
Money Mining and Price Dynamics∗

Michael Choi
University of California, Irvine

Guillaume Rocheteau
University of California, Irvine

June 2019

Abstract

We develop a random-matching model to study the price dynamics of monies produced privately
according to a time-consuming mining technology. There exists a unique equilibrium where the value of
money reaches a steady state. There is also a continuum of perfect-foresight equilibria indexed by the
starting value of the currency where the price of money inflates and bursts gradually over time. In the
aftermath of its introduction, private money is held for a speculative motive and it acquires a transactional
role when it becomes suffi ciently abundant. We study divisible, indivisible, fiat and commodity monies,
and adopt implementation and equilibrium approaches.
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1 Introduction

Since the creation of Bitcoins a decade ago, hundreds of new crypto-currencies — digital objects with no

intrinsic value whose ownership can be transferred through encryption techniques —have been introduced.

The total market capitalization of crypto-assets peaked at $830 billion at the beginning of 2018, with an

estimated $290 billion for Bitcoins alone (Financial Stability Board, 2018), see the left panel of Figure 1.

Like gold, the supply of Bitcoins is finite and is not controlled by a government: gold is mined out of the

ground while Bitcoins are mined by solving numerical puzzles. Unlike gold – a commodity with intrinsic

usefulness – Bitcoins are intrinsically useless and unbacked. Over the year 2018, Bitcoin lost 70% of its

value while other crypto-currencies lost on average 95% of their value, hence the view that crypto-currencies

are “the mother of all bubbles" (Roubini, 2018).1 The right panel of Figure 1 illustrates the similarities

between the price dynamics of Bitcoin and two others asset price bubbles in history.2

Figure 1: (Left) Market capitalization of various crypto-currencies. (Right) Asset bubbles in history. We
plot the value of outstanding bank notes by the Banque Royale during the Mississippi bubble, the price of
tulips during the Tulip mania and the price of Bitcoin around 2018.

The phenomenon of crypto-currencies has brought some foundational questions of monetary theory to

the forefront. Can privately-produced, intrinsically useless objects serve as media of exchange and have a

positive value? How is the initial value of a new money determined and how does its price evolve over time?

Is a boom and burst of crypto-currency prices consistent with perfect foresight? Are all privately-produced

money bubbles condemned to burst? Is the private production of money socially effi cient? Do the dynamics

1Testimony of Nouriel Roubini before the United States Senate Banking Committee, Exploring the crypto-currency and
Blockchain Ecosystem, Oct 2018.

2Data from Velde (2003), Thompson (2007) and Bitcoinity.org.



of prices differ for fiat and commodity monies?

The goal of this paper is to revisit these questions by studying the dynamics of an economy where money

is privately produced at some endogenous opportunity cost through mining – a time-consuming occupation.

Our theory applies to the mining of commodity monies, e.g., gold and silver, as well as the production of

fiat currencies, e.g., Bitcoins (Throughout the paper we use Wallace’s (1980) definition of a fiat money as an

object that is inconvertible and intrinsically useless).3 Because the determination of currency prices is better

understood in models where there is an essential role for a medium of exchange, we adopt the search-theoretic

model of monetary exchange of Shi (1995) and Trejos and Wright (1995). In this environment, trades take

place within pairwise meetings that are formed randomly. Heterogeneity in preferences and specialization in

production generate a lack-of-double-coincidence-of-wants problem and rule out barter trades. In addition,

agents, who are anonymous, cannot finance random consumption opportunities by issuing private debts,

hence a role for money (Kocherlakota, 1998). Money is indivisible and there is an upper bound on money

holdings. While this assumption was originally made for tractability, it captures the notion that the quantity

of liquid assets is scarce and affects the measure of transactions. We also study a version of the model where

the scarcity of the liquidity is mitigated by making money perfectly divisible and by allowing agents to adjust

their asset holdings in competitive exchanges in continuous time, as in Lagos and Wright (2005).

We add two components to the New Monetarist model. First, we introduce a mining technology. This

technology is time consuming and discoveries of new units of money happen at random arrival times that

are state-dependent. Second, we add an occupation choice to endogenize the opportunity cost of mining and

link it to the private gains from production. Agents can either be producers looking for opportunities to sell

goods in pairwise meetings or they can be miners searching for opportunities to dig units of money.4 Hence,

the opportunity cost of mining is the foregone profits of producers, which are endogenous and vary with the

quantity of money in the economy. As a result our model incorporates a feed-back loop according to which

mining provides liquidity to the trading sector of the economy, which in turn determines the opportunity

cost of mining.

3Goldberg (2005) discusses the notion of fiat money in monetary economics and disputes the common wisdom that fiat
monies defined as inconvertible and intrinsically useless media of exchange ever existed. In that regards, crypto-currencies
might be the first creation of fiat monies as defined by monetary theorists.

4For completeness, in Online Appendix B we investigate alternative assumptions where agents can look for trading partners
while mining.
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Some empirical motivation There is plenty of evidence to support the assumption that money min-

ing has an endogenous opportunity cost by diverting input factors from alternative productive uses. The

California Gold Rush (1848—1855) is a case in point. The Gold Rush tripled the population in California

by bringing approximately 300,000 people from the rest of the world (see Britannica). South Africa offers

another example where gold mining had a large impact on the allocation of workers across sectors of the

economy (Gilbert, 1933). In the case of crypto-currencies, CoinDesk (11/12/2017) reported that the number

of blockchain jobs posted in the U.S. in 2017 increased by 207% and it has increased by 631% since November

2015.5 Upwork, a large freelancing website, ranked blockchain as the top fastest-growing skill in the first

quarter of 2018.6 This rapid growth is consistent with the increase in the number of crypto-currencies –

according to investing.com, there were less than 1600 crypto-currencies in February 2018 and there are 2520

of them in February 2019.

A key mechanism of our model is that the size of the mining sector is endogenous and responds to prices.

To test this proposition, we compare deviations from trend in the purchasing power of gold to that in the

production of gold. If the production is endogenous, then one expects the deviations of the real value of

gold from its trend to lead the corresponding changes in the production of gold.7 Figure 2 confirms this

conjecture for the period 1880-1970. In Online Appendix A we test this causality in a two-variable vector

autoregression model and find that the purchasing power of gold Granger-causes gold production in the same

time period at the 5-percent significance level.8

In contrast to commodity monies, Bitcoin has been designed so that its supply is predictable.9 The

aggregate supply of Bitcoins is controlled by varying the diffi culty level of the mathematical puzzles that

miners have to solve. If there is a sudden increase in the number of miners, then the diffi culty level increases

to keep the money supply along a pre-determined path. As a result, one can infer the intensity of the mining

activities (e.g., the number of miners and the CPU time they invest into mining) by looking at the diffi culty

level of the puzzles. We show in the Online Appendix that the growth rate of Bitcoin prices Granger-causes

the growth rate of the mining diffi culty level at a 1-percent significance level. This is consistent with our

5https://www.coindesk.com/blockchains-big-year-competitive-job-market-grows-200
6https://www.upwork.com/press/2018/05/01/q1-2018-skills-index/
7Bordo (1981) uses a similar idea to show a rising purchasing power of gold induces an increase in the monetary gold stock.
8The data on purchasing power and production are from Jastram (2009). A variable xt Granger-causes another variable yt

if the lags of xt are able to increase the accuracy of the prediction of yt with respect to a forecast that considers only past
values of yt.

9The creator of Bitcoin, Satoshi Nakamoto, wrote: “The steady addition of a constant amount of new coins is analogous to
gold miners expending resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.”
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Figure 2: Mine production and price of gold.

assumption that the intensity of Bitcoin mining is driven by the real value of Bitcoins. Relatedly Prat

and Walter (2018) use the Bitcoin-to-US dollar exchange rate to predict the computing power of Bitcoin’s

network. They argue that one third of the seigniorage revenue is spent on electricity consumption.

Succinct preview of our results. In accordance with monetary folk-theorems, a privately-produced fiat

money can be valued in the long run only if agents are suffi ciently patient and trading frictions are not too

severe. In addition, the maximum amount of money that can be mined cannot be too large and money

discoveries cannot happen too frequently since otherwise agents would have incentives to mine too many

units, thereby prompting a breakdown of the monetary equilibrium.

The initial price of a new private money is indeterminate within a nonempty interval. The largest value

in this interval corresponds to the unique equilibrium leading to a positive value of the currency in the

long run. For lower initial values, the equilibrium path for the value of money is first increasing and then

decreasing, and it reaches zero asymptotically. So unless agents can coordinate on the highest equilibrium —

one equilibrium among a continuum of perfect-foresight equilibria – the life cycle of a privately-produced

currency is composed of a boom, where agents mine money, and a bust where agents trade a depreciating

money. Across equilibria, the peak for the value of money is positively correlated with its initial value.

This result shows that the starting value of a new currency is crucial for its long-run viability. In summary,

our model can describe the genesis of a bubble, its evolution through time, and its disappearance. We

plot the price trajectories predicted by our model (in terms of market capitalization) for different equilibria
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in the right panel of Figure 3. Interestingly, those trajectories are qualitatively similar to those of actual

crypto-currencies in the left panel.

Figure 3: (Left) Market capitalization of various crypto-currencies. (Right) Market capitalization in different
equilibria in our model. Each colored curve represents one equilibrium.

Increases in the amount of money that can be privately mined, e.g., through discoveries of new mines or

through the introduction of new crypto-currencies, generates price waves. The value of money falls initially

and then increases gradually over time. The overall trend for the price of money is downward slopping.

The correlation between the quantity of money and its price can change sign in the short and long run: the

correlation is positive along the transitional path but negative across steady states.

A critical component to the fundamental value of a new currency is the extent of its transaction role

(Tirole, 1985). Our model shows that assessing this role based on the velocity of the currency in the short

run can be misleading. Indeed, a new money can have a transactional role in the long run even if does

not serve as a means of payment in the short run. In all equilibria of our model, the new money does not

circulate initially and this outcome is shown to be constrained-effi cient. To an outside observer, the new

currency looks like a speculative bubble since it is only held for its capital gains. It is only when money is

suffi ciently abundant that agents stop hoarding it.

A new (crypto-)currency can be designed so as to keep its value over time. First, inflationary equilibria

where the value of money vanishes asymptotically are eliminated if money pays a real (possibly small)

dividend. Second, the mining speed and the path for the money supply can be chosen so that the value of

money remains constant along the transition path. The money growth rate must decrease gradually over
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time and approach zero when the money supply is close to its steady-state value. In terms of social effi ciency,

we provide conditions to implement a constrained-effi cient allocation when the mining technology is taken

as a primitive and when it is part of the mechanism design problem.

Finally, in the presence of a government-produced money, we show that the government can prevent

the private money from emerging by making its own money suffi ciently valuable and by taking measures to

reduce the acceptability of the private money (or to enhance the acceptability of the government money).

Literature review Our benchmark model builds on the search-theoretic models of monetary exchange

of Shi (1995) and Trejos and Wright (1995).10 Relative to these models, we add an occupation choice and

a time-consuming mining activity, thereby allowing the growth of the money supply and the opportunity

cost of money production to be endogenous and depend on the aggregate money supply. We study both fiat

and commodity monies, steady states and out-of-steady-state dynamics, and we adopt both equilibrium and

implementation approaches. Related papers include Burdett, Trejos and Wright (2001) where the quantity of

commodity money (cigarettes) is endogenous, Cavalcanti and Wallace (1999) and Williamson (1999) where

banks issue inside money, Lotz and Rocheteau (2002) and Lotz (2004) who study the launching and adoption

of a new fiat money, Cavalcanti and Nosal (2011) who interpret the production of counterfeited notes as

the issuance of a private money that is diffi cult to monitor, Hendrickson et al. (2016) and Hendrickson and

Luther (2017) who study the coexistence of Bitcoin and a regular currency under endogenous matching. A

survey of this class of models is provided by Lagos et al. (2017).

We extend the model to have divisible assets in a continuous-time version of the Lagos and Wright

(2005) model. The privately-produced asset is either a Lucas tree, as in Geromichalos et al. (2007) and

Lagos (2010), or fiat money. The supply of assets is endogenous as in Lagos and Rocheteau (2008), Rocheteau

and Rodriguez (2014), and Geromichalos and Herrenbrueck (2018), among others. Relative to these papers,

we emphasize the creation of assets through an occupation choice and formalize an explicit, time-consuming

mining technology. Branch et al. (2016) also have private provision of liquidity and an occupation choice but

the focus is different: the privately-produced asset takes the form of homes produced by Pissarides firms and

the occupation choice is made by unemployed workers who can either be in the construction sector or the

consumption-good sector. The study of dynamic equilibria in this class of models includes Lagos and Wright

10While we adopt the search-theoretic approach to obtain an essential role for media of exchange, there is a related literature
on rational bubbles in the context of OLG models, e.g., Wallace (1980) and Tirole (1985), among many others. An application
to crypto-currencies is provided by Garratt and Wallace (2017).
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(2003) and Rocheteau and Wright (2013). The continuous-time assumption allows us to eliminate some

exotic dynamics (such as cycles or chaotic dynamics) as shown by Oberfield and Trachter (2012). Berentsen

(2006) is the first paper to study the private provision of fiat currency in the context of a search-theoretic

model with divisible money.

Fernandez-Villaverde and Sanches (2018) study currency competition in the Lagos-Wright model extended

to have a unit measure of entrepreneurs who can issue distinguishable tokens at some exogenous cost. They

show that the shape of the cost function determines whether a monetary equilibrium with stable prices

exists. Complementary to their approach, in our model the measure of miners is determined endogenously.

There is no direct, exogenous cost of mining but there is an endogenous opportunity cost that depends on

the money supply and the allocation of agents across occupations. Our description of the mining technology

differs as we model its time dimension explicitly. Mining takes place in continuous time and individual

discoveries of money are formalized by a Poisson process with endogenous and state-dependent intensity.

Our focus is also different as we emphasize price dynamics starting from the creation of a new currency up

to its disappearance.

Our extensions with two competing assets are related to Zhang (2014) and Gomis-Porqueras et al. (2017).

Both papers focus on eliminating the indeterminacy of the nominal exchange rate in dual currency economies.

Our approach to pin down the exchange rate between privately-produced and government monies is closer to

Zhang (2014), which in turn follows Lester et al. (2012). Schilling and Uhlig (2018) consider the coexistence

of government money and Bitcoin in a stochastic endowment economy and show the exchange rate between

Bitcoin and fiat money is a martingale. Lotz and Vasselin (2019) develop a New Monetarist model to study

the coexistence of fiat and E-money.

We adopt an implementation approach to study the constrained-effi cient production of money and to

achieve price stability. Chiu and Koeppl (2017) study the optimal design of crypto-currencies to overcome

double-spending and show that the current Bitcoin scheme generates a large welfare loss. Chiu and Koeppl

(2018) determine necessary conditions for blockchain-based settlement to be feasible. Biais et al. (2019)

formalize the proof-of-work blockchain protocol as a stochastic game and show it has multiple equilibria,

including equilibria with forks and orphaned blocks. They also identify negative externalities implying that

equilibrium investment in computing capacity is excessive. In Pagnotta (2018) miners contribute resources

that enhance network security and compete for mining rewards in the form of Bitcoins. The equilibrium
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level of network security and the price of Bitcoins are jointly determined and, among many insights, the

price of Bitcoins can vary in a non-monotone fashion with the growth rate of the supply of Bitcoins.

2 Environment

The environment is based on Shi (1995) and Trejos and Wright (1995). Time is continuous and indexed

by t ∈ R+. The economy is composed of a unit measure of ex ante identical, infinitely-lived agents and a

perishable good, q, that comes in different varieties. Each agent can produce a single variety and consumes

a subset of all varieties that does not include her own production good, thereby creating a need for trade.

The utility of consumption is u(q) with u(0) = 0, u′ > 0, u′(0) = +∞, and u′′ < 0. There exists a q̄ < +∞

such that u(q̄) = q̄. The disutility of production is q. Agents discount future utility at rate r > 0.

Agents meet bilaterally and at random times according to a Poisson process with arrival rate α > 0.

