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Abstract

We propose a theory of self-selection by mutual fund managers into stock “picking” and
market “timing.” With adverse selection, investors learn more easily about the skill of
picking funds than of timing funds, since picking investments are less correlated than timing
investments. The equilibrium allocation of talent across strategies is such that high-skill
managers always pick, while low-skill managers time with positive probability. We empirically
confirm the prediction that picking funds outperform timing funds, even though picking does
not outperform timing as a strategy. Consistent with the investors’ learning in our model,
picking funds exhibit higher flow-performance sensitivity than timing funds, and low-skill
managers have the incentive to rely more on timing strategies when their reputation, or
aggregate volatility, increase.
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1 Introduction

Mutual fund managers seek to generate value for their shareholders through stock picking and

market timing. These are distinct strategies: picking requires a manager to acquire and ana-

lyze information about individual stocks, while timing requires a manager to analyze the general

market environment. Despite the volume of literature exploring whether mutual fund managers

are skilled and add value for their investors, little is known about how managers choose which

strategy to adopt. Our paper complements this literature by developing a deeper understanding

of how manager’s choice of strategy depends on investment skill. Why do certain managers choose

picking strategies and others choose timing? What is the resulting allocation of talent across

strategies in the mutual fund industry? If investment strategies differ in terms of their ability

to showcase managerial skill, then managers with different skills might optimally self-select into

different strategies. How does such self-selection affect the observed mutual fund performance?

These questions are largely unanswered, and our paper aims to answer them.

To this end, we propose a dynamic theory of fund managers’ self-selection of picking and timing

strategies. Our theory of self-selection exploits a difference in the correlation between investments

that constitute a picking strategy, and those that are part of a timing strategy. Because a picking

strategy entails making multiple investments or bets on the idiosyncratic components of various

stocks, the returns on these investments represent independent signals about the manager’s skill,

which investors try to infer by observing fund performance. In contrast, a timing strategy requires

a fund manager to predict fluctuations of the aggregate market, or of a specific sector, or factors.

The returns on timing investments are thus positively correlated, as they are driven by a common

component, and the corresponding fund performance conveys a noisier signal to investors. For

this reason, compared to timing strategies, picking strategies reveal more information about the

skill of the fund manager. We exploit this distinguishing feature to answer our questions.

We embed our dynamic theory of fund managers’ self-selection into strategies within an equi-

librium setting with endogenous fund flow, in the spirit of Berk and Green (2004). We consider a

representative fund manager whose investment skill can be high or low. While the manager knows

her own skill, it is unknown to a representative investor, who tries to infer it by observing the

manager’s performance. A skilled manager, in expectation, delivers a better performance, since

investment skill positively affects the expected returns on investments. Besides observing the

manager’s performance, the investor also observes the strategy employed by the manager (picking

vs. timing), and updates his beliefs about her skill in a Bayesian way.1

1We provide empirical evidence in support of our assumption that fund investors know the fund strategy (picking
vs. timing). Specifically, we document that fund flows are more sensitive to the component of fund performance

2



Whether the manager chooses to be a picker or a timer, we assume that she takes n bets

to implement her chosen strategy. However, while picking bets are assumed to be independent

of each other (reflecting their idiosyncratic nature), timing bets are positively correlated with

each other. Intuitively, the correlation structure among timing bets can arise through a common

aggregate component that drives their returns. Allowing for mixed-strategies, we characterize a

hybrid semi-separating equilibrium in which a high-skill manager chooses a picking strategy with

probability 1, and a low-skill manager always chooses a timing strategy with positive probability.

The intuition for the equilibrium allocation of talent across strategies is as follows.

A high-skill manager always chooses the investment strategy that allows her to better reveal

her skill. This is achieved by picking, because a high-skill manager expects to perform well, and

because the performance of a picking strategy delivers a more informative signal to the investor.

A low-skill manager, instead, has the incentive to hide her lesser investment ability from the

investor. To achieve this, she can either hide behind the high-skill manager by picking (“pool by

picking”), or she can hide behind a noisier strategy by timing. Pooling by picking has the benefit

of rewarding a low-skill manager with a disproportional boost to her reputation following a good

performance because, in equilibrium, the investor may mistake her for a high-skill manager. At

the same time, picking is risky and exposes her to drastic damage to reputation following poor

performance. Adopting a timing strategy, instead, has the benefit of being less revealing, and

thus tends to preserve the manager’s reputation even after poor performance. However, it also

makes it difficult for the manager to boost her reputation when there is a good performance. In

equilibrium, a low-skill manager balances these tradeoffs, resulting in a mixed strategy.

Using CRSP data on mutual funds for the period 1999-2017, we first test that the equilibrium

delivering a self-selection mechanism in the model holds true in the data. Since picking funds

actively deviate from their benchmark by taking idiosyncratic risk, while timing funds deviate by

exposing themself to systematic risk, we use the measure of fund intention (to pick or to time)

introduced by Buffa and Javadekar (2019), and infer a fund’s investment strategy in each quarter

by measuring the relative contribution of idiosyncratic risk to the volatility of quarterly active

returns (i.e., a fund’s gross excess return over its benchmark). A fund’s degree of picking (dop) is

the ratio of the idiosyncratic variance of active returns to its total variance, and, accordingly, we

label pickers and timers those funds with high and low dop, respectively.

associated with the fund’s core strategy. Our evidence is also consistent with the fact that fund managers commu-
nicate their strategy throughout regulatory reporting cycles. Prospectuses, statements of additional information,
annual and semi-annual reports, all contain information that allows investors to reasonably understand the nature
of the strategy employed by the fund managers.
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Given the endogenous choice of the investment strategy by funds of different skill levels, and

the resulting allocation of talent, our model delivers a rich set of predictions. The equilibrium self-

selection has immediate implications for the relative performance of picking and timing strategies.

Specifically, since high-skill funds self-select into picking strategies, pickers should, on average,

outperform timers. We document this in the data, and estimate that the outperformance by

pickers is in the range of 2.2% to 3.5% per year, in terms of active returns, and between $20million

and $29 million, in terms of value added over the benchmark. The incremental value added of

pickers relative to the median fund size in the sample is estimated at $235 million.

We confirm that the outperformance of pickers is not a result of either size effects (i.e., decreas-

ing returns to scale), or the fact that highly performing styles have high exposure to idiosyncratic

shocks, or simply favorable return distributions of picking strategies. Notably, we show that the

observed positive relationship between fund strategy (dop) and fund performance (active returns)

in the cross-section of mutual funds disappears within fund. When a fund relies more on picking

strategies, its active returns do not significantly differ from those generated when the fund relies

more on timing strategies. This implies that, although picking funds outperform timing funds,

picking strategies do not outperform timing strategies, thus pointing towards a composition effect

through self-selection as the mechanism responsible for the outperformance of pickers over timers.

Our theory has additional implications for fund flows. In particular, our model predicts that

investors’ capital flows should be more sensitive to the performance associated with picking strate-

gies than with timing strategies, because a manager’s skill is less accurately revealed by a timing

strategy. In our empirical investigation, we show that the fund flow sensitivity to performance is

three times as large for funds with high degree of picking. We further confirm that this result holds

even when controlling for fund fixed effects, revealing that a fund faces far more responsive flows

at times when it picks compared to when it times. The differential flow-performance sensitivity is

therefore indicative of a differential information content revealed by the two investment strategies.

We also emphasize some dynamic aspects of our model. Our equilibrium shows that, as the

reputation of a low-skill manager improves, the allocation of talent shifts, since the probability

that this manager adopts a timing strategy increases. Because capital flows are less sensitive to the

performance of timing strategies, being a timer allows a low-skill manager to preserve her current

reputation, which is particularly desirable when her reputation is high. We test this dynamic

prediction in the data by measuring how changes in fund flows, as proxy for changes in fund

reputation, affect the degree of picking in the near future. We confirm that for low-skill funds, an

increase in fund flows decreases their degree of picking by 3.2% in the subsequent quarter, and by

7.2% in the subsequent year. Moreover, in line with the idea that switching between strategies
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may be easier for funds belonging to diverse fund families (where funds adopt more heterogenous

degrees of picking) because they have access to a larger variety of sources of information, we show

that the change in the investment strategy (dop), due to a change in reputation, is significantly

higher for these funds.

Finally, we extend the model by introducing time-variation in aggregate volatility and generate

the following predictions. Since high aggregate volatility increases the correlation among timing

bets (e.g., Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016); Herskovic, Kelly, Lustig, and

Van Nieuwerburgh (2016)), it makes timing strategies more desirable for low-skill managers. This

is because a higher correlation among timing bets translates into a noisier signal conveyed by the

fund performance. We confirm this finding in the data and show that a rise in aggregate volatility

(measured by either the VIX index, market volatility, or fund benchmark volatility) reduces the

degree of picking of low-skill funds by 6% to 11.5%, depending on the measure of volatility. We

further show that, consistently with the model prediction, the outperformance of pickers becomes

stronger at times of high volatility.

1.1 Related Literature

The mutual fund literature has focused extensively on the measurement of skill in the industry,

and on the decomposition of skill into stock picking and market timing abilities.2 The contribution

of this paper is that it goes beyond issues of measurement, and proposes an economic mechanism

to understand the determinants that induce a fund manager to choose a particular investment

strategy. Our model of self-selection predicts that picking, on average, creates more value than

timing since only low-skill managers self-select into timing strategies. This helps explaining the

persistent lack of timing skill documented in the literature.

Our paper is closely related to the seminal contributions by Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2014) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) that, to our

knowledge, are the only studies of managers’ optimal choice between picking and timing strate-

2Contributions to the debate on the ability of mutual funds to create value for their shareholders include
Grinblatt and Titman (1989), Gruber (1996), Chen, Jegadeesh, and Wermers (2000), Fama and French (2010),
Glode (2011), Elton, Gruber, and Blake (2012), and Berk and van Binsbergen (2015). Distinguishing between
picking and timing skills is important, because the presence of market timing can distort the measurement of a
manager’s picking ability, as discussed in Dybvig and Ross (1985) and Elton, Gruber, and Blake (2012). Treynor
and Mazuy (1966) and Henriksson and Merton (1981) formulate similar parametric factor model to estimate timing
skills. While some studies find evidence of timing skill (e.g., Busse (1999); Goetzmann, Ingersoll, and Ivkovic (2000);
Bollen and Busse (2001); Mamaysky, Spiegel, and Zhang (2008); Elton, Gruber, and Blake (2012)), others conclude
that mutual funds exhibit no timing ability (e.g., Ferson and Schadt (1996); Graham and Harvey (1996); Daniel,
Grinblatt, Titman, and Wermers (1997)).
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gies. Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) provides a micro-founded framework

based on limited attention, in which a manager optimally allocates more attention to aggregate

shocks when market volatility is high. Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014) pro-

vides empirical evidence supporting these dynamics. In particular, it shows that managers who

are good pickers during expansions are also good timers during recessions. Our work is comple-

mentary, as we provide a different channel (based on self-selection) to explain the optimal choice

of fund managers between picking and timing strategies.3 Adopting the economic framework in

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), Abis (2017) studies equilibrium learning

of quantitative and discretionary funds over the business cycle, and using fund prospectuses to

identify a funds investment strategy, shows that quantitative funds consistently display picking

ability, compared to discretionary funds which, instead, switch between picking and timing. Buffa

and Javadekar (2019) proposes dop — the degree of picking of mutual funds in every quarter — as

a new measure of the intention of funds to rely on picking strategies, relative to timing strategies.

