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Abstract. A sender designs a signal about the state of the world to persuade a
receiver. Under standard assumptions, an optimal signal censors states on one side
of a cutoff and reveals all other states. This result holds in continuous and discrete
environments with general and monotone partitional signals. The sender optimally
censors more information if she is more biased, if she is more certain about the
receiver’s preferences, and if the receiver is easier to persuade. We apply our results
to the problem of media censorship by a government.
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1. Introduction

There has been a rapid growth of the literature on Bayesian persuasion and infor-
mation design over the past decade. The range of applications in this literature is
impressive and includes clinical trials, bank stress tests, school grading policies, qual-
ity certification, advertising strategies, transparency in organizations, persuasion of
voters, and media control. In many of these applications, it is optimal to disclose in-
formation about an uncertain state of the world via a censorship signal that censors
states on one side of a cutoff and reveals states on the other side of the cutoff. Fully
informative and completely uninformative signals are special cases of censorship.

We characterize necessary and sufficient conditions under which a censorship signal
is optimal in the linear persuasion problem, where the sender and receiver’s utilities
depend on the beliefs about the state only through the expected state. We thus
unify and generalize sufficient conditions scattered across the literature. In addition,
we establish new results for environments where the state is discrete and a signal is
constrained to be monotone partitional. These environments are relevant in applica-
tions and take into account constraints faced by information designers in practice.1

Finally, we provide monotone comparative statics results on the informativeness of
the optimal signal.

The linear persuasion problem is a tractable workhorse model in the persuasion lit-
erature. This problem can be described by the prior distribution of the state and the
sender’s indirect utility function of the expected state. We consider a slightly different
but equivalent formulation of the problem, which is easier to interpret.

In our model, the receiver chooses one of two actions: to accept or reject a proposal.
If the receiver rejects the proposal, the sender and receiver’s utilities are normalized
to zero. If the receiver accepts the proposal, the sender and receiver’s utilities depend
on the unknown state of the world and the receiver’s private type. The state and type
are independent random variables that represent, respectively, the receiver’s benefit
and cost from acceptance. We assume that the type is a continuous random variable,
but we allow the state to be either a continuous or discrete random variable.2

The sender’s utility is linear in the state and is not perfectly aligned with the receiver’s
utility. An important canonical case of the model is where the sender’s utility is a
weighted sum of the receiver’s utility and action.

To influence the receiver’s action, the sender designs a signal that reveals information
about the state. After observing the signal realization, the receiver updates his beliefs
about the state and chooses an action that maximizes his expected utility.

1For example, a credit rating of financial institutions is typically a monotone partition. Neither
nonmonotone partitions that pool high- and low-performing institutions nor stochastic disclosure
rules that map an institution’s financial performance to a random rating appear to be feasible.

2Extending the analysis to the case where the state and type are general random variables presents
technical difficulties but does not yield new economic insights.
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The main result shows that if the sender’s indirect utility is S-shaped in the expected
state (that is, convex below some threshold and concave above the threshold), then,
and only then, an upper-censorship signal that pools states above a cutoff and reveals
states below the cutoff is optimal for all prior distributions of the state.3 In the
canonical case, the main result shows that if the probability density of receiver types is
log-concave, then, and only then, upper censorship is optimal for all prior distributions
of the state and for all weights that the sender puts on the receiver’s utility and action.4

The main result is obtained under two scenarios. In the first scenario, the signal is
a random variable with arbitrary correlation with the state. In the second scenario,
the signal is constrained to be a monotone partition of the state space, so that each
state is either revealed or pooled with some adjacent states.

To compare the main result under these two scenarios, consider the cutoff of an opti-
mal upper-censorship signal. Notice that upper censorship does not specify whether
the cutoff state is pooled or revealed. If the state is a continuous random variable,
then it does not matter whether this cutoff state is pooled or revealed. Thus, an op-
timal upper-censorship signal is, in fact, a monotone partition. However, if the state
is a discrete random variable, then the optimal signal is stochastic upper censorship
so that the cutoff state is generally pooled and revealed with interior probabilities.
In contrast, the optimal monotone partition is deterministic upper censorship so that
the cutoff state is either completely pooled or fully revealed.

In many applications of interest, the state is discrete, and thus optimal signals and
optimal monotone partitions generally differ. An optimal upper-censorship signal
provides an upper bound on the value of persuasion. To achieve this bound, the
sender should be able to commit to randomize over two signal realizations conditional
on the cutoff state, which may be hard to enforce in practice. In contrast, monotone
partitions are relatively simple signals that can be enforced and verified ex post.

The problem of finding an optimal monotone partition is a discrete optimization
problem, which cannot be solved using existing tools from the persuasion literature.
Nevertheless, we show that if the sender’s indirect utility is S-shaped (or, in the
canonical case, the density of receiver types is log-concave), then upper censorship is
an optimal monotone partition. To prove this result, for any monotone partition dif-
ferent from upper censorship, we explicitly construct a deterministic upper-censorship
signal that is preferred by the sender.

When upper censorship is optimal, it is possible to perform the comparative statics
analysis on the informativeness of the optimal signal. We show that, in the canonical
case, the sender optimally censors more information (i) if the sender is more biased
in that the sender puts a smaller weight on the receiver’s utility, (ii) if the receiver is

3Analogously, a lower-censorship signal that pools states below a cutoff is optimal for all prior
distributions if and only if the sender’s indirect utility has an inverted S-shape.

4Most commonly used probability densities are log-concave. Log-concave densities exhibit nice
properties, such as single-peakedness and the monotonicity of the hazard rate.
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easier to persuade in that the receiver’s cost of accepting the proposal is smaller, and
(iii) if the sender is more certain about the receiver’s preferences in that the density
of receiver types is more concentrated around its mode.

We apply our results to the problem of media censorship by the government. We
consider a stylized setting with a finite number of media outlets and a continuum
of heterogeneous citizens (receivers). Each media outlet is identified by its editorial
policy that specifies an interval of endorsement states. We permit the aggregate ac-
tion of the citizens to affect their utility but not their optimal actions. For example,
an election outcome impacts all citizens but does not change their preferences over
candidates. The government wishes to influence citizens’ actions by deciding which
media outlets to censor. In the canonical case, if the probability density of citizens
types is log-concave, then the optimal media censorship policy is to permit all suf-
ficiently loyal media outlets and to censor the remaining outlets. Our comparative
statics results suggest that the government should optimally increase censorship (i)
if influencing society decisions becomes relatively more important than maximizing
individual welfare, (ii) if the society experiences an ideology shock in favor of the
government, and (iii) if the society becomes less diverse in ideology and taste.

Related Literature. The literature on Bayesian persuasion was set in motion by
the seminal papers of Rayo and Segal (2010) and Kamenica and Gentzkow (2011).
The linear case, which is the subject of this paper, is prevalent in the literature.5

Kolotilin (2018) provides necessary and sufficient prior dependent conditions for the
optimality of censorship in the case of a continuous state.6 Alonso and Câmara
(2016b) provide sufficient conditions in the case of a discrete state. In contrast,
our paper provides necessary and sufficient conditions that are prior independent (as
well as bias independent in the canonical case) and apply in both continuous and
discrete cases. More importantly, we show that these conditions are also necessary
and sufficient for deterministic censorship to be optimal in the class of monotone
partitional signals (simple signals). There are no counterparts to this result in the
literature.

Similar to us, Alonso and Câmara (2016b) show that the optimal signal is less infor-
mative if the receiver is easier to persuade. Their proof is simpler, but it is valid only
when the sender’s utility is state-independent. But our comparative statics results
with respect to the sender’s bias and uncertainty are novel.

Censorship policies commonly emerge as optimal signals in linear persuasion models in
a variety of contexts, starting from the prosecutor-judge example, as well as lobbying
and product advertising examples, in Kamenica and Gentzkow (2011). Other contexts
where censorship is optimal include grading policies (Ostrovsky and Schwarz, 2010),

5Notable exceptions include Rayo and Segal (2010), Goldstein and Leitner (2018), Guo and
Shmaya (2019), and Kolotilin and Wolitzky (2019).

6See also Gentzkow and Kamenica (2016), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017),
and Dworczak and Martini (2019) for sufficient conditions.
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media control (Gehlbach and Sonin, 2014; Ginzburg, 2019), clinical trials (Kolotilin,
2015), voter persuasion (Alonso and Câmara, 2016a,b), transparency benchmarks
(Duffie, Dworczak, and Zhu, 2017), stress tests (Goldstein and Leitner, 2018; Orlov,
Zryumov, and Skrzypach, 2018), trading mechanisms (Romanyuk and Smolin, 2019;
Dworczak, 2017; Yamashita, 2018), quality certification (Zapechelnyuk, 2019), and
relational communication (Kolotilin and Li, 2019).