All agents participate in this meeting process irrespective of their occupation or asset holdings. We assume

that preferences and specialization rule out double-coincidence-of-wants matches. Conditional on meeting a

potential producer, the probability of a single-coincidence match is σ ∈ [0, 1].11 Agents are anonymous (i.e.,

there is no public record of their trading histories), they lack commitment, and there is no technology to

enforce private debt contracts. These frictions create a need for a medium of exchange (Kocherlakota, 1998).

There is an intrinsically useless object, called money, that is perfectly storable and durable. For now it

is indivisible and holdings of this object are restricted to {0, 1}. We relax this assumption in Section 5. The

overall fixed quantity of this object is Ā ∈ (0, 1). The amount held by agents at time t is At ≤ Ā, where A0

is given. The remaining Ā − At has yet to be mined. For now there is a single money in the economy. We

will consider explicitly the coexistence of different monies in the second part of the paper.

At any point in time agents without money must select one among two occupations. They can choose

to operate their technology to produce a variety of good q or they can enter the money mining sector. The

mining technology is such that each miner finds a unit of money according to a Poisson process with arrival

rate λ(Ā − At) where λ > 0. This specification contains two assumptions. First, the mining rate declines

as the quantity of money that has been mined, At, increases. Second, the money supply is bounded above.

When miners meet other individuals in the economy, they cannot produce for them —an assumption we

11For instance, there are J ≥ 3 varieties of the consumption good. Agents are divided evenly across J types. Agent of type
j ∈ {1, ...J} can produce variety j if she chooses to be a producer but she only consumes variety j+1 (modulo J). In this case,
the probability of single coincidence is σ = 1/J .
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relax in Online Appendix B. Agents can transition back and forth between occupations at no cost.

3 Equilibria

We characterize monetary equilibria where money has a positive value at all dates. In this section and

the next we focus on the economy with {0, 1} asset holdings. In this economy, the quantity of money, A,

matters for the number of trade matches (extensive margin), thereby providing a precise notion of an optimal

quantity of money. In addition, the model is suffi ciently tractable to allow us to solve out-of-steady-state

dynamics in closed form.

In the rest of the section, first, we define an equilibrium as a list of Bellman equations, bargaining

outcomes, occupation choices, and a law of motion for the money supply. Second, we examine steady-state

equilibria where the money supply is constant over time. Third, we describe all dynamic monetary equilibria

starting from arbitrary initial conditions for the money supply.

3.1 Definition of equilibrium

Bellman equations

We denote Va,t the value function of an agent holding a ∈ {0, 1} units of money at time t. Throughout most

of the paper we keep the time argument as implicit. The lifetime expected discounted utility of an agent

with a = 1 solves the following Hamilton-Jacobi-Bellman (HJB) equation:

rV1 = ασ (1−A−m) [u(q) + V0 − V1] + V̇1, (1)

where m denotes the measure of agents engaging in mining and a dot over a variable represents a time

derivative. According to the right side of (1) the agent meets another agent at Poisson rate α; this potential

trading partner drawn at random from the whole population is a producer with probability 1 − A −m (he

does not hold money and is not a miner); and she produces a good that the agent likes with probability σ.

In that case, a trade takes place where one unit of money buys q units of output. The last term on the right

side is the change in the value function over time in nonstationary equilibria.

The value function of an agent with a = 0 solves the following HJB equation:

rV0 = max
{
ασA (−q + V1 − V0) , λ

(
Ā−A

)
(V1 − V0)

}
+ V̇0. (2)

At any point in time, unmatched agents without money can choose among two occupations: mining or
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producing a consumption good. According to the first term in the maximization problem, an agent who

chooses to become a producer meets a money holder who likes her good with Poisson arrival rate ασA in

which case she produces q at a linear cost in exchange for one unit of money. According to the second term,

an agent who chooses to be a miner becomes a money holder at Poisson arrival rate λ
(
Ā−A

)
when she

successfully digs a unit of money out of the ground. A miner can meet other agents in the economy but

cannot produce for them (his occupation is to mine) or buy from them (he has no money), hence those

encounters lead to no trade.

Bargaining over the price of money

The quantity q produced in a bilateral match is determined according to the Kalai (1977) bargaining solution

that specifies that the buyer receives a constant fraction of the match surplus.12 Formally,

u(q) + V0 − V1 = θ [u(q)− q] , (3)

where θ ∈ [0, 1] is the buyer’s share. Solving for the value of money, V1 − V0, we obtain:

V1 − V0 = ω(q) ≡ (1− θ)u(q) + θq. (4)

Substituting V1 − V0 by its expression given by (4) into (1) and (2) leads to:

rV1 = ασ (1−A−m) θ [u(q)− q] + V̇1 (5)

rV0 = max
{
ασA(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ V̇0. (6)

Upon trading the surplus of the buyer is θ [u(q)− q] while the surplus of the seller is (1− θ) [u(q)− q]. Upon

digging a unit of money the gain of the miner is ω(q). Subtracting (6) from (5) and making use of (4) we

obtain that q is the solution to the following ODE:

rω(q) = ασ (1−A−m) θ [u(q)− q]−max
{
ασA(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ ω′(q)q̇. (7)

Occupation choice

The net instantaneous gain from being a miner rather than a producer is:

∆(q, A) ≡ λ
(
Ā−A

)
ω(q)− ασA(1− θ) [u(q)− q] . (8)

12We use Kalai bargaining instead of Nash because of its simplicity. For the merits of this solution, see Aruoba et al. (2007).
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From (6) or (7) the measure of miners is given by:

m
= 1−A
∈ [0, 1−A]
= 0

if ∆(q, A)
>
=
<

0. (9)

By (8) the indifference condition ∆ = 0 can be rewritten as:

A = µ(q) ≡ λĀω(q)

ασ(1− θ) [u(q)− q] + λω(q)
. (10)

Since ω(q)/ [u(q)− q] increases in q by the concavity of u(q), so does µ(q). Therefore, as A increases, so

must q for agents to be indifferent across occupations.

Money growth

The law of motion for the supply of money in circulation in the economy is:

Ȧ = mλ
(
Ā−A

)
. (11)

There is a measure m of agents who specialize in mining and each agent extracts one unit of money from

the ground at Poisson rate λ
(
Ā−A

)
. We are now in position to define an equilibrium.

Definition 1 An equilibrium is a pair of value functions, V0,t and V1,t, the quantity traded in each match,

qt, the measure of miners, mt, and the quantity of money in circulation, At, that solve: (5)-(6), (7), (9),

(11), and the initial condition A0.

3.2 Steady states

We first describe steady-state equilibria where q and A are constant over time and m = 0. We focus on the

steady state with the lowest A as it is the one that will be reached from the initial condition A0 = 0. From

(7):

rω(q) = ασ (θ −A) [u(q)− q] . (12)

Substituting ω(q) by its expression given by (4) and rearranging,

rq = {ασ(θ −A)− r(1− θ)} [u(q)− q] . (13)

There is a unique q > 0 solution to (13) provided that r < ασ(θ − A)/(1− θ). Hence, a necessary (but not

suffi cient) condition for a monetary equilibrium to exist is θ > A. Moreover, ∂q/∂A < 0, i.e., an increase in

the money supply reduces the purchasing power of money.
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The condition for m = 0, ∆(q, A) ≤ 0, holds if A ≥ µ(q), which from (10) and (12) can be reexpressed as

rA(1− θ) ≥ λ
(
Ā−A

)
(θ −A) . (14)

We represent inequality (14) in Figure 4. The left side is linear in A while the right side is quadratic with

two roots, A = Ā and A = θ. They intersect for two values, A1 < min{Ā, θ} and A2 > max{Ā, θ}. The left

side is located above the right side for all A ∈ (A1, A2). Since A cannot be greater than θ for a monetary

equilibrium to exist, we must have A < min{Ā, θ}. So a steady-state monetary equilibrium exists for all A

in the half-closed interval
[
A1,min{Ā, θ}

)
. In the following we focus on the steady state As = A1.

A

)1( θ−rA
))(( AAA −− θλ

1A 2A

])()][1()([ qqurA −−−− θθασ

Money supply Value of money

Figure 4: Steady states

The steady-state equilibrium is determined recursively. First, As is obtained as the smallest solution to

(14). Given A = As, qs exists if and only if r < ασ(θ −As)/(1− θ) by (13) or, equivalently,

As < θ − r(1− θ)
ασ

. (15)

Figure 4 provides a graphical representation of the determination of the equilibrium.

Proposition 1 (Steady-state monetary equilibria) There exists a unique steady-state monetary equi-

librium (where ∆(q,A) = 0) if and only if

r <
ασ

1− θ

[
θασ + λ

(
θ − Ā

)
ασ + λ

]
(16)

where the steady-state money supply is
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As =
λθ + λĀ+ r(1− θ)

2λ
−

√(
λθ + λĀ+ r(1− θ)

2λ

)2

− Āθ. (17)

Comparative statics are summarized in the following table:

∂λ ∂Ā ∂θ ∂r ∂(ασ)

∂As/ + + + − 0
∂qs/ − − ± − +
corr(qs, As) − − ± + 0

Table 1: Comparative statics

Under which conditions can fiat money be privately produced and maintain a positive value in the long

run? According to (16), the existence of a monetary equilibrium requires agents to be suffi ciently patient –

a standard “folk theorem”in monetary theory. The threshold for r below which money is valued decreases in

the two parameters that affect the private production of money, i.e., Ā and λ. Higher Ā or λ are associated

with higher incentives to mine, and hence a higher money supply at the steady state. But a higher As

reduces buyers’trading opportunities, thereby making it harder to sustain a positive value for money.

Comparative statics in Table 1 have implications for the correlation between the endogenous money supply

and price level. The sign of this correlation (the bottom row in Table 1) depends on which fundamentals

drive the movements of As and qs. If λ or Ā increases, then As increases and qs decreases. In this case

there is a positive correlation between money supply and price level (1/qs), which is consistent with the

quantity theory. However, if r increases, then both As and qs decrease. There is now a negative correlation

between the money supply and the price level. A change in θ generates a non-monotone relation between As

and qs: numerical examples show that for low θ, there is a positive correlation between As and qs while for

high θ there is a negative correlation. Finally, an increase in α or σ does not affect incentives to mine and

the money supply but it raises qs.

3.3 Dynamics

We now turn to transitional dynamics from an arbitrary initial condition, A0. Without loss of generality we

will focus on A0 = 0 because the equilibrium is time consistent, i.e., if the equilibrium reaches At at time t

from A0 = 0, then the path onward is the same as the one obtained from the initial condition At.

12



From (7) and (11) (q, A,m) solve the following system of differential equations:

ω′(q)q̇ =
[
r + λ

(
Ā−A

)]
ω(q)− ασ (1−A−m) θ [u(q)− q] (18)

Ȧ = mλ
(
Ā−A

)
(19)

m ≤ 1−A “= ” if ∆(q, A) > 0. (20)

Equation (18) is an asset pricing equation for the value of money. The first term on the right side is the

appreciation of the value of money over time if it does not provide transactional services: ω grows at rate

r + λ
(
Ā−A

)
, which compensates the buyer for her rate of time preference and the foregone opportunities

of mining. The second term on the right side corresponds to the liquidity services that money provides

to a buyer as measured by the expected surplus from a trade match. These liquidity services constitute a

non-pecuniary return that reduces the appreciation rate of money. Equation (19) is the law of motion of

the stock of money. Equation (20) is the optimality condition for the occupation choice between being a

producer or a miner.

We distinguish two regimes. In the first regime all agents without money (the potential producers) engage

in mining, namely m = 1−A. Then by (18) and (19):

q̇ =
[
r + λ

(
Ā−A

)] ω(q)

ω′(q)
(21)

Ȧ = (1−A)λ
(
Ā−A

)
. (22)

Note from (21) that the value of money, ω, grows at a rate larger than r because it provides no liquidity

services yet. Along the equilibrium path, by virtue of (21) and (22), the relation between q and A is given

by
∂q

∂A

∣∣∣∣
m=1−A

=
ω(q)

ω′(q)

r + λ
(
Ā−A

)
(1−A)λ

(
Ā−A

) . (23)

The path is upward sloping in the (A, q) space.

Consider next the regime where miners and producers coexist, m ∈ (0, 1−A). In that case A = µ(q)

and, from (19), the measure of miners is

m =
µ′(q)

λ
[
Ā− µ(q)

] q̇. (24)

The measure of miners increases with the capital gain q̇. The next proposition characterizes the unique

dynamic equilibrium that converges to (qs, As).

13



Proposition 2 (Transitional Dynamics to Steady-State Monetary Equilibrium) Suppose (16) holds

and A0 = 0. There exists a unique monetary equilibrium such that (qt, At) converges to (qs, As) > 0. Along

the equilibrium path qt and At increase over time. Moreover:

1. There exists t0 > 0, such that for all t < t0, mt = 1−At, and

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

(25)

ω(qt) = ertω0

[
1− Āe−λ(1−Ā)t

1− Ā

]
. (26)

2. If
µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

, (27)

then mt < 1 − At in the neighborhood of the steady state and convergence to (qs, As) is asymptotic.

Otherwise, mt = 1−At until the steady state is reached in finite time.

Proposition 2 proves the existence and uniqueness of a dynamic equilibrium leading to (qs, As) starting

from an initial condition A0 = 0. It allows us to answer the following question: how does the supply of

privately-produced money and its price covary over time? The equilibrium features monotone trajectories

for q and A over time. As the money supply increases, the price level falls, and quantities traded in pairwise

meetings increase.13 This result seems in contradiction with the quantity theory according to which the price

level increases with the money supply and the long-run comparative statics in Table 1 where an increase

in Ā reduces q. Intuitively, the value of money must appreciate over time in order to induce agents to

mine because as A increases the mining speed decreases but the frequency of trading opportunities in the

production sector increases.

Proposition 2 also answers the question: can money be valued if it does not serve as a medium of

exchange? Early on, when A is close to 0, all agents without money choose to be miners and all agents with

money hoard it because they have no opportunities to use it as a medium of exchange. From the viewpoint

of an outside observer, money resembles a pure speculative bubble: it does not play any role in exchange,

and hence it should not have any liquidity premium, but its value grows at a rate larger than r. This path for

the value of money is sustainable because in finite time money starts being used as a medium of exchange.

13As shown in Online Appendix D, we can obtain less dramatic results with alternative matching functions, i.e., agents trade
at all dates, but the insight that market tightness measured by the ratio of producers to buyers increases over time is robust.
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Figure 5: Dynamic equilibria with mining

Can the government prevent the emergence of a private money? The government can remove the incen-

tives to produce money by supplying A0 > As. If the initial quantity of money is suffi ciently abundant,

then the benefits from being in the production sector outweigh the gain from mining. As shown by Table 1,

however, the larger λ and Ā, the larger A0 has to be to prevent money mining. In Sections 5.2 we will revisit

this question in a version of the model where agents can hold a portfolio of monies.

Finally, we showcase the tractability of the model by solving the equilibrium path in closed form in

(25)-(26). This result follows from the observation that the law of motion for A, (19), when m = 1−A, is a

Riccati equation that admits an analytical solution (see Section 2.15 in Ince (1956) for details).

In the neighborhood of the steady state we distinguish two types of equilibria illustrated in Figure 5. There

are equilibria where occupations coexist, i.e., the economy features both miners and producers. In this case

the steady state is only reached asymptotically. There is another type of equilibrium where all agents without

money choose to mine until the steady-state money supply has been reached, which happens in finite time.

These regimes have implications for the transaction velocity of money measured by Vt ≡ ασ (1−At −mt).

In the initial phase, Vt = 0 since all potential producers prefer to mine. If (27) holds, then Vt becomes

positive for some t > 0 and it increases as mt decreases toward its steady-state value. If (27) does not hold,

then Vt = 0 until the steady state is reached, at which point V = ασ (1−As). Along the equilibrium path

there is a positive correlation between the velocity of money, its price, and its supply.14 The next lemma

14 In Online Appendix D we describe equilibria assuming that only buyers (money holders) and producers participate in the
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Figure 6: (Left) Phase diagram of different equilibria (Right) The value of money under different equilibria
for the same parameters.

provides conditions for mining and production to coexist along the equilibrium path.

Lemma 1 (Coexistence of trades and mining)

1. If ε(q) ≡ u′(q)q/u(q) is non-increasing in q, then there exists λ∗ < +∞ and κ∗ ∈ (0,+∞) such

that mt < 1 − At in the neighborhood of (As, qs) if and only if λ < λ∗ or σα ≥ κ∗. Moreover, if

ασ > λθ/(1− θ), then the equilibrium features at most one regime switch.