We adopt the this measure in this paper in order to test the self-selection predictions of our theory.

A recent paper by Zambrana and Zapatero (2018) discusses the role of specialists vs. generalists

in the mutual fund industry, showing that pickers are more likely to be specialists, whereas timers

are more likely to be generalists.

Our paper also relates to the large literature studying mutual fund flows. Many papers in

this literature, including for instance Chevalier and Ellison (1997), Sirri and Tufano (1998), and

Huang, Wei, and Yan (2012), document how fund characteristics such as age, size, volatility, and

type of classes (institutional vs retail) affect flow-performance sensitivity. More recently, Franzoni

and Schmalz (2017) documents that fund flows become less sensitive to fund performance when

aggregate risk-factor realizations are extreme, proposing that investors do not observe funds’

exposure to systematic risk, and hence the ability to learn about fund managers’ skill is high only

when systematic risk is muted.4 Our paper makes two contributions to this literature. First, we

present new evidence that flows have differential sensitivity across picking and timing strategies.

Second, we introduce the concept of core-value, which is the value added using the core strategy

of the manager. By identifying the core strategy of mutual funds in the data, we show that fund

flows are at least two times more sensitive to the core value of the fund, as opposed to its non-core

value. The fact that flows are more sensitive to a particular component of the total value added

is new, and confirms that investors are sufficiently informed about their manager’s strategy.

3A further theoretical contribution is Detemple and Rindisbacher (2013), that analyzes the endogenous dynamics
of timing strategies in response to the private information of fund managers.

4Other recent contributions on flow-performance sensitivity include Spiegel and Zhang (2013), which shows that
fund flows are more sensitive to the performance of “hot” funds, which tend to be young and small, and Choi,
Kahraman, and Mukherjee (2016), which studies fund managers managing two funds and documents that flows
into one of the manager’s fund are predicted by past performance of the other fund.

6



Self-selection is an important theme in economics. Starting from Roy (1951), it is widely recog-

nized that agents choose a particular actions to signal information about their skills or attributes.5

Recent contributions of self-selection in financial markets include Malliaris and Yan (2018) and

Bond and Dow (2019). Malliaris and Yan (2018) considers a setting where fund managers are

concerned about their reputation, and shows that low- and high-skill managers pool by choosing

nickel strategies (negatively skewed) before black-swan strategies (positively skewed) in order to

hedge the risk of being fired. In our model, instead, mutual fund managers separate themselves

from each other even when the available strategies have the same expected profitability. Bond

and Dow (2019) considers a model in which high-skill traders optimally choose to predict frequent

events while low-skill traders opt to predict rare-disasters. The key economic force at play is that

position limits hinders high-skill traders from placing large short positions on rare events. Our

self-selection mechanism, instead, is based on the ability of fund managers to influence investors

by selecting different investment strategies. Compared to these papers, we also bring our theory

to the data and test the self-selection predictions.

The rest of the paper is organized as follows. Section 2 presents our theory of self-selection

and characterizes the equilibrium allocation of talent. Section 3 introduces and discusses the

predictions of the equilibrium. Section 4 describes the data and our empirical methodology, and

tests the model predictions. Section 5 concludes.

2 Model

In this section we propose a parsimonious theoretical model explaining the mechanism through

which mutual fund managers’ self-selection into investment strategies may occur. Our theory is

based on the notion that investors learn about fund managers’ unobservable investment skills.

Notably, it predicts a full or partial separating equilibrium in which timing strategies are only

adopted by low-skill managers. We cast our theory within a rational expectations equilibrium

with endogenous fund flows, in the spirit of Berk and Green (2004), and we generate implications

for fund performance, fund flows, and other endogenous fund characteristics.

5Spence (1973) highlights the role of education as a signaling device in the job market, whereas Borjas (1987)
shows how wages differ across natives and migrants since the decision to migrate is by itself a signal of the quality
of the worker.
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2.1 Economic Setting

Agents. We consider a discrete-time economy with time indexed by t = 0, 1, 2, ... The economy

consists of a mutual fund manager (M) and an investor (I). Both agents are risk-neutral price-

takers, and can be interpreted as a continuum of identical investors and fund managers. The

fund manager is born with an investment skill, denoted by s, which can be either High or Low,

s ∈ {H,L}. The investment skill s is private information to the fund manager, and is not

observable by the investor. The investor tries to infer the manager’s level of skill by observing

her performance over time. We denote by φt the investor’s posterior probability at time t that

the manager has high-skill, PIt (s = H), and we refer to it as the manager’s reputation at time t.

We assume that the investor’s prior about s at time 0 is diffuse, that is, the manager is ex-ante

equally likely to be of either type, φ0 = 1/2.

Strategies. The fund manager can generate value for the investor by adopting one of two strate-

gies: Picking and Timing. We denote by at ∈ {P, T} the mutually exclusive investment strategy

adopted by the fund manager at time t, and we assume that at is observable by the investor, as

in Malliaris and Yan (2018).6 A picking strategy consists of a portfolio of n assets that allows

a manager, who is able to identify mispricings, to bet on the idiosyncratic component of these

assets. In contrast, a timing strategy consists of a portfolio of n assets that allows a manager,

who is able to predict aggregate fluctuations, to bet on the systematic component of these assets.

The investment skill of a manager, therefore, manifests into her ability to identify mispricings or

to predict aggregate fluctuations, depending on the chosen strategy. In what follows, we refer to

the n positions in the assets characterizing a picking strategy as picking bets, and likewise we refer

to the n positions of a timing strategy as timing bets.

The investor assesses the fund manager’s performance differently depending on whether the

manager is a picker or a timer. If the manager is a picker, the investor ignores the aggregate

component of the return generated by the fund manager and evaluates her solely based on her

ability to generate “alpha,” i.e., the performance of her picking bets. If, instead, the manager is a

timer, the investor’s assessment is based upon the manager’s ability to increase the fund exposure

6The mandate of a fund is often explicit enough for the investors to know the strategy implemented (e.g., value
fund vs global-macro fund). Additionally, the fund prospectus and the manager’s commentary provide a valuable
source of information regarding the underlying strategy. Furthermore, investors are able to infer a manager’s
strategy by observing the fund performance over time. In our empirical analysis, we provide novel evidence, based
on fund flows, that supports our assumption.
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to the aggregate market when the market is expected to grow, and to reduce it when it is expected

to decline, i.e., the performance of her timing bets.7

A fundamental difference between picking and timing strategies, therefore, is their exposure

to different sources of risk. While picking strategies are exposed to idiosyncratic risk, timing

strategies are exposed to systematic risk. As a consequence, by definition, the returns of the n

picking bets in each period are independent of each other, whereas the returns of the n timing

bets are positively correlated with each other, as they are driven by common factor(s). This

distinguishing feature between picking and timing strategies is central to our theory.

Returns. We abstract from the specifics of the implementation of picking and timing strategies,

and model in reduced form the net payoffs of the bets associated with these strategies. Specifically,

the gross return at time t of an individual bet i = 1, .., n of strategy a (chosen at time t − 1) is

given by

Ra
it ∼ N (µs, σ

2) (1)

where the expected return µs depends on the investment skill s, with ∆µ ≡ µH − µL > 0, but the

return volatility is not affected by it. We denote the average expected return across investment

skills by µ̄ ≡ (µL + µH)/2. The pairwise correlation between any two bets of investment strategy

a is given by

ρa = ρ1{a=T}, (2)

where ρ > 0. So, while the returns of picking bets are uncorrelated, the returns of timing bets

comove positively.

Given the homogenous nature of the return distribution of all the bets within a strategy, the

fund manager splits the total investment of the fund equally over the n bets. Therefore, the fund’s

gross return at time t from strategy a, denoted by Ra
t , is distributed as

Ra
t ∼ N (µs, ν

a) where νa =
σ2

n
(1 + (n− 1)ρa) . (3)

Gross returns should be understood as active returns, that is in excess of a passive benchmark.

Despite the different correlation structure characterizing the returns within each investment strat-

7We note that for specialized funds, market timing refers to ability to predict the movements of the benchmark
that is in line with the mandate of the fund, rather than the overall market. Although this does not play any role
in our theoretical analysis, we take this into account in our empirical investigation.
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egy, the expected return of picking and timing – i.e., the expected performance of a picking and

a timing fund – is the same for a given investment skill s,

Et
[
RP
t+1|s

]
= Et

[
RT
t+1|s

]
= µs. (4)

The two strategies, therefore, are equally profitable from the perspective of the fund manager.

Our parsimonious way to model the cross-sectional correlation among timing bets maintains

a tractable setting, yet captures a fundamental feature of investment strategies that differentiates

market timing from stock picking. This fundamental feature is responsible for the self-selection of

fund managers into picking and timing, as it effectively makes these strategies signaling devices

for the managers to reveal or hide their investment skills. Before we formally discuss the signal-

ing game between the fund manager and the investor, we next introduce a competitive market

structure to endogenize the provision of capital, that is the fund flows that the investor gives to

or withdraws from the fund manager.

2.2 Provision of Capital

We cast our economic setting in the rational expectations framework of Berk and Green (2004),

where investors’ fund flows optimally respond to fund managers’ past performance. This allows

us to derive predictions for how self-selection affects the equilibrium dynamics of fund flows and

other endogenous characteristics, such as fund size and fund performance.

We maintain two key elements of Berk and Green (2004): competitive (and perfectly elastic)

provision of capital to fund managers by investors, and decreasing return to scale (DRS) in the

“production” of value for investors by fund managers. These assumptions imply that: (i) the

investor’s capital flows into (out of) the fund when the fund manager is expected to deliver

positive (negative) net returns; and (ii) net returns decrease with the size of the fund, capturing

the larger price impacts and higher operational costs associated with larger trades.

We denote the fund’s assets under management at time t by qt > 0 (i.e., its size), and we

denote the management fee that the investor pays to the fund manager in every period for each

dollar invested by f < 1. We incorporate DRS by assuming that actively managing a larger fund

is more costly. Specifically, the cost of managing a fund of size qt is equal to C(qt) = c · q2
t , where

c > 0 captures the degree of DRS. It follows that the net return (per dollar invested) delivered by
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the fund manager at time t + 1, following strategy at, depends positively on the gross return at

time t+ 1, and negatively on the size of the fund at time t and its fee,

rat+1 = Ra
t+1 − c · qt − f. (5)

Putting together a competitive capital market with abundance of capital and DRS, we obtain

an equilibrium condition that must hold in each period,

EIt [rat+1] = 0, (6)

where EIt [·] denotes the expectation conditional on the investor’s information set at time t. The

intuition behind this condition is as follows. Suppose that the expected net return of the fund

were positive, EIt
[
rat+1

]
> 0. Since the investor is risk-neutral and has deep pockets, providing

capital to the fund is optimal. However, every additional dollar that the investor invests in the

fund reduces the net returns by c, due to the additional (marginal) cost of managing a larger

fund. Inflows of capital into the fund continue until its expected net return is driven all the way

down to zero. At this point, the investor has no incentive to provide additional capital. Following

the same logic with negative expected net returns and capital outflows, the conclusion is that, in

equilibrium, a fund cannot exhibit either positive or negative expected net returns.

This equilibrium property in (6) allows us to pin down the endogenous size of the fund, as

characterized in Lemma 1.

