve the equilibrium

The problem is equivalent to:

1
max NH@)H,kP};I +NL®L,kP]I;—mk X—QX k

pt———myp
PHPLm,, Y v (K -1y

-1
+ (_NH®H,k _NL®L,k + mk) V- §5d0'3 (_NHGH,k _NL®L,k + mk)z .

The optimal demand for the customers H and L are:

prH _pl
Onr = ———5— and
5H0'U
R,L _pL
o, = B
’ SLo2

F.O.C. wrt PH is

P NV &
k 2+ H ——dNH(—NHG)H’k—NL@L,k-ka)=0.
5HUU 5H0'U 5[-[

NyOpr—Ng

It reduces to

OHO X},

b
o3

(265 +64NH)Op 1 +64(NLOL L —mp) = -

F.O.C. wrt PL is

Pl NV &
NLG)L’k—NL—k2+ L 2——dNL(—NH®H,k—NL®L,k +mk):O.
6ro% 6pos OL

It reduces to

(207, +6dNL)®L,k +5d (NHGH,k — mk) =0.

F.O.C. wrt my, is

v 7 1
= -Ix,+ m
y v P & -y

k mk+V—5d0'§ (_NHG)H,k_NLQL,k +mk) =0

K-y
It reduces to:

PR’L —PD — mmk + 6d03 (NH@H,k +NL®L,k) _6d0'12;mk =0.

(A-4)

(A-8)



The solution to the system of three FOCs is

2645102 (K = D) (PP (my)~ PP ) + (26161 + 646uNL) 01X 4
202(646LNg +646uNL +2650L (1+ 85y (K —1)02))
8401 (-2ya2(K — 1) (PP (my) - PEL) + Nyo,X})
202 (640LNg +640uNL +2650L (1+ 64y (K —1)02))
y(K - 1) ((PEL - PP (mp)) (26561 + 040LNg + 040uNL) — 648 HOLNHO 1, XR)

mp = 5 . (A-10)
040 Ng+640yN1, +26101, (1+6dY(K_ 1)UU)

On

OLk

Next, I solve for v, y and n by matching parameters from equation (8) and equation (A-10). Rearrange
equation (A-10):

y(K —1)(265081, + 646N + 846 Nr) PR
040 Ng+0640gNL +20K01 (1+5dY(K_ 1)0%)

mp =

YK -1)(20p0L +840LNm +840HNL) D (m)
5d5LNH+5d5HNL+25H5L(1+5d7/(K—1)0%) k
YK -1)646u6LNgoy X
b

_5d6LNH+5d6HNL+26H5L (1+5dY(K— 1)0%)

Match the coefficients with the conjectured demand curve in equation (8) and get the following
system:

y(K -1)PE©26.+6(N;+Ny))
v = (A-11)
5(Ny +Np)+25,+25.0y(K —1)02
y = YK -1)(26.+6(N1+ Ny)) . (A-12)
O(Nu+Np)+26.+26.0y(K-1)o;

YK -1)66.Njoy,

. N (A-13)
6(Ny +Np)+26. +25.6y(K —1)02
The solution is:
_ (K-2)(26101+840LNH +8a0uNL) (A-14)
264010 (K — 1)0'3
. (K —2)(20501, + 840Ntz +8465NL) pRL (A-15)
2040 (K — 1)(7%
(K-2)
= —— = _Ngoy,. A-16
T = Sm-1e2 HoW -
The optimal m}, is
(K -2)
* — PR,L _PD _ —N UX . A-17
m,, )/( ) 2(K—1)U% HOAER ( )



The market clearing condition in equation (9) implies the interdealer price is

_E-2)Nuo1 Xk _
2(K -1)0?2

K
Z Y(PR,L _PD)
k=1

and

NHO'ZUX

2 Ny NpY
(5d+5H+5L)

pRL_pD_

where X is defined as [%Z}§=1Xk~ And thus we have

_ (K-2)Ngoy,

= X-X).
k 2(K—1)a%( )

The optimal trading quantities and prices are:

K-2 6401 o1 NH 4 640H 01w Nu

0] = X p+ X
Lk 2K (040, N +040uNL +20561) o2 ~ * K(040LNg+040gNL +2010L) o2  F
o _ K-2 040L owNH ¢, 040L wNH ¢ _ O 5
ok 2K (6d6LNH+5d6HNL+26H6L) o'% k K(édéLNH+5d6HNL+26H6L) o'% k 212} k
_ K-2 1 _ 1
pL - y-=—~2__  —~ _ 5 NyX,-——— 5,,NgX;
A R T e A
d H L d H L
_ K-2 1 _ 1 01,08
PE - v~ g NgXj-————————0;, NgX - 22
i PTre (5&+§7H+%)UIUH k K(% 1(;LH %)Ulqu 5 Xk
d H L d H L
_ 1 i}
D _ e
PP - v (l o &]NHUZUX.
0q  Og = 0L
The ultimate inventory level is
omor, -
_NUGU,k_NIGI,k +mp = (NHO'ZUX).