2. If θ ≤ 1/2 and λ is suffi ciently large, then mt = 1−At for all t such that At < As.

The condition on the elasticity of u(q) in Lemma 1 is satisfied by u(q) = q1−a or u(q) = 1− e−aq. Part 1

of Lemma 1 establishes that if the effi ciency of mining is low and the matching rate is high, then mining

and trades coexist close to the steady state. Part 2 of Lemma 1 provides a global characterization of the

occupation choice. If the mining technology is suffi ciently effi cient and if producers have more bargaining

power than buyers, then no trade takes place until the supply of money has reached its steady-state level.

Proposition 2 establishes the existence of a unique equilibrium, denoted (Ât, q̂t), that converges to (As, qs).

The following proposition aims to address the question of the determination of the initial value of money by

characterizing the set of all initial values of the new currency that are consistent with a monetary equilibrium.

matching process according to a constant-returns-to-scale matching function. The matching probability of a buyer is α(τ),
where τ = (1 − A − m)/A is market tightness expressed as the ratio of sellers to buyers. We assume that α′ > 0, α′′ < 0,
α′(0) = +∞, α′(+∞) = 0. If limτ→0 α(τ)/τ = +∞, then τ > 0 for all t along the equilibrium path. The velocity of money is
Vt = α(τ t)σ and it increases along the transitional path leading to the steady state.
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It shows that money can be valued and privately produced even it is anticipated that it will disappear in

the long run.

Proposition 3 (Boom/Bust equilibria)

1. For all q0 ∈ (0, q̂0), there exist 0 < T0 ≤ T1 < +∞ such that a monetary equilibrium exists with the

following properties:

(a) Boom phase: For all t ≤ T0, mt = 1−At and ω̇/ω = r + λ
(
Ā−A

)
> 0.

(b) Bust phase: For t > T1, mt = 0, ω̇t = rωt − ασ (θ −AT1) [u(qt)− qt] < 0, and limt→+∞ ωt = 0.

2. If (27) holds, then there is a continuum of monetary equilibria indexed by T ∈ {t ∈ R+ : Ât = µ(q̂t)}

such that q0 = q̂0 and:

(a) Boom phase: For all t ≤ T , (At, qt) = (Ât, ω̂t).

(b) Bust phase: For t > T , mt = 0, At = ÂT , ω̇t = rωt − ασ
(
θ − ÂT

)
[u(qt)− qt] < 0, and

limt→+∞ ωt = 0.

There is a continuum of monetary equilibria featuring a boom and a bust of the currency price. Those

equilibria can be indexed by the initial value of money in the interval (0, q̂0). If the initial beliefs are not

optimistic enough to bootstrap the value of money to q̂0, then a boom/bust equilibrium exists.15 Along the

equilibrium path the value of money first increases at a rate larger than r. It reaches a maximum at which

point agents stop mining. Even though the money supply remains constant afterwards, the value of money

declines and converges to 0 asymptotically. In the phase diagram of Figure 6, the equilibrium path is upward

sloping until it reaches the locus A = µ(q). At that point it becomes vertical since the money supply remains

constant with arrows of motion oriented toward the horizontal axis since money loses its value over time.16

There can also be boom/bust equilibria where q0 = q̂0. Such equilibria occur when agents are indifferent

between mining or producing in the neighborhood of the steady state, i.e., (27) holds, and they are indexed

15Such equilibria capture the idea that new currencies might be likely to fail in the absence of coordination mechanisms. See
Selgin (1994) for historical examples.
16The result according to which the initial value of a new currency is indeterminate was acknowledged by earlier adopters of

Bitcoins. Luther (2018) reports the following post on bitcoin-list in January 2009, the month when Bitcoin was first introduced:

“One immediate problem with any new currency is how to value it. Even ignoring the practical problem that
virtually no one will accept it at first, there is still a diffi culty in coming up with a reasonable argument in favor
of a particular non-zero value for the coins."
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by the time T at which the value of money starts falling. Such an equilibrium path is represented in the

left panel of Figure 6 by a trajectory starting at q0 = q̂0. The trajectory is upward sloping and follows

the A = µ(q) locus for a while until it becomes vertical and oriented toward the horizontal axis. From the

viewpoint of an outside observer it would be impossible to tell whether the currency will be successful until

the time T at which the currency starts declining has been reached.

The next Proposition shows that among the continuum of equilibria described above a single equilibrium

survives if we endow money with a commodity value, d > 0, and consider the limit as d goes to 0.

Proposition 4 (Interest-bearing money) Suppose money pays an arbitrarily small interest d > 0. Then,

there exists a unique equilibrium and it is such that (At, qt)→ (As, qs) as t→∞.

If money generates a flow dividend d > 0 (e.g., a utility flow from a commodity money or a real interest

payment), then any equilibrium path must be such that the value of holding money is bounded below by the

discounted sum of dividends, d/r.17 This observation rules out the continuum of boom-and-bust equilibria

where the value of money vanishes asymptotically. The important insight from Proposition 4 is that d does

not need to be large to prevent the collapse of the currency. As long as d > 0, crypto-currencies can be

priced above their fundamental value, d/r, without losing their value in the long run.

3.4 Implementing price stability

So far the mining technology specifies an individual mining rate, λ(Ā−A), as a function of the quantity of

money left to be mined. The aggregate mining rate is then the product of the individual mining rate and the

measure of miners, mλ(Ā−A), which then determines the dynamics of the money supply according to (11).

In the context of crypto-currencies the logic is reversed: the designer of the currency chooses a path for the

money supply, Ȧt = πtAt, where πt is the rate of money creation at time t. The seigniorage revenue, πtAt,

is exogenous and independent of the measure of miners. This revenue is divided among miners by adjusting

the individual mining rate, denoted λt, so that aggregate mining is equal to seigniorage, i.e., λtmt = πtAt.

Hence, the individual mining rate is λt = πtAt/mt, which is increasing with the rate of money creation but

decreasing with the measure of miners. An equilibrium is a bounded solution, {ωt, At,mt}, to the following
17This commodity-money refinement is often used to reduce the equilibrium set of pure currency economies. See. e.g., Wallace

and Zhu (2004) or Garratt and Wallace (2018).
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system:

ω̇ =

(
r +

πA

m

)
ω − ασ (1−A−m) θ [u(q)− q] , (28)

Ȧ = πtA (29)

m = min

{
πω

ασ(1− θ) [u(q)− q] , 1−A
}
. (30)

Obviously, any equilibrium characterized in Proposition 2 is also an equilibrium of the economy where At is

chosen by the currency designer.

Suppose the currency designer chooses the rate of money creation, πt. Can he choose it so as to achieve

price stability? Let ω = ωs(Ā) be the targeted value of money where the corresponding long-run money

supply is Ā. The next proposition derives the path for πt such that qt and ωt are constant over time.

Proposition 5 (Stabilizing the value of money)

1. In any equilibrium where the value of money is constant, ω = ωs(Ā), the rate of money creation evolves

according to:

π∗t = π∗(At) ≡
1− θ
θ

[
ασ (θ −At)

u(qs)− qs
ωs

− r
]
. (31)

2. There exists a unique equilibrium and it features price stability if money pays an arbitrarily small

dividend and the money growth rate is determined by the following rule:

π(ω,A) =


π∗(A)

0
ασ(1−θ)[u(q)−q](1−A)

ω

if
ω = ωs

ω < ωs

ω > ωs.
(32)

Proposition 5 shows that it is possible to choose a path for the money supply that implements price

stability. From (31) the money growth path is such that π decreases over time and it approaches π = 0 as

A approaches Ā. The equilibrium measure of miners corresponding to this path decreases over time and

converges to 0.

The second part of Proposition 5 provides a policy rule to implement price stability as a unique equi-

librium. The rule, (32), is such that the money growth rate is lowered to 0 if ω falls below its steady-state

value, ωs, and it is raised to a level such that m = 1 − A if ω rises above ωs. As a result, the only path

consistent with an equilibrium is the one where ωt = ωs for all t.
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3.5 Price waves

Historically, the world supplies of silver and gold have increased through sequential discoveries of new mining

sites, e.g., South America during the 16-17th centuries, South Africa and Australia during the 19-20th

centuries. In the context of crypto-currencies, one can interpret mine discoveries as the introduction of new

currencies. In order to capture such discoveries and their impact on price dynamics, we describe a sequence of

unanticipated shocks on Ā starting from a steady state. Initially, Ā = Ā0 and the economy is at a stationary

equilibrium (qs0, A
s
0). At time 0, the maximum amount of money agents can mine, Ā, increases from Ā0 to

Ā1. This could correspond to a new estimate of the gold resources of the planet or a coordinated change in

the supply of Bitcoins. After the economy reaches a new steady state, (qs1, A
s
1), another discovery happens

that raises the potential money supply from Ā1 to Ā2. And so on.

In the phase diagram of Figure 7 the locus A = µ(q) shifts to the right. The new steady state is such

that the money supply increases, As1 > As0, and money loses some value, q
s
1 < qs0. At time 0+, q falls below

qs1 so that the value of money overshoots its steady state. Along the transition to the new steady state the

value of money increases. The sequence of unanticipated increases in Ā generates fluctuations in the value

of money around a downward trend. We summarize these results in the following proposition.

Proposition 6 (Unanticipated mine discoveries) Consider a sequence of unanticipated increases in Ā

(i.e., mine discoveries). Every mine discovery triggers a downward jump in q followed by a gradual recovery.

Over time q exhibits a downward trend.

The response to an unanticipated increase in the mining intensity, λ, are similar to those of an increase

in Ā: the value of money falls on impact and increases afterwards to reach a new steady state with a lower

q and higher A.

4 Effi cient mining

We now ask whether the decentralized private production of money can generate a socially effi cient outcome.

We describe the problem of a social planner who is subject to the mining technology and the matching

technology between asset holders and producers. Implicit in the latter constraint is the requirement that all

trades take the form of one unit of money for some q, i.e., trades are quid pro quo. The planner chooses

agents’occupation and output in pairwise meetings in order to maximize the discounted sum of all agents’
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utilities (The planner’s problem is written explicitly in Lemma 2 in the Appendix). We then provide an

incentive-feasible mechanism to implement such constrained-effi cient allocations. In the following recall

that q∗ is the solution to u′(q∗) = 1 and it is the effi cient level of production in a trade meeting.

Proposition 7 (Constrained-effi cient allocation) Assume A0 = 0.

1 Effi cient allocations are such that qt = q∗ for all t and mt = 1−At for all t < T ∗ where T ∗ > 0 is the

time it takes to mine A∗ where

A∗ =
1

4

[(
2Ā+ 1 +

r

λ

)
−
√(

2Ā+ 1 +
r

λ

)2

− 8Ā

]
. (33)

For all t ≥ T ∗, mt = 0 and At = A∗.

2 Implementation. If

r ≤ ασ(1−A∗) [u(q∗)− q∗]
q∗

(34)

λ
(
Ā−A∗

)
≤ ασA∗(1−A∗) [u(q∗)− q∗]− rq∗

(1−A∗)u(q∗) +A∗q∗
, (35)

then the constrained-effi cient allocation is implementable with

θt = 1 if t < T ∗

= θ∗ ≡ rq∗ + (ασA∗ + r) [u(q∗)− q∗]
[u(q∗)− q∗] (ασ + r)

if t ≥ T ∗. (36)
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The planner chooses q∗ in all trade matches and it assigns all non-asset holders to mining until the

effi cient quantity of money has been produced. We show in the proof of Proposition 7 that along the optimal

path the shadow value of money ξ (i.e. the co-state variable associated with At) satisfies

ξ̇

ξ
= r + λ(1 + Ā− 2A).

If we compare with the equilibrium ODE, (18), when m = 1−A,

ω̇

ω
= r + λ

(
Ā−A

)
,

we see that the rate of growth of ξ is larger than the rate of growth of ω by a term equal to λ(1 − A).

This additional term reflects the fact that the planner internalizes the scarcity effect of digging new coins on

future miners: as more money is taken out of the ground, it becomes harder for future miners to find new

units of money. As a result, the growth in the shadow value of money must compensate for that increased

scarcity. The optimal quantity of money, A∗, is less than 1/2, which is the quantity that would maximize

the measure of trades. As agents become infinitely patient, limr→0A
∗ = min{1/2, Ā}. By comparing (33)

and (17) we obtain the following corollary regarding the effi ciency of the private production of money:

Corollary 1 As > A∗ if θ > 1/2 and As < A∗ if θ < 1/2.

There is over-production of money in the decentralized equilibrium if buyers receive a larger share of the

match surplus than producers. Even if θ = 1/2 so that As = A∗, the output produced in the decentralized

equilibrium is different from the first best.

In the first part of Proposition 7 we restricted trades to take place between money holders and producers

but we did not impose that the actual trades in pairwise meetings satisfy individual rationality constraints.

In the second part of Proposition 7 we propose an incentive-feasible trading mechanism that implements the

constrained-effi cient allocation. The mechanism is incentive feasible if it satisfies the individual rationality

constraints of the buyer, u(q) + V0 − V1 ≥ 0, and the producer, −q + V1 − V0 ≥ 0, in a pairwise meeting.

Any incentive-feasible trading mechanism can be described by a sequence of time-varying bargaining shares,

θt. From (36) the incentive-feasible trading mechanism that implements the constrained-effi cient allocation

is such that buyers have all the bargaining power until the effi cient quantity of money, A∗, has been dug at

time T ∗. Giving no bargaining power to producers initially guarantees that agents without money choose to
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be miners rather than producers. Following T ∗ the buyer’s bargaining power is θ∗ > 0, which is the value

that implements q∗ in all pairwise meetings.

Condition (34) is the standard implementation condition of the first best in monetary search models (see,

e.g., Wright 1999). It requires that the opportunity cost of holding money as measured by rq∗ is smaller

than the expected surplus from holding money assuming the buyer has all the bargaining power, ασ(1 −

A∗) [u(q∗)− q∗]. A key difference from the existing literature is that the money supply here is endogenous

and depends on fundamentals. As r approaches 0, A∗ tends to min{Ā, 1/2}. Hence the implementation

condition is satisfied for r suffi ciently small.

Condition (35) is new and guarantees that agents have no incentive to over-produce money. Assuming

that the buyer’s bargaining share is θ∗, it requires that the expected gain from mining, λ
(
Ā−A∗

)
ω∗ where

ω∗ ≡ (1−θ∗)u(q∗)+θ∗q∗, is no greater than the expected gain from being a producer ασ(1−θ∗) [u(q∗)− q∗].

If Ā < 1/2, then this condition holds for r suffi ciently close to 0.

Finally, suppose that the planner can design the mining technology by choosing both λ and Ā. If the

planner can enforce both qt and mt then welfare is non-decreasing in λ and Ā. From (33), as λ goes to

infinity then A∗ tends to min{1/2, Ā}. Hence, it is optimal to increase the money supply to A∗ = 1/2 as

fast as possible– the model does not provide a rational for a gradual increase of the money supply in the

absence of technological limitations. The effi cient allocation can be implemented if (34) holds. In order to

guarantee that (35) holds, one can set Ā = 1/2. We summarize these results in the following proposition.

Proposition 8 (Optimal currency design) Suppose the planner can choose λ and Ā. If (34) holds, then

it is optimal to set λ = +∞ and Ā = 1/2 and q = q∗ is implementable.