Lemma 1 (Fund Size). The size of the fund at time t is equal to

qt =
1

c
(µL + ∆µ · φt − f) . (7)

Consequently, fund size is increasing with the fund manager’s reputation at time t, ∂qt/∂φt > 0.

Lemma 1 shows that the size of the fund can only change due to changes in the reputation

of the fund manager. Indeed, if after observing the net return of the fund rat and deducing its

gross return Ra
t , the investor revises his beliefs about the manager’s investment skill upward, then

the investor’s capital flows into the fund, and the fund’s assets under management increase. The

opposite holds if the investor revises his beliefs downwards. Importantly, the equilibrium fund size

in (7) also reveals that the manager’s choice of an investment strategy does not affect qt directly,

but only indirectly through the manager’s reputation φt. Indeed, the investor’s beliefs about the
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manager’s investment skill s depend on the realized return Ra
t that the fund manager obtains by

implementing investment strategy a: φt = φt(R
a
t ).

Manager’s problem. The compensation that the fund manager receives at time t corresponds

to the total management fees f ·qt. At each point in time, the fund manager chooses an investment

strategy at to maximize the expected compensation over the next period.8 We assume that there

is a small probability the investment strategy that is ultimately implemented may not be the one

that is chosen by the fund manager. For instance, a manager may need to comply with a strategic

decision of her fund family, and hence follow a strategy different from her choice. Specifically,

with probability κ the fund manager is implementing an investment strategy which, with a 50%

probability, is either picking or timing. This small amount of noise in the fund manager’s action

allows us to sustain a separating equilibrium, as we discuss in more detail when we introduce our

signaling game.9

For a given investment skill s, therefore, the manager solves the following problem at time t:

Vt(s) = max
at∈{P,T}

(1− κ) EMt [f · qt+1(at)|s] + κ

(
EMt [f · qt+1(P )|s] + EMt [f · qt+1(T )|s]

2

)
(8)

s.t. qt+1(at) =
1

c

(
µL + ∆µ · φt+1(Ra

t+1)− f
)
, (9)

where EMt [·] denotes the expectation conditional on the manager’s information set at time t, which

crucially includes her skill s. The manager’s objective function in (8) is given by two components,

weighted by the probabilities (1 − κ) and κ, respectively. The first component represents the

manager’s expected compensation if the strategy implemented is her optimal investment strategy,

whereas the second component represents the manager’s expected compensation if the strategy

implemented is not chosen by the manager. We refer to the latter component as the noise in the

objective function, and we note that it is symmetric across strategies and skills.

8We also solved for the case in which the fund manager maximizes the expected discounted sum of all future
compensations, and confirmed that all the results and the economic forces underlying the myopic case remain valid.

9As an alternative to the noisy action, a separating equilibrium can also be sustained when the manager has an
intrinsic preference for one of the two strategies. This preference, for instance, could reflect the education of the
manager, as documented by Zambrana and Zapatero (2018).
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Since the assets under management qt are affine in the manager’s reputation φt, and since

the noise in the manager’s objective function is not affected by her choice at, we can rewrite the

manager’s problem as

at(s) = arg max
at∈{P,T}

vt(at|s), (10)

where

vt(at|s) = EMt
[
φt+1(Ra

t+1)|s
]

=

∫ ∞
−∞

φt+1(Ra
t+1) ϕt(R

a
t+1|at, s) dRa

t+1, (11)

and ϕt(·) denotes the probability density function at time t of fund return Ra
t+1, conditional on

strategy at and skill s, which corresponds to the probability density function of the normal distri-

bution in (3). Intuitively, the fund manager maximizes her expected compensation by maximizing

her expected reputation. This is because the higher the reputation, the greater the assets under

management and, consequently, the higher the total fees.

Investor’s learning. As discussed thus far, the only channel through which an investment

strategy affects the fund manager’s compensation is through her reputation. This reputation is

endogenously determined by the investor’s beliefs about the manager’s skill, which in turn depends

on the investment strategy implemented in equilibrium and on its realized performance. In our

rational model, the investor updates his beliefs in a Bayesian way, by evaluating the conditional

probabilities that the observed performance from a given strategy is generated by a low- or high-

skill manager. Specifically, after observing the investment strategy at and the return Ra
t+1, the

posterior beliefs are given by

φt+1 = φt ·
(

1

φt + (1− φt)Λt(Ra
t+1|at)Λt(at)

)
, (12)

where φt is the investor’s prior and Λt(·) = Pt(·|s=L)
Pt(·|s=H)

is a likelihood ratio conditional on the skill s.

Intuitively, the function Λt(x) tells us whether it is more or less likely that outcome x is associated

with a low-skill manager, as opposed to a high-skill manager. When Λt(x) > 1, it is more likely

that it is associated with a low-skill manager, whereas, when Λt(x) < 1, the opposite is true.

Equation (12), which is derived in Lemma A.2 in the Appendix, shows that the investor’s

update of the manager’s reputation φt+1 depends on her current reputation φt and on two distinct

likelihood ratios, capturing two distinct learning channels. The first one, Λt(R
a
t+1|at), quantifies

how much more likely it is that, given the observed strategy at, the gross return Ra
t+1 is delivered by
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a low-skill manager, relative to a high-skill manager. The second likelihood ratio, instead, Λt(at),

quantifies how much more likely it is that the investment strategy at is implemented by a low-skill

manager, relative to a high-skill manager. When the product of the two ratios is sufficiently low,

i.e., below one, the manager’s reputation improves (φt+1 > φt), whereas when it is sufficiently

high, i.e., above one, her reputation worsens (φt+1 < φt).

It is important to emphasize why the investment strategy of the fund manager – and not just her

performance – conveys valuable information regarding her investment skill, i.e., Λt(at) is not con-

stant with respect to at. This is because of the endogenous self-selection mechanism. Importantly,

since this is an equilibrium mechanism, the fund manager (who is atomistic) does not internalize

how her chosen investment strategy affects this learning channel. In contrast, the manager does

fully internalize how the choice of being a picker or a timer affects the investor’s learning through

Λt(R
a
t+1|at). While the cross-sectional independence of picking bets makes Λt(R

P
t+1|P ) very sensi-

tive to RP
t+1, the positive correlation across timing bets reduces the sensitivity of Λt(R

T
t+1|T ) with

respect to RT
t+1. Therefore, a fund manager is “attracted” towards one of the two investment

strategies depending on whether she wants to increase or decrease the investor’s ability to learn

about her skill.

2.3 Equilibrium Allocation of Talent

We next define and solve for the equilibrium characterizing the signaling game between the man-

ager and the investor. Our notion of equilibrium is standard. We consider a perfect Bayesian

equilibrium, defined by a set of investment strategies and beliefs such that: (i) the manager’s

investment strategies are optimal given the investor’s beliefs, and (ii) the investor’s beliefs are

derived from the investment strategies using Bayes’ rule.

We allow for mixed strategies, i.e., the manager can randomize between picking and timing

strategies, and we refer to an equilibrium in which only one of the two manager types adopts a

mixed strategy as hybrid semi-separating equilibrium. The small noise in the manager’s objective

function (occurring with probability κ) prevents the equilibrium from fully revealing the manager’s

type, regardless of the chosen investment strategy. This is akin to the equilibrium feature of noisy

REE models.

We conjecture and verify a hybrid semi-separating equilibrium in which only a low-skill man-

ager adopts a mixed strategy. In this equilibrium, the allocation of talent is such that a high-skill

manager always chooses a picking strategy, while a low-skill manager chooses a picking strategy

with probability ηt, and a timing strategy with probability (1 − ηt). Consistent with this hy-
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brid equilibrium, a low-skill manager is indifferent between picking and timing. The following

proposition characterizes the equilibrium.

Theorem 1 (Equilibrium). There exists a hybrid semi-separating equilibrium in which at time

t a high-skill manager chooses to pick with probability 1, while a low-skill manager chooses to pick

with probability η∗t . The probability η∗t is unique, < 1, and solves the following equation

√
1 + (n− 1)ρ

∫ ∞
−∞

φt+1(RP
t+1) e−

(RPt+1−µL)2

2νP dRP
t+1 =

∫ ∞
−∞

φt+1(RT
t+1) e−

(RTt+1−µL)2

2νT dRT
t+1, (13)

where the manager’s reputation φt+1(Ra
t+1) is given by

φt+1(Ra
t+1) = φt ·

[
φt + (1− φt) e−

∆µ
νa (Rat+1−µ̄)

(
η∗t + (1− η∗t )

(
κ

2− κ

)1−21{at=T}
)]−1

. (14)

The equilibrium in Theorem 1 features a self-selection mechanism whereby a high-skill manager

always chooses the investment strategy that allows her to better reveal her skill. Since driven by

n independent bets, the performance of a picking strategy is a precise signal about the skill of

the manager. In contrast, the signal conveyed by a timing strategy is less informative, as the

underlying bets are correlated with each other. In the extreme case of perfect correlation, for

instance, all bets are successful (unsuccessful) as long as one is successful (unsuccessful). This

means that, although driven by n different bets, the performance of a timing strategy is effectively

driven by only one bet, and hence is a noisier signal about the skill of the manager. This makes

a picking strategy the optimal investment strategy for a high-skill fund manager.

While a high-skill manager wants to reveal her investment ability, a low-skill manager wants

to hid it. By the opposite logic, a low-skill manager has an incentive to choose a timing strategy,

and the worse her investment ability is, the stronger the incentive. In equilibrium, though, a low-

skill manager may find it optimal to pick with some probability, because while choosing a timing

strategy allows a low-skill manager to hide her skill, it also makes it difficult for that manager

to improve her reputation, and hence to increase her compensation. So, for a low-skill manager,

the advantage of picking is the possibility to hide her type by pooling with high-skill managers.

Pooling by picking has the benefit of rewarding a low-skill manager with a disproportional boost

in her reputation following a good performance, since the investor confuses her for a high-skill

manager. At the same time, however, pooling exposes her to a drastic downgrade in reputation

after poor performance. In equilibrium, a low-skill manager balances these tradeoffs, resulting in

the equilibrium mixed strategy η∗t .
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Given the equilibrium self-selection, a particular strategy becomes informative of the skill of

the manager adopting that strategy. Because of this, the investor learns about the manager’s

skill not only from her realized performance, but also from her strategy. This learning channel is

captured by the likelihood ratio Λt(at) in (12), which in equilibrium is equal to

Λt(at) = ηt + (1− ηt)
(

κ

2− κ

)1−21{at=T}

. (15)

Equation (15) reveals that the likelihood ratio Λt(at) is always higher than 1 for a timing strategy

(at = T ) and is always lower than 1 for a picking strategy (at = P ). Thus, it is more likely

that the fund manager implementing an observed timing strategy is a low-skill manager and that

the fund manager implementing an observed picking strategy is a high-skill manager. This result

follows from the fact that, in equilibrium, a high-skill manager picks with greater probability than

a low-skill manager (η∗t < 1).

The left and right panels in Figure 1 plot the value function in (11), i.e., the expected future

reputation of a high- and low-skill manager, respectively, as a function of the picking probability

ηt, and for the two investment strategies. The two plots illustrate the self-selection mechanism

occurring in equilibrium. In particular, the vertical line represents the equilibrium value of η∗t , such

that vt(P |L) = vt(T |L). Notably, in both panels, picking value decreases with ηt, while timing

value increases with it. In particular, for values of ηt < η∗t a low-skill manager has the incentive to

increase the probability of picking, whereas for values of ηt > η∗t , she has the incentive to decrease

it.