U%(5d5LNH+6d6HNL +25H5L)

(A-18)

(A-19)

(A-20)
(A-21)

(A-22)
(A-23)

(A-24)

(A-25)

Denote the quantity 271 = (% + Zg—g + %), 271 captures the total risk bearing capacity in the econ-

omy. The optimal traded quantities and prices reduce to

Pf = V—%@UZUNH(I%X_]@+I%X]€)
pPE = v- %_@%NH (I%X_k + I%Xk) - ”l”;H X,
PP = V-90,,NyX
OrLr = %%UZZJ%VH (I%X—k+1%Xk)
ony - SLEN(E2e By oy,
~Ny®y s -NiOpp+my = %m(‘gff (I%X_k+%xk).

(A-26)

(A-27)
(A-28)

(A-29)
(A-30)

(A-31)



B Numerical computation of spreads and volumes

First, transaction prices and volumes are computed based on equations (14) to (20). Equation 20 directly
yields the average inventory level.

First, compute the RPT volume as described in equation (21) in each local market, denoted as
@),fDC =min(Ng|Og |, NLIOL r1)1ley ,x0y ,<0- (A-32)

It follows that the ratio of customer-dealer-customer riskless principal transaction volume over total
customer-dealer volume is given by:

K
Yhe105°¢
1vK (A-33)
521 (NHIOH 11+ NL|OL 1)

The weighted average RPT spread is the difference between:

1 K
cDC L
Pny = K—l Z 1@2DC>0 (lgH’k>OP5 + 1®L,k>OPk) (A—34)
Yi=1 0fPC>0 k=1
and
cDC 1 K H L
PEOC = 3" Toeve.q(Loy<oPf + 1o, <0PE ). (A-35)

K
Zl«»,=1 1®gDC>0 k=1

Then, compute the spread for inventory transactions, define the trading volume for inventory trans-
action as

Oy, = min(Nyl®y .l -05;¢,0) (A-36)
0. = min(N.|OL-05"C,0) (A-37)

The volume weighted average IVT spread is the difference between:

K H L
Zk:l (1®§{VIQT>0 1®H,k>0Pk + 1®£‘2T>0 1®L,k >0Pk )

PR = (A-38)
y K
Yi=1 (Lo T501Nu0m >0 + loivrsgley >0
and
K H L
T Z:k:1 (1®§{V}Z>01@H,k <0Pk + 1®£‘;T>01@L,k<0Pk )
Pgon = , ) (A-39)

K
L1 (1®§{V,f>0 INgomi<0+1eivrsg 1®L,k<0)

In extreme cases that realizations of shocks are similar for all markets, all liquidity provider only provides
liquidity to local hedgers. All the customer buy transactions in this realization are RPT. For instance,
suppose each market receives the exact same size of positive shock, there will be no interdealer transac-
tions and every dealer buys from hedgers and sell a fraction to local liquidity providers. A consequence

is that Pé‘lg is not well defined. Without loss of generality, Pé‘;g is assumed be to ngyT in those



situations. This assumption is conservative because P{;Z; Zng yT. In addition, it follows the intuition

that marginal increments of inventory buys would be traded at least at the current RPT transaction
customer buy price.

Risk aversions of market makers and customer liquidity providers may slightly impact the spread for
riskless principal transactions if hedgers and customer liquidity providers transact in the same direction
with the market maker in a given local market, i.e. sign(®r)=sign(Ory ). As shown in Panel A of
FigureA-1, it occurs when the absolute level of local shocks are too small, relative to the aggregate global
shock. In those scenarios, there is no riskless principal transaction in this particular market. It is not
a desirable feature since hedgers are effectively the same as customer liquidity providers because their
main role is to provide liquidity to the global market, whereas the risk aversions of them are different.
Panel B of FigureA-1 illustrate the simulated realized distribution of iid shocks of X} drawn from N(0,5).
Comparative statics in Figure 8 excludes those realizations when at least one local dealer trades with
hedgers and liquidity providers in the same direction. Results including those unsatisfying trails are
reported in Figure A-2, which verifies that the impact is minimal. Panel C of FigureA-1 shows that
those unsatisfying trails can be perfectly avoid if the data generating process for shocks are restricted
at some distance away from zero. For example, shocks are uniformly drawn from [-2,-1]u[1,2].