5 Divisible assets and centralized exchanges

So far, we have described an economy with indivisible assets and a shortage of liquidity. We now study price

dynamics when all assets are perfectly divisible and individual asset holdings are unrestricted, a ∈ R+. This

model, which is a continuous-time version of the New-Monetarist model of Lagos and Wright (2005), will

be useful to check the robustness of our earlier results and to study the competition between a privately-

produced money and government money.18

18Choi and Rocheteau (2019) provides a detailed description of the New Monetarist model in continuous time and its solution
methods.
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In order to keep the model tractable, we add a centralized market (CM) where price-taking agents can

trade continuously a good, distinct from the one traded in pairwise meetings, for money. The purpose of

these CMs is to allow agents to readjust their money holdings to some targeted level in-between pairwise

meetings, so as to keep the distribution of money holdings degenerate. In reality, the CMs could correspond to

the several exchanges where individuals trade crypto-currencies for different government-supplied currencies

using credit or debit cards (e.g., Coinbase, Coinmama, Luno...). In the following we take the CM good as the

numeraire. Agents have the technology to produce h units of the numeraire good at a linear cost h (h < 0

is interpreted as consumption). Hence, agents’discounted lifetime utility in-between pairwise meetings is

−
∫ +∞

0
e−rtdH(t) where H(t) is a measure of the cumulative production of the numeraire good (net of its

consumption) up to t. This formulation allows agents to produce or consume the numeraire good in flows (in

which caseH(t) admits a density h(t)) or in discrete amounts (in which caseH(t+)−H(t−) 6= 0). Preferences

during pairwise meetings are as before. Money takes the form of a Lucas tree that pays a dividend flow

d ≥ 0. The case d = 0 corresponds to fiat money. The CM price of the asset is denoted φt.

1T 2T 3T

CM CMCMCM

Time

Pairwise meetings (DM)

0

Figure 8: Timing of the model with divisible assets

5.1 Equilibrium

Let V (a) denote the value function of an agent with a units of assets expressed in terms of the numeraire.

At any point in time between pairwise meetings, an agent can readjust her asset holdings by consuming or

producing the numeraire good. Formally,

V (a) = max
h
{−h+ V (a+ h)} = a+ max

a∗≥0
{−a∗ + V (a∗)} ,

where h is the production of the numeraire and a∗ is the agent’s targeted asset holdings (expressed in terms

of the numeraire). The value function, V (a), is linear in a.

We now turn the bargaining problem in a pairwise meeting between a buyer holding ab units of assets
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and a seller holding as units of asset. The outcome of the negotiation is a pair (q, p) ∈ R+ × [−as, ab]

where q is the amount of goods produced by the seller for the buyer and p is the transfer of assets from the

buyer to the seller. Feasibility requires that −as ≤ p ≤ ab. By the linearity of V (a) the buyer’s surplus is

u(q) + V (ab − p)− V (ab) = u(q)− p and the seller’s surplus is −q+ V (as + p)− V (as) = −q+ p. According

to the Kalai proportional solution, the buyer’s surplus is equal to a fraction θ of the total surplus of the

match, i.e., u(q) − p = θ [u(q)− q]. Moreover, the solution is pairwise Pareto effi cient, which implies that

q ≤ q∗ with an equality if p ≤ ab does not bind. Using the notation ω(q) from (4), the buyer’s consumption

as a function of her asset holdings, q(ab), is such that q(ab) = q∗ if ab ≥ ω(q∗) and ω(q) = ab otherwise.

We can now write the lifetime expected utility of the agent holding her targeted asset holdings, V (a∗).

In Choi and Rocheteau (2019) we show it solves the following HJB equation that is reminiscent to (5) and

(6) combined:

rV (a∗) = ρa∗ + α(1−m)σθ {u [q(a∗)]− q(a∗)}

+ max
{
ασ(1− θ) {u [q(ā)]− q(ā)} , λ(Ā−A)φ

}
+ V̇ (a∗), (37)

where the rate of return of assets is

ρ =
d+ φ̇

φ
. (38)

The first term on the right side of (37) is the flow return of the asset. The second term is analogous to the

first term on the right side of the HJB equation for V1, (5). The agent receives an opportunity to consume

at Poisson arrival rate ασ. The partner can produce if she is not a miner, with probability 1−m. The third

term on the right side of (37) is analogous to the right side of the HJB equation for V0 in (6). It corresponds

to the occupational choice according to which agents can choose to be producers and enjoy the flow payoff

ασ(1 − θ) {u [q(ā)]− q(ā)} or miners and enjoy λ(Ā − A)φ. The term ā represents asset holdings of other

agents in the economy. The expected gain from mining describes the assumption that at Poisson arrival rate

λ(Ā− A) the miner digs a unit of money which is worth φ units of numeraire. The last term is the change

in the value function for a given asset position, V̇ (a) = ∂Vt(a)/∂t.

The envelope condition associated with (37) together with V ′(a∗) = 1 gives

r − ρ = α(1−m)σθ

{
u′ [q(a∗)]− 1

(1− θ)u′ [q(a∗)] + θ

}
, (39)

where we have used that q′(a) = 1/ω′(q) if a < ω(q∗) and ∂2V (a)/∂a∂t = 0 because V ′(a∗) = 1 at all t.

The opportunity cost of holding the asset on the left side of (39) is the difference between the rate of time
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preference and the real rate of return of the asset. The right side is the marginal value of an asset if a

consumption opportunity arises.

Since now agents can carry money and mine at the same time, the measure of miners solves

m

 = 1
∈ [0, 1]

= 0
if λ(Ā−A)φ

 >
=
<

ασ(1− θ) [u (q)− q] . (40)

By market clearing:

a∗ = φA. (41)

The supply of assets evolves according to:

Ȧ = λm(Ā−A). (42)

An equilibrium is a list, 〈a∗t ,mt, φt, At〉, that solves (39), (40), (41), and (42).

A A

>

> > > > > >

> > >

]1,0[∈m

0=m
0=m

1=m 1=m

rd

rds =φ
sφ

sA sA

)(Asφ )(Asφ

A A
Scarce liquidity Abundant liquidity

1,0[∈m

Figure 9: Phase diagram with divisible assets

From (40) and (41) the locus of pairs (A, φ) such that agents are indifferent between mining and producing

is given by:

λ(Ā−A)φ = ασ(1− θ)S(Aφ), (43)

where S(Aφ) = u (q)−q is the total surplus from a pairwise trade where quantities solve ω(q) = min {ω(q∗), φA}.

For all A > λĀ/(ασ + λ), there is a unique φ > 0 solution to (43). In the (A, φ) space, this solution is

upward sloping and it has a vertical asymptote, A = Ā. To the left of this locus all agents choose to mine,

m = 1.
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The locus of stationary equilibria where m = 0 and φ̇ = 0 is given by

r =
d

φ
+ ασθ

{
u′ (q)− 1

(1− θ)u′ (q) + θ

}
, (44)

where q is an implicit function of φA. It is a standard asset pricing equation where the effective rate of

return of the asset is composed of the pecuniary return, d/φ, and the liquidity return. It gives a negative

relationship between φ and A with φ = d/r for all A such that A ≥ rω(q∗)/d. The two loci, (43) and

(44), represented in the phase diagram of Figure 9, allow us to characterize stationary and non-stationary

equilibria.

Proposition 9 (Mining divisible assets) Suppose A0 = 0.

1. (Abundant liquidity) If
Ād

r
≥ ασ(1− θ) [u (q∗)− q∗]

λ
+ ω(q∗), (45)

then there exists a unique equilibrium and it is such that φt = d/r, qt = q∗ for all t, and mt = 1{t<T}

where

T = ln

{
λdĀ

rασ(1− θ) [u(q∗)− q∗]

} 1
λ

< +∞.

Moreover,

At = Ā
(
1− e−λt

)
for all t < T

At = As = Ā− rασ(1− θ) [u(q∗)− q∗]
λd

for all t ≥ T.

2. (Scarce liquidity) If d > 0 and (45) does not hold, then there exists a unique equilibrium and it is

such that φt > d/r and qt < q∗ for all t. Moreover, mt = 1 for all t suffi ciently small and the economy

transitions to mt < 1 before reaching the steady state if

θ

1− θ >
ν(Aφ) +A/(Ā−A)

ν(Aφ) [1− ν(Aφ)]
(46)

where ν(x) ≡ S′(x)x/S(x).

3. (Fiat money) If d = 0, then there exists a unique equilibrium leading to a monetary steady state if

r < ασθ/(1− θ). The equilibrium is such that qt < q∗ and φ̇t ≥ 0 for all t and the steady state solves

r = ασθ

{
u′ (qs)− 1

(1− θ)u′ (qs) + θ

}
(47)

As

Ā
=

λω(qs)

ασ(1− θ) [u(qs)− qs] + λω(qs)
. (48)
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There is a continuum of boom-burst equilibria indexed by φ0 such that: φ̇t > 0 for all t < T (φ0) where

T (φ0) > 0; φ̇t < 0 for all t > T (φ0); limt→+∞ φt = 0.

Proposition 9 provides two main insights relative to the model with indivisible money and no centralized

exchanges. First, there is a regime where the asset supply at the steady state is abundant enough to satiate

agents’liquidity needs and to allow agents to trade q∗ in all matches. In such equilibria, the asset is priced

at its fundamental value at all dates. A necessary (but not suffi cient) condition is that the potential asset

supply when valued at its fundamental price, Ād/r, is larger than agents’liquidity needs, ω(q∗). It is the

standard condition in the literature for abundant liquidity since Geromichalos et al. (2007), except that it

applies to the potential asset supply, Ā, and not the actual asset supply, A, which is endogenous. Condition

(45) has an extra term that captures agents’incentives to stop mining. This term decreases with λ so that

liquidity is more likely to be abundant when the mining speed is large. Maybe surprisingly, qt = q∗ even

before market capitalization has reached ω(q∗). The reason for this result is that as long as the steady-state

asset supply has not been reached, all agents mine and hence there is no demand for liquidity. When the

steady state is reached, in finite time, then agents start trading.

The second insight is that there is a regime with scarce liquidity that is qualitatively similar to the

equilibria of the model with indivisible money. The price of the asset is above its fundamental value at all

dates and it keeps increasing over time until it reaches a steady state.19

In the case where the asset is a pure fiat money, d = 0, then qs is independent of Ā and λ, and the

endogenous money supply is proportional to the potential supply. As in the model with indivisible money,

there are a continuum of boom/burst monetary equilibria indexed by the initial value of money where the

value of money increases and then decreases and goes to zero asymptotically. The next corollary shows

changes in Ā are neutral in the long run but have real effects along the transitional path.

Corollary 2 (Money neutrality) Assume d = 0. An increase in Ā leads to a proportional increase in As

in the long run and no real effects. In the short run, aggregate real balances and output fall. During the

transition to the new steady state, the inflation rate is negative.

19 If agents can search for trading partners while mining and r < ασθ/(1 − θ), then the unique equilibrium leading to the
steady state is such that φ decreases over time. The phase diagram is analogous to the middle panel in Figure 13 in Online
Appendix B. The logic for the price dynamics is now consistent with the quantity theory. The value of money is high initially
because the supply is low. As the supply increases, the value of money decreases. A key difference with respect to the model
with indivisible studied earlier is that all agents irrespective of their money holdings receive the revenue from mining.
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The condition for a regime switch, (46), in the case of fiat money (d = 0) can be rewritten as:

r(1− θ) + θλ

rθ
<
ασθ [u(qs)− qs]− rω(qs)

ασθ [u(qs)− qs] .

It does not hold when r is close to 0, i.e., agents specialize in mining until the steady state is reached, and

it reduces to θλ < r(2θ − 1) when ασ goes to +∞. The fact that this condition depends on λ shows that

even though λ does not affect the steady-state equilibrium, it does matter for the transition leading to it.

5.2 Competing monies

The model with unrestricted asset portfolios described in this section is useful to study competition among

currencies. In the following we investigate the competition between a fiat money supplied by the government

and privately-produced fiat money. We ask under which conditions the two monies coexist and whether the

government can choose monetary policy to prevent the production of the private money.20

Suppose now that there are two fiat monies: the privately produced money (labelled b) and the government-

produced money (labelled g). The two monies differ by their acceptabilities in different meetings (e.g., Lester

et al., 2012). There is fraction χb of meetings where only privately-produced money is acceptable. For in-

stance, the private money is accepted as means of payment for illegal transactions, e.g., on online black

markets such as Silk Road, whereas government money is not.21 By symmetry, there is a fraction χg of

meetings where only government-produced money is acceptable, e.g., in transactions that involve the gov-

ernment.22 In the remaining fraction, χ2, both types of monies are acceptable. We denote αj = αχj for

j ∈ {b, g, 2}. By the same reasoning as above the demand for the two monies satisfies the following Euler

equations for j = b, g:

r − ρj = αj(1−m)σθ

{
u′ (qj)− 1

(1− θ)u′ (qj) + θ

}
+ α2(1−m)σθ

{
u′ (q2)− 1

(1− θ)u′ (q2) + θ

}
(49)

where qj indicates output in a match of type j ∈ {b, g, 2}.23 The term on the left side, r − ρj , is the cost

of holding money j. The terms on the right side represent the liquidity services that money j provides at

20 In Online Appendix F we consider two privately-produced monies and ask how miners allocate their efforts between the
two monies. We provide conditions for the two monies to coexist.
21Foley et al. (2018) found that approximately one-quarter of Bitcoin users are involved in illegal activity and estimate that

around $76 billion of illegal activity per year involves Bitcoin (46% of Bitcoin transactions), which is close to the scale of the
US and European markets for illegal drugs.
22 In the search-theoretic model of Aiyagari and Wallace (1997) and Li and Wright (1998) the government is a positive measure

of agents who participate in the matching process with private agents and whose trading strategies, e.g., which objects they
accept in payments, are part of the government policy.
23This description with three types of meetings where assets have different acceptabilities is analogous to the model with

money and bonds of Rocheteau et al. (2017).
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the margin in different types of matches. The second term is common to both monies while the first term is

specific to each money.

We assume that monetary policy aims at keeping qg constant by varying ρg – a form of price level

targeting. As a result, aggregate real balances supplied by the government, ω(qg), are constant. It follows

that the quantity traded in type-b and type-2 matches solve:

ω(q2) = min {ω(qg) + φbAb, ω(q∗)} (50)

ω(qb) = φbAb. (51)

If the total market capitalization of the two monies (in terms of the numeraire) is larger than ω(q∗), then

agents trade q∗ in type-2 matches and spend only a fraction of their money holdings. Otherwise, they spend

all their money, both private and public. The indifference condition between occupations becomes

λ(Āb −Ab)φb =
∑

j∈{b,g,2}

αjσ(1− θ) [u (qj)− qj ] . (52)

As before, this condition gives a positive relationship between φb and Ab. The law of motion for Ab is

Ȧb = λ(Āb −Ab)m. (53)

An equilibrium is a list (ρb, ρg, φb, q2, qb,m,Ab) that solves (49), (50), (51), (52), (53) and ρb = φ̇b/φb.

We represent equilibria on the phase diagram in Figure 10. The indifference locus between occupations,

(52), is represented by an upward-sloping red curve. The isocline for φb, from (49), is such that

r = σθ

{
αb

[
u′ (qb)− 1

(1− θ)u′ (qb) + θ

]
+ α2

[
u′ (q2)− 1

(1− θ)u′ (q2) + θ

]}
, (54)

where qb and q2 are given by (50)-(51). It is represented by a downward-sloping blue curve. The dynamics

are qualitatively similar to the ones studied earlier. In particular, φb and Ab increase over time until they

reach a steady state. Since there is a stock of government money, some agents might choose to become

producers even when Ab = 0, as illustrated on the left panel of Figure 10. On the right panel, all agents are

miners initially and a fraction start producing when the quantity of private money is suffi ciently abundant.

Note that when m = 1 the rate of return of the government money must be ρg = r for agents to be willing

to hoard it until it can serve as means of payment.

At the steady state m = 0 and ρb = 0, which pins down qb and q2. The indifference condition between
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Figure 10: Two numerical examples of equilibrium. (Left) Agents are indifferent between producing and
mining even when Ab = 0. (Right) Agents specialize in mining early on.

occupations gives φb. We can now determine a condition under which the government can prevent the

emergence of the private money.

Proposition 10 (Preventing the emergence of a private money) There is no equilibrium with pro-

duction of private money if
αbσθ

1− θ + α2σθ

[
u′ (qg)− 1

(1− θ)u′ (qg) + θ

]
< r. (55)

The proof based on (54) is straightfoward and is therefore omitted. By raising qg the government reduces

the liquidity shortage, and hence incentives to produce the private money. However, if αbσθ > r (1− θ), even

the Friedman rule (qg = q∗) is not enough to eliminate the private money. The government must reduce the

fraction of matches where the private money is the only means of payment.