A natural interpretation of ηt is the fraction of low-skill managers who choose to pick in a

given period. Therefore, our self-selection mechanism gives rise to an endogenous allocation of

talent across strategies. In particular, it predicts that all high-skill managers plus a fraction ηt of

low-skill managers choose to pick. If the number of low- and high-skill managers is the same, it

immediately follows that more than 50% of the fund managers are pickers. Formally, the fraction

of pickers at time t is equal to 1/2 [1 + ηt (1− κ)] > 1/2. We note that the noise in the managers’

actions, i.e., investment strategy decisions unrelated to skill, affects low- and high-skill managers

symmetrically, and hence it does not qualitatively change this prediction.10

10An alternative interpretation of ηt is the fraction of assets under management that a manager would invest in
picking strategies. Accordingly, our equilibrium suggests that low-skill managers finds it optimal to invest in both
timing and picking strategies, whereas high-skill managers prefer to invest only in picking strategies.
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Figure 1: Self-selection

In this figure we plot the fund manager’s value functions vt(at|s) for a high-skill manager (left panel)
and a low-skill manager (right panel) depending on whether the chosen strategy is picking (blue lines)
or timing (red lines). The value functions are plotted against the probability ηt. The thin vertical lines
represent the equilibrium strategy η∗t . Parameter values are: µL = 0.02, µH = 0.15, σ = 0.15, ρ = 0.25,
κ = 0.15, n = 20, φt = 0.5.

3 Model Predictions

We now present the equilibrium predictions that are induced by the endogenous self-selection

of fund managers into investment strategies. The next proposition presents the cross-sectional

comparison of fund performance between pickers and timers.

Proposition 1 (Fund Performance). The cross-sectional average of the expected fund perfor-

mance of pickers is higher than that of timers. Moreover, the expected fund performance has a

higher cross-sectional dispersion.

Proposition 1 asserts that in the cross-section of fund managers, the average performance of

picking funds is higher than the average performance of timing funds. This finding follows from the

fact that the fraction of high-skill managers is greater within the group of pickers than within the

group of timers. It is important to emphasize that the outperformance of picking funds is entirely

driven by the self-selection mechanism. Low-skill managers tend to be timers and consequently the

observed average performance of timing funds is lower than that of picking funds. The expected

return on the two investment strategies is identical for a given skill, and does not contribute
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to the differential average performance. The top-left panel in Figure 2 plots the cross-sectional

average performance of pickers (blue line) and of timers (red line), as a function of the probability

of picking by low-skill managers, ηt. The graph shows that the blue line is above the red line

for any values of ηt < 1, confirming the superior average performance of pickers. Moreover, it

shows that while the average performance of pickers worsens with ηt, the average performance of

timers improves with ηt. Indeed, as ηt increases, low-skill managers switch from timing to picking

strategies, thus dragging down the average performance of pickers and lifting that of timers.

Proposition 1 also highlights that pickers exhibit greater cross-sectional dispersion in their

expected performance. Intuitively, the group of pickers is a more balanced group comprised of

high-skill and low-skill managers. In contrast, the group of timers is largely dominated by low-

skill managers, which makes the average cross-sectional performance of timers more homogenous.

The top-middle panel in Figure 2 plots the cross-sectional dispersion of pickers’ performance (blue

line) and of timers’ performance (red line), as a function of the probability of picking by low-skill

managers, ηt. When none of the low-skill managers chooses to pick (ηt = 0) or when all of them do

so (ηt = 1), the two strategies exhibit the same composition of low- and high-skill managers, and

hence the average performance of the two strategies displays the same cross-sectional dispersion.

However, while the cross-sectional dispersion is at its lowest when ηt = 0, it is at its highest when

ηt = 1. Indeed, the graph reveals that the performance dispersion of both pickers and timers

increases with ηt.

By updating his beliefs about the manager’s skill, the investor changes his expectation of the

future return that the manager can generate. This, in turn, changes the size of the fund through

capital inflows or outflows, as revealed in (7). For instance, a positive change in beliefs implies an

inflow of capital to the fund in order to exploit the positive expected return. We define fund flows

as relative changes in fund size, Ft+1 = (qt+1− qt)/qt, as in Berk and Green (2004). Given Lemma

1, fund flows are proportional to changes in beliefs about the manager’s skill:

Ft+1 =
∆µ · (φt+1 − φt)
µL + ∆µ · φt − f

. (16)

The next proposition presents our results on fund flows and size.

Proposition 2 (Fund Flows and Size). Given the fund reputation φt, the threshold of fund

performance Ra
t+1 that induces positive fund flows, Ft+1(Ra

t+1) = 0,

Ra
t+1 = µ̄+

νa

∆µ
log

(
η∗t + (1− η∗t )

(
κ

2− κ

)1−21{at=T}
)
, (17)
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is lower for pickers than timers, RP
t+1 < µ̄ < RT

t+1. Moreover, the flow-performance sensitivity

∂Ft+1

∂Ra
t+1

=
∆µ2φt+1(1− φt+1)

νa(µL + ∆µ · φt − f)
(18)

is always positive for both pickers and timers, and is higher for pickers for the same level of fund

flows Ft+1(RP
t+1) = Ft+1(RT

t+1).

Proposition 2 characterizes the behavior of fund flows in our model. First, the sensitivity of

fund flows to performance is always positive, regardless of whether the manager chooses a picking

or a timing strategy. This is sensible, and it reflects the fact that (i) the investor updates his beliefs

about the manager’s skill by observing her performance, and (ii) the manager’s performance is

a positive signal about her skill. This result is also consistent with existing empirical findings

(e.g., Gruber (1996); Chevalier and Ellison (1997); Sirri and Tufano (1998); Huang, Wei, and Yan

(2012)). Second, controlling for reputation, a timer needs to deliver a better performance than a

picker, in order to trigger positive fund flows. This implies that a picking and a timing fund with

the same reputation and with the same current performance may actually experience inflows and

outflows of capital, respectively. This is the case if their current performance is between RP
t+1 and

RT
t+1.

These results are driven by two effects. The first effect captures the extensive margin of the

investor’s learning. Just by observing the manager’s strategy, the investor extracts information

about her skill. Indeed, since a high-skill manager picks with higher probability than a low-skill

manager, observing a timing strategy skews the investor’s beliefs negatively for any level of per-

formance. The second effect, instead, captures the intensive margin. Even when the performance

of a timer is very good, part of the performance is attributed to the correlation among timing bets

rather than to the investment skill of the manager. Effectively, the investor discounts a timer’s

performance due to correlation. Both effects reduce the capital the investor is willing to invest in

a timing fund, and hence induce a larger performance threshold for capital flows into the fund.

The same logic implies that the flow-performance sensitivity is lower for timers, as the flatter fund

flow schedule in (18) reveals.

The top-right panel in Figure 2 plots the endogenous fund flows (as a percentage of assets) of a

picking fund (solid blue line) and a timing fund (solid red line), as a function of their performance.

Although the flow-performance relation for both pickers and timers becomes flat for extreme levels

of performance, pickers exhibit higher flow-performance sensitivity than timers for the range of

performance that is more likely to occur. In line with the estimated linear relation between flow

19



and performance, commonly studied in the empirical literature, in the same panel we plot a linear

flow-performance relation for both strategies (dashed lines), with a slope corresponding to the

average flow-performance sensitivity, and an intercept such that Ft+1(Ra
t+1) = 0. This linearized

version of the model-implied fund flows confirms our result.

One of the key determinants of the trade-off between “pooling by picking” and “hiding by

timing” is the effect of her current reputation. The next proposition analyzes the relation between

fund reputation and the optimal investment strategy of a low-skill manager.

Proposition 3 (Reputation). The equilibrium probability of picking of a low-skill manager de-

creases with her reputation, ∂η∗t /∂φt 6 0.

When the reputation of a low-skill manager is good – mostly due to luck given her poor ability

to invest – that manager finds it more beneficial to adopt a timing strategy. This is because a

timing strategy, by slowing the investor’s learning, allows her to hide her lack of skill and hence

to “preserve” her current reputation. In contrast, when her reputation is poor, preserving it by

timing becomes less beneficial. In this case, a low-skill manager has a stronger incentive to pick,

as she hopes to be mistaken for a manager with high investment skills, and hence to be rewarded

disproportionally in case of a good performance. This leads to a negative relation between the

probability of picking for low-skill managers and their reputation. The bottom-left panel in Figure

2 illustrates this finding, and shows that for very high levels of reputation, a low skill-manager

optimally chooses to adopt only timing strategies, η∗t = 0.

We finally turn to the analysis of aggregate volatility and the role it plays in affecting the

equilibrium in this economy. In particular, we consider changes in the correlation among timing

bets as driven by the dynamics of aggregate volatility. Intuitively, timing bets can be thought as

composed by an aggregate component and an idiosyncratic one (e.g., Kacperczyk, Van Nieuwer-

burgh, and Veldkamp (2016); Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016)). Since the

common aggregate component is the driver of the correlation between timing bets, this correlation

naturally increases when the aggregate component becomes more volatile.

To incorporate time-varying aggregate fluctuations in our setting, yet maintaining its tractabil-

ity, we model market volatility, denoted by σmt, as a binary iid process with σmt ∈ {σm, σm},
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where σm > σm, and assume that the dynamics of the pairwise correlation between any two bets

of investment strategy a is given by

ρat =

ρ1{at=T} if σmt = σm

(ρ+ ∆ρ)1{at=T} if σmt = σm,
(19)

where ∆ρ > 0. We assume that market volatility is observable, meaning that all agents in our

economy know whether market volatility is high or low at any point in time. This generates a

conditional version of our baseline model, in which both the investor and the fund manager can

condition their actions on the fact that timing bets are more correlated with each other when

σmt = σm. The next proposition presents our results on market volatility.

Proposition 4 (Market Volatility). The equilibrium picking probability of a low-skill manager

decreases with the correlation among timing bets, ∂η∗t /∂ρ 6 0. Consequently, when market volatil-

ity is high, σmt = σm, the fraction of high-skill managers increases among picking funds, whereas

the fraction of low-skill managers increases among timing funds. It follows that market volatility

raises the differential cross-sectional performance between picking and timing funds.

As market volatility increases, a timing strategy becomes even more appealing to a low-skill

manager, since the increased correlation among timing bets further reduces the information con-

tent conveyed by the performance of this strategy. Therefore, in equilibrium, the probability η∗t

decreases with the correlation ρ, as illustrated by the bottom-right panel in Figure 2.

The endogenous dependence between η∗t and market volatility has implications for the condi-

tional cross-sectional performance of picking and timing strategies. Low-skill managers are less

likely to pick during volatile times. Through a change in the allocation of talent, this improves

the average skill of pickers and worsens the average skill of timers. As a consequence, the aver-

age cross-sectional performance of pickers increases with market volatility, whereas the average

cross-sectional performance of timers decreases.
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Figure 2: Implications of self-selection

In the top-left and top-middle panels we plot respectively the cross-sectional average of fund expected
performance Ecst [Et[Rat+1]] and its cross-sectional dispersion Stdcst [Et[Rat+1]], as a function of the picking
probability ηt. In the top-right panel we plot the fund flows Ft+1 (solid lines) and a linear flow-performance
relation with the slope equal to the average flow-performance sensitivity Ecst Et[∂Ft+1/∂R

a
t+1] and the

intercept such that Ft+1(Rat+1) = 0 (dashed lines), as a function of fund performance Rat+1. In the
bottom panels we plot the equilibrium probability of picking for a low-skill manager η∗t as a function of
the manager’s reputation φt (bottom-left panel), and as function of the correlation among timing bets ρ
(bottom-right panel). Parameter values are as in Figure 1 and f = 0.015.
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4 Empirical Analysis

4.1 Data and Methodology

Data description. We use CRSP survivor-bias-free data on mutual funds over the period 1999-

2018, and focus on the US open ended active domestic equity mutual funds. In particular, we

consider funds with CRSP objective codes EDCL (Large Cap), EDCM (Mid Cap), EDCS (Small

Cap) together with EDCI (Micro Cap), EDYG (Growth), EDYB (Balanced/Blend), and EDYI

(Income/Value). We exclude sector and speciality funds, as well as target-date or accrual funds,

and funds with restrictions on sales.