C The 3™ restriction in SVAR

The optimal trading quantities OLr(6L,0H,04) and Og x(0L,0H,04):

1@0,UNH(K—2_ 2 )

O, = -—— - %% .+ 2x

Lk T 96, o2 K “FTECH
1@0’10NH(K—2_ 2 ) Oy

Ousr = -— R vax, |- x

HE 26 o2 \ K ~FTKRTH T 9527k

are homogeneous functions of degree zero, where 271 =2 + Ny Mo
) [ ] oy or,

liquidity providers all become twice as risk averse as they were, volumes remains the same.
201,0H,04)
s

). If hedgers, dealers and customer

Formally, consider a function f(gmg,gr), where gg(6r,0m,04) =

%LH’M. We can rewrite:

and gr,(6r,0H,04) =

gu=8y = Np+exp(log(dr)+log(Ng)—1log(6m))+2exp (log(6r)—1og(864))
gr=8; = Ng+exp(log(6m)+log(NL)—1log(6r))+2exp (log(6m)—1og(64)).



Apply the chain rule:

of

Olog(61)

of

0log(6s)

_of
dlog(64)

Hence,

g’ oh'

olog 1) " 2aTog(o1)

fiexp (log(6r) +log(Ng)—log(6m)) +

2f1exp (log(61) —log(64)) — feexp (log(6g) +log(NL)—1log(dL))
g’ oh'

h 310g6m 510861

—f1exp(log(6L) +1log(Ng) —log(6g)) +

foexp(log(dr) +log(Ng) —log(6)) +2f2exp (log(6r) —log(d4))
og’ oh'

N 3t0g6a) 2ol

—2f1exp (log(d1,) —log(64)) — 2faexp (log(dr) —1log(dq)).

fi

of ,_of __of _,
0log(6r) Olog(6m) 0dlog(dq)

So is % RPT, E (XK., min(N;1©74|, Nu1®y & )1e; ,xoy ,<0):

0%RPT  0%RPT 0%RPT _
dlog(5r)  0log(6m) Olog(6a)

D What if shocks are correlated?

I show that my SVAR method is still valid when the orthogonality condition does not hold. Let

H
v
7
Uy

such that v¢ =

to market participants (eg).

ef! v

L | _ H d, L
eﬁi =| pav; +£3vtd+vt ,
€7 p1U; + U5

(A-40)

are orthogonal shocks, and p1, pe2, and p3 govern the covariance among shocks

U‘ti is the shocks to dealers that are orthogonal to the shocks to the hedgers, whereas vf’ is the shocks

to customer liquidity providers that are orthogonal to the other two types of shocks. Thus, the SVAR

in equation (1) can be written as

by 0 0 v
ve=Ao+) Aiyi-i+ | ba1 ba bag pov + pgvd + vk
L bs1 bsa b3 p1vl +v¢

(A-41)



We can rewrite the SVAR:

b1 0 0 v
vt :A0+ZAth—i+ b21+b2p2+basp1 bz baps+bags vp |- (A-42)
t bs1+b32p2+b3p1 b3z b3aps3+bs vd
v
Denote w =Zp and b?”%‘wa = Z4, the system reads as
E_lbl 0 0 EHU{I
yi= AO + Z’Aiyt_i + E;II (b271 + bgpg + bz’gpl) bz Eél (b2p3 + b2’3) Uf’ . (A—43)
! b3,1 b32 b3 Eqvf

g

[11

Applying the same restrictions, as stated in equation (3), I can recover [—HUt , vt , _dvt] which are

the desired series vg, up to the scale factors Zg and Z4. The scale factors are harmless as long as they

are positive. The positivity can be verified by (i) the movements of ZgvH and _dv‘ti over economic

cycles and (ii) the signs in the estimates of the coefficients in Bz.

E Identify riskless principal transactions

The identification method for riskless principal transactions follows a Last In, First Out (LIFO) strategy
for each dealer-Cusip-date sub-dataset of transactions records, following Choi and Huh (2019). Offsetting
transactions are defined as two subsequent transactions where the dealer buys in one transaction and
sell in another one within 15 minutes. Note that it is not necessary that the dealer buys in the earlier

transaction and sells in the later one. It is also not necessary that the amounts are matched in the two
transactions.