Our application to media censorship fits into the literature on media capture that
addresses the problem of media control by governments, political parties, or lobbying
groups. Besley and Prat (2006) pioneered this literature by studying how a gov-
ernment’s incentives to censor free media depend on plurality (the number of media
outlets) and on transaction costs of bribing the media. In their model, media outlets
are identical and all voters have common interests. Thus, the government’s optimal
decision reduces to either capturing all media outlets or none. Relatedly, Gehlbach
and Sonin (2014) consider a setting with a government-influenced monopoly media
outlet that exploits the trade-off between the government’s objective to “mobilize” the
population for some collective goal and to collect the revenue from subscribers who
demand informative news. Gehlbach and Sonin (2014) show that the presence of the
“mobilization” objective increases the news bias, whereas the subscription revenues
reduce the bias but can cause the government to nationalize the media outlet.7

The models of Besley and Prat (2006) and Gehlbach and Sonin (2014) have two states
of the world and either a single media outlet or a few identical media outlets. Hence,
the government uses the same censorship policy for each outlet. We are the first to
consider a richer model of media censorship with a continuum of states and multiple
heterogeneous media outlets. As a result, the government optimally discriminates
media outlets, by permitting sufficiently loyal ones and banning the remaining ones.

2. Model

2.1. Setup. There are two players: a sender (she) and a receiver (he). The receiver
chooses whether to accept a proposal (a = 1) or reject it (a = 0). The proposal
has an uncertain value ω ∈ [0, 1]. By accepting the proposal, the receiver forgoes
an outside option worth r ∈ [0, 1], so the receiver’s utility is a(ω − r). The sender’s
utility is av(ω, r), where v(ω, r) is linear in ω and continuously differentiable in r.
We will refer to ω as state and to r as type, and denote their distributions by F and
G, respectively. Throughout the paper we assume that distribution G of r has a
continuously differentiable and strictly positive density g.8

As in many applications the state is either a continuous or discrete random variable,
we will separately analyze these two cases. We say that the state ω and distribution F

7In different contexts, media control by a government has also been studied by Egorov, Guriev,
and Sonin (2009), Edmond (2013), and Lorentzen (2014). See also the overview of the literature on
media capture, slant, and transparency in Prat and Strömberg (2013).

8This assumption is made for clarity of exposition. The results can be extended to general G.
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are continuous if F has a density f on [0, 1]. We say that the state ω and distribution
F are discrete if the support of F is a finite set.

A particularly tractable and intuitive special case is where the sender’s utility is a
weighted sum of the receiver’s utility and action. We call this the canonical case.
Formally, in the canonical case, the sender’s utility when the proposal is accepted is

v (ω, r) = 1 + ρ(ω − r), ρ ∈ R. (A1)

That is, the sender is biased towards a = 1 but also puts a weight ρ on the receiver’s
utility. In particular, if the weight ρ is large, then the sender and receiver’s inter-
ests are aligned, whereas if the weight is zero, then the sender cares only about the
receiver’s action.

The receiver privately knows his type, but he does not observe the state. The sender
can influence the action taken by the receiver, a = 1 or a = 0, by releasing a signal
that reveals information about the state. A signal is a random variable s ∈ [0, 1]
that is independent of r but is, possibly, correlated with ω. For example, s is fully
informative if it is perfectly correlated with ω, and s is completely uninformative if
it is independent of ω.

The timing is as follows. First, the sender publicly chooses a signal s. Then, realiza-
tions of ω, r, and s are drawn. Finally, the receiver observes the realizations of his
type r and the signal s, and then chooses between a = 0 and a = 1.

We consider two scenarios:

A. The sender can choose any signal.

B. The sender can choose any monotone partitional signal.

Formally, a signal s is a monotone partitional signal if there exists a nondecreasing
function ξ(ω) such that s = ξ(ω) for each ω. Every such signal induces a partition
of the state space [0, 1] into intervals and singletons, and the receiver observes the
partition element that contains the state.

Under Scenario A, we are interested in an optimal signal that maximizes the sender’s
expected utility among all signals. This is a standard persuasion problem.

Under Scenario B, we are interested in an optimal monotone partition that maximizes
the sender’s expected utility among all monotone partitional signals. This scenario
incorporates constraints that information designers often face in practice. For ex-
ample, a non-monotone grading policy that gives better grades to worse performing
students will be perceived as unfair and will be manipulated by strategic students.

2.2. Upper Censorship. A subset of signals called upper censorship will play a
special role in this paper.
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An upper-censorship signal reveals states below a specified cutoff and pools states
above this cutoff. When the state is equal to the cutoff, it can be revealed or pooled.
If the state is continuous, it does not matter whether the cutoff state is revealed or
pooled, because this is a zero probability event. However, if the state is discrete,
we will distinguish between deterministic and stochastic upper-censorship signals,
depending on what happens at the cutoff state.

A lower-censorship signal is defined symmetrically: it pools states below a specified
cutoff and reveals states above this cutoff. Because the case of lower censorship
is symmetric (see Remark 1 below), for clarity of exposition, we focus on upper
censorship throughout the paper.

A signal s is stochastic upper censorship if there exists a cutoff pair (ω∗, q∗) consisting
of a cutoff state ω∗ ∈ [0, 1] and probability q∗ ∈ [0, 1] such that states below ω∗ are
revealed, states above ω∗ are pooled, and the state ω = ω∗ is revealed with probability
q∗ and pooled with probability 1− q∗. For example, s can be expressed as

s =






ω with probability one, if ω < ω∗,

ω∗ and m∗ with probabilities q∗ and 1− q∗, if ω = ω∗,

m∗ with probability one, if ω > ω∗,

where

m∗ =


(ω∗,1]

ωdF (ω) + ω∗(1− q∗) Pr[ω = ω∗]

(ω∗,1]

dF (ω) + (1− q∗) Pr[ω = ω∗]
(1)

is the posterior expected state induced by the pooling signal. Notice that m∗ is a
function of ω∗ and q∗.

A stochastic upper-censorship signal s with a cutoff pair (ω∗, q∗) is deterministic upper
censorship if and only if q∗ ∈ {0, 1}, in which case s can be expressed as a monotone
partition of the state space [0, 1]. For example, if q∗ = 0, then the signal s fully
reveals states ω < ω∗ and pools states ω ≥ ω∗, so s can be expressed as

s =


ω, if ω < ω∗,

m∗, if ω ≥ ω∗,

where
m∗ = E[ω|ω ≥ ω∗]

is the expected state conditional on being at least ω∗. Note that the fully informative
signal and the completely uninformative signal are deterministic upper-censorship
signals with (ω∗, q∗) = (1, 1) and (ω∗, q∗) = (0, 0), respectively.

2.3. Benchmark. To illustrate the difference between the cases of a continuous and
discrete state, as well as between Scenarios A and B, we solve a benchmark example
where there is no uncertainty about the receiver’s type.

Let the state ω have the expected value E[ω] = 1
2
, and let the receiver’s type r be

known to the sender and satisfy r ∈

1
2
, 1

. In addition, suppose that the sender wishes
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to maximize the probability that the receiver accepts the proposal, so v(ω, r) = 1 for
all ω and all r.

Observe that if the sender reveals no information about ω, the receiver will evaluate ω
by its expected value of 1

2
, thus having utility 1

2
− r < 0 from accepting the proposal.

So, revealing no information makes the receiver reject the proposal with certainty.
The sender can do better by fully revealing ω, in which case the proposal is accepted
with probability Pr[ω ≥ r].

However, the sender can do even better by pooling states above r with states below r
while keeping the expected state induced by the pooling signal at least r. Thus, the
receiver who is unable to distinguish between the states in the pool will accept the
proposal at all of these states.

To illustrate the case of the continuous state, suppose that ω is uniformly distributed
on [0, 1]. The largest pool that maintains the posterior expectation at least r is the
interval [2r − 1, 1]. Indeed, once the receiver learns that ω ∈ [2r − 1, 1], given the
uniform prior of ω, the posterior expected state is r. So the proposal is accepted when
ω ≥ 2r− 1 and rejected when ω < 2r− 1.9 Thus, the deterministic upper-censorship
signal with cutoff ω∗ = 2r − 1 is optimal. The sender’s expected utility is equal to

Pr[proposal is accepted] = Pr[ω ≥ 2r − 1] = 2(1− r),

which is twice as high as that from the fully informative signal:

Pr[proposal is accepted] = Pr[ω ≥ r] = 1− r.

When ω is a discrete random variable, an optimal way to reveal information about
ω takes the form of stochastic upper censorship. For illustration, suppose that ω can
only be 0 or 1, equally likely. Now, simply pooling states is not helpful for the sender.
Pooling 0 and 1 yields the posterior expected state of 1

2
, which is smaller than the

type r, resulting in a rejection of the proposal. Including any other states in the
pool makes no difference as these states never occur. Thus, an optimal monotone
partition is the fully informative signal and the probability that the receiver accepts
the proposal is simply equal to the probability that ω = 1:

Pr[proposal is accepted] = Pr[ω ≥ r] = Pr[ω = 1] =
1

2
.

The sender can do strictly better by partial (stochastic) pooling. If ω = 1, let the
signal realization be “accept” with certainty. If ω = 0, let the signal realization be
“reject” with some probability q and “accept” with probability 1 − q. So, when the
receiver observes “accept”, the posterior expected state is

E[ω|“accept”] = Pr[ω = 1]

Pr[ω = 1] + Pr[ω = 0] · (1− q)
=

1/2

1/2 + 1/2 · (1− q)
=

1

2− q
.

9Whether states strictly below ω∗ are revealed or pooled among themselves does not matter,
because they are all strictly below r and, thus, induce the receiver to take action a = 0.
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The sender now wishes to find the lowest q subject to 1/(2 − q) ≥ r, which yields
q∗ = 2 − 1

r
. Thus, stochastic upper censorship with ω∗ = 0 and q∗ = 2 − 1

r
is

optimal. The probability that the receiver accepts the proposal is exactly equal to
the probability that the signal realization is “accept”:

Pr[proposal is accepted] = Pr[ω = 1] + Pr[ω = 0] · (1− q∗) =
1

2
+

1

2
· 1− r

r
=

1

2r
.