A mutual fund might have multiple share classes reflecting different fees and marketing struc-

tures. However, all share classes belonging to the same fund have identical gross returns. Since

we focus on the gross performance of the mutual funds, we follow Huang, Wei, and Yan (2012)

and aggregate all share classes into one for each fund. We measure a fund’s total assets by the

assets under management (AUM) across all of its share classes, and we consider the oldest share

class to measure a fund’s age. Expense ratios, loads, turnover, fees, and other fund characteristics

are calculated as asset-weighted averages across all share classes for a given time period.

To obtain our final sample, we filter our data even further as follows. First, fund holdings

may be misaligned with respect to the fund’s stated mandate (e.g., diBartolomeo and Witkowski

(1997); Kim, Shukla, and Tomas (2000)). Hence to correctly identify equity oriented funds, we

require that a fund’s average equity share be at least 80%. To filter out funds employing leveraged

strategies, we also exclude the funds with average equity exposure of more than 105% of its assets.

Second, to avoid the incubation bias discussed in Evans (2010), i.e., the tendency of fund families

to publicly offer only those funds that are successful during the incubation stage, we exclude any

observations pertaining to the fund’s first year. Third, as is standard in the literature, we also

exclude very small funds - In particular we exclude fund-quarters with real assets of less than 20

million $. Real assets are assets expressed in 2011 average fund size.11 Finally, we require that

each fund appear in the data for at least eight quarters, ensuring a sufficiently long time-series of

fund performance to allow us to reliably identify the skill of a fund manager.12 Our final sample

contains 3,772 funds and 159,106 fund-quarter observations: there are 1,644 growth funds, 991

11Very small funds are problematic because the ratio of fund flows to assets under management tends to be
very large and volatile. See, e.g., Chevalier and Ellison (1997), Huang, Wei, and Yan (2012), and Berk and van
Binsbergen (2015).

12We note that a priori there is no reason to believe that our survival requirement would affect managers with
different investment strategies differently. Indeed, all the results in this section remain valid if we do not impose
this requirement.
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value/income funds, 1099 focus on micro-, small-, or mid-caps. The average life of a fund in our

sample is about nine years.

Investment performance. We consider two measures of investment performance at quarterly

frequency for each fund in the sample. The first one is the fund’s active return in quarter t, which

is defined as the fund’s gross excess return over its benchmark that is realized between the start

of quarter t− 1 and the start of quarter t,

RA
it = Rit −RB

it . (20)

We note that a fund’s active return measures how the fund’s holdings of each asset, relative to

its benchmark’s holdings, comove with the asset returns: RA
it =

∑Nt−1

j=1 (wit−1(j)− wBit−1(j))Rt(j),

where Nt−1 is the number of available assets at time t − 1. So, a fund generates positive active

returns if it overweights assets that perform well and underweights those that perform poorly over

the next period.

The second measure is the fund’s value added in quarter t, which is defined as the fund’s active

return in that quarter multiplied by the fund’s AUM at the start of quarter t− 1,

Vit = qit−1R
A
it , (21)

capturing the incremental dollar amount generated by the fund over its benchmark in quarter t.

Investment strategy. The distinguishing feature of picking and timing funds is the way they

generate active returns and value. In particular, while picking funds actively deviate from their

benchmark by taking idiosyncratic risk, timing funds deviate by taking systematic risk. Based

on this insight, one should expect the volatility of active returns of picking funds to be mostly

idiosyncratic and that of timing funds to be mostly systematic. Following Buffa and Javadekar

(2019), we decompose the volatility of a fund’s active returns – also known as the fund’s tracking

error – into its systematic and idiosyncratic components.13

13In the context of (i) simulated portfolios of picking and timing funds, and (ii) a theoretical framework based
on aggregate and asset-specific information processing, Buffa and Javadekar (2019) shows that picking and timing
strategies are correctly identified by a fund’s dop.
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To determine whether variations in a fund’s active return are explained by variations in sys-

tematic factors, we adopt the following (linear) factor model,

RA
itτ = αit + β′itFtτ + εitτ , (22)

where, given a vector of risk factors F , we estimate in each quarter t, for each fund i, the coefficients

(α̂it, β̂
′
it) using daily data (τ) between quarter t and t+ 1. A variance decomposition yields that

Vart[R
A
it,t+1] = Vart[β̂

′
itFt,t+1]︸ ︷︷ ︸

systematic active variance

+ Vart[ε̂it,t+1]︸ ︷︷ ︸
idiosyncratic active variance

(23)

where ε̂it,t+1 is the time-series of residuals from (22). As a measure of investment strategy, we

define the degree of picking of fund i in quarter t as ratio of idiosyncratic and total variance of

active returns,

dopit =
Vart[ε̂it,t+1]

Vart[RA
it,t+1]

. (24)

Intuitively, a picking strategy is driven by the fund’s intention to increase the relative exposure

of its active return to idiosyncratic risk, and consequently is associated with a higher degree of

picking. We note that, although in the data we measure a fund’s degree of picking ex-post (i.e.,

after the realization of returns between t and t+1), we ascribe the resulting dop to the beginning of

quarter t, because it is when the investment strategy is chosen. Given the resulting cross-sectional

distribution of dopit, we identify picking funds as those with a high degree of picking (top 20% of

the pool distribution of dop) and label those with a low degree of picking (bottom 20%) as timing

funds. The funds with a medium degree of picking (middle 60%) have active returns that are

driven by sufficient variation in both systematic an idiosyncratic components and hence are likely

to have implemented both strategies.

Investment skill. Under the model assumption that the investment strategies have the same

expected profitability, the investment skill of a fund can be inferred from the long-term average

of its investment performance. The idea is that, although a skilled fund may not generate a good
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performance in any period, it should do so on average over its lifetime. Therefore, corresponding

to the two measures of performance in (20) and (21), we consider

si = E[RA
it ] =

1

Ti

Ti∑
t=1

RA
it , (25)

s$
i = E[Vit] =

1

Ti

Ti∑
t=1

Vit, (26)

as measures of skill, where Ti is the number of periods that fund i is in the sample. A high-skill

fund is a fund that performs well in a consistent manner, thus pushing the long-term average fund

performance to the top of its distribution. In our leading specification, we consider the top 20%

and bottom 20% of the skill distribution to identify high- and low-skill funds, respectively.14 We

note that comparing funds based on s$
i , which is the measure of skill proposed by Berk and van

Binsbergen (2015), takes into account cross-sectional differences in average fund size, and in the

comovement between fund size and active returns: s$
i = E[qit−1]si + Cov[qit−1, R

A
it ]. Later in this

section, we confirm that in the data the expected profitability across strategies is not significantly

different, thus making (si, s
$
i ) valid proxies for a fund’s investment skill.

Fund benchmarks and risk factors. Our measures of investment performance, strategy and

skill rely (i) on fund benchmarks to compute active returns, and (ii) on risk factors to decompose

the variation in these returns. Following Berk and van Binsbergen (2015), we view a fund’s

benchmark as the next best alternative investment opportunity available to investors, and hence

consider a set of Vanguard’s passively managed index funds as “basis” to construct appropriate

benchmarks for each active fund in each quarter. The benchmark of fund i in quarter t is defined

as the closest portfolio of index funds in the Vanguard’s set. Specifically,

RB
it = γ̂′it−1R

I
t , (27)

where RI
t is the vector of excess returns of the index funds in quarter t, and γit−1 is a vector

of loadings estimated by projecting fund i’s daily excess returns from quarter t − 4 to quarter

t− 1 (one year), Rit−4,t−1, on the vector index fund’s excess returns for the same period, RI
t−4,t−1,

including a constant term. In other words, for each fund in a given quarter, we use the past year

of data to obtain the closest combination of index funds to that fund, and use that combination

to determine the excess return of the corresponding portfolio of index funds in the next quarter.

14Our results are robust to different cut-offs of the skill distribution to identify high- and low-skill funds.

26



As a choice of index funds, we focus on a set that capture the most prominent sources of risk in

equity markets, and use them also as risk factors in (22) when determining a mutual fund’s degree

of picking in a given quarter. These include: Vanguard 500 Index fund, Vanguard Value Index,

Vanguard Growth Index, Vanguard Mid-Cap Index, and Vanguard Small-Cap Index. Since there

are no index funds available in our sample that track the momentum factor, we add the momentum

portfolio by Carhart (1997) to this set of index funds. Finally, to reduce multicollinearity issues due

to the high return correlation among the Vanguard’s index funds, we sequentially orthogonalize

them with respect to the Vanguard 500 Index, in the spirit of Busse (1999).

Summary statistics. Table 1 provides summary statistics for our measure dop. The median

dop is 0.77 and it rises from 0.52 to 0.91 as we move from the bottom 20% to the top 20%

quantile of the dop distribution. Compared to low-dop funds (timers), high-dop funds (pickers)

are on average four quarters older, have $28M more in AUM, and have lower turnover, 0.48 vs.

0.67. This suggests that timers trade more frequently, possibly reflecting the volatile nature of

the market segment they aim to time. High-dop funds also have slightly lower expense ratios, and

lower tracking error, 3.23% vs. 5.01%. The last three rows in Table 1 reveal that, within each

quantile of the dop distribution, the fraction of funds with a particular style (i.e., Value, Growth,

Small Cap) is roughly the same. High-dop funds have only a slightly higher fraction of small cap

funds and only a slightly lower fraction of growth funds.

4.2 Testing Model Predictions

Before focusing on the implications of self-selection, we provide evidence that seems consistent with

our assumption that investors have a good understanding of a fund’s main investment strategy.

To this end, we identify a fund’s core performance as the performance generated by the dominant

strategy of the fund, and the non-core performance as the difference between the total and the

core performance.

Following Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014), we first decompose a fund’s

active return into picking return and timing return using the factor model in (22). Specifically, a

fund’s timing return corresponds to the systematic component of its active return, RT
it = β̂it−1Ft,

whereas the fund’s picking return is given by the remainder part, RP
it = α̂it−1 + ε̂it. We then define
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a fund’s core (active) return in quarter t, denoted by RC
it , as the convex combination of picking

and timing returns in that quarter, weighted by its degree of picking,

RC
it = RP

it · dopit +RT
it · (1− dopit). (28)

The non-core return is simply given by the difference RA
it −RC

it . Intuitively, the higher the contri-

bution of the idiosyncratic component in the volatility of active returns (i.e., the higher the degree

of picking), the closer the fund’s core return is to its picking return.