The implementation of the LIFO strategy is a recursive procedure described below. For every dealer-
Cusip-date sub-dataset, first sorted by execution time. Denote this sub-dataset as C, the collection of

all transactions conducted by a dealer on a specific Cusip during a day. Denote CEPT as the collection

of riskless principal transactions. Denote CV7T as the collection of inventory transactions. CEPT and

CIVT are empty sets when initialized. The following steps are iterated until no new transactions are

identified as riskless principal transaction.

1. Denote a dummy RPT =0. Let n start from 1. Let N be the total number of transactions in C.
Focus on the n-th transaction. Break the loop as soon as RPT=1orn=N

2. Check if the dealer trades the same direction in the next transaction n +1:
if yes, n =n+1; return to step 1;

3. Check if time difference between the n-th trade and the n + 1-th trade is more than 15 minutes:
if yes, n =n+1; return to step 1;

4. Since both steps 2 and 3 are satisfied, the n-th and n + 1-th transactions are identified (partially)
as riskless principal transactions. The volume of riskless principal transactions is the minimum of
the trading volume of n-th and n + 1-th transactions.

5. If the volumes of n-th and n + 1-th transactions are the same, move both transactions from C to
(]:RPT;

If the volume of n-th transaction is greater than that of the n+ 1-th transaction, move the n+1-th

7



from C to CEPT move the n-th from C to CEPT but only with the riskless principal amount in
step 4, and modify the volume of remaining part of the n-th in C as the difference between its
original amount and riskless principal amount.
if the volume of n-th transaction is smaller than that of the n + 1-th transaction, do the opposite.

6. Let RPT =1.

If the procedure (1) to (6) breaks because RPT =1, applied this procedure (1) to (6) on the resulted

C. If the procedure (1) to (6) breaks because n = N, move all the remaining transactions to

(]:IVT

Considering the type of counterparties, each transaction can be classified as riskless principal trans-
action to customers, riskless principal transaction to dealers, and inventory transaction. If a transaction
is attributed to multiple types, the ultimate classification is type of the highest volume.

This algorithm will capture possible riskless principal transactions where there are multiple transac-
tions in buy and sell legs. For example, considering the following example trading pattern C:

C
ID Buy/Sell amt time
1 S 120 9:31
2 B 100 9:32
3 B 200 10:25
4 S 100 10:30
5 S 120 10:35
6 B 20 10:35
7 S 200 14:25

C is applied on the described algorithm. First, transactions 1 and 2 are identified as (partial) riskless

principal transactions.

C CRPT
ID Buy/Sell amt time ID Buy/Sell amt time counter ID
1 S 20 9:31 1 S 100 931 2
2 B 100 9:32 1
3 B 200 10:25
4 S 100 10:30
5 S 120 10:35
6 B 20 10:35
7 S 200 14:25

In the 27¢ iteration, transactions 3 and 4 are identified as (partial) riskless principal transactions.



C (]:RPT
ID Buy/Sell amt time ID Buy/Sell amt time counter ID

1 S 20 9:31 1 S 100 9:31 2
2 B 100 9:32 1

3 B 100 10:25 3 B 100 10:25 4
4 S 100 10:30 3

5 S 120 10:35

6 B 20 10:35

7 S 200 14:25

In the 3"¢ iteration, transactions 3 and 5 are identified as (partial) riskless principal transactions.

C G:RPT
ID Buy/Sell amt time ID Buy/Sell amt time counter ID
1 S 20 9:31 1 S 100 9:31 2
2 B 100 932 1
3 B 100 10:25 4
4 S 100 10:30 3
3 B 100 10:25 5
5 S 20 10:35 5 S 100 10:35 3
6 B 20 10:35
7T S 200 14:25

In the 47¢ iteration, transactions 5 and 6 are identified as (partial) riskless principal transactions.