We now summarize the insights obtained in this example. If the state is continuous,
then an optimal signal is deterministic upper censorship. If the state is discrete, then
an optimal monotone partition is deterministic upper censorship, and an optimal
signal is stochastic upper censorship.10 In the remainder of the paper we will show
that these insights extend to the case where the receiver’s type is uncertain.

3. Continuous State

In this section, we provide necessary and sufficient conditions for the optimality of
upper censorship when the state is continuous.

Let m be the expected state conditional on observing a realization of a signal s. Since
the sender and receiver’s utilities are linear in ω, they depend on the information about
ω revealed by signal s only through the expected state m. In particular, the receiver
chooses a = 1 if and only if r ≤ m.

Let V (m) denote the indirect utility of the sender conditional on m,

V (m) =



r≤m

E [v(ω, r)|m] g(r)dr =

 m

0

v(m, r)g(r)dr, m ∈ [0, 1]. (2)

where E [v(ω, r)|m] = v(m, r) by the linearity of v in ω.

A function V is said to be S-shaped if it is convex below some threshold and concave
above that threshold, or, equivalently, if V ′′ is single-crossing from above:

there exists τ such that V ′′(m) ≥ (≤) 0 for all m < (>) τ.

We now provide the criterion for the optimality of upper censorship. Recall that
m∗ = E[ω|ω ≥ ω∗].

Theorem 1. Let V be S-shaped. Then, and only then, for all continuous F , an
optimal signal is deterministic upper censorship whose cutoff state ω∗ ∈ [0, τ ] satisfies:

V (m∗) + V ′(m∗)(m−m∗) ≥ (≤)V (m) for all m ≥ (<)ω∗. (3)

The criterion for the optimality of lower censorship is analogous.

10See, for example, Kolotilin (2015) for a detailed treatment of the case where there is no uncer-
tainty about the receiver’s type.
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Remark 1. Let −V be S-shaped. Then, and only then, for all continuous F , an
optimal signal is deterministic lower censorship whose cutoff state ω∗ ∈ [τ, 1] satisfies:

V (m∗) + V ′(m∗)(m−m∗) ≥ (≤)V (m) for all m ≤ (>)ω∗.

Theorem 1 states that optimal persuasion takes a simple form of upper censorship
when V is S-shaped.11 Moreover, the theorem establishes that this result is tight, in
the sense that if V is not S-shaped, then there exists a distribution F of the state
such that no upper-censorship signal is optimal.

Note that every upper-censorship signal is a monotone partition. Therefore, Theorem
1 applies in both Scenario A, where the sender is free to choose any signal, and
Scenario B, where the sender is constrained to choose a monotone partition.

The intuition behind Theorem 1 is as follows. Observe that when no information
about the state is revealed, the receiver’s best-response action does not change with
the state. The more information is revealed, the more variable the receiver’s behavior
will be in response to this information. Consider an interval where V is concave. The
sender would prefer not to reveal any information when the state is in this interval,
since a certain outcome is preferred to any lottery with the same expected state.
Conversely, consider an interval where V is convex. The sender would prefer to fully
reveal the state in this interval, since now lotteries are preferred. If V is S-shaped,
that is, it is convex below some threshold and concave above that threshold, the
induced optimal persuasion takes the form of upper censorship.

When V is S-shaped, the sender’s optimization problem is reduced to finding an
optimal censorship cutoff ω∗. If the realized state ω is below the cutoff, then it is
revealed to the receiver, so the expected utility of the sender is V (ω). If the realized
state ω is above the cutoff, then the posterior expected state is m∗ = E[ω|ω ≥ ω∗], so
the expected utility of the sender conditional on ω ≥ ω∗ is V (m∗). The sender thus
needs to solve the problem

max
ω∗∈[0,1]

 ω∗

0

V (ω)f(ω)dω +

 1

ω∗
V (m∗)f(ω)dω. (4)

The expression in (3) represents the first-order condition to this problem and captures
three possible cases: the boundary solutions ω∗ = 0 and ω∗ = 1 if the expression in
(3) has the same sign for all ω, and an interior solution ω∗ such that

V (m∗) + V ′(m∗)(ω∗ −m∗) = V (ω∗). (5)

This first-order condition (5) is illustrated by Figure 1. The solid line is V (m), and
the dashed line is V (m∗) + V ′(m∗)(m−m∗), which is tangent to V at m∗.

11For a fixed distribution F , Proposition 3 in Kolotilin (2018) implies that upper censorship with
cutoff ω∗ is optimal if and only if (3) holds and V (m) is convex on [0,ω∗]. This result can be used to
show that upper censorship is optimal when V is S-shaped. For completeness, we include a simple,
self-contained proof, inspired by the proof of Theorem 1 in Dworczak and Martini (2019).
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1ω∗

V

revealing pooling

m∗0

Figure 1. Optimal upper censorship with cutoff ω∗.

The solution of the sender’s problem (4) is particularly simple if V is either globally
convex or globally concave. In this case, the first-order condition in (3) has a constant
sign, so either ω∗ = 0 or ω∗ = 1 must be optimal. If V is convex, then ω∗ = 1 is
optimal, which corresponds to the fully informative signal. Similarly, if V is concave,
then ω∗ = 0 is optimal, which corresponds to the completely uninformative signal.
This is summarized in the following corollary.

Corollary 1. An optimal signal is

(i) fully informative for all F if and only if V is convex;

(ii) completely uninformative for all F if and only if V is concave.

3.1. Canonical Case. We now consider the canonical case where the sender’s utility
satisfies assumption (A1).

The density g of receiver types r is said to be log-concave if ln g(r) is concave in r.12

Note that ln g(r) is well defined in the canonical case.

In this case, the shape of the sender’s indirect utility V defined by (9) is connected
to the shape of the density g of receiver types as follows.

Lemma 1. In the canonical case, V is S-shaped for all ρ if and only if g is log-
concave.

12Table 1 in Bagnoli and Bergstrom (2005) reports distributions with log-concave densities.
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That is, if the density of receiver types g is log-concave, then the sender’s indirect
utility V is S-shaped. Moreover, this result is tight in the sense that if g is not
log-concave, then there exists ρ such that V is not S-shaped.

By Theorem 1 and Lemma 1, we obtain a criterion for the optimality of upper cen-
sorship with the condition on the primitive of the model, the density g.

Theorem 2. Consider the canonical case and let the density g be log-concave. Then,
and only then, an optimal signal is deterministic upper censorship for all F and all ρ.

The symmetric statement is also true: an optimal signal is lower censorship for all F
and all ρ if and only if −g is log-concave. Consequently, if both g and −g are log-
concave (that is, g is exponential), then there exists an optimal signal which is both
upper censorship and lower censorship. There are only two signals with this property:
fully informative and completely uninformative. This allows us to obtain conditions
on the distribution of receiver types under which the optimal signal is polarized
between fully informative and completely uninformative signals, as, for example, in
Lewis and Sappington (1994) and Johnson and Myatt (2006).13

Corollary 2. In the canonical case, an optimal signal is either fully informative or
completely uninformative for all F and all ρ if and only if there exist λ ∈ R and c > 0
such that g(r) = ce−λr for r ∈ [0, 1].

If g(r) = ce−λr, then the fully informative signal is optimal whenever ρ ≥ λ and the
completely uninformative signal is optimal whenever ρ ≤ λ (and any signal is optimal
when ρ = λ). In particular, if ρ = 0, the optimal signal is fully determined by the
sign of λ, which is in turn determined by whether the mean of r is smaller or greater
than 1

2
.

3.2. Comparative Statics. Theorem 2 allows for a sharp comparative statics anal-
ysis on the informativeness of the optimal signal.

We compare signals by their Blackwell informativeness (Blackwell, 1953). To compare
upper-censorship signals s1 and s2, we only need to compare their cutoffs ω∗

1 and ω∗
2.

Signal s1 is more informative than signal s2 if ω∗
1 ≥ ω∗

2. Indeed, state ω ∈ [0,ω∗
2) is

fully revealed by both s1 and s2, and state ω ∈ [ω∗
2, 1] is partially revealed by s1 and

not revealed at all by s2, so s1 is more informative than s2.

13In the case of log-concave density g, the sets of upper- and lower-censorship signals are totally
ordered by the rotation order of Johnson and Myatt (2006). If we restrict attention to the set of
lower-censorship signals (which are generally suboptimal under log-concave g), then the rotation
point is decreasing with respect to the rotation order. By Lemma 1 of Johnson and Myatt (2006),
the sender’s expected utility is quasiconvex and one of the extreme lower-censorship signals (the
fully informative or completely uninformative signal) is optimal for the sender. But, if we restrict
attention to the set of upper-censorship signals (which are optimal under log-concave g), then the
rotation point is not decreasing with respect to the rotation order. Therefore, Lemma 1 of Johnson
and Myatt (2006) does not apply, and an interior upper-censorship signal is generally optimal for
the sender.
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For the purpose of comparison, we extend the definition of distribution function G
to the real line and assume that its density g is log-concave. Consider a family of
distributions Gt,σ of receiver types

Gt,σ (r) = G


τ − t+

r − τ

σ


,

where τ is the maximum point of g, and t ∈ R and σ > 0 are parameters. Let gt,σ (r)
denote the corresponding density. Note that gt,σ (r) is log-concave for all t ∈ R and
all σ > 0.