Are investors able to distinguish between core and non-core strategies? Although there are

reasons to believe that they are, e.g., they can gather information through the fund prospectus,

the mandate, the historical performance and holdings data, we answer this question by looking

at the response of investors to the performance generated by core and non-core strategies. If

investors have no information regarding a fund’s core strategy, they should respond only to the

(total) active return of the fund, and as a consequence the fund flow sensitivity to core and non-

core performance should be the same. Therefore, any differential sensitivity of flows to core and

non-core performance is indirect evidence of investors’ knowledge about the fund’s strategies. As

is standard in the literature, we define the fund flows that a fund receives in quarter t as

flowit =
qit − qit−1 (1 + rit)

qit−1 (1 + rit)
, (29)

where qit denotes the AUM at the end of quarter t and rit is the net return the fund earned during

that quarter.

Table 2 presents the estimated flow-performance sensitivity to our measures of core and non-

core performance. Column 1 confirms the established empirical result that fund flows are sensitive

to lagged performance, measured by active returns. For a 1% of active returns, investors bring

0.135% additional assets. Column 2 breaks active returns into its core and non-core components,

based on (28). Fund flows are almost four times as sensitive to core returns (0.186) as compared

to non-core returns (0.047), suggesting that investors are able to identify the core and non-core

strategies of a fund, and that they consider the performance of the core strategy more informative

of the fund’s skill. Columns 3 and 4 confirm that flows are more sensitive to core returns of

both pickers and timers. Hence, investors rely more on the idiosyncratic (systematic) component

of active returns when evaluating a fund with a higher (lower) degree of picking.15 Overall, we

consider these findings as supporting evidence for the information structure assumed in the model.

15Although fund flows are more sensitive to core performance, our findings show that investors seem to react
also to non-core performance. This could reflect the presence of some unsophisticated investors who are unable to
distinguish among strategies, or the fact that non-core performance may contain some valuable information.
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Prediction 1: Pickers outperform timers

Our model predicts that high-skill managers are more likely to be pickers. In equilibrium, therefore,

the fraction of high-skill managers within the group of pickers is larger than within the group of

timers, and consequently pickers on average generate more value than timers (Proposition 1).

In Table 3, we regress the two measures of investment performance (active return and value

added) on our measure of investment strategy dop, controlling for observable fund characteristics

potentially affecting fund performance. Column 1 shows that the regression coefficient on dop

when performance is measured by active returns is equal to 3.053, implying that pickers generate

up to 3.053% more active returns than timers annually. In terms of value added, column 2 shows

that pickers on average generate up to $29M annually more than timers. The incremental value

added of pickers is large considering that the median fund size in our sample is $235M, and that

the average fund adds roughly $17M per year, as reported by Berk and van Binsbergen (2015).

Our measure of dop is particularly meaningful when a fund is truly active. The presence

of closet indexers (i.e., active funds that are effectively passive by tracking very closely their

benchmarks), therefore, may blur our results as the dop of these funds may not capture their

intention to choose a particular strategy. To alleviate this concern, columns 3 and 4 report the

same regression coefficients as in columns 1 and 2, respectively, but excluding fund-quarters with

bottom 20% of tracking error. The results remain statistically and economically strong for both

active returns and value added. The outperformance of pickers over timers is indeed coming from

active pickers outperforming active timers.

Table 4 show that our key result — the superior performance of pickers — is robust. First,

we want to rule out that the outperformance of pickers is driven by style effects. It could be

that mutual funds employ picking and timing strategies by selecting investment styles that are

particularly suitable for these strategies, and hence the outperformance of pickers may simply

reflect the outperformance of the style employed by pickers. Although summary statistics in

Table 1 already reveal a quite uniform distribution of styles across levels of dop, we explicitly

control for style×time fixed effects in columns 1 and 2. The regression coefficients on dop remain

statistically significant and economically large (2.215 vs. 3.053 for active returns, and $21.07M

vs. $29.007M for value added), thus providing evidence that the outperformance of pickers is also

present within investment styles.

Another potential explanation for the superior performance of picking funds over timing funds

might be related to size effects induced by decreasing returns to scale. For instance, it could be

that funds with high dop are smaller on average, possibly because it may be more difficult to

exploit stock-level mispricing at a large scale. To address this concern, column 5 interacts dop

29



with a dummy for large funds (i.e., funds with size above the median of the size distribution

in every quarter). While the coefficient on dop remains statistically and economically significant

(1.92 for active returns), the coefficient on its interaction with size is not. This confirms that

the difference in performance between pickers and timers is not driven by their size differential.16

Finally, columns 3 and 4 show that picking funds outperform timing funds, in terms of both active

returns and value added, even after accounting for potential differences in expense ratios. This

implies that high-dop funds seem to generate incremental performance also for their investors.

Our model assumes that fund level performance is purely determined by a fund’s skill, and not

by differences in the return distribution of picking and timing strategies. Under this assumptions,

therefore, these strategies should generate similar performance for a given fund of any skill level.

In Table 5, we test this key implication of our theory by showing that the observed positive

relationship between dop and performance in the cross-section disappears within fund. We do so

by estimating a first-difference model of active returns on dop. The idea is to see whether a fund’s

active returns change significantly when a fund changes its strategy from one quarter to the next.

If investment strategies were to differ in terms of return distributions, then changes in strategy

across adjacent quarters would on average generate a change in active returns, given that the

fund’s skill is unlikely to have significantly changed across the two quarters.17 Column 1 shows

that changes in dop have on average an insignificant effect on active returns from one quarter

to the next, with a small negative coefficient of −0.73. If anything, when a fund relies more on

picking strategies, its active returns tend to fall. To test for potential asymmetries, columns 2 and

3 use dummies for drop and rise in dop, respectively. Active returns within fund do not change

on average from one quarter to the next due to either a rise or a drop in dop. We note that all

specifications in Table 5 include style×time fixed effects to alleviate the legitimate concern that

funds could employ different strategies during different market conditions.

The empirical evidence that picking strategies do not outperform timing strategies provides

support to the equilibrium mechanism of our theory, and at the same time validates the long-

term averages of investment performance as appropriate measures of skill. Therefore, as a further

evidence of the self-selection of mutual funds into investment strategies, we directly show the

composition effect in the cross-section of funds whereby the group of pickers has a higher fraction

of high-skill funds. The table below shows the joint distribution of skill and average dop:

16By explicitly estimating the decreasing return to scale (DRS), Buffa and Javadekar (2019) conclude that it is
not significantly different across picking and timing strategies.

17We note that with a fund fixed effects model, the resulting demeaning is performed using the entire life-time
of a fund, over which the fund’s skill may actually evolve. Therefore, if a fund’s skill is time-varying, a fund fixed
effects model would not be able to control for this unobservable fund characteristic. However, since a fund’s skill can
be reasonably assumed not to drastically change across adjacent quarters, a first-difference model better controls
for possible variations in fund skill.
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Skill (Average Active Return) Skill (Average Value Added)

Bottom 20% Top 20% Bottom 20% Top 20%

Average dop (Low-skill Funds) (High-skill Funds) (Low-skill Funds) (High-skill Funds)

Bottom 20% (Timers) 247 52 246 51

83% 17% 83% 17%

Top 20% (Pickers) 78 220 78 218

26% 74% 26% 74%

We restrict the sample to bottom and top 20% of the skill distribution, where fund skill is measured

either by the long-term average of active returns generated by a fund over its life-time, si in (25),

or by its average value added, s$
i in (26). For both measures of fund skill, we find that 74% of

pickers (high-dop funds) are high-skill funds, whereas 83% of timers (low-dop funds) are low-skill

funds. We note that there are potentially other incentives or mechanisms, outside our theory,

for which high-skill managers optimally rely on timing strategies. These may include intrinsic

preferences for specific strategies as in Zambrana and Zapatero (2018), or information choices as

in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016). Importantly, though, the fraction of

high-skill funds within the group of pickers is on average significantly higher than that within the

group of timers.

Overall, the findings in Tables 3, 4 and 5, corroborate that pickers outperform timers, even

though picking strategies do not outperform timing strategies. This is in line with our theory, and

makes a strong case for self-selection as an important mechanism responsible for the documented

outperformance of picking funds.

Prediction 2: Fund flows are more sensitive to the performance of pickers

In the model, correlated timing bets reveal substantially less information about the fund’s invest-

ment skill, compared to uncorrelated picking bets. In equilibrium, this induces low-skill funds to

use timing strategies to hide their skill level, and high-skill funds to use picking strategies to signal

theirs. The differential ability of investors to learn from the two strategies is reflected in a lower

flow-performance sensitivity of timers (Proposition 2). We test this prediction by regressing fund

flows on funds’ lagged performance conditional on their investment strategy.

Table 6 estimates the flow-performance sensitivity conditional on dop. Since fund flows are

measured in quarter t, and fund performance is measured in quarter t− 1, we consider as control

variable the investment strategy that has generated that performance, that is the degree of picking
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between period t−1 and t, i.e., dopit−1. Column 1 shows that the regression coefficient on (lagged)

active returns is equal to 0.076, while the coefficient on the interaction of active returns and dop

is 0.171. This implies that the flow-performance sensitivity of pickers can be up to three times

as large as that of timers. This confirms our prediction that investors are more responsive to

the performance of funds with higher relative exposure to idiosyncratic shocks. In column 2,

we estimate the same regression but controlling for fund fixed effects and obtain that, when a

fund picks, the ensuing flow-performance sensitivity is about four times as large as compared to

when it times. Controlling for fund fixed effects is important. Indeed, it rules out the possibility

that the two strategies have different flow-performance sensitivities because of some confounding

forces that might comove with the degree of picking in the cross-section (e.g., clientele effects).

The finding in column 2 implies that the differential sensitivity is likely to be the result of the

differential information content that is revealed by the two strategies.

Columns 3 and 4 shows that this result holds true for young and old funds alike, where we

adopt the median age cutoff to identify young and old funds. Consistent with the age effects

documented by Chevalier and Ellison (1997) and others, the flow-performance sensitivity tends to

be slightly lower for the group of older funds on average, but it remains twice as large for pickers

within that group.

Prediction 3: Reputation decreases the degree of picking of low-skill managers

A key prediction of the model is that the equilibrium probability of picking of a low-skill fund

decreases monotonically with the fund’s reputation (Proposition 3). Intuitively, when a low-

skill fund increases its reputation, the gains from pooling with high-skill funds by adopting a

picking strategy become smaller. Indeed, in this case, the low-skill fund is more concerned about

preserving its reputation, which is achieved by reducing the investors’ ability to learn from the

fund performance, through the adoption of a timing strategy.

We consider past fund flows as a measure of fund reputation. In the context of our model, and

similar to Berk and Green (2004), fund flows are a direct measure of the change in the posterior

beliefs of investors. Accordingly, we construct a normalized flows measure (which is between 0

and 1) and is computed by sorting funds within each style in each period. Column 1 in Table 7

shows that higher normalized flows (i.e., higher increase in reputation) for low-skill funds, leads

to a degree of picking which is 3.22% lower in the next quarter. Given the possibility that funds

change their investment strategy with delay, in column 2 we consider the average of normalized

flows over last four quarters to better capture changes in reputation, and we consider the average

degree of picking over the next four quarters to better capture the change in strategy. This
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specification yields a drop in the average dop over the next year of about 7.21%, as the average

normalized flows move from 0 to 1.