6 Conclusion

This paper was motivated by the recent multiplication of crypto-currencies and the questions raised about

the dynamics of their prices and their usefulness for transaction. In order to address these questions we

studied the dynamics of a privately-produced money and its price in a continuous-time, random-matching

economy. We studied indivisible and divisible monies, commodity and fiat monies, single and dual currency

systems, steady states and out-of-steady-state dynamics, equilibria and social optima. Our model is versatile

and can potentially address a wide array of issues related to private monies. Unanswered questions include

the determination of the relative prices of competing private monies, the formalization of the competition

among currency designers, the role of reputation and public monitoring for the private provision of monies,

and the role of miners of crypto-currencies to authenticate and validate transactions.
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Appendix: Omitted Proofs

Proof of Proposition 1. The steady-state money supply is the lowest root of (14) at equality, i.e.,

A2 −
[(
θ + Ā

)
λ+ r(1− θ)
λ

]
A+ Āθ = 0. (56)

The lowest root of (56) is (17). If θ > 0, then As > 0. From (13), qs > 0 is a solution to

Γ(q) ≡ {ασ(θ −As)− r(1− θ)} [u(q)− q]− rq = 0. (57)

If ασ(θ−As)− r(1− θ) > 0 then Γ(q) is strictly concave with Γ′(0) = +∞ and limq→∞ Γ(q) = −∞. Hence,

there exists a unique qs > 0 solution to Γ(qs) = 0. If ασ(θ−As)− r(1− θ) ≤ 0 then Γ(q) is decreasing with

Γ(0) = 0. Hence, there is no qs > 0 solution to Γ(qs) = 0. Comparative statics are straightforward. As an

example, consider the effects of changes in λ. Differentiating (56) with respect to A and λ we obtain:

∂As

∂λ
=

(
Ā−As

)
(As − θ)

2λAs −
[(
θ + Ā

)
λ+ r(1− θ)

] .
Using that As is the lowest root of (56), it follows that the denominator is negative (graphically, the slope

of the parabola is negative when it intersects the horizontal axis at As). Using that As < min{Ā, θ}, the

numerator is negative and ∂As/∂λ > 0. From (57) Γ(q) decreases with As for all q such that u(q)− q > 0.

Hence, ∂qs/∂λ > 0. As another example, consider a change in r. From (56),

∂As

∂r
=

(1− θ)As

2λAs −
[(
θ + Ā

)
λ+ r(1− θ)

] < 0.

Since agents are indifferent between mining or producing at As, namely ∆(qs, As) = 0, by (8) we have

u(qs)− qs
ω(qs)

=

{
1− θ +

qs

u(qs)− qs

}−1

=
λ
(
Ā−As

)
ασAs(1− θ) .

The left side falls in qs and the right side falls in As. Consequently, qs and As co-move when r changes and

∂qs/∂r < 0.

Proof of Proposition 2. Parts 1 and 2. We first provide a condition that determines which regime,

m = 1 − A or m ∈ (0, 1−A), is relevant along the equilibrium trajectory. We use the condition to create

two ODEs that fully characterize the dynamics of qt and At. Then we will use a standard result for systems

of ODEs to prove the existence and uniqueness of qt and At.
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Suppose the economy is at (A′, q′) where A′ < As and consider the trajectory as we move backward in

time. If µ(q′) > A′, then the equilibrium path cannot follow (10) because the solution path is continuous.

To see this, note that the path of At is continuous by (11) since At cannot jump and
∣∣∣Ȧ∣∣∣ ≤ λĀ. The value of

money, ω(qt) ≡ V1,t−V0,t, is continuous over time because the continuation values V1,t and V0,t are integrals

of payoffs that arrive randomly according to Poisson processes. As a result m = 1−A′ when µ(q′) > A′. In

this case it is optimal for agents to mine because ∆(q′, A′) in (8) is strictly positive when µ(q′) > A′.

Next suppose µ(q′) = A′. The equilibrium is in the regime with m = 1−A if and only if

∂q

∂A

∣∣∣∣
m=1−A

≤ ∂q

∂A

∣∣∣∣
m∈(0,1−A)

(58)

where the first derivative is defined by (23) and the second is obtained by differentiating (10) with respect

to A, namely ∂q/∂A = 1/µ′(q). If (58) is binding, then both regimes imply m = 1−A and thus they imply

the same trajectory. If (58) holds strictly, then the trajectory defined by (21) and (22) converges to (A′, q′)

from the left of the line µ(q) = A, and thus it is optimal for all agents without money to mine, m = 1− A.

The trajectory µ(q) = A is not an equilibrium near (A′, q′) because by (18) and (19)

∂q

∂A
=
m−1{

[
r + λ

(
Ā−A

)]
ω(q)− ασ (1−A) θ [u(q)− q]}+ ασθ [u(q)− q]

λ(Ā−A)ω′(q)
. (59)

For any (A, q) such A = µ(q), the right side rises in m because the expression in the braces is negative by

(14) and (10). Using that the left side of (58) coincides with (59) when m = 1 − A, it follows that if (58)

holds strictly at (q′, A′), then the measure of miners m implied by the trajectory A = µ(q) must strictly

exceed 1−A′, and thus it cannot be an equilibrium path.

If (58) does not hold, then the trajectory defined by (21) and (22) converges to (q′, A′) from below

A = µ(q) and hence no agent has an incentive to mine. In this case the equilibrium path is in the regime

where m ∈ (0, 1−A) and the measure of miners m implied by A = µ(q) satisfies m < 1−A by (59).

We are now ready to characterize the equilibrium by a system of ODEs in backward time. Let y ≡ As−A.

Then we can define q as a function of y along the equilibrium path. From (23) and (10), the two sides of the

inequality (58) can be expressed as:

∂q

∂y

∣∣∣∣
m=1−A

= g1(y, q) ≡ − ω(q)

ω′(q)

[r + λ
(
Ā−As + y

)
]

(1−As + y)λ
(
Ā−As + y

) (60)

∂q

∂y

∣∣∣∣
m∈(0,1−A)

= g2(y, q) ≡ − 1

µ′(q)
. (61)
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By the discussion above, the equilibrium path q(y) solves the following ODE:

∂q

∂y
= f(y, q) ≡ max{g1(y, q), g2(y, q)}1{µ(q)≤As−y} + g1(y, q)1{µ(q)>As−y} (62)

with the initial condition q(0) = qs, where 1{·} is an indicator function. It is easy to check that f(y, q) is

bounded and continuous for y ∈ [0, As] and q ∈ (0, q̄] where q̄ > 0 is the solution to u(q̄)− q̄ = 0.

Next we show that the equilibrium eventually enters the regime with m = 1 − A as y increases. As q

tends to 0, then ω(q)µ′(q)/ω′(q) → 0 and thus there exists q > 0 such that (60) exceeds (61) for all q < q.

Therefore the equilibrium stays in the regimem = 1−A for all q < q as shown in Figure 11. Let y = As−µ(q)

so that the equilibrium has m = 1−A for all y ≥ y.

A

)(Aq ss

ssA

ssq

A
0q

)(qA

Figure 11: The equilibrium path is contained in the shaded area.

Consider the existence and uniqueness of equilibrium for q ∈ [q, qs] and y ∈ [0, y]. By Theorem 58.5 in

Tennenbaum and Pollard (1985), there is a unique solution for q(y) in (62) provided that f(y, q) is Lipschitz

continuous, namely there is a real constant K > 0 such that

|f(y, q′)− f(y, q′′)| ≤ K|q′ − q′′|

for every y ∈ [0, y] and q′, q′′ ∈ [q, qs]. For any y ∈ [0, y], one can check that the slope of f with respect to q

is bounded provided that u′′ is bounded. Therefore, f is Lipschitz continuous.

Next we express m as a function of y. By using the solution of q(y) and (59),

m(y) =
ασ (1−As + y) θ{u[q(y)]− q(y)} −

[
r + λ

(
Ā−As + y

)]
ω[q(y)]

λ(Ā−As + y)ω′(q)∂q/∂y + ασθ{u[q(y)]− q(y)}
. (63)

By (19) the ODE that determines yt is

ẏt = −λm(yt)(Ā−As + yt).
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One can check that the slope of the right side with respected to y is bounded for all y ≤ y. Therefore the

right side is Lipschitz continuous and the solution for yt is unique for any given initial condition. Since q(y)

and yt exist and are unique, qt and At exist and also are unique.

For A < As − y, the equilibrium is in the regime with m = 1 − A. The ODE for A, (22), is a Riccati

equation, which has a closed form solution (see Section 2.15 in Ince (1956)):

At =
Ā− Āe−λ(1−Ā)t

1− Āe−λ(1−Ā)t
, (64)

where A0 = 0 is the initial condition. By (64) and (21) we can solve for the value of money in closed form.

ω(qt) = ω0e
rt

1 +
Ā
[
1− e−λ(1−Ā)t

]
(1− Ā)

 . (65)

where ω0 is the initial value of ω(qt) at t = 0. We can solve for ω0 by first solving t0 in At0 = As − y where

At is given by (64). Then we derive ω0 by solving ω(qt0) = ω(q) where ω(qt0) is derived by evaluating (65)

at t = t0. Since q > 0 as discussed above, ω0 > 0 by (65).

Part 3. By (23) the inequality (58) is equivalent to

ω(q)

ω′(q)

r + λ
(
Ā−A

)
(1−A)λ

(
Ā−A

) ≤ 1

µ′(q)
. (66)

Suppose A = As and q = qs. Since As = µ(qs) and As solves the equality (14), the inequality above is

equivalent to
µ′(qs)

µ(qs)

ω(qs)

ω′(qs)
≤ 1− θ

θ
.

This proves the claim concerning (27) in the proposition. Finally, if m = 1 − A near the neighborhood of

the steady state, then Ȧ in (11) is strictly positive because Ā − At > 0 and 1 − At > 0 near the steady

state. Therefore At converges to As in finite time near the steady state. When m < 1 − A, m → 0

as (q, A) → (qs, As) because the denominator in (63) is positive by (10) and (14), and it vanishes as

(q, A) → (qs, As). Moreover, since ∂q/∂y = −1/µ′[q(y)] when m < 1 − A, the numerator in (63) can be

written as

−λ(Ā−As+y)
ω′[q(y)]

µ′[q(y)]
+ασθ{u[q(y)]−q(y)} = (1−θ)ασ{u[q(y)]−q(y)}

[
θ

1− θ −
ω′[q(y)]/ω[q(y)]

µ′[q(y)]/µ[q(y)]

]
. (67)

The equation is true because when m < 1−A we have A = µ(q), and thus by (10) and A = As − y

λ
(
Ā−As + y

)
=

(1− θ)ασµ[q(y)] {u[q(y)]− q(y)}
ω(q)

. (68)

40



As q(y) → qs, the right side of (67) converges to a strictly positive value by (27) and therefore m in (63)

vanishes as (q, A)→ (qs, As). It follows that Ȧ vanishes by (19) and thus At → As only asymptotically.

Proof of Lemma 1. Parts 1 and 2. By Proposition 2 mining and trades coexist near the steady

state if
µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

.

By differentiating (10),
µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
=

(
Ā−As

)
[1− ε(qs)]

Āω′(qs)[1− qs/u(qs)]
(69)

Hence, (27) can be rewritten as: (
Ā−As

)
[1− ε(qs)]

Āω′(qs)[1− qs/u(qs)]
>

1− θ
θ

. (70)

The left side rises in qs by ε′(q) ≤ 0 and the concavity of u(q). As λ rises, As rises and qs falls by Proposition

1, and thus the left side of (70) falls. As λ→∞, A→ Ā and the right side of (70) vanishes, so λ∗ is finite.

Next, by Proposition 1, as σα increases, As remains constant but qs rises. Hence, the left side of (70)

rises. When ασ is suffi ciently small, q is arbitrarily close to 0. As q → 0, the left side of (70) vanishes by

L’Hospital’s Rule and thus the inequality fails. From (13), as ασ → ∞, qs/u(qs) → 1 and the left side of

(70) goes to infinity. This proves that (27) holds if ασ is suffi ciently large and thus κ∗ ∈ (0,∞).

Part 3. We show m ∈ (0, 1 − A) is impossible when θ < 1/2. As discussed before (67), the denominator

in the right side of (63) is strictly negative for all q < qs and A < As. Suppose m ∈ (0, 1 − A), then the

numerator can be written as (67) and it is negative if and only if

ω(q)

ω′(q)

µ′(q)

µ(q)
>

1− θ
θ

⇐⇒ 1− ω(q){ασ(1− θ) [u′(q)− 1] + λω′(q)}
ω′(q){ασ(1− θ) [u(q)− q] + λω(q)} >

1− θ
θ

.

The second inequality uses the definition of µ in (10). If λ is suffi ciently large, then qs < q∗ by Proposition 1.

In this case u′(q)− 1 > 0 for all q ≤ qs and thus the left side is less than 1. If θ < 1/2, then (1− θ)/θ > 1

and therefore this condition always fails. As a result m < 0 and thus it is impossible for the equilibrium

path to be in the regime with m ∈ (0, 1−A).

Part 4. The transition from the regime with m = 1−A to one with m ∈ (0, 1−A) must occur on the line

A = µ(q) and the slope of the two trajectories must be the same, namely

∂q

∂A

∣∣∣∣
m=1−A

=
∂q

∂A

∣∣∣∣
m∈(0,1−A)

.

41



The equality holds because if the right side is strictly larger, then the measure of miner implied by the

trajectory A = µ(q) strictly exceeds 1 − A and thus it cannot be an equilibrium. If the left side is strictly

larger, then the trajectory in the m = 1− A regime will cut the line A = µ(q) from below, but in this case

no agents has incentive to mine and thus it is impossible to have m = 1 − A. Therefore the slope of the

trajectories must be the same at the transition point. From (23) and (10), the displayed equation is the

same as
ω(q)

ω′(q)

r + λ
(
Ā−A

)
(1−A)λ

(
Ā−A

) =
1

µ′(q)
.

By the definition of µ in (10) and A = µ(q), the equation can be rewritten as[
1− ω(q){ασ(1− θ) [u′(q)− 1] + λω′(q)}

ω′(q){ασ(1− θ) [u(q)− q] + λω(q)}

]
A[r + λ

(
Ā−A

)
]

(1−A)λ
(
Ā−A

) = 1

⇐⇒ ασ(1− θ)[1− ε(q)]
ω′(q)

[
u(q)

ασ(1− θ) [u(q)− q] + λω(q)

]
A[r + λ

(
Ā−A

)
]

(1−A)λ
(
Ā−A

) = 1.

Now we argue that the left side rises monotonically as we move along the line A = µ(q) in the (A, q) space.

As we move along A = µ(q), both q and A increase. The fraction 1 − ε(q) rises in q provided that u has

decreasing elasticity. The fraction 1/ω′(q) rises in q by the concavity of u. The fraction in the large bracket

rises in q when ασ(1− θ) > λθ. The last fraction in the left side rises in A. Altogether the left side increases

as the trajectory move along A = µ(q). It follows that there can be at most one transition from them = 1−A

regime to the one with m ∈ (0, 1−A).

Finally, once the equilibrium enters the regime with m ∈ (0, 1 − A), it cannot switch regime again. For

suppose it switches regime, then the equilibrium must stay in the regime with m = 1−A as explained above.

But this implies the equilibrium trajectory cannot converge to (As, qs) because it cannot intersect the line

A = µ(q) anymore.

Proof of Proposition 3. Part 1 From the proof of Proposition 2, for any (A′, q′) where A′ < As and

A′ ≤ µ(q′), there is a unique q0 such that (At, qt) = (A′, q′) for some t > 0 only if it starts at (A0, q0) = (0, q0).

As a result if two equilibrium trajectories have different initial values for q, then they will not intersect in

the (A, q) space. It follows that any equilibrium trajectory with q0 < q∗0 is located below the trajectory with

q0 = q∗0 that converges to (As, qs) as illustrated in the left panel of Figure 12. Since A0 = 0 ≤ µ(q0), the
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trajectory is in the regime with m = 1−At in the beginning. From (25) in this regime the trajectory solves:

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

ω(qt) = ertω(q0)

[
1− Āe−λ(1−Ā)t

1− Ā

]
.

Since the trajectory cannot intersect with the one that converges to steady state, it must cross the locus

A = µ(q) in the (A, q) space at some A < As. Let T0 be the first time the trajectory satisfies At = µ(qt).

Since AT0 < As and m = 1 − At for all t < T0, the value of At reaches AT0 in finite time, thus T0 < +∞.