C (]:RPT

ID Buy/Sell amt time
1 S 20 9:31

S

Buy/Sell amt time counter ID
100 9:31
100 9:32
100 10:25
100 10:30
100 10:25
100 10:35
20 10:35
20 10:35

DU CT W W N
usiies el ve e voliveies
U WOt N

7 S 200 14:25

In the last iteration, C contains N = 2 records and the loop breaks because n = N. So all the

remaining transactions are moved to cvt,



CIVT CRPT

ID Buy/Sell amt time ID Buy/Sell amt time counter ID
1 S 20 9:31 1 S 100 9:31 2

2 B 100 9:32 1

3 B 100  10:25 4

4 S 100 10:30 3

3 B 100 10:25 5

5 S 100  10:35 3

5 S 20 10:35 6

6 B 20 10:35 5
7T S 200  14:25

Transaction 1 is considered as riskless principal transaction because 83% of the volume is offset within 15
minutes. Transactions 3 to 6 are also riskless principal transactions. Despite that they all have different
trading volume, the aggregated buy and sell volume matches and they all occur within 15 minutes.

F TVIX

Consider the price of a volatility contract payoff in the 30-year Treasury bond market:

2
TVIX} =R;! E? (1og{F;—j} , (A-44)

where F; is the price of a future contact at month ¢ which expires in month ¢+ 1 and the underlying is
a 30-year Treasury bond.

2
Define G (F41) = log{Flfﬂ—tl} as the payoff of the squared contract. Note G (F+1) is a twice-continuously

differentiable function. Following the spanning engine in Bakshi and Madan (2000) and Bakshi, Kapa-
dia, and Madan (2003), the payoff G (F;+1) can be spanned by a continuum of out of the money (OTM)
call options and put options. That is,

GFpr) = G(F)+(Frur—F)Gr,., (F)+ fF G5, (K)(Frs1 —K)" dK (A-45)
F
+ fo Gr,..5,  (K)(K —Fri)" dK, (A-46)
where F represents a possible outcome of Fyy1, and Gp,,, (F) is the first-order derivative for the payoff
G (F;4+1) with respect to F;,1 evaluated at F. Similarly, GF,.,F,., (K) stands for the second-order deriva-

tive for G (Fy11) with respect to Fyi1 evaluated at a strike price K. (Fy;y1—K)* and (K -Fy1)" are
payoffs for call options and put options, where (x)* = max(0,x).

10



Thus, the price of the volatility contract payoff can be evaluated at F = F; and be expressed as:

F,o12
TVIX? = R} E} (log{ ; 1}) (A-47)
= R/;,1t+1[E?(L GFz+1Ft+1(K)(Ft+1_K)+dK) (A‘48)
t
1o (M
+R}:,t+1[Et ( 0 GFt+1Ft+1 (K)(K_Ft+1)+dK) (A‘49)
00 l—logFK
— Q[p-1 +
- fF 2 E {Rf 1 (Fra-K)' L dK (A-50)
F 1—10g§
Q |p-1
+f0 2y Ef {R7L (K -Fun)'hdK (A-51)
© 1 K LA | K
= 2 —[1-log—|C;(K)dK +2 —|1-log — |P;(K)dK A-52
F, Kz( OgFt) t( ) + /(; Kz( OgFt) t( ) ) ( )

where C(K) (P;(K)) represent a call (put) option with the strike price K.

Options obtained from the CME group. over monthly expiration cycles on 30-year U.S. Treasury
futures are employed to compute TVIX. The number of options used in computing the TVIX in each
expiration cycle is sizable. The median is 40 options and the minimum is 15 options.

G

Bootstrap used to compute p-values

To derive robust statistical inferences from time series of a limited size, I perform the following bootstrap
approach. Considering a regression y; = fX1,;+7yXa:+u;, where X7, and Xg, are two sets of dummy

variables. For ¢ =1,...,T, the interest is the null hypothesis that y = 0. The following steps are
implemented to compute the bootstrapped P-values:

1.

Run OLS regression to compute B and 7 and derive the residuals i;s. Label ;s into groups of
periods (per-crisis, crisis, regulation periods, etc.).

. For each trail, randomly draw uls’ within each sub-period with replacement. For example, the

period of Lehman Brothers is defined as 09/2008 - 12/2008. The set contains four months of ;s

in this period. I randomly draw four observations from this set with replacement to construct the
bootstrapped sample.
The resulted bootstrapped dataset contains the exact same number of data points as the original

dataset in each sub-periods. Reconstruct yi’ under the null hypothesis such that yé’ = ,BX{’S + ul;.

Run the regression y? = ,BXi’S +7/X§t+€§ and obtain the OLS t-stats for ¥, denoted as tl;.
100,000

Run steps (2) to (4) 10,000 times and obtain the bootstrapped distribution of {tl;}b_l

Compare the original t-stats ¢, with the bootstrapped distribution. Count the number of instances

that ¢, > ItYIb. The associated P-value is this total counts divided by the total number of

bootstrapped, i.e., 100,000.