Because gt,σ is log-concave on [0, 1], deterministic upper censorship is optimal by
Theorem 2. Let ω∗ (ρ, t, σ) ∈ [0, 1] be the optimal censorship cutoff as given by (3).

The shift parameter t shifts the distribution along the horizontal axis, and the stretch
parameter σ stretches the distribution horizontally and symmetrically around the
mode τ , so the limit of σ → 0 leads to the unit mass on τ . We now show that the
sender optimally discloses more information when:

(i) the sender’s preferences are better aligned with the receiver’s preferences (the
alignment parameter ρ is greater),

(ii) the receiver is more reluctant to accept the proposal (the shift parameter t is
greater),

(iii) the sender is more uncertain about the receiver’s type (the stretch parameter σ
is greater), provided ρ ≥ 0.14

Theorem 3. In the canonical case, a cutoff state of an optimal signal satisfies:

(i) ω∗ (ρ, t, σ) is increasing in ρ;

(ii) ω∗ (ρ, t, σ) is increasing in t;

(iii) ω∗ (ρ, t, σ) is increasing in σ if ρ ≥ 0.

The intuition for part (i) is that for a higher ρ, the sender puts more weight on
the receiver’s utility, so she optimally endows the receiver with a higher utility by
providing more information.

The intuition for part (ii) is that for a higher t, each type of the receiver has a greater
cost of accepting the proposal, so to persuade the same type of the receiver, the sender
needs to increase E[ω|ω ≥ ω∗] by expanding the full disclosure interval [0,ω∗].

The intuition for part (iii) is that for a higher σ, receiver types are more spread out, so
to persuade the same mass of types, the sender again needs to increase E[ω|ω ≥ ω∗].

14The case ρ ≥ 0 is the practically relevant case where the sender’s utility is a weighted average
of the receiver’s action and utility: 1

1+ρv(ω, r) =
1

1+ρ + ρ
1+ρ (ω − r).
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4. Discrete State

In this section we assume that the state is a discrete random variable.

Theorem 1′. Let V be S-shaped. Then, and only then, for all discrete F ,

(A) an optimal signal is stochastic upper censorship whose cutoff pair (ω∗, q∗) satisfies
condition (3);

(B) an optimal monotone partition is deterministic upper censorship whose cutoff pair
(ω∗

d, q
∗
d) satisfies ω∗

d = ω∗ and q∗d ∈ {0, 1}.

In the canonical case, we obtain the result analogous to Theorem 2.

Theorem 2′. Consider the canonical case and let the density g be log-concave. Then,
and only then, for all discrete F and all ρ,

(A) an optimal signal is stochastic upper censorship;

(B) an optimal monotone partition is deterministic upper censorship.

Let us discuss how the comparative statics result (Theorem 3) changes. In Section 3.2,
we argue that upper-censorship signals can be ordered by their censorship cutoffs. But
when the state is discrete, a censorship cutoff is described by a pair (ω∗, q∗) where ω∗

is a cutoff state and q∗ is the probability of revealing this cutoff state when it realizes.

Consider two stochastic upper-censorship signals s1 and s2 with cutoff pairs (ω∗
1, q

∗
1)

and (ω∗
2, q

∗
2). Denote (ω∗

1, q
∗
1) ≽ (ω∗

2, q
∗
2) if ω

∗
1 > ω∗

2, or ω
∗
1 = ω∗

2 and q∗1 ≥ q∗2. Observe
that s1 is more (Blackwell) informative than s2 if and only if (ω∗

1, q
∗
1) ≽ (ω∗

2, q
∗
2). This

comparison also applies to deterministic upper-censorship signals, with the constraint
that q∗1 and q∗2 are in {0, 1}.

With the above order on cutoff pairs, Theorem 3 extend as follows:

Theorem 3′. Consider the canonical case.

(A) A cutoff pair of an optimal signal satisfies:

(i) (ω∗ (ρ, t, σ) , q∗ (ρ, t, σ)) is increasing in ρ;

(ii) (ω∗ (ρ, t, σ) , q∗ (ρ, t, σ)) is increasing in t;

(iii) (ω∗ (ρ, t, σ) , q∗ (ρ, t, σ)) is increasing in σ if ρ ≥ 0.

(B) A cutoff pair of an optimal monotone partition satisfies:15

(i) (ω∗
d (ρ, t, σ) , q

∗
d (ρ, t, σ)) is increasing in ρ;

(ii) (ω∗
d (ρ, t, σ) , q

∗
d (ρ, t, σ)) is increasing in t.

15Part (iii) also holds for an optimal monotone partition when, for example, the discrete support
of the state ω is a regular grid with sufficiently many points. However, it is possible to construct a
counterexample where part (iii) fails for an optimal monotone partition.
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That is, the sender optimally discloses more information when she is less biased
relative to the receiver (the alignment parameter ρ is greater), when the receiver is
more reluctant to accept the proposal (the shift parameter t is greater), and, under
Scenario A, when the sender is more uncertain about the receiver’s type (the stretch
parameter σ is greater).

Remark 2. Theorem 1′ and Theorem 2′ show that upper censorship emerges as an
optimal persuasion strategy under the same conditions (V is S-shaped in Theorem
1′ and g is log-concave in Theorem 2′), regardless of whether the sender can choose
an arbitrary signal or is constrained to choose a monotone partition. It may be
tempting to conjecture that if the sender was allowed to choose an arbitrary partition
(not necessarily monotone), the same result would hold. This, however, is not true.

For illustration, suppose that the sender wishes to maximize the probability of a = 1,
and the receiver has type r = 1

2
with certainty.16 Let the state ω take values in

{0, 1
4
, 1} with probabilities (1

6
, 2
3
, 1
6
), so the prior mean is 1

3
.

An optimal signal is stochastic upper censorship with cutoff pair (ω∗, q∗) = (1
4
, 1
2
),

which sends the pooling message with certainty at ω = 1 and with probability 1−q∗ =
1
2
at ω = 1

4
, and reveals the state otherwise. The pooling message induces the posterior

mean m = 1
2
, leading to a = 1; all other messages induce posterior means below 1

2
,

leading to a = 0. Under the optimal signal, action a = 1 is chosen with probability
2
3
· 1
2
+ 1

6
= 1

2
.

An optimal monotone partition is deterministic upper censorship that fully reveals
the state, where only ω = 1 leads to a = 1. Under this partition, action a = 1 is
chosen with probability 1

6
.

An optimal partition pools the extreme states ω = 0 and ω = 1, and reveals the
intermediate state ω = 1

4
. The pooling message induces the posterior mean m = 1

2
,

leading to a = 1. This optimal partition is nonmonotone. Under this partition,
action a = 1 is chosen with probability 1

6
+ 1

6
= 1

3
, which is strictly better than the

probability of 1
6
obtained under the optimal monotone partition.

5. Application to Media Censorship

In this section, we apply our results to the problem of media censorship by the
government. In the modern world, people obtain information about the government’s
state through various media sources such as television, newspapers, and internet
blogs. Without the media, most people would not know what policies and reforms
the government pursues and how effective they are. Media outlets have different
positions on the political spectrum and differ substantially in how they select and
present facts to cover the same news. People choose their sources of information based

16In this case, V (m) = 1 if m ≥ 1
2 and V (m) = 0 if m < 1

2 . Observe that the graph of V is

S-shaped, and it can be approximated by a continuously differentiable S-shaped function.
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on their political ideology and socioeconomic status. This information is valuable for
significant individual decisions on migration, investment, and voting, to name a few.
Individuals may not fully internalize externalities that their decisions impose on the
society. Likewise, the government may not have the society’s best interest at heart.
To further its goals, the government then wishes to influence individual decisions by
manipulating the information through media. In autocracies and countries with weak
checks and balances, the government has power to censor the media content.

The government’s problem of media censorship can be represented as the persua-
sion problem in Section 2. We apply our results to provide conditions for the op-
timality of upper-censorship policies that censor all media outlets except the most
pro-government ones. Furthermore, we interpret our comparative statics results.

5.1. Setup. There is a continuum of heterogeneous citizens indexed by r ∈ [0, 1]
distributed with G. Each citizen chooses between a = 0 and a = 1. The utility of a
citizen of type r is given by

u(θ, r, ar, ā) = (θ − r)ar + κ(θ, r, ā),

where ar ∈ {0, 1} denotes the citizen’s own action, ā =

ardG(r) denotes the aggre-

gate action in the society, θ ∈ [0, 1] captures an unobserved benefit from action 1 as
compared to action 0, and κ captures the impact of the aggregate action ā on the
citizen’s utility. The term (θ − r)ar is a private surplus of a citizen of type r. The
term κ(θ, r, ā) is an externality, because for a citizen of type r it is optimal to ignore
this term and choose ar = 1 if and only if θ ≥ r.

There is a government which is concerned with a weighted average of the social utility
and the government’s intrinsic benefit from the aggregate action. For a given θ, the
government’s utility is given by

 1

0

ν(θ, r, ar, ā)dG(r) + δγ(θ, ā).

The term ν captures a citizen’s utility from the government’s perspective. We allow ν
to be different from u to reflect paternalistic or other concerns. The term γ captures
the government’s intrinsic benefit from the aggregate action. The parameter δ ≥ 0
captures the weight of the aggregate action in the government’s utility.