This proves Part 1(a).

Next, we argue that the trajectory only crosses the locus A = µ(q) once. Suppose At > µ(qt), then

mt = 0 because no agent wants to mine. Therefore At remains constant. The value of money ωt = ω(qt)

solves (7) with m = 0, i.e.,

ω̇ = rω − ασ (θ −AT1) [u(q)− q] . (71)

Using that ω̇ = 0 when (At, qt) = (As, qs) and ω̇/ω increases in q, it follows that ω̇ < 0. See right panel of

Figure 12. It follows that the trajectory (At, qt) falls vertically whenever (At, qt) lies below the locus A = µ(q)

and At < As. Since the trajectory must and can only cross A = µ(q) once, there is T1(q0) ∈ (T0(q0),+∞)

such that AT1 = µ(qT1) and At > µ(qt) for all t > T1. For all t < T1, mt > 0 and q̇t > 0 since otherwise the

equilibrium trajectory would fall permanently below the locus A = µ(q). These properties are also illustrated

in the left panel of the Figure 12.
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Figure 12: Failing currency equilibria

For all t > T1, mt = 0, At = AT1 , and ω̇ < 0 as discussed above. See right panel of Figure 12. By (71)
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and the L’Hospital’s Rule

lim
q↘0

ω̇

ω
= r − ασ (θ −AT1)

u′(0)/[u′(0)− 1]− θ .

Since the right side is constant for t ≥ T1, ωt falls at a constant percentage rate when q ≈ 0. Therefore ωt

converges to 0 asymptotically. This proves Part 1(b).

Part 2 If (27) holds, then there is a T< +∞ such that for all t ≥T , At = µ(qt) along the unique

equilibrium, (A∗t , q
∗
t ), leading to (As, qs). For all T ≥T , we can construct an equilibrium such that (At, qt) =

(A∗t , q
∗
t ) for all t ≤ T and mt = 0 for all t ≥ T . The trajectory up to T is the solution to the system of

ODEs in backward time characterized in the proof of Proposition 2. Since AT = µ(qT ), at time T agents

are indifferent between mining or not. We select mT = 0. As a result, ȦT = 0 and

q̇T =
rω(qT )− ασ (θ −AT ) [u(qT )− qT ]

ω′(qT )
< 0.

Since q̇T < 0, the trajectory falls below the locus A = µ(q). As a result for all t > T , mt = Ȧt = 0, and

q̇t < 0. The rest of the argument is similar to the proof of Part 1 of Proposition 3.

Proof of Proposition 4. For d > 0, the value functions and equilibrium conditions are detailed in

Online Appendix E. Suppose there is a T > 0 such that At > µ(qt) for all t > T . Then, mt = 0 and At = AT

for all t > T . The law of motion of ωt = ω(qt) is given by

ω̇t = rωt − d− ασ (θ −AT )S(ωt).

where S(ωt) = u(qt) − qt, S′(ωt) = [u′(qt)− 1] / [(1− θ)u′(qt) + θ], and S′′(ωt) < 0. Therefore, the right

side is convex in ωt, it approaches −d as ωt goes to 0 and +∞ as ωt grows large. Consider a trajectory

where ωt approaches 0. Then, ω̇t → −d, which implies that ωt becomes negative for some finite t, which is

inconsistent with ω(qt) ≥ 0. This rules out equilibria where At > µ(qt). The rest of the proof is similar to

the one of Proposition 2.

Proof of Proposition 5.

Part 1. A necessary condition for ω̇ = 0 is m < 1 − A. Substituting m by its expression from (30) into

(28) and setting ω̇ = 0 we obtain (31).

Part 2. Consider an outcome (ω,A) such that ω < ωs. From (32), π = 0 and from (30) m = 0. From

(28),

ω̇/ω ≤ r − ασ (θ −A)
[u(q)− q]

ω
,
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where we used π/m ≤ ασ(1−θ) [u(q)− q] /ω, this inequality is true because agents prefer not to mine. Using

r = ασ (θ −A) [u(qs)− qs] /ωs and the fact that the right side is decreasing in ωs, it follows that ω̇/ω < 0.

Moreover, ω̇/ω decreases with ω so that ω converges to 0. By Proposition 4, if money pays an arbitrarily

small interest, such trajectories are not part of an equilibrium. Consider next an outcome (ω,A) such that

ω > ωs. From (32) and (30) m = 1−A. From (28)

ω̇

ω
= r +

ασ(1− θ) [u(q)− q]A
ω

> 0.

The value of money grows at a rate higher than r which violates the transversality condition, limt→+∞ e−rtωt =

0. Therefore, the only trajectory consistent with an equilibrium is ωt = ωs.

Lemma 2 There exists a pair of (mt, At) that solves the planner’s problem (72)-(74), provided that qt = q∗.

Proof. The planner’s problem is given by:

max
qt,mt,At

∫ +∞

0

e−rtασAt(1−At −mt)[u(qt)− qt]dt (72)

s.t. Ȧ = mtλ(Ā−At), (73)

mt ≤ 1−At and A(0) = A0. (74)

The objective is the discounted sum of all trade match surpluses where the aggregate measure of trade

matches between a money holder and a producer is ασA (1−A−m). The state variable is the money

supply which increases with the measure of miners who successfully did money from the ground. There are

two control variables, the measure of miners and output in a match. The measure of miners has an upper

bound given the measure of agents without money. If the planner can dictate the output traded in each

match, she will choose qt = q∗ for all t. One can rewrite (73) as

Ȧ = min{mt, 1−At}λ(Ā−At). (75)

This reformulation is useful because it ensures the planner never chooses mt > 1−At even when it is feasible.

As a result we could drop the constraint mt ≤ 1−At and only impose mt ∈ [0, 1]. Next we apply a standard

result to show the existence of solution for an infinite horizon optimization problem. By Theorem 15 in

Seierstad and Sydsaeter (1986) there exists a (At,mt) that solves the new planner’s problem if

1. The right side of (75) and the integrand in (72) are continuous in mt and At.
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2. There exists a function φ(t) such that φ(t) ≥ |e−rtασAt(1 − At −mt)[u(q∗) − q∗]| for all admissible

(mt, At) and
∫∞

0
φ(t)dt <∞.

3. There exists non-negative function a(t) and b(t) such that

min{mt, 1−At}λ(Ā−At) ≤ a(t)At + b(t)

for all At ∈ [0, Ā] and mt ∈ [0, 1].

4. The set

N(A, t) = {(e−rtασAt(1−At −mt)[u(q∗)− q∗] + γ,min{mt, 1−At}λ(Ā−At))|mt ∈ [0, 1], γ ≤ 0}

is convex for all At and t.

It is easy to see condition (1) is satisfied. Condition (2) is satisfied by assuming φ(t) = e−rtασĀ[u(q∗)−q∗].

Condition (3) is satisfied because the right side of (75) is bounded above for all At and mtby λĀ. The last

condition is satisfied because the first component of N(A, t) is linear in mt and γ and the second component

is concave inmt and constant in γ. It follows that there is a pair of (At,mt) that solves the planner’s problem

provided that qt = q∗.

Proof of Proposition 7. Part 1 It is obvious that the optimal output is qt = q∗ provided that trade

happens. By Lemma 2 there is a solution to the planner’s provided that qt = q∗. Now we characterize this

solution and argue it is unique. The current value Hamiltonian corresponding to (72)-(74) is:

H (A,m, ξ, ν) = ασA (1−A−m) [u (q∗)− q∗] + ξmλ
(
Ā−A

)
+ ν(1−A−m),

where ξ is the co-state variable associated with A, and ν is the Lagrange multiplier associated withm ≤ 1−A.

The FOC with respect to m is:

m
= 0
∈ [0, 1−A]

if − ασA [u (q∗)− q∗] + ξλ
(
Ā−A

)
− ν < 0

= 0
, (76)

together with the complementary slackness condition, ν(1−A−m) = 0. The co-state variable satisfies the

following ODE:

rξ = ασ (1− 2A−m) [u (q∗)− q∗]− ξmλ− ν + ξ̇. (77)
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The stationary solutions to (73) and (77), Ȧ = ξ̇ = 0, are such that m = 0 and

rξ = ασ (1− 2A) [u (q∗)− q∗] (78)

ξλ
(
Ā−A

)
≤ ασA [u (q∗)− q∗] . (79)

We denote A∗ the lowest value of A that satisfies (79). It is the lowest root of the following quadratic

equation,

2A2 −
(

1 + 2Ā+
r

λ

)
A+ Ā = 0.

In closed form:

A∗ =

(
1 + 2Ā+ r/λ

)
−
√(

1 + 2Ā+ r/λ
)2 − 8Ā

4
.

It is easy to check that A∗ < min{1/2, Ā}. We denote

ξ∗ = ασ (1− 2A∗) [u (q∗)− q∗] /r.

Now we argue that At converges to A∗. Since At is continuous, non-decreasing and bounded above by Ā,

eventually it converges and m vanishes. The process At cannot converge to any A′ < A∗. Suppose it does.

Since A∗ is the smallest solution to (78) and (79), for all A′ < A∗ we have

−ασA′ [u (q∗)− q∗] + ξλ
(
Ā−A′

)
> 0.

This implies ν > 0 by (76) and thus m = 1 − A by the complementary slackness condition. Since A′ < 1,

m = 1 − A′ > 0 and thus At cannot converge to A′. The process At also cannot converge to any A > A∗

because when At goes above A∗ the inequality (79) holds strictly and thus m = 0 by (76). It follows that

the optimal solution can only converge to A∗.

We conjecture and then verify that the solution to the planner’s problem is such that for all A < A∗,

m = 1−A. Then, the ODEs (73) and (77) can be rewritten as

Ȧ = λ(1−A)
(
Ā−A

)
(80)

ξ̇ =
[
r + (1 + Ā− 2A)λ

]
ξ. (81)

The ODE for A, (80), is a Riccati equation which can be solved in closed form. See Section 2.15 in Ince

(1956) for details. The solutions are

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

and ξt = ξ0e
[r+λ(1−Ā)]t

(
1− Āe−λ(1−Ā)t

1− Ā2

)2

,
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where we used that A0 = 0. Hence, there is a unique solution to (80)-(81). By the formula for A∗ and At,

one can solve for the time T ∗. We denote the path defined by (80)-(81) by ξ = ξp(A). From (80)-(81) the

slope of ξ = ξp(A) is

ξp′(A) =
ξ̇

Ȧ
=

[
r + (1 + Ā− 2A)λ

]
ξ

λ(1−A)
(
Ā−A

) .

From (76) m = 1−A is optimal only if

ξp(A) ≥ Ω(A) ≡ ασA [u (q∗)− q∗]
λ
(
Ā−A

) for all A < A∗.

We now show that whenever ξp(A) = Ω(A) then 0 < ξp′(A) < Ω′(A). To see this, we evaluate ξp′(A) at

ξ = Ω(A):

ξp′(A)
∣∣
ξ=Ω(A)

=
A
[
r + (1 + Ā− 2A)λ

]
λ(1−A)Ā

ασĀ [u (q∗)− q∗]
λ
(
Ā−A

)2
< Ω′(A) =

ασĀ [u (q∗)− q∗]
λ
(
Ā−A

)2 for all A < A∗.

Given that ξp(A∗) = Ω(A∗), there is no other solution A < A∗ to ξp(A) = Ω(A), and thus ξp(A) ≥ Ω(A) for

all A < A∗.

Finally we argue m ∈ (0, 1 − A) cannot be optimal. Suppose m ∈ (0, 1 − Ã) at certain (Ã, ξ̃) where

Ã < A∗. Then ξ̃ = Ω(Ã) by (76). By the ODE (73) and (77),

ξp′(Ã) =
ξ̇

Ȧ
=

ξ̃

λ(Ā− Ã)

[
1

m

(
r +

λ(Ā− Ã)(2Ã− 1)

Ã

)
+ λ+

ασ[u(q∗)− q∗]
ξ̃

]
. (82)

Since rA+ λ(Ā−A)(2A− 1) < 0 for all A < A∗ by (78) and (79), the right side of (82) strictly increases in

m. As discussed above, if m = 1− Ã, then ξp′(Ã) < Ω′(Ã) and thus ξp(A) cuts Ω(A) from above at (Ã, ξ̃).

By a similar argument, ξp(A) must be lower than Ω(A) for all A ∈ (Ã, A∗). But then it is impossible for

ξ(A) to reach ξ∗ as A → A∗ because m = 0 when ξp(A) < Ω(A) by (76). Therefore m ∈ (0, 1 − A) is sub

optimal.

Part 2 In order to guarantee that mt = 1 − At for all t < T ∗ we set θ(t) = 1 for all t < T ∗ so that

producers receive no gains from trade. From (13) the buyer’s bargaining power that implements q∗ when T ∗

has been reached is θ∗ defined in (36). Incentive feasibility means θ∗ ∈ [0, 1], which holds if and only if (34)

holds. From (14) agents stop mining when A∗ is reached if

r ≤ (1−A∗) [u(q∗)− q∗]
q∗

[
ασA∗ − λ

(
Ā−A∗

)]
− λ

(
Ā−A∗

)
.
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This inequality can be rearranged to give (35).

Proof of Proposition 9. Part 1. Consider a steady state such that qs = q∗ and φs = d/r. Such a

steady state requires that ω(q∗) ≤ φsAs. Such an equilibrium exists if the curve representing (43) is located

below the curve representing (44) when A = rω(q∗)/d. Alternatively, the left side of (43) is greater than the

right side when φ = d/r and A = rω(q∗)/d, i.e., (45) holds. From (39)

φ̇

φ
=
r (φ− φs)

φ
− α(1−m)σθ

[
u′ (qt)− 1

(1− θ)u′ (qt) + θ

]
.

In the neighborhood of the steady state qt = q∗ and the second term on the right side is equal to 0. The

only solution to φ̇ = r (φ− φs) is such that φt = φs. Any other path violates limt→+∞ e−rtφt = 0 or

φt ≥ d/r. Solving φ̇ = r (φ− φs) in backward time leads to φt = d/r for all t. Using that λ(Ā − As)φ =

ασ(1− θ) [u (q∗)− q∗] at the steady state, it follows that λ(Ā−At)φ > ασ(1− θ) [u (q∗)− q∗] for all t such

that At < As, and hence mt = 1 for all t such that At < As. See the phase diagram in the right panel of

Figure 9.

Part 2. If (45) does not hold then the unique steady state features qs < q∗ and φs > d/r. By the same

reasoning as in the proof of Proposition 2, there is a unique equilibrium leading to the steady state. By (39)

and (42) the slope of the trajectory in the (A, φ) space is

∂φ

∂A
=
φ̇

Ȧ
=

1
m

[
rφ− d−

(
ασθ[u′(q)−1]
(1−θ)u′(q)+θ

)
φ
]

+ ασθ[u′(q)−1]
(1−θ)u′(q)+θφ

λ(Ā−A)
. (83)

Since qt increases over time and qs < q∗, the bargaining solution implies

ω(q) = (1− θ)u(q) + θq = φA. (84)

By the implicit function theorem ∂q/∂(φA) = 1/ω′(q) and thus S′(φA) = [u′(q) − 1]/ω′(q). By (43), (84)

and the definition of S, the slope ∂φ/∂A can be written as

∂φ/φ

∂A/A
=

ασ(1− θ) [u′(q)−1]
ω′(q) + λ

ασ(1− θ)
[
1− ω(q)[u′(q)−1]

ω′(q)[u(q)−q]

]
[u(q)−q]
ω(q)

.

Let mI(q, φ) be the measure of miners implied by the indifference locus. To solve for mI(q, φ) replace ∂φ/∂A

in the above equation by (83). Then by (43) and (84){
1− ω(q)[u′(q)− 1]

ω′(q)[u(q)− q]

}r − d/φ−
ασθ[u′(q)−1]

ω′(q)

mI(q, φ)
+
ασθ[u′(q)− 1]

ω′(q)


= ασ(1− θ) [u′(q)− 1]

ω′(q)
+ λ.
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The right side falls strictly in q by the concavity of u. The left side rises in φ because d ≥ 0. The first term

in the large square bracket is strictly negative when q < qs and φ < φs by the definition of the steady state.