The sub-period bootstrap is to ensure that the bootstrap sample has the same (small) size of observations

when each dummy is one. For example, there are only four observations during the period of Lehman

11



Brothers bankruptcy and the bootstrapped sample always have four observations when the Lehman
Brothers dummy is one. Due to the small size, the procedure will generate a bootstrapped heavier-tail
distribution of ¢, under the null for the dummy Lehman Brothers.

12



Table A-1: Correlation between the structural shocks and the VIX
This table presents the relationship between the structural shocks and the CBOE VIX index for
investment-grade bonds and high-yield bonds, respectively. Computed are the correlation coefficients

s—1—s

t t
between the VIX and cumulative shocks to hedgers ( X &, ), to liquidity providers ( ¥ &k, ),
t-1+1 t-1+1

t
or to dealers Y é?—l—»y over a backward rolling window of [ =1, 3, 6, and 12 months. Estimated
t—-i+1

structural shocks are obtained from the system yi = A+ ; Ajyt—i + Bet. Sample period is from 2006 to
2015.

Panel A: Investment-grade

I=1 1=3 1=6 [=12

Y e, . 0185 0433 0472 0.569

t-1+1
t
Y ek, 0025 0074 0.020 -0.274
t-1+1
t
Yy &P, 0182 0411 0.469 0.303
t-1+1

Panel B: High-yield

I=1 1=3 [=6 [=12

Yy e, . 0239 0433 0528 0.617
t-1+1
t
Y el . -0.006 -0.017 0.190 -0.012
t-1+1
t
Y eéP, . 0235 0375 0489 0.231
t-1+1

13



Figure A-1: Do hedgers and liquidity providers buy or sell?

These figures describe the direction of trading for customers. x-axis represents the realization of local
shock X, whereas y-axis represents the average of shocks to other markets X_;. Hedgers buy if the local
shock is small or negative, i.e. above the orange line. Liquidity providers buy if the local shock is large,
i.e. above the blue line. Panel A presents the four regions indicating the four type of distinct trading
decisions for pairs of local hedgers and liquidity providers. Panel B presents the realization of shocks
uniformly drawn from [-2,-1]u[1,2], while Panel C presents the realization of shocks from N(0,5).
Unsatisfied rate is the fraction of draws where at least one local dealer trades with hedgers and liquidity
providers in the same direction.
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Figure A-2: Comparative statics: with trivial liquidity shocks to hedgers

These figures report the comparative statics of equilibrium spreads for inventory transactions, spreads for
riskless principal transactions, fraction of riskless principal trading volume, and average dealer inventory
level. Results are simulated by liquidity shocks {Xk}fz that are randomly and independently drawn
100,000 times from identical normal distributions N(0,5) . In each trail, I compute the corresponding

quantities as described in the Internet Appendix B. Reported are the average of each quantity over the
100,000 draws.
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Figure A-3: Trading characteristics of dealers in corporate bond market.

These 3D plots depict the characteristics for all dealers trading corporate bonds based on a rolling
12-month data ending on the stated date. Each dot in the plot represents a dealer. Z-axis is the total
trading (the sum of buy and sell) volume between this dealer and its clients, and y-axis is the total
trading volume between this dealer and other dealers. X-axis approximates the proportion of riskless
principal transactions conducted by this dealer, i.e. the volume of paired trades over the total volume.
For each dealer i and bond ¢ on a given day ¢, consider the total volume that dealer i buys VBt’l and sells
Vsti, and the paired volume is the smaller one of (V_; ). Then, the paired volumes are summed
over all trading days and all tgaded bonds, and ﬁnally I normahze this quantity by the average of buy
ZZc’tmln(V ' V ;)

ct’c

th(V +V i )

B,i VSL

and sell volume, i.e.

Paired Trades (%)
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Figure A-6: Structural shocks from the agnostic method for high-yield markets

These plots compare the obtained structural shocks based on the full identification method versus the
agnostic method. Panel A presents the scatter plots where each spot represents a pair of the shocks
based on the two methods in the same month. Also reported are the correlation coefficients of the
shocks generated by the two methods. Panel B exhibits the time series of 12-month rolling sum of the
structural shocks. Colored and solid lines are based on the sign restrictions, while gray and dashed lines
are based on the equality restrictions.
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