Let T be a distribution of the random variable θ. We assume that distributions G and
T are independent and admit continuously differentiable and strictly positive densi-
ties. We also assume that κ, ν, and γ are linear in θ and continuously differentiable
in r and ā. Furthermore, to simplify interpretations, we assume that ν and γ are
non-decreasing in θ and ā, so that for the government, a high θ is a good news, and
a higher aggregate action is preferable.

Citizens obtain information about the unobservable benefit θ through media outlets.
Each media outlet is identified by its editorial policy c ∈ [0, 1], and it endorses action
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a = 1 if θ ≥ c and criticizes it if θ < c.17 A set C of media outlets is a finite subset
of [0, 1].18

The government’s censorship policy is a set of the media outlets X ⊂ C that are
permitted to broadcast; so the rest of the media outlets are censored.

The timing is as follows. First, the government chooses a set X ⊂ C of permitted
media outlets. Second, state θ is realized, and each permitted media outlet endorses
or criticizes action a = 1 according to its editorial policy. Finally, each citizen observes
messages from all permitted media outlets, updates his beliefs about θ, and chooses
an action.

5.2. Discussion. We now discuss interpretations of the key components of the media
censorship application. As in Gehlbach and Sonin (2014), there can be various inter-
pretations of the citizen’s action a = 1, such as voting for the government, supporting
a government’s policy, or taking an individual decision that benefits the government.
A citizen’s type r can be interpreted as his ideological position or preference param-
eter: A citizen who is more supportive of the government has a smaller r.

A media outlet with a higher editorial policy c can be interpreted as being less loyal
to the government because it criticizes the government on a larger set of states. An
editorial policy c ∈ C can therefore represent a slant or political bias of the outlet
against the government and can be empirically measured as the frequency with which
the outlet uses anti-government language. Gentzkow and Shapiro (2010) construct
such a slant index for U.S. newspapers. Empirical findings of their paper suggest
that the editorial policies of media outlets are driven by reader preferences, justifying
our assumption of the existence of a large variety of editorial policies.19 As in Suen
(2004), Chan and Suen (2008), and Chiang and Knight (2011), the assumption of
the binary media reports that communicate only whether the state θ is above some
standard c can be justified by a cursory reader’s preference for simple messages such
as positive or negative opinions and yes or no recommendations.

The government’s censorship of media outlets can take various forms. For example,
the government can ban access to internet sites, withdraw licenses, disrupt financing,
confiscate print materials and equipment, discredit media providers, and even arrest
editors and journalists using broadly formulated legislation on combating extremism.
In some countries, the government can exercise direct control over media editorial
policies either through state ownership or administrative pressure.

17The tie-breaking in the event of θ = c is unimportant, as θ is a continuous random variable.
18We discuss the case of a continuum of media outlets in Section 5.5.
19Theoretical literature has explored the determinants of media slant of an outlet driven by its

citizens (Mullainathan and Shleifer, 2005, Gentzkow and Shapiro, 2006, and Chan and Suen, 2008)
and its owners (Baron, 2006, and Besley and Prat, 2006).
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5.3. Formulating Media Censorship as Persuasion. We now show that the me-
dia censorship problem can be formulated as a linear persuasion problem, in which
the government is a sender and a representative citizen is a receiver.

In our model, the citizens’ and the government’s utilities are linear in θ. There-
fore, given any information from the media outlets, the utilities depend only on the
posterior mean of θ.

Consider an arbitrary posterior mean of θ, denoted by m ∈ [0, 1]. Each citizen of type
r chooses ar = 1 if and only if r ≤ m. The externality term κ plays no role in this
decision. Therefore, the aggregate action ā is simply the mass of all citizens whose
types do not exceed m, so ā = G(m).

Next, using the citizens’ optimal behavior, we derive the government’s expected utility
conditional on the posterior mean m:

V (m) = E
 1

0

ν(θ, r, ar, G(m))dG(r) + δγ(θ, G(m))

m


=

 1

0

ν(m, r,1{r≤m}, G(m))dG(r) + δγ(m,G(m)). (6)

This is the government’s indirect utility. As in Section 2, the government now chooses
a signal which is informative about the state to maximize its expected utility. How-
ever, in contrast to Section 2, here the government is restricted to signals that are
implementable by a subset of a given set of media outlets.

Next, we show that, with an appropriate definition of the state, the restriction to
signals implementable by a subset of a given set of media outlets can be formulated
as a restriction to monotone partitional signals, as in Scenario B in Section 2. Thus
we will be able to use our results in Section 4 to find the optimal censorship policies.

Recall that the information about θ is only available through the media outlets. Let ω
denote a random variable equal to the conditional expectation of θ given the messages
of all media outlets in C. Note that, as C is finite, ω is a discrete random variable
with values in [0, 1]. Let F denote the distribution of ω. From now on, we treat the
random variable ω as the state, and denote by s a signal as defined in Section 2.

Let HM denote the set of all distributions of the posterior mean state induced by
all monotone partitional signals, and let HC denote the set of all distributions of
the posterior mean state induced by all finite subsets of the set C of media outlets.
Observe that any set of media outlets induces a monotone partitional signal, that
is, HC ⊂ HM . We now show that every outcome implementable by an arbitrary
monotone partition in HM is also implementable by a subset of media outlets.

Lemma 2. HC = HM .

For illustration, suppose that there is only one media outlet with the editorial policy
c ∈ (0, 1). There are two observable events: θ ≥ c and θ < c. In each realized event,
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the citizens compute the posterior expectation of θ, which we will call ω. So, in this
example, the distribution F of ω has two mass points, one for each of the two events.

Given these two mass points, every monotone partition of [0, 1] induces one of two
possible distributions of the posterior mean state, (i) the mass points revealed, and (ii)
the mass points pooled. Observe, however, that these distributions are implementable
by permitting and censoring the media outlet, respectively.

A censorship policy is upper censorship if it censors all sufficiently disloyal media
outlets. Specifically, there exists a cutoff c∗ ∈ C and an indicator q∗ ∈ {0, 1} such
that all media outlets whose editorial policies are below c∗ are permitted, all media
outlets whose editorial policies are above c∗ are censored, and c∗ is permitted if and
only if q∗ = 1. That is, X = {c ∈ C : c ≤ c∗} if q∗ = 1 and X = {c ∈ C : c < c∗}
if q∗ = 0. Note that the full censorship policy c∗ = 0 and q∗ = 0 (where all media
outlets are censored) and the free media policy c∗ = 1 and q∗ = 1 (where all media
outlets are permitted) are the two extreme upper-censorship policies.

As shown above, the media censorship problem is equivalent to the linear persuasion
problem in which the sender is restricted to monotone partitional signals and the
sender’s indirect utility V is given by (6). We thus apply Theorem 1′(B) to obtain
the following result.

Theorem 1′′. If V is S-shaped, then an optimal censorship policy is upper censorship.

To illustrate Theorem 1′′, suppose the government is interested only in the aggregate
action, so that ν = 0 and γ depends only on the aggregate action ā; so V (m) =
γ(G(m)). Thus, an upper-censorship policy is optimal if the composition function
γ(G(·)) is S-shaped. For example, this condition holds if the government is interested
in reaching a certain approval threshold (e.g., a simple majority), so that γ is a step
function. This condition also holds if γ is S-shaped and G is uniform or S-shaped
with the same inflection point as γ.20

5.4. Canonical Case. We now impose more structure on the utilities to obtain a
sharper result for the optimality of upper censorship and to perform a comparative
statics analysis. Analogously to assumption (A1), we assume that the government’s
utility is a weighted average of the citizens’ utility and their aggregate action:

 1

0

u(θ, r, ar, ā)dG(r) + δā,

where u(θ, r, ar, ā) = (θ − r)ar + ζ(r)ā

(A2)

for some continuously differentiable function ζ. Define

β =

 1

0

ζ(r)dG(r) + δ.

20This condition holds in many special cases where γ and G are S-shaped even when γ and G
have different inflection points.
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The term
 1

0
ζ(r)dG(r) is the government’s expected bias towards the citizens’ action

a = 1 due to the citizens’ externality, and the term δ is the government’s intrinsic
bias towards a greater aggregate action ā. Thus, we interpret β as the government’s
aggregate bias. This decomposition of the bias allows for different interpretations why
the government is biased. So, β can be high because the government is too self-serving
(high δ), or because the government is benevolent (low δ) but wishes to internalize
strong positive externalities of the citizens (high ζ(r)). To ease interpretations, we
assume that β > 0.21

Under Assumption (A2), the government’s indirect utility V given by (6) becomes

V (m) =

 m

0

(m− r)dG(r) + βā =

 m

0

v(m, r)dG(r),

where

v(m, r) = β


1 +

1

β
(m− r)


.

This is the same as v given by Assumption (A1) with ρ = β−1, up to rescaling by a
positive constant. Consequently, we can apply Theorem 2′(B) to obtain the following
result.

Theorem 2′′. Let (A2) hold. If the density g of citizens types is log-concave, then an
optimal censorship policy is upper censorship.

We now apply the comparative statics analysis presented in Section 3.2. Note that
the upper-censorship policies are ordered according to the amount of information
transmitted to the citizens, in the sense of Blackwell (1953). A greater censorship
threshold c∗ means that more media outlets are permitted. With this order in mind,
we apply Theorem 3′(B) to make a comparative statics analysis on the amount of
information that is optimally disclosed by the government.