Therefore, the left side rises strictly in mI . If the elasticity of u(q) falls in q then the expression in the large

bracket rises in q, and thus the left side rises in q. Altogether as q and φ increase, mI(q, φ) must fall strictly

to balance the equation.

The rest of the proof is similar to that of Proposition 2. Suppose the dynamic system starts from the

steady state and goes backward in time. By the proof logic leading to Proposition 2, the economy lies in the

regime with m ∈ [0, 1] if and only if mI(qt, φt) ≤ 1. Since qt and φt increase over time and mI(q, φ) falls as

q and φ increase, the system has at most one regime switch. Since mt = 1 when A is suffi ciently small, as

t increases from 0 the equilibrium either stays in the regime with mt = 1 or has exactly one regime switch

from mt = 1 to mt < 1. The economy has mt = 1 until it reaches the steady state if and only if the slope of

the trajectory when m = 1,
∂φ/φ

∂A/A
= ασθ

S(Aφ)

λ(Ā−A)φ
ν(Aφ),

is larger than the slope of the locus where agents are indifferent between occupations, i.e.,

∂φ/φ

∂A/A
=
ν(Aφ) +A/(Ā−A)

1− ν(Aφ)
.

This happens when (46) does not hold. Otherwise, the equilibrium features mt < 1 in the neighborhood of

the steady state.

Part 3. From (44) if d = 0 then qs solves

r = ασθ

{
u′ (q)− 1

(1− θ)u′ (q) + θ

}
.

A unique solution exists if r < ασθ/(1 − θ). The characterization of the unique equilibrium leading to the

steady state is similar to Part 2.
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Online Appendix for “Money Mining and Price Dynamics”

February 2019

A Granger test

In this section we test whether the prices of gold and Bitcoin affect their production or mining intensity.

Gold: We use the historical mine production index and purchasing power of gold from Jastram (2009).

This is an annual data covering 1870-1970, see Figure 2. Consider the two-variable VAR[
productiont
pricet

]
= b0 +B1

[
productiont−1

pricet−1

]
+ · · ·+Bk

[
productiont−k
pricet−k

]
+

[
ε1,t

ε2,t

]
where b0 is a vector of intercept terms and each of B1 to Bk is a matrix of coeffi cients. The lag length k = 3

is recommended by the likelihood ratio test, final prediction error and Akaike’s information criterion.

We use the Granger test to test the null hypothesis that all coeffi cients on lags of the price in the

production equation are equal to zero, against the alternative that at least one is not non-zero. The p-value

is 0.02 and thus we conclude that the real price of gold Granger-causes the production at the 5% level.

Bitcoin: We use the monthly data on mining diffi culty and Bitcoin price from the web site Bitcoinity,

covering the period Aug 2010 to Oct 2018. We consider the following VAR model[
growth of diff levelt
growth of pricet

]
= b0 +B1

[
growth of diff levelt−1

growth of pricet−1

]
+ · · ·+Bk

[
growth of diff levelt−k
growth of pricet−k

]
+

[
ε1,t

ε2,t

]
.

The recommended lag is k = 2 and the p-value of the causality test is 0.0004. Hence we conclude that the

growth rate of prices Granger-causes the growth rate of the diffi culty level at the 1% level.
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B Search while mining

In the main text we described the decision to mine money as an occupation choice and the cost to mine

as the foregone opportunities in the trading sector. In the following we allow miners to search for trading

opportunities. We will show that this possibility can change the dynamics of prices depending on the

effi ciency of the mining technology.

Suppose now that agents who choose to mine can still receive opportunities to produce. Specifically,

miners meet a money holder at Poisson arrival rate αηA where η ≤ 1 while non-miners meet money holders

at rate αA. It follows that a money holder meets someone who can produce at rate

mαηA+ (1−A−m)αA

A
= α [1−A−m(1− η)] , (85)

and she likes the good offered with probability σ. The case studied so far was η = 0. Another polar case

is η = 1 where agents can engage in mining without forgiving any trading opportunity. In that case, the

buyer’s matching rate is simply α(1−A).

Agents’value functions solve:

rV1 = ασ [1−A−m(1− ρ)] θ [u(q)− q] + V̇1 (86)

rV0 = ασAρ(1− θ) [u(q)− q] + max
{
ασA(1− ρ)(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ V̇0. (87)

The key novelty in (87) is that the opportunity cost of mining has been multiplied by 1 − ρ. In particular,

if ρ = 1 there is no opportunity cost of mining and all agents without money mine. Subtracting (87) from

(86) the value of money solves:

rω(q) =

{
1−

[
1 + ρ

(
1− θ
θ

)]
A−m(1− ρ)

}
θασ [u(q)− q] (88)

−max
{
ασA(1− ρ)(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ ω′(q)q̇.

The law of motion for A is:

Ȧ = mλ
(
Ā−A

)
. (89)

The locus of pairs (A, q) such that agents are indifferent between mining or not is given by:

A = µ(q) ≡ λĀω(q)

ασ(1− ρ)(1− θ) [u(q)− q] + λω(q)

The µ-locus shifts to the right as ρ increases and it becomes vertical at A = Ā when ρ = 1. Let us start first

with steady-state equilibria.
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Proposition 11 (Search while mining) There exists a steady-state monetary equilibrium iff

r <
ασ

1− θ

[
ασθ(1− η) + λ

(
θ − Ā

)
ασ(1− η) + λ

]
. (90)

The steady-state money supply, As, increases with η while the value of money, qs, decreases with η.

Suppose η = 1. There exists a monetary equilibrium if r < ασ
(
θ − Ā

)
/(1−θ) and it is such that As tends

to Ā < θ. For all A0 < Ā the unique equilibrium leading to the steady state is such that: A increases over

time until it reaches Ā; q increases over time if λ > r/
(
θ − Ā

)
, decreases if λ < r/

(
θ − Ā

)
, and remains

constant if λ = r/
(
θ − Ā

)
.

Proof. By the same reasoning as in Section 3.2, qs solves (12),

rω(q) = (θ −A)ασ [u(q)− q] ,

and As is the smallest root to

λ
(
Ā−A

)
(θ −A)−A(1− η)(1− θ)r = 0. (91)

It is easy to check that As increases with ρ while qs decreases with η. Moreover, as η approaches to 1, As

approaches to min{θ, Ā}. By the same reasoning as in the proof of Proposition 1 there exists a steady-state

monetary equilibrium iff

lim
q→0
{rω(q)− [θ − µ(q)]ασ [u(q)− q]} < 0.

Dividing by ω(q) > 0 this condition can be rewritten as:

lim
q→0

{
r − ασ [θ − µ(q)] [u(q)− q]

ω(q)

}
< 0.

Using that limq→0 {[u(q)− q] /ω(q)} = 1/(1−θ) and limq→0 µ(q) = λĀ/ [ασ(1− η) + λ] the condition above

can be rewritten as (90). In particular, when η = 1,

r <
ασ

1− θ
(
θ − Ā

)
.

In that case a necessary condition for a steady-state monetary equilibrium is Ā < θ. Hence, As = θ < Ā.

The condition ασ(θ − Ā) > r(1 − θ) guarantees the existence of a steady-state monetary equilibrium

when η = 1. The system of ODEs, (88) and (89), becomes:

ω′(q)q̇ =
[
r + λ

(
Ā−A

)]
ω(q)− (θ −A)ασ [u(q)− q]

Ȧ = λ(1−A)
(
Ā−A

)
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Linearizing the system around the steady state we obtain:(
q̇

Ȧ

)
=

(
rω′(qs)−(θ−Ā)ασ[u′(qs)−1]

ω′(qs)
−λω(qs)+ασ[u(qs)−qs]

ω′(qs)

0 −λ(1− Ā)

)(
q − qs
A−As

)
.

If
(
θ − Ā

)
ασ > r(1 − θ) then rω′(qs) >

(
θ − Ā

)
ασ [u′(qs)− 1]. It follows that the determinant of the

Jacobian matrix is negative, i.e., the steady state is a saddle point. The negative eigenvalue is e1 = −λ(1−Ā)

and the associated eigenvector is

−→v 1 =

(
[λ−r/(θ−Ā)]ω(qs)

[r+λ(1−Ā)]ω′(qs)−(θ−Ā)ασ[u′(qs)−1]

1

)

where we used that rω(qs) =
(
θ − Ā

)
ασ [u(qs)− qs]. The first component of −→v 1 is of the same sign as

λ− r/
(
θ − Ā

)
. The solution to the linearized system is(

q − qs
A−As

)
= Ce−λ(1−Ā)t−→v 1,

where C is some constant. Hence, in the neighborhood of the steady state,

∂q

∂A
=

[
λ− r/

(
θ − Ā

)]
ω(qs)[

r + λ(1− Ā)
]
ω′(qs)−

(
θ − Ā

)
ασ [u′(qs)− 1]

,

which is of the same sign as λ − r/
(
θ − Ā

)
. If λ > r/

(
θ − Ā

)
, then the saddle path in the neighborhood

of the steady state is upward sloping, i.e., q and A increase over time. We can show that this result holds

globally since the equation of the q-isocline is:

ω(q)

u(q)− q =
(θ −A)ασ

r + λ
(
Ā−A

) .
The q-isocline is upward sloping when λ > r/

(
θ − Ā

)
. See left panel of Figure 13. By the same reasoning, if

λ < r/
(
θ − Ā

)
, then the saddle path is downward sloping and along the equilibrium path, q decreases while

A increases. See middle panel of Figure 13. Finally, if λ = r/
(
θ − Ā

)
, then the q-isocline is horizontal. In

that case q is constant over time. See right panel of Figure 13.

According to (90) the set of parameter values for which a steady-state monetary equilibrium exists shrinks

as η increases. If agents can meet trading partners more frequently while mining, then the opportunity cost

of mining is lower and the incentives to mine are greater, which leads to a higher supply of money. But for

a monetary equilibrium to exist, the money supply cannot be too large. A higher η also reduces the value

of money. In the limiting case where η = 1, then there is no opportunity cost to engage in mining and all
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Figure 13: Phase diagrams when agents can mine while searching for trading partners (η = 1).

agents without money mine, m = 1 − A. At the steady state the money supply is equal to the maximum

stock of money that could be mined, Ā. We now turn to the transition dynamics for this special case.

Proposition 11 shows that when there is no opportunity cost of mining, the correlation between the

value of money and the money stock along the transitional path depends on the effi ciency of the mining

technology.24 If the mining intensity is high, the value of money increases with the money supply. If the

mining intensity is low, then the opposite correlation prevails and the value of money decreases as the money

supply increases. Finally, there is a mining rate such that the price level is constant, the value of money is

independent of the money stock.

Finally, the path for qt can be non-monotone when η is close but less than 1. As η falls below one,

the q-isocline shifts downward. Hence, the steady state, (As, qs), is now located above the q-isocline, which

implies that close to the steady state q increases. If λ is small, as in the middle panel of panel of Figure 13,

the q-isocline is downward sloping and the upward trajectory of [At, qt] must cross it. As a result, for low

values of A, q is decreases and it increases as A approaches the steady state.

24While Proposition 11 focuses on the unique equilibrium leading to the steady state, there is also a continuum of equilibria
where the value of money vanishes asymptotically. In the left panel of Figure 13, when λ is high, the value of money increases
first and then decreases. In the middle and right panels, when λ is low, the value of money is monotone decreasing in time.
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C Endogenous mining intensity

Suppose that agents do not have to give up their occupation to engage in mining, ρ = 1, but they have to

suffer a disutility cost. Moreover, we let agents choose the intensity with which they mine, λ. The flow cost

of the mining technology is c(λ) and for simplicity we assume it is quadratic, c(λ) = c̄λ2/2 with c̄ > 0.

An agent with one unit of asset will not engage in mining since money holdings have a unit upper bound.

Therefore, V1 solves the Bellman equation (1). The lifetime expected utility of an agent without money

solves

rV0 = ασA (−q + V1 − V0) + max
λ≥0

{
−c(λ) + λ

(
Ā−A

)
(V1 − V0)

}
+ V̇0. (92)

An agent without money receives an opportunity to produce at Poisson arrival rate ασA. While searching

for trading partners, the agent engages in mining by choosing λ. The optimal mining intensity solves

c̄λ =
(
Ā−A

)
(V1 − V0). (93)

The marginal cost of mining on the right side is equalized to the marginal gain on the right side. The mining

intensity increases with the amount of asset that is still in the ground and the value of money.

In order to determine terms of trade in pairwise meetings we assume θ = 1, buyers have all the bargaining

power. Then q = V1 − V0 and from (93),

λ =

(
Ā−A

)
q

c̄
. (94)

From (1) and (92) the value of money solves the following ODE:

rq = ασ (1−A) [u(q)− q]−
[(
Ā−A

)
q
]2

2c̄
+ q̇. (95)

After substituting λ by its expression given by (94) the law of motion for the money supply is:

Ȧ =
(1−A)

(
Ā−A

)2
q

c̄
. (96)

An equilibrium is a pair of time paths, (qt, At), that satisfies (95), (96), and the initial condition A(0) = A0.

Proposition 12 (Endogenous mining intensity) Assume Ā < 1. There is a unique monetary steady

state and it is such that

As = Ā (97)

rqs = ασ
(
1− Ā

)
[u(qs)− qs] . (98)

56



For any A0 < Ā there exists a unique equilibrium and it is such that A increases over time while q decreases

over time.

Proof. We select the steady state with the lowest value for A. Setting Ȧ = q̇ = 0 in (95) and (96)

we obtain (97)-(98). Let us turn to non-stationary equilibria. In order to determine the global solution

we represent the phase diagram of (95)-(96). The A-isoclines are A = Ā and A = 1. The equation of the

q-isocline is

rq +

(
Ā−A

)2
q2

2c̄
= ασ (1−A) [u(q)− q] .

For all A < Ā, the left side is strictly convex while the right side is strictly concave in q. Moreover, for any

A < Ā, there is a unique positive solution and it is such that q decreases with A. The phase diagram is

represented in Figure 14. The steady state is a saddle point and there is unique (saddle) path leading to it.

At the steady state all the money in the ground has been dug out and the value of money is independent

of the mining technology.

In contrast to the model with mining as an occupation choice, here the value of money decreases over

time, i.e., there is a negative correlation between the value of money and its stock.

A

> > >ssq

0q

0q

0A

A

Figure 14: Costly mining: Phase diagram
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D General matching function

Suppose now that only buyers (money holders) and producers participate in the matching process according

to a constant returns to scale matching function.

D.1 Indivisible money

The matching probability of a buyer is α(τ) where τ = (1−A−m)/A is market tightness expressed as the

ratio of sellers to buyers. As is standard, we assume that α′ > 0, α′′ < 0, α′(0) = +∞, α′(+∞) = 0. A

matching function that satisfies these properties is the Cobb Douglas matching function.

The HJB equations of agents with and without money are:

rV1 = α(τ)σθ [u(q)− q] + V̇1 (99)

rV0 = max

{
α(τ)

τ
σ(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ V̇0. (100)

The novelty is that the matching rate of a buyer is α(τ) while the matching rate of a seller is α(τ)/τ . Using

that limτ→0 α(τ)/τ = +∞, it follows that τ > 0 in equilibrium, i.e., m < 1−A. The goods market is always

active and

max

{
α(τ)

τ
σ(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
=
α(τ)

τ
σ(1− θ) [u(q)− q] . (101)

Subtracting (100) from (99) the value of money solves:

rω(q) =

[
α(τ)σθ − α(τ)

τ
σ(1− θ)

]
[u(q)− q] + ω′(q)q̇. (102)

From (101) market tightness in the goods market solves:

α(τ)

τ
σ(1− θ) [u(q)− q] ≥ λ

(
Ā−A

)
ω(q), " = " if τ <

1−A
A

.

Solving for τ we obtain:

τ(ω,A) = min

{
g−1

[
λ
(
Ā−A

)
ω

σ(1− θ)S(ω)

]
,

1−A
A

}
. (103)

where S(ω) ≡ u [q(ω)]− q(ω) and g(τ) ≡ α(τ)/τ . For all (ω,A) such that
λ(Ā−A)ω
σ(1−θ)S(ω) ≥ g

(
1−A
A

)
, m > 0 and

τ(ω,A) is decreasing in ω and increasing in A. Moreover, τ(+∞, A) = 0 and τ(0, A) > 0. The money supply

evolves according to

Ȧ = [1−A (1 + τ)]λ
(
Ā−A

)
, (104)
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where we used that 1−A (1 + τ) = m.