Switching between picking and timing strategies imposes high information requirement on a

fund. Picking strategies rely more on stock-level information, whereas timing strategies rely more

on aggregate-level information. We conjecture that funds that belongs to diverse fund families,

i.e., fund families that have funds that span a wider range of strategies (measured as fund families

in the top 20% of within family-quarter cross-sectional standard deviation of dop), are more likely

to have access to a wider set of information, which might facilitate the switch between strategies.

Based on this conjecture, we expect that the change in strategy following a change in reputation is

more pronounced for funds that belongs to diverse fund families. Column 3 confirms the conjecture.

An increase in reputation of low-skill funds in the past year leads to a decrease in their average

dop over the subsequent year which is stronger (an additional 3% drop) when they operate in fund

families that include funds with more heterogenous strategies.

Our model predicts that high-skill funds always pick, thereby changes in their reputation should

result in no substantial change in their strategies. Column 4 confirms this prediction since the

change in future dop induced by past normalized flows is not statistically significant.18

Prediction 4: Volatility decreases the degree of picking of low-skill managers

The correlation parameter ρ in the model governs the correlation across timing bets. Higher ρ

makes timing returns more volatile and consequently low-skill funds find it more profitable to

adopt timing strategies, since the ensuing increase in volatility reduces investors’ ability to infer

skill from performance (Proposition 4). Because the rise in aggregate volatility is an important

channel through which the correlation among timing bets increases, we test the model prediction

by analyzing the relationship between the investment strategy of low-skill funds and different

measures of volatility.

Table 8 presents the results. In columns 1-3 we regresses quarterly dop of low-skill funds on

contemporaneous measures of aggregate volatility. Specifically, we consider three quantiles of the

volatility distribution, computed using three different measures of volatility: the VIX index, the

18Column 5 shows positive coefficient on lagged average normalized flows. The increase in the degree of picking
for high-skill funds following an increase in reputation is outside our model. In a richer version of the model, one
can imagine an equilibrium in which both low- and high-skill managers adopt mix strategies. This could be the
case when the high-skill manager has an intrinsic preference for one of the two strategies and would optimally
decide not to adopt her preferred strategy because of self-selection considerations. In this setting, an increase in
reputation may induce the high-skill manager with an intrinsic preference for timing to increase the probability of
picking as this allows her to separate more from a low-skill manager (who instead would find it optimal to decrease
the probability of picking).
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volatility of the CRSP Value-weighted Index, or the fund benchmark volatility. All the regressions

control for fund fixed effects. An increase in volatility leads to a large drop in the degree of

picking of low-skill funds, which ranges between 6% and 11.5% depending on the measure of

volatility considered. Since these are within-fund regressions, the results should be interpreted as

strong evidence supporting the prediction that funds with low investment skill dynamically switch

across fund strategies in response to changes in volatility.

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014) and Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2016) predict and document that smart managers switch from picking to timing

strategies during high volatility regimes. This occurs as managers find it more useful to gather

aggregate information, given that, in those regimes, aggregate shock explains a larger component of

stock returns. Our model adds a complementary layer to their mechanism, by predicting a switch

from picking to timing strategies of low-skill funds due to self-selection and signaling incentives.

In column 4, we regress quarterly dop on different volatility regimes and interact this with a

dummy for high-skill funds. The estimate coefficients confirm that also high-skill funds switch

from picking to timing, as predicted by Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014),

but they highlight that it is low-skill funds that switch more aggressively. Specifically, while the

degree of picking of low-skill funds drops by roughly 13% in very volatile periods, that of high-skill

funds only drops by 11.6%. Moreover, when volatility increases only moderately (i.e., entering its

middle range), the degree of picking of low-skill funds still drops by almost 5%, whereas it remains

unchanged for high-skill funds.

Prediction 5: Volatility increases the outperformance of pickers

As low-skill funds time more aggressively during periods of high volatility, the average skill within

the group of timers decreases in these periods, thus pulling their average performance down. At

the same time, the group of pickers becomes more dominated by high-skill funds, which improves

the average performance in that group. Overall, our model predicts that pickers outperform timers

by a wider margin during periods of high volatility.

We test this prediction in column 5 of Table 8. We regress quarterly funds’ active returns

on volatility regimes, and we further condition on the quarterly degree of picking dop. Timing

funds (low-dop) see their active returns drop by a large 11% as we move from low- to high-

volatility regime. The interaction of high-volatility and high-dop is significantly positive at around

10.2%, implying that the performance of picking funds is unaffected by volatility, and hence

their outperformance over timing funds increases by a larger margin (about 11%) during high

volatility regimes. This magnitude is economically very significant, considering that the average
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outperformance is around 3% (Table 3). Therefore, our empirical findings provide evidence in

support of the model prediction.

5 Concluding Remarks

This paper studies the allocation of talent across investment strategies in the mutual fund indus-

try. To this end, we propose a novel theory of manager self-selection into stock picking and market

timing strategies. Our theory exploits the difference in the correlation between investments as-

sociated with a picking strategy as opposed to a timing strategy. While timing investments tend

to be positively correlated, since they are driven by a common underlying component, picking

investments are instead uncorrelated. In the presence of adverse selection, the salient distinction

between these strategies implies that investors can more readily learn about the skill of a picker

than that of a timer. Our equilibrium model with endogenous fund flows delivers a unique hybrid

mixed-strategy separating equilibrium in which high-skill managers always pick, while low-skill

managers time with positive probability.

We validate the model in the data and confirm its rich set of empirical predictions. We find

that picking funds outperform timing funds, even though pricking strategies do not outperform

timing strategies, thus uncovering an important composition effect in the cross-section of mutual

funds. We also show that picking funds exhibit higher fund flow sensitivity than timing funds,

and confirm the dynamic predictions that an increase in fund reputation, or in market volatility,

causes low-skilled managers to rely more on timing strategies, thus increasing the cross-sectional

dispersion of performance across funds.

Our analysis lays the foundation for further work on the efficiency of the allocation of talent in

the asset management industry. Given the amount of wealth this industry invests, understanding

whether talent is potentially misallocated within the industry is important from a normative

perspective. Future research could study and characterize conditions under which a misallocation

of talent might carry long-term consequence for the efficient allocation of capital.
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Appendix A: Proofs

Proof of Lemma 1. The net fund return is given by rat+1 in (5). A competitive capital market implies
that in equilibrium EIt [rat+1] = 0. This pins down the fund size qt = (1/c) · Et

[
Rat+1 − f

]
. Taking

expectation at time t of Rat+1 yields Et[Rat+1] = φtµH + (1−φt)µL. Substituting this expectation into the
expression of qt we obtain (7).

Lemma A.1 (Properties of Logit-Normal Distribution). Suppose Y ∼ N (µ, σ2), then X = eY /(1+
eY ) has a logit-normal distribution, X ∼ LogitN (µ, σ2), and satisfies the following properties:

(a) E[X] is increasing in µ;

(b) E[X] is decreasing in σ if µ > 0 and increasing in σ if µ < 0;

(c) E[X] is decreasing in σ if µ = k − σ2/2;

(d) E[X] is increasing in σ if µ = k + σ2/2.

Proof. We express Y = µ+ σZ, where Z ∼ N (0, 1). It follows that

X =
eµ+σZ

1 + eµ+σZ
=
(
1 + e−µ−σZ

)−1
(A.1)

Since X is a non-negative random variable, in what follows we rely on the Dominated Converegence
Theorem to interchange the order of the expectation and derivative of X with respect to µ and σ.

(a) Taking the derivative of the expectation of X with respect to µ, we obtain that

∂

∂µ
E [X] = E

[
∂

∂µ

(
1 + e−µ−σZ

)−1
]

= E

[
e−µ−σZ

(1 + e−µ−σZ)2

]
> 0 since

e−µ−σZ

(1 + e−µ−σZ)2 > 0 ∀Z.

(b) Taking the derivative of the expectation of X with respect to σ, we obtain that

∂

∂σ
E [X] = E

[
∂

∂σ

(
1 + e−µ−σZ

)−1
]

= e−µ E

 Z(
e
σ
2
Z + e−µ−

σ
2
Z
)2


= e−µ

E

 Z1{Z>0}(
e
σ
2
Z + e−µ−

σ
2
Z
)2

+ E

 Z1{Z<0}(
e
σ
2
Z + e−µ−
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2
Z
)2




= e−µ

E

 Z1{Z>0}(
e
σ
2
Z + e−µ−

σ
2
Z
)2

− E

 Z1{Z>0}(
e−

σ
2
Z + e−µ+σ

2
Z
)2


 ,

where the last equality follows from the fact that the random variable Z ∼ N (0, 1) has symmetric
distribution around 0. In particular, let Z̃ = −Z. Then, Z1{Z<0} = Z̃1{Z̃>0}. Since Z̃ ∼ N (0, 1), it

follows that E[g(Z)] = E[g(Z̃)] for any function g: R→ R.
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Let

a(Z) ≡
(
e
σ
2
Z + e−µ−

σ
2
Z
)2

and b(Z) ≡
(
e−

σ
2
Z + e−µ+σ

2
Z
)2
.

It follows that a(Z)− b(Z) =
(
eσZ − e−σZ

) (
1− e−2µ

)
. Since we are interested only in positive values of

Z,
(
eσZ − e−σZ

)
> 0 for any Z > 0, and consequently a(Z) > b(Z) if µ > 0 and a(Z) < b(Z) if µ < 0.

This implies that

∂

∂σ
E [X] =


e−µ

(
E
[
Z1{Z>0}
a(Z)

]
− E

[
Z1{Z>0}
b(Z)

])
< 0 if µ > 0

e−µ
(
E
[
Z1{Z>0}
a(Z)

]
− E

[
Z1{Z>0}
b(Z)

])
> 0 if µ < 0

(c) Let f(Z) denote X in (A.1) and consider µ = k − σ2/2,

f(Z) =
ek−

σ2

2
+σZ

1 + ek−
σ2

2
+σZ

Taking the derivative of the expectation of X with respect to σ, we obtain that

∂

∂σ
E[X] = E [f(Z)(1− f(Z))(Z − σ)] .

In order to sign the above derivative, we make use of Stein’s Lemma: if X and Y are jointly normally
distributed, then Cov [g(X), Y ] = Cov [X,Y ] · E [∂g(X)/∂X]. Let g(Z) = f (Z) (1− f (Z)). Since Z ∼
N (0, 1), E(Z) = 0 and consequently

Cov[g(Z), Z] = E[g(Z)Z] + E[g(Z)]E[Z] = E[g(Z)Z].

Applying Stein’s Lemma and considering that Var[Z] = 1,

E[g(Z)Z] = Cov[Z,Z] · E
[
∂g(Z)

∂Z

]
= E

[
∂g(Z)

∂Z

]
= E [(1− f(Z)) [f(Z) (1− f(Z))σ]− f(Z) [f(Z) (1− f(Z))σ]]

= σE [f(Z) (1− f(Z)) (1− 2f(Z))] .

Since

1− 2f(Z) =
1− ek−

σ2

2
+σZ

1 + ek−
σ2

2
+σZ

< 1 ∀ Z,

it follows that f(Z) (1− f(Z)) (1− 2f(Z)) < f(Z) (1− f(Z)). This implies that

E[f(Z) (1− f(Z))Z] = σE[f(Z) (1− f(Z)) (1− 2f(Z))] < σE [f(Z) (1− f(Z))]

⇓
∂

∂σ
E[X] = E [f(Z)(1− f(Z))(Z − σ)] < 0.
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(d) Let f(Z) denote X in (A.1) and consider µ = k + σ2/2,

f(Z) =
ek+σ2

2
+σZ

1 + ek+σ2

2
+σZ

Taking the derivative of the expectation of X with respect to σ, we obtain that

∂

∂σ
E[X] = E [f(Z)(1− f(Z))(Z + σ)] .