First, the censorship cutoff is increasing in the alignment parameter ρ. Recall that
this is a reciprocal of the government’s bias, ρ = β−1. This means that the government
optimally discloses more information (the censorship cutoff is greater) when it is less
biased (β is smaller). Intuitively, as β decreases, the government puts more weight
on the citizens’ utility, so it optimally endows the population with a higher utility by
censoring fewer media outlets and disclosing more information.

Second, the censorship cutoff is increasing in the magnitude t of the horizontal shift
of the density g. A greater t corresponds to a greater opportunity cost of action
a = 1 for each citizen. This means that the government optimally discloses more
information (the censorship cutoff is greater) when the citizens are more difficult
to persuade to take action a = 1 (parameter t is greater). Informally speaking, to
persuade the same type of the citizen, the government needs to increase the posterior

21If β < 0, then swapping the roles of a = 0 and a = 1 reverses the sign of the bias. If β = 0,
then the government’s utility and the citizens’ private interests coincide, so it is trivially optimal to
permit all media outlets.
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mean. But the expected posterior mean must be equal to the prior mean, so it is not
possible to increase all posterior means. Due to the log-concave shape of the density
of the citizens’ types, this tradeoff is resolved by increasing the posterior mean of the
pooling interval, E[ω|ω ≥ c∗]. This is done by shrinking the pooling interval [c∗, 1],
that is, increasing the censorship cutoff c∗.

Third, when the number of media outlets is sufficiently large, the censorship cutoff
is increasing in the stretch factor σ of the density g around its peak τ (see Footnote
15). A greater σ corresponds to a more dispersed distribution of the opportunity
cost in the population. This means that the government optimally discloses more
information (the censorship cutoff is greater) when the citizens are more diverse in
how difficult they are to persuade. Intuitively, when the types are more spread out,
persuading the same mass of types requires a greater posterior mean which leads to
a higher censorship cutoff, similarly to the comparative statics in t discussed above.

5.5. Extensions and Open Questions. Let us now consider a few extensions of
our model of media censorship.

In our model, the set of media outlets is exogenous, and the government’s only in-
strument is censorship. We now consider three alternative ways of expanding the
government’s instruments of influence.

First, suppose that the government is able not only to censor existing media outlets,
but also to introduce new media outlets with chosen editorial policies. This is equiv-
alent to our censorship model where all media outlets in [0, 1] are initially available,
and the government can censor any subset of them. When all media outlets in [0, 1]
are permitted, the revealed information about θ (which we call ω) is θ itself. Thus,
ω = θ is a continuous random variable with distribution F = T . So, we can now
apply our results for the continuous state from Section 3 instead of those for the dis-
crete state in Section 4, reaching the same conclusion about the optimality of upper
censorship.

Second, suppose that the government can garble information available from media
outlets. That is, the government is not restricted to monotone partitions, it can
create arbitrary signals about state ω for the citizens to observe. This becomes a
general persuasion problem, and our Theorems 1′(A), 2′(A), and 3′(A) apply.

Third, suppose that the government is able to restrict not only which media outlets
are permitted, but also how many media outlets each citizen can choose to observe.
In this extension, the citizens are not allowed to communicate with one another (oth-
erwise they could share the information, thus observing all permitted media outlets
indirectly). This extension does not affect our results, as long as each citizen is al-
lowed to access at least one media outlet of his choice, as in Chan and Suen (2008).
Intuitively, this is because each citizen categorizes the information from the media
outlets into “good news” where a = 1 is optimal and “bad news” where a = 0 is



22 KOLOTILIN, MYLOVANOV, ZAPECHELNYUK

optimal. Because the information from the media outlets induces a monotone parti-
tion, it means that “good news” is separated from “bad news” by a threshold media
outlet that depends on the citizen’s type. That is, it is sufficient to observe a single
threshold media outlet to distinguish “good news” from “bad news”.

In our model, each citizen’s utility depends on the aggregate action ā through the
externality term κ(θ, r, ā) which does not affect the chosen action. Let us relax this
assumption, so that a citizen’s optimal choice can depend on ā. We can still write
the sender’s indirect utility V as a function of the posterior mean state and apply
our results. However, V is no longer uniquely determined by the primitives of the
model. It is now endogenous and depends on an equilibrium the citizens play, as
each citizen’s optimal action now depends on what all citizens do in equilibrium. For
example, given the same information about the state, a citizen could prefer to choose
a = 1 if and only if sufficiently many citizens choose the same action, so ā is large
enough. This creates the problem of multiplicity of equilibria and, as a consequence,
the dependence of optimal censorship on equilibrium selection.

As a side, our media censorship problem can also be applied to spatial voting mod-
els, as in Chiang and Knight (2011). Consider a government party (p = G) and an
opposition party (p = O) competing in an election. If party p wins, a voter with
an ideological position r gets utility wp − (r − rp)

2, where wp is the quality or va-
lence of party p, and rp is the ideology or policy platform of party p. Voters know
the parties’ ideologies and obtain information about the parties’ qualities from all
available media outlets. Each voter supports the party that maximizes his expected
utility. Within this context, our analysis still applies, because the voter’s utility dif-
ference between the government and opposition parties is proportional to θ−r, where
θ = (wG − wO + r2O − r2G)/2(rO − rG).

There are a few more extensions that can be relevant in applications. First, instead
of complete censorship of a media outlet, there can be a cost of accessing it. For
example, an international news channel can be censored by a local government, but
citizens may still access it through VPN at some cost. Second, it can be costly for
the government to censor media outlets. So, another important question to answer
is how a government may prioritize censoring. Finally, citizens can incur some cost
of following each media outlet. While we have already mentioned that citizens gain
no benefit from following more than one outlet, it is entirely possible for them to
stop watching news altogether if it is sufficiently uninformative. These extensions are
nontrivial and left for future research.

Appendix

Proof of Theorem 1. Suppose that V is S-shaped. For m,ω∗ ∈ [0, 1] and m∗(ω∗) =
E[ω|ω ≥ ω∗], define

V (m,ω∗) = V (m∗(ω∗)) + V ′(m∗(ω∗))(m−m∗(ω∗)). (7)
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Since V (m) is convex on [0, τ ] and concave on [τ, 1], there exists ω∗ ∈ [0, τ ] that
satisfies condition (3), that is,

V (m,ω∗) ≥ (≤)V (m) for all m ≥ (<)ω∗. (8)

This is true, because V (ω∗,ω∗) − V (ω∗) is single-crossing from below. To see this,
consider Figure 1. Observe that (3) can hold only if ω∗ is on the convex part of V and
m∗ is on the concave part of V . As the censorship cutoff ω∗ increases, the posterior
mean state of the pooling message m∗(ω∗) also increases. But because V is concave
at m∗(ω∗), the dashed tangent line, V (m,ω∗), becomes flatter in m, so it crosses the
solid line, V (m), at a smaller m.

Consider an arbitrary signal s. Let H be the distribution of m = E[ω|s] induced
by signal s. Since each signal is a garbling of the fully informative signal, F is a
mean-preserving spread of H. Thus, the sender’s expected utility is smaller under
signal s than under the upper-censorship signal with cutoff ω∗ as follows from

 1

0

V (m)dH(m) ≤
 1

0

max{V (m), V (m,ω∗)}dH(m)

≤
 1

0

max{V (m), V (m,ω∗)}dF (m)

=

 ω∗

0

V (m)dF (m) +

 1

ω∗
V (m,ω∗)dF (m)

=

 ω∗

0

V (m)dF (m) +

 1

ω∗
V (m∗(ω∗))dF (m),

where the second line holds because max{V (m), V (m,ω∗)} is convex in m and F is
a mean-preserving spread of H, the third line holds by (8), and the last line holds by

(7) and by
 1

ω∗(m−m∗(ω∗))dF (m) = 0.

Conversely, suppose that V is not S-shaped. Then there exist 0 ≤ m1 < m2 ≤
m3 < m4 ≤ 1 such that V ′′(m) < 0 for m ∈ (m1,m2), V

′′(m) = 0 for m ∈ [m2,m3],
and V ′′(m) > 0 for m ∈ (m3,m4), because V ′′ is continuous by assumption. It is
straightforward to show that there exists m∗ ∈ (m1,m2) (sufficiently close to m2) and
ω∗ ∈ (m3,m4) such that

V (m∗) + V ′(m∗)(m− m∗) < V (m) for all m ∈ (ω∗,m4],

V (m∗) + V ′(m∗)(m− m∗) > V (m) for all m ∈ [m1, ω∗] \ {m∗}.

Moreover, there exists a continuous distribution F such that the support of F is a
subset of [m1,m4] and m∗ = E[ω|ω ≤ ω∗]. Using a chain of inequalities similar to the
one above, it is easy to show that lower-censorship signal s∗ with cutoff ω∗ is optimal.
Furthermore, it is uniquely optimal, as both inequalities hold with equalities only for
signal s∗. This, in turn, implies that any upper-censorship signal is suboptimal. □
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Proof of Lemma 1. Notice that, under assumption (A1), we have

V ′′(m) = g′(m) + ρg(m) for m ∈ [0, 1].