We summarize the equilibrium by a system of two ODEs in ω and A:

ω̇ = rω − {α [τ (ω,A)]σθ − g [τ (ω,A)]σ(1− θ)}S(ω) (105)

Ȧ = {1−A [1 + τ (ω,A)]}λ
(
Ā−A

)
(106)

The locus of the points such that Ȧ = 0 corresponds to all pairs (ω,A) such that τ(ω,A) = (1−A)/A. From

(103) it is given by:
λ
(
Ā−A

)
ω

σ(1− θ)S(ω)
≤ g

(
1−A
A

)
. (107)

Condition (107) at equality gives a positive relationship between ω and A. As ω approaches 0, A tends to

the solution to λ
(
Ā−A

)
= σg

(
1−A
A

)
. As ω tends to +∞, A tends to Ā. This locus is represented by a red

upward-sloping curve in Figure 15.

The locus of the points such that ω̇ = 0 and Ȧ > 0 is such that

r
ω

S(ω)
= {α [τ (ω,A)]σθ − g [τ (ω,A)]σ(1− θ)} . (108)

The left side is increasing in ω while the right side is decreasing in ω but increasing in A. For given A there

is a unique ω solution to (108) provided that

r(1− θ) < {α [τ (0, A)]σθ − g [τ (0, A)]σ(1− θ)} ,

where τ(0, A) is the solution to g(τ) = λ
(
Ā−A

)
/σ. If this condition holds for A = 0, then it holds for all

A. Hence, we assume

r(1− θ) < [α (τ0)σθ − g (τ0)σ(1− θ)] where τ0 = g−1
[
λ
(
Ā−A

)
/σ
]
. (109)

Assuming this condition is satisfied, the ω-isocline is upward sloping as illustrated in Figure 15. As A goes

to zero, ω tends to a positive value.

There is a unique steady state such that agents are indifferent between mining and not mining and it

solves

g (τ) = g

(
1−A
A

)
=

λ
(
Ā−A

)
ω

σ(1− θ)S(ω)
(110)

r
ω

S(ω)
= [α (τ)σθ − g (τ)σ(1− θ)] . (111)
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Figure 15: Phase diagram under matching function satisfying Inada conditions

Equation (110) specifies the market tightness such that agents are indifferent between mining or participating

in the goods market. Equation (111) gives the value of money given market tightness. Combining (110) and

(111), steady-state market tightness solves:

σ(1− θ)

 r

λ
(
Ā− 1

1+τ

) + 1

 g (τ) = α (τ)σθ. (112)

It is easy to check that there is a unique τs ∈
(

0, 1−Ā
Ā

)
solution to this equation. The supply of money at

the steady state is then As = 1/(1 + τs). The equilibrium is monetary if (109) holds. The existence of a

unique steady state guarantees that the A-isocline and ω-isocline only intersect once, i.e., the ω-isocline is

located above the A-isocline as illustrated in Figure 15.

In Figure 15 we represent the phase diagram of the dynamic system (105)-(106) and its arrows of motion.

It can easily be checked that the steady state is a saddle path and given the initial condition A0 = 0 there

is a unique path leading to it. Along that path the value of money increases over time. There is also a

continuum of other equilibria where the value of money vanishes asymptotically. We summarize our results

in the following proposition.

In order to characterize the path for market tightness, we can rewrite (108) as

r
ω (τ , A)

S [ω (τ , A)]
= [α (τ)σθ − g (τ)σ(1− θ)] ,

where ω (τ , A) is defined implicitly by τ = τ (ω,A). Assuming m > 0, ω is a decreasing function of τ and

an increasing function of A. Hence, the τ -isocline is upward sloping. The A-isocline becomes A = 1/(1 + τ).
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By the same reasoning as above, the saddle path is upward sloping, which means that τ increases over time.

D.2 Divisible assets

We now study the version of the model with divisible assets. We generalize the matching function in order

to obtain interior solutions for the occupation choice and we describe how the matching technology can

affect price dynamics. Suppose that each agent receives an opportunity to consume at Poisson arrival rate

α(τ)σ where τ is the measure of producers per consumer, i.e., the tightness of the goods market. Because the

measure of consumers is one while the measure of producers is 1−m, tightness is simply τ = 1−m. Each of the

1−m producers is matched with a consumer at Poisson arrival rate α(1−m)σ/(1−m). The matching function

used so far is α(τ) = τ . In order to guarantee that mt < 1 throughout the equilibrium path, we impose

α′(0) = +∞. Hence, the matching rate of a producer as m approaches 1 is limm↗1 α(1 −m)σ/(1 −m) =

σα′(0) = +∞. Provided that θ < 1, it is always optimal for some agents to choose the production sector

over mining.

The measure of agents in the mining sector solves:

α(1−m)

1−m ≥
λ
(
Ā−A

)
φ

σ(1− θ)S(φA)
, " = " if m > 0,

where S(φA) = u(q) − q with ω(q) = min{ω(q∗), φA}. We denote m(φ,A) the solution to this equation.

For all (φ,A) such that λ
(
Ā−A

)
φ > α(1)σ(1− θ)S(φA), m(φ,A) > 0 is an increasing function of φ and a

decreasing function of A. Otherwise,

m(φ,A) = 0 if α(1)σ(1− θ)S(φA) ≥ λ
(
Ā−A

)
φ.

The money supply evolves according to

Ȧ = λm(φ,A)
(
Ā−A

)
.

Hence, Ȧ = 0 if
α(1)σ(1− θ)

λ
≥
(
Ā−A

)
φ

S(φA)
.

The frontier of this region in the (A, φ) space is upward sloping, it has A = Ā as a vertical asymptote, and

it goes through the origin.

The ODE for the value of the asset is

rφ = d+ α [1−m(φ,A)]σθS′(φA)φ+ φ̇,
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where q(φA) solves ω(q) = min{ω(q∗), φA}. The φ-isocline is the locus of the pairs, (A, φ), such that φ̇ = 0,

i.e.,

r =
d

φ
+ α [1−m(φ,A)]σθS′(φA).

The φ-isocline needs not be monotone. To see this, note that when A is small, m(φ,A) ≈ 1, which gives a

positive relationship between φ and A. When φA ≈ ω(q∗), then the isocline is downward-sloping.

Suppose the stationary equilibrium with m = 0 is such that φA ≥ ω(q∗). The asset is priced at its

fundamental value, φ = d/r, and the asset supply is

A =
λdĀ− rα(1)σ(1− θ) [u(q∗)− q∗]

λd
.

This equilibrium exists if

λdĀ ≥ λrω(q∗) + rα(1)σ(1− θ) [u(q∗)− q∗] .

In the neighborhood the φ-isocline is horizontal and when φA is slightly less than ω(q∗) is is downward

sloping. It implies that the price of the asset is larger than the fundamental value initially and it reaches

the fundamental value when the asset supply becomes suffi ciently abundant.

Figure 16: Two numerical examples: (Left) Scarce liquidity. (Right) Abundant liquidity.

In Figure 16 we represent the phase diagrams for two numerical examples. The blue curve is the φ-isocline

such that φ̇ = 0. The red curve is the A-isocline such that Ȧ = 0. The green curve with arrows corresponds

to the saddle path leading to the steady state. In the left panel, liquidity is scarce at the steady state.

The asset price, φt, is strictly above its fundamental value, d/r, and it rises over time. These dynamics are

similar to the ones described in part 2 of Proposition 9 except that there is production of the consumption

good throughout the equilibrium path. In the right panel, liquidity is abundant at the steady state. Now

the asset price, φt, falls over time and it converges to its fundamental value. These dynamics are new and

illustrate how the matching technology matters for the time path of asset prices.
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E Interest-bearing/commodity monies

Suppose the money is either a commodity that provides some direct utility, e.g., gold or silver, or it is a

financial asset that pays interest. We denote d > 0 the dividend flow enjoyed by each money holder. The

Bellman equation of an agent with one unit of money becomes:

rV1 = d+ ασ (1−A−m) θ [u(q)− q] + V̇1. (113)

The only novelty is the first term on the right side representing the dividend flow. The Bellman equation

for an agent without money is unchanged. It follows that the dynamic equation for the value of money is:

rω(q) = d+ ασ (1−A−m) θ [u(q)− q] (114)

−max
{
ασA(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ ω′(q)q̇.

A steady-state equilibrium, (qs, As), solves:

rω(q) = d+ ασ (θ −A) [u(q)− q] (115)

A =
λĀω(q)

ασ(1− θ) [u(q)− q] + λω(q)

The first equation gives a negative relationship between q and A while the second equation gives a positive

relationship between A and q. So there is a unique steady state and ∂qs/∂d > 0 and ∂As/∂d > 0.

Let us turn to transitional dynamics. Suppose m < 1 − A, the trajectory follows A = µ(q) as in the

baseline model. Suppose m = 1−A. Then:

q̇ =

[
r + λ

(
Ā−A

)]
ω(q)− d

ω′(q)
(116)

Ȧ = (1−A)λ
(
Ā−A

)
. (117)

The slope ∂q/∂A = q̇/Ȧ falls in d for any given (A, q), but one can show that q̇ > 0 in equilibrium. If q̇ = 0

at certain time t, then q̇ < 0 for after t by (116). The equilibrium cannot change regime after t as a regime

switch requires both trajectories to have the same slope and the locus A = µ(q) is always upward sloping.

In the regime m = 1 − A, q̇ = ασ(1 − A)θ [u(q)− q] /ω′(q) > 0 when q ≈ qs by (114) and (115). Therefore

q̇ = 0 is impossible at all time.

By the proof of Proposition 2, mining and production co-exist near the steady state if only if

∂q

∂A

∣∣∣∣
m=1−A

>
∂q

∂A

∣∣∣∣
m∈(0,1−A)

⇐⇒ µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

.
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As d increases there are two opposing effects. Since ∂q/∂A|m=1−A falls in d for any given (A, q), it is more

likely that m = 1−A near the steady state when d is large. On the other hand qs and As increase in d and

therefore agents have less incentive to mine around the steady state. The net effect is ambiguous in general.
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F Competing private monies

Suppose that there are two assets that can serve as means of payment, silver (Ag) and gold (Au).25 We

normalize asset supplies so that both assets yield the same dividend, d > 0. Potential asset supplies are Āg

and Āu with Ā = Āg + Āu. Mining rates are given by λg and λu. With no loss in generality, we assume

that λgĀg ≥ λuĀu, i.e., it is easier early on to mine silver rather than gold. Because these assets are perfect

substitutes as means of payment, their common price is φ. The occupation choice of an agent is now given

by

max
{
ασ(1− θ) [u (q)− q] , λg(Āg −Ag)φ, λu(Āu −Au)φ

}
,

where Ag and Au are the amounts of silver and gold in circulation with A = Ag + Au. In the following mg

is the measure of silver miners, mu is the measure of gold miners, and m = mg +mu.

Under the assumption λgĀg ≥ λuĀu, when Ag and Au are close to 0, then only silver is mined, A = Ag.

The indifference condition between occupations is

ασ(1− θ) [u (q)− q] = λg(Āg −A)φ, (118)

and the law of motion of the total asset supply is

Ȧ = mλg(Āg −A). (119)

When the supply of silver is suffi ciently large, agents have incentives to mine gold as well. Whenever the

two assets are mined, λg(Āg −Ag) = λu(Āu −Au), which implies

Āg −Ag =
λu

λg + λu
(Ā−A).

The fraction of silver remaining in the ground is a constant fraction of the total quantity of undug assets.

The indifference condition between production and mining can be rewritten as

ασ(1− θ) [u (q)− q] =
λgλu

λg + λu
(Ā−A)φ. (120)

Note that this condition is identical to the one in the one-asset economy where the effective mining rate is

λ = λgλu/(λg + λu). Agents will remain indifferent between mining silver or gold if λgȦg = λuȦu, which

25The periodic symbols of silver and gold are Ag and Au respectively.
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implies λgmg = λumu, where mg is the measure of silver miners, mu is the measure of gold miners, and

m = mg +mu. The growth of the total supply of assets, Ȧ = mgλg(Āg −Ag) +muλu(Āu −Au), is equal to

Ȧ =
λuλg

λg + λu
m(Ā−A), (121)

where we used that mg = λum/ (λg + λu).

The phase diagram corresponding to this dual asset economy is represented in Figure 17. The indifference

condition, (118), corresponds to the upward-sloping purple curve labeled MG. The indifference condition,

(120), corresponds to the red upward-sloping curve labeled M2. For an equilibrium starting from Au =

Ag = 0, the relevant indifference condition is the frontier of the yellow area where m = 1, i.e.,

ασ(1− θ) [u (q)− q] = max

{
λg(Āg −A)φ,

λuλg

λg + λu
(Ā−A)φ

}
.

The two indifference loci, MG and M2, intersect for a positive φ, as illustrated in Figure 17, only if λgĀg >

λuĀu (ασ + λg) /ασ. Otherwise, M2 is located to the right of MG. The level of assets at which agents

transition from mining silver only to mining both gold and silver is Â ≡
(
λgĀg − λuĀu

)
/λg.

A
>> > > >

> >
>1m

rd

sφ

sA

)(Asφ

AgA

MG 2M

A

Figure 17: Phase diagram for a dual asset economy

Proposition 13 (Dual asset equilibrium) Assume Au0 = Ag0 = 0. For all Āu > 0, there is a κ0 > 0

independent of {λu, λg, Āu, Āg} such that if

λgĀg − λuĀu
λgλuĀu

< κ0, (122)
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then the long-run equilibrium features two competing assets as media of exchange. For all t such that At <

Â ≡
(
λgĀg − λuĀu

)
/λg, the economy has a single means of payment (monometallism), mu

t = Aut = 0; For

all t such that At > Â, the economy has two means of payment (bimetallism) with

Aut =
λg

λu

(
Agt − Â

)
> 0 (123)

mu
t =

λg

λg + λu
mt > 0. (124)

Proof of Proposition 13. There is production of both gold and silver along the equilibrium path if

Â < As. Graphically, this condition is satisfied if the intersection of the loci MG and M2, (Â, φ̂), is located

below the locus φs(A). See Figure 17. Let ˆ̀ ≡ φ̂Â denote the aggregate liquidity at the intersection of

MG and M2. At the intersection Au = 0 and the agents are indifferent between producing or mining gold,

therefore ασ(1− θ)S(ˆ̀) = ˆ̀λuĀu/Â. By the definition of Â, ˆ̀ is the largest solution of

ασ(1− θ)S(ˆ̀) = ˆ̀ λgλuĀu

λgĀg − λuĀu
.

This solution is strictly positive if λgĀg > λuĀu (ασ + λg) /ασ and ˆ̀ = 0 otherwise. Moreover, ˆ̀ increases

with (λgĀg − λuĀu)/λgλuĀu. By (44) the condition Â < As is equivalent to:

r <
d

φ̂
+ ασθS′(ˆ̀) ⇐⇒ r <

dλuĀu

ασ(1− θ)S(ˆ̀)
+ ασθS′(ˆ̀).

The right side is decreasing in ˆ̀ and it tends to infinity as ˆ̀ goes to 0. Hence, this condition is satisfied

provided that (λgĀg − λuĀu)/λgλuĀu is suffi ciently low, i.e.,

λgĀg − λuĀu
λgλuĀu

< κ0

for κ0 > 0. The threshold κ0 is endogenous but by construction it does not depend on λ
g and Āg. This

implies that, fixing all parameters except Āg, the inequality is satisfied as Āg → λuĀu/λg from above.

Similarly the inequality is satisfied when λg is suffi ciently small. The construction of the equilibrium going

backward from the steady state is as described in earlier proposition and is therefore omitted.

According to (122), if the initial mining rates of the two assets are not too far apart, then the economy

transitions from using a single asset as medium of exchange to using two assets. The transition takes place

when the supply of the first money (silver) reaches the threshold Â, at which point the mining rates of the

two monies are equalized. According to (124) when the two monies coexist, then the measure of miners is

allocated across the two monies according to the relative mining speeds, i.e., the money that is easier to
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mine receives more miners. From (124) the stock of gold is proportional to the quantity of silver above Â

throughout the transition, where the coeffi cient of proportionality is the relative mining speed of the two

monies.
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