Recall that V is S-shaped if and only if V ′′(m) = g′ (m) + ρg (m) is single-crossing
from above. Using Proposition 1 in Quah and Strulovici (2012), it is easy to show
that V ′′(m) is single-crossing from above for all ρ ∈ R if and only if g′ (m)/g (m) is
nonincreasing in m (that is, ln g(m) is concave). □

Proof of Theorem 2. Immediate by Theorem 1 and Lemma 1. □

Proof of Theorem 3. Part (i). We fix t and σ, and vary ρ. Without loss of
generality, let t = 0 and σ = 1 (so that Gt,σ = G). Consider a signal that induces the
distribution H of posterior mean m. This signal implements the receiver’s interim
utility U given by

U(r) =

 1

r

(m− r)dH(m) for r ∈ [0, 1],

which holds because the receiver acts if and only if m ≥ r. Since types r < 0 always
choose a = 1 and types r > 1 always choose a = 0, we can exclude them from
consideration and assume that supp(G) = [0, 1]. The sender’s expected utility is then

 1

0

V (m)dH(m) =

 1

0

 m

0

(1 + ρ(m− r))dG(r)dH(m)

=

 1

0

 1

r

(1 + ρ(m− r))dH(m)dG(r)

=

 1

0

(1−H(r) + ρU(r))dG(r).

Consider ρ2 > ρ1. Suppose by contradiction that the corresponding optimal upper-
censorship signals s2 and s1 are such that s1 is strictly more informative than s2. Let
U2 and U1 be the receiver’s interim utilities implemented by s2 and s1. Since the
sender prefers signal s2 under ρ2 and signal s1 under ρ1, we have

 1

0

(1−H2 (r) + ρ2U2 (r)) dG (r) ≥
 1

0

(1−H1 (r) + ρ2U1 (r)) dG (r) ,

 1

0

(1−H1 (r) + ρ1U1 (r)) dG (r) ≥
 1

0

(1−H2 (r) + ρ1U2 (r)) dG (r) .

Summing up these inequalities gives:

(ρ2 − ρ1)

 1

0

(U2 (r)− U1 (r)) dG (r) ≥ 0,

leading to a contradiction because U1(r) ≥ U2(r) for all r with strict inequality for
some r given that s1 is strictly more informative than s2.
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Part (ii). We fix ρ ∈ R and σ = 1, and vary t. The indirect utility of the sender
conditional on m ∈ [0, 1] is given by

Vt(m) =



r≤m

(1+ρ(m−r))gt,1(r)dr =



r≤m−t

(1+ρ(m−t−r))g(r)dr = V (m−t). (9)

By Theorem 1, when t0 = 0, an optimal cutoff ω∗
0 satisfies

V (m) ≤ V (m∗
0) + V ′(m∗

0)(m−m∗
0) for m ∈ [ω∗

0, 1].

When V is S-shaped and t1 < 0, it is easy to see that

V (m− t1) ≤ V (m∗
0 − t1) + V ′(m∗

0 − t1)(m−m∗
0) for m ∈ [ω∗

0, 1],

which implies that, when t = t1, the above inequality changes its sign at some ω∗
1

that satisfies ω∗
1 ≤ ω∗

0. It follows from (9) that ω∗
1 is an optimal cutoff for t = t1, and

as we established above, ω∗
1 ≤ ω∗

0.

Part (iii). We fix ρ ≥ 0 and t = 0, and vary σ. The indirect utility of the sender
conditional on m ∈ [0, 1] is given by

V ρ
σ
,σ(m) =



r≤m


1 +

ρ

σ
(m− r)


dG0,σ(r)

=



r≤m


1 +

ρ

σ
(m− r)


g


r − (1− σ)τ

σ


1

σ
dr

=



r≤m−(1−σ)τ
σ


1 + ρ


m− (1− σ)τ

σ
− r


g(r)dr

= Vρ,1


m− (1− σ)τ

σ


. (10)

Let σ0 = 1, σ1 < 1 and ρ1 = ρ/σ1. To compare the optimal cutoffs under parameters
(ρ, σ0) and (ρ, σ1), we consider two steps, first comparing the cutoffs between (ρ, σ0)
and (ρ1, σ1), and then comparing the cutoffs between (ρ1, σ1) and (ρ, σ1).

First, we compare an optimal cutoff ω∗
0 under (ρ, σ0) = (ρ, 1) and an optimal cutoff

ω∗
1 under (ρ1, σ1). By Theorem 1, ω∗

0 satisfies

Vρ,1(m) ≤ Vρ,1(m
∗
0) + V ′

ρ,1(m
∗
0)(m−m∗

0) for m ∈ [ω∗
0, 1].

When V is increasing (implied by ρ ≥ 0) and S-shaped, and σ1 < 1, it is easy to see
that, for all m ∈ [ω∗

0, 1],

Vρ,1


m− (1− σ1)τ

σ1


≤ Vρ,1


m∗

0 − (1− σ1)τ

σ1


+ V ′

ρ,1


m∗

0 − (1− σ1)τ

σ1


(m−m∗

0),

which implies that, when σ = σ1 < 1, the above inequality changes its sign at some
ω∗
1 that satisfies ω∗

1 ≤ ω∗
0. It follows from (10) that ω∗

1 is an optimal cutoff under
(ρ/σ, σ1) = (ρ1, σ1), and as we established above, ω∗

1 ≤ ω∗
0.
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Second, we compare the optimal cutoff ω∗
1 under (ρ1, σ1) and the optimal cutoff ω∗

2

under (ρ, σ1). Because ρ < ρ1 = ρ/σ1, by part (i) we have ω∗
2 ≤ ω∗

1.

Combining ω∗
1 ≤ ω∗

0 and ω∗
2 ≤ ω∗

1, we obtain ω∗
2 ≤ ω∗

0. □

Proof of Theorem 1′. Part (A). The proof is analogous to that of Theorem 1 and
is thus omitted.

Part (B). The only if statement follows from that in part (A) (see the proof of Theorem
1) and the fact that we can always ensure that an optimal stochastic censorship
(ω∗, q∗) is deterministic (so q∗ ∈ {0, 1}) by the choice of the support and distribution
of ω. Thus, we only need to prove the if statement.

Let F be a distribution of ω with support on n values, 0 < ω0 < ... < ωn−1 < 1. This
is without loss of generality, because if 0 and/or 1 were in the support of F , we could
redefine the state as ω̃ = (ω + ε)/(1 + 2ε) and the type as r̃ = (r + ε)/(1 + 2ε).

Let X ⊂ {ω1, ...,ωn−1} identify a set of cutoffs defining a monotone partition: for each
ωi ∈ X, the receiver is informed whether ω < ωi or ω ≥ ωi. Note that we exclude ω0

from the set of cutoffs, because ω ≥ ω0 always holds.

Note that X is deterministic upper censorship if and only if there exists a censorship
threshold ω∗ ∈ [0, 1] such that, for each i = 1, ..., n− 1, ωi ∈ X if and only if ωi < ω∗,
that is, we can assume that q∗ = 0 without loss of generality.

Let VX be the sender’s expected utility when the monotone partition is given by X.

If n = 2, then there are only two partitions: X = {ω1} (full disclosure) and X = ∅
(no disclosure). Both are upper censorships, so part (B) holds trivially.

If n = 3, then there are four monotone partitions: X = {ω1,ω2} (full disclosure),
X = {ω2}, X = {ω1}, and X = ∅ (no disclosure). Only X = {ω2} is not upper
censorship. The next lemma proves that X = {ω2} cannot be uniquely optimal when
V is S-shaped, thus proving the optimality of upper censorship for n = 3.

Denote

mjk = E

ω|ω ∈ [ωj,ωk]


.

For convenience of notation, we write mj = ωj.

Lemma 3. Let V be S-shaped with an inflexion point τ . Let ω be a discrete random
variable with support on {m0,m1,m2} and probabilities p0, p1, p2, where 0 < m0 <
m1 < m2 < 1. Then:

(i) if τ ≤ m0, then V{m2} ≤ V∅;

(ii) if τ ≥ m1, then V{m2} ≤ V{m1,m2};

(iii) if m0 < τ < m1, then V{m2} ≤ max{V∅, V{m1,m2}}.
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Proof. Define p01 = p0 + p1 and p02 = p01 + p2 = 1. Observe that

m01 =
p0m0 + p1m1

p0 + p1
and m02 =

p0m0 + p1m1 + p2m2

p0 + p1 + p2
.

We thus have

V∅ = p02V (m02) = (p01 + p2)V


p01m01 + p2m2

p01 + p2


,

V{m2} = p01V (m01) + p2V (m2) = (p0 + p1)V


p0m0 + p1m1

p0 + p1


+ p2V (m2),

V{m1,m2} = p0V (m0) + p1V (m1) + p2V (m2).

Clearly,

m0 < m01 < m1 and m0 < m02 < m2.

Therefore,

V{m2} ≤ V∅ ⇐⇒
p01

p01 + p2
V (m01) +

p2
p01 + p2

V (m2) ≤ V


p01

p01 + p2
m01 +

p2
p01 + p2

m2


= V (m02),

(11)

and

V{m2} ≤ V{m1,m2} ⇐⇒

V


p0

p0 + p1
m0 +

p1
p0 + p1

m1


≤ p0

p0 + p1
V (m0) +

p1
p0 + p1

V (m1).
(12)

Suppose that τ ≤ m01, so V is concave on [m01,m2]. Then, (11) holds by Jensen’s
inequality. In particular, it holds for τ ≤ m0 < m01, thus proving part (i).

Suppose that τ ≥ m1, so V is convex on [m0,m1]. Then, (12) holds by Jensen’s
inequality, thus proving part (ii).

Finally, suppose that m01 < τ < m1. Let (τ, V (τ)) lie below (or on) the straight line
A connecting (m0, V (m0)) and (m2, V (m2)), as illustrated on Figure 2. By convexity
of V (m) for m < τ , it must be the case that V (m01) lies below (or on) the dashed
line B. By concavity of V (m) for m > τ , it must be the case that V (m1) lies above
(or on) the dashed line C. Consequently, (12) is satisfied.

Alternatively, let (τ, V (τ)) lie above the straight line A connecting (m0, V (m0)) and
(m2, V (m2)), as illustrated on Figure 3. If V{m2} ≤ V{m1,m2}, then the proof of part
(iii) is complete. So, suppose that V{m2} > V{m1,m2}, so (12) is violated.

By convexity of V (m) for m < τ , it must be the case that V (m01) lies below (or on)
the line B. Since (12) is violated, V (m01) must lie between the lines A and B. Recall
that m01 < m02 < m2. Observe that V (m02) must be in the shaded area on Figure 3.
Indeed, if m02 < τ , then by convexity of V (m) for m < τ , it must be the case that
V (m02) lies between (or on) the lines B and D. If m02 ≥ τ , then by concavity of
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τ m2m0

A C

B

m01 m1

V (m0) V (τ)

V (m2)

Figure 2. The case where (τ, V (τ)) lies below (or on) the straight line
connecting (m0, V (m0)) and (m2, V (m2)).

τ m2m0

A

C

B

m01

V (m0)

V (τ)

V (m2)

D

V (m01)

Figure 3. The case where (τ, V (τ)) lies above the straight line con-
necting (m0, V (m0)) and (m2, V (m2)).

V (m) for m > τ , it must be the case that V (m02) lies above (or on) line C. It follows
that (11) is satisfied. □

We now adapt Lemma 3 to prove the optimality of upper censorship for n ≥ 4.
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Fix a monotone partition X ⊂ {ω1, ...,ωn−1} that is not upper censorship, that is,
there exists i ∈ {2, ..., n− 1} such that

ωi−1 ∕∈ X and ωi ∈ X. (13)

Denote ωn = 1. Define j and k as follows. If X ∩ {ω1, ...,ωi−2} ∕= ∅, let ωj be the
largest element inX smaller than i; otherwise let ωj = ω0. IfX∩{ωi+1, ...,ωn−1} ∕= ∅,
let ωk be the smallest element in X greater than i; otherwise let ωk = ωn = 1. Define

m0 = ωj, m1 = ωi−1, m2 = ωi,

and

p0 =
Pr[ω ∈ [ωj,ωi−1)]

Pr[ω ∈ [ωj,ωk)]
, p1 =

Pr[ω ∈ [ωi−1,ωi)]

Pr[ω ∈ [ωj,ωk)]
, p2 =

Pr[ω ∈ [ωi,ωk)]

Pr[ω ∈ [ωj,ωk)]
.

To apply Lemma 3, we identify X\{ωi} with ∅, X with {m2}, and X ∪ {ωi−1} with
{m1,m2}. By Lemma 3, VX ≤ max{VX\{ωi}, VX∪{ωi−1}}. Thus, replacing X with
X\{ωi} if VX ≤ VX\{ωi} and with X ∪ {ωi−1} otherwise weakly improves the sender’s
expected utility. Repeatedly applying such replacements yields upper censorship.
Indeed, this procedure terminates after a finite number of replacements, because, by
Lemma 3, for ωj ≥ τ , we replace X with X\{ωi} and, for ωi−1 ≤ τ , we replace X
with X ∪ {ωi−1}.

We thus have shown that when V is S-shaped, when optimizing over the set of
monotone partitions, we can restrict attention to deterministic upper censorship. It
remains to show that an optimal deterministic censorship cutoff ω∗

d coincides with an
optimal stochastic censorship cutoff ω∗ from part (A). To see this, it is straightforward
to show that

V ∗(ω∗, q∗) =



[0,ω∗)

V (ω)dF (ω) + V (ω∗)q∗ Pr[ω = ω∗]

+ V (m∗(ω∗, q∗))((1− q∗) Pr[ω = ω∗] + Pr[ω > ω∗]) (14)

is single-peaked in (ω∗, q∗) in the Blackwell informativeness order. Since the two de-
terministic censorship cutoff pairs closest to (ω∗, q∗) in the Blackwell informativeness
order are (ω∗, 0) and (ω∗, 1), we obtain ω∗

d = ω∗. □

Proof of Theorem 2′. Immediate by Theorem 1′ and Lemma 1. □

Proof of Theorem 3′. The proof for an optimal signal is analogous to that of
Theorem 3 and is thus omitted. The same applies to part (i) for an optimal monotone
partition. Thus, it remains to prove part (ii) for an optimal monotone partition.

We fix ρ and σ = 1, and vary t continuously. If ω∗ /∈ supp(F ), then an optimal
monotone partition is an optimal signal, because all q∗ ∈ [0, 1] are optimal. Thus,
part (ii) in (B) holds by part (ii) in (A). If ω∗ ∈ supp(F ) and q∗ ∈ (0, 1), then either
(ω∗

d, q
∗
d) = (ω∗, 0) or (ω∗

d, q
∗
d) = (ω∗, 1) is optimal, because the sender’s expected utility

V ∗ given by (14) is single-peaked in (ω∗, q∗) in the Blackwell informativeness order.
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Therefore, it suffices to consider values of t at which the sender is indifferent between
(ω∗, 0) and (ω∗, 1) and to show that the sender strictly prefers (ω∗, 1) to (ω∗, 0) at a
slightly higher t:

V ∗
t (ω

∗, 0) = V ∗
t (ω

∗, 1) =⇒ dV ∗
t (ω

∗, 0)

dt
≤ dV ∗

t (ω
∗, 1)

dt
. (15)

The condition V ∗
t (ω

∗, 0) = V ∗
t (ω

∗, 1) can be written as

Vt(m
∗(ω∗, 0)) Pr[ω ≥ ω∗] = Vt(ω

∗) Pr[ω = ω∗] + Vt(m
∗(ω∗, 1)) Pr[ω > ω∗]

⇐⇒ Vt(m
∗(ω∗, 0)) = Vt(ω

∗)
Pr[ω = ω∗]

Pr[ω ≥ ω∗]
+ Vt(m

∗(ω∗, 1))
Pr[ω > ω∗]

Pr[ω ≥ ω∗]

⇐⇒ Vt(m
∗(ω∗, 0)) = Vt(ω

∗)
m∗(ω∗, 1)−m∗(ω∗, 0)

m∗(ω∗, 1)− ω∗ + Vt(m
∗(ω∗, 1))

m∗(ω∗, 0)− ω∗

m∗(ω∗, 1)− ω∗ .

Analogously, the condition
dV ∗

t (ω∗,0)
dt

≤ dV ∗
t (ω∗,1)
dt

can be written as

V ′
t (m

∗(ω∗, 0)) ≥ V ′
t (ω

∗)
m∗(ω∗, 1)−m∗(ω∗, 0)

m∗(ω∗, 1)− ω∗ + V ′
t (m

∗(ω∗, 1))
m∗(ω∗, 0)− ω∗

m∗(ω∗, 1)− ω∗ .

Thus, (15) states that if Vt(m
∗(ω∗, 0)) is equal to the convex combination of Vt(ω

∗)
and Vt(m

∗(ω∗, 1)), then the derivative V ′
t (m

∗(ω∗, 0)) is greater than the convex com-
bination of the derivatives V ′

t (ω
∗) and V ′

t (m
∗(ω∗, 1)). When V is S-shaped, it is easy

to see that this property is satisfied. □

Proof of Lemma 2. Observe that a signal induced by any set X ⊂ C of permitted
media outlets induces a monotone partition of [0, 1], and thus HC ⊂ HM . Indeed, let
cX(ω) and cX(ω) be the media outlets in X that are the closest to ω from above and
from below:

cX(ω) = sup

{c ∈ X : c ≤ ω


∪ {0}


and cX(ω) = inf


{c ∈ X : c > ω} ∪ {1}


.

By observing the media outlets in X, each citizen is informed that ω ∈ [cX(ω), cX(ω)).

Conversely, let the set C of media outlets be c0 < · · · < cn. Without loss of generality,
assume that C contains the two uninformative media outlets c0 = 0 and cn = 1, which
(almost) always endorse and criticize action a = 1, respectively. Then the distribution
F of the state ω is a discrete distribution whose support is Ω = {ω0, . . . ,ωn−1} where
ωi = E[θ|θ ∈ [ci, ci+1)] for i ∈ {0, . . . , n− 1}. Consider a monotone partitional signal
represented by a nondecreasing function ξ : [0, 1] → R. For each realization m of this
signal that occurs with a strictly positive probability, define

x(m) = min

ω ∈ Ω : ξ(ω) = m


and x(m) = max


ω ∈ Ω : ξ(ω) = m


.

This signal induces a monotone partition of the finite set Ω. This partition of Ω can
be implemented by a censorship policy that prohibits a media outlet c ∈ C if and
only if c ∈ (x(m), x(m)) for some realization m. □
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