In order to sign the above derivative, we make use of Stein’s Lemma, as in property (c). Let g(Z) =
f (Z) (1− f (Z)). Since Z ∼ N (0, 1), it follows that

E [f(Z)(1− f(Z))Z] = Cov[g(Z), Z] = E[g(Z)Z]

= Cov[Z,Z] · E
[
∂g(Z)

∂Z

]
= E

[
∂g(Z)

∂Z

]
= E [(1− f(Z)) [f(Z) (1− f(Z))σ]− f(Z) [f(Z) (1− f(Z))σ]]

= σE [f(Z) (1− f(Z)) (1− 2f(Z))] .

Therefore,

∂

∂σ
E[X] = E [f(Z)(1− f(Z))(Z + σ)]

= σE [f(Z) (1− f(Z)) (1− 2f(Z))] + σE [f(Z)(1− f(Z))]

= 2σE
[
f(Z) (1− f(Z))2

]
,

which is always positive since f(Z) ∈ [0, 1].

Lemma A.2 (Learning). The probability at time t + 1 that the manager is high-skill type, φt+1, is
given by (12). Moreover, conditional on the manager’s information at time t, φt+1 has a logit-normal
distribution, (φt+1|at, s) ∼ LogitN (ma

t (s), ς
a), where

ma
t (s) =

{
log(φt/(1− φt)) + ∆µ2/2νa − log(Λt(at)) if s = H
log(φt/(1− φt))−∆µ2/2νa − log(Λt(at)) if s = L,

(A.2)

ςa = ∆µ2/νa. (A.3)

Proof. Let φt be the prior probability at time t that the manager is high-skill, φt = Pt(H). An application
of Bayes rule yields that the posterior probability φt+1 = Pt+1(H|Rat+1, at) is given by

φt+1 =
ϕt
(
Rat+1|at, H

)
· Pt (at|H) · φt

ϕt
(
Rat+1|at, H

)
· Pt (at|H) · φt + ϕt

(
Rat+1|at, L

)
· Pt (at|L) · (1− φt)

, (A.4)
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where ϕt(·) is the pdf of the normal distribution in (3). Dividing (A.4) by ϕt
(
Rat+1|at, H

)
· Pt (at|H) we

obtain that

φt+1 = φt

(
φt + (1− φt)

ϕt
(
Rat+1|at, L

)
ϕt
(
Rat+1|at, H

) Pt (at|L)

Pt (at|H)

)−1

. (A.5)

By defining Λt(·) as the likelihood ratio Pt(·|L)/Pt(·|H), (12) obtains.

Let Φt denote the logit transformation of φt, Φt = log(φt/(1−φt)). Applying the logit transformation
to φt+1 in (A.5), we obtain that

Φt+1 = Φt − log
(
Λt(R

a
t+1|at)

)
− log (Λt (at))

= Φt − log

(
e−

1
2νa (Rat+1−µL)

2

e−
1

2νa (Rat+1−µH)
2

)
− log (Λt (at))

= Φt −
1

2νa

[(
Rat+1 − µH

)2 − (Rat+1 − µL
)2]− log (Λt (at))

= Φt +
∆µ

(
Rat+1 − µ̄

)
νa

− log (Λt (at)) . (A.6)

Since Φt+1 is affine in Rat+1, it is normally distributed with mean and variance equal to (A.2) and (A.3),
respectively: Φt+1 ∼ N (ma

t (s), ς
a).

Proof of Theorem 1. Given the conjectured equilibrium in which a high-skill manager picks with prob-
ability 1 and a low-skill manager picks with probability ηt < 1, a low-skill manager must be indifferent
between choosing a picking and a timing strategy: vt(P |L) = vt(T |L). Since

vt(at|L) = EMt
[
φt+1(Rat+1)|L

]
=

∫ ∞
−∞

φt+1(Rat+1)
1√

2πνa
e−

(Rat+1−µL)2

2νa dRat+1, (A.7)

and νT = νP (1 + (n− 1)ρ), the conjectured equilibrium implies (13). Moreover, given the mixed strategy
ηt 6 1, the likelihood ratio Λt(at) becomes equal to

Λt(at) =
Pt(at|L)

Pt(at|H)
=


ηt(1−κ

2 )+(1−ηt)κ2
1−κ

2
if at = P

(1−ηt)(1−κ
2 )+ηt

κ
2

κ
2

if at = T,

which can be written more concisely as (15). Substituting (15) and Λt(R
a
t+1|at) = e−

∆µ(Rat+1−µ̄)
νa into

(A.5), (14) obtains. For notational convenience, let λat (ηt) denote the logarithm of the likelihood-ratio
Λt(at) in (15).

We next show that there always exists a unique probability ηt < 1 that supports the conjectured
hybrid separating equilibrium. We proceed in steps.

Step 1. We first prove that ηt = 1 (i.e., full pooling) cannot be part of an equilibrium. Consider
a low-skill manager (s = L). When ηt = 1, the mean of Φt+1 in (A.2) becomes equal to ma

t (L) =
Φt − ∆µ2/2νa, since λPt (1) = λTt (1) = 0. Since the variance of Φt+1 in (A.3) is independent of ηt and
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equal to ςa = ∆µ2/νa, it follows that (φt+1|at, L, ηt = 1) ∼ LogitN (Φt − (1/2)va, va). We use property
(c) in Lemma A.1 to conclude that vt(at|L, ηt = 1) is decreasing in ςa. Since νP < νT , and hence ςP > ςT ,
it follows that

vt(P |L, ηt = 1) < vt(T |L, ηt = 1).

This implies that full pooling cannot be part of an equilibrium because, given the investor’s beliefs that a
low-skill manager would pick with probability 1, the low-skill manager would deviate and instead adopt
a timing strategy (with probability 1).

Step 2. We next show some useful properties of ma(L). Consider a low-skill manager (s = L). The
mean of Φt+1 in (A.2), ma

t (L) = Φt −∆µ2/2νa − λat (ηt), is monotonically decreasing in ηt when at = P
since λPt (ηt) is monotonically increasing in ηt. In contrast, mT

t (L) is monotonically increasing in ηt since
λTt (ηt) is monotonically decreasing in ηt. Moreover, since νP < νT , we obtain that at the two limits of ηt
the following holds:

lim
ηt→1

mP
t (L) = Φt −

∆µ2

2νP
< lim

ηt→1
mT
t (L) = Φt −

∆µ2

2νT
,

and

lim
ηt→0

mP
t (L) = Φt −

∆µ2

2νP
− log

(
κ

2− κ

)
≷ lim

ηt→0
mT
t (L) = Φt −

∆µ2

2νT
− log

(
2− κ
κ

)

depending on whether κ ≶ κ̄, where κ̄ ≡ 2/

(
1 + e

∆µ2(νT−νP )

4νP νT

)
.

Step 3. Suppose κ < κ̄, so that limηt→0m
P
t (L) > limηt→0m

T
t (L). Given the monotonicity of ma(L)

in ηt, this implies that there exists a probability η̃t such that mP
t (L, ηt = η̃t) = mT

t (L, ηt = η̃t). Consider
the following two cases:

(i) mP
t (L, ηt = η̃t) = mT

t (L, ηt = η̃t) < 0. Since the common mean ma
t (L) at ηt = η̃t is negative, we use

property (b) in Lemma A.1 to conclude that vt(at|L) is increasing in ςa. Therefore, since νP < νT ,
and hence ςP > ςT , it follows that vt(P |L, ηt = η̃t) > vt(T |L, ηt = η̃t). Moreover, since by property
(a) in Lemma A.1 vt(at|L) is increasing in ma

t (L), and since mP
t (L) is decreasing in ηt and mT

t (L)
is increasing in ηt, it follows that the difference vt(P |L, ηt) − vt(T |L, ηt) decreases in ηt. Since
vt(P |L, ηt = 1) − vt(T |L, ηt = 1) < 0, by continuity and monotonicity of vt(at|L) in ηt, it means
that there exists a unique mixed strategy η∗t ∈ (η̃t, 1) such that vt(P |L, ηt = η∗t ) = vt(T |L, ηt = η∗t ).

(ii) mP
t (L, ηt = η̃t) = mT

t (L, ηt = η̃t) > 0. Since the common mean ma
t (L) at ηt = η̃t is positive, we use

property (b) in Lemma A.1 to conclude that vt(at|L) is decreasing in ςa. Therefore, since νP < νT ,
and hence ςP > ςT , it follows that vt(T |L, ηt = η̃t) > vt(P |L, ηt = η̃t). Moreover, since by property
(a) in Lemma A.1 vt(at|L) is increasing in ma

t (L), and since mP
t (L) is decreasing in ηt and mT

t (L)
is increasing in ηt, it follows that the difference vt(T |L, ηt = η̃t) − vt(P |L, ηt = η̃t) increases in ηt.
If vt(T |L, ηt = 0)− vt(P |L, ηt = 0) < 0, by continuity and monotonicity of vt(at|L) in ηt, it means
that there exists a unique mixed strategy η∗t ∈ (0, η̃t) such that vt(P |L, ηt = η∗t ) = vt(T |L, ηt = η∗t ).
If, instead, vt(T |L, ηt = 0)−vt(P |L, ηt = 0) > 0, then timing is preferred over picking by a low-skill
manager for any ηt ∈ [0, 1]. Consequently, there exists a unique pure strategy η∗t = 0.
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Step 4. Suppose κ > κ̄, so that limηt→0m
P
t (L) < limηt→0m

T
t (L). Given the monotonicity of ma(L)

in ηt, this implies that mT
t (L) > mP

t (L) for any ηt. Following the same logic as in step 3, we consider the
following cases:

(i) mP
t (L, ηt = 0) < 0. Since vt(at|L) is increasing in ςa when ma

t (L) is negative and decreasing
otherwise, and since ςP > ςT , it can be that vt(P |L, ηt = 0) ≷ vt(T |L, ηt = 0). If vt(P |L, ηt = 0) >
vt(T |L, ηt = 0), given the continuity and monotonicity of vt(at|L) in ηt, there exists a unique mixed
η∗t ∈ (0, 1) such that vt(P |L, ηt = η∗t ) = vt(T |L, ηt = η∗t ). If, instead, vt(P |L, ηt = 0) < vt(T |L, ηt =
0), there exists a unique pure strategy η∗t = 0.

(ii) mP
t (L, ηt = 0) > 0. Since vt(at|L) is decreasing in ςa when ma

t (L) is positive, and since ςP > ςT ,
it follows that vt(P |L, ηt = 0) < vt(T |L, ηt = 0). Consequently, there exists a unique pure strategy
η∗t = 0.

Step 5. We next show that at the equilibrium η∗t it is always optimal for a high-skill manager to
choose a picking strategy. Consider a high-skill manager (s = H). Since λPt (ηt) and λTt (ηt) are respectively
monotonically increasing and decreasing in ηt, the mean of Φt+1 in (A.2), ma

t (H) = Φt+∆µ2/2νa−λat (ηt),
is monotonically decreasing in ηt when at = P , and monotonically increasing in ηt when at = T . Moreover,
since by property (a) in Lemma A.1, the value function vt(at|H) is increasing in ma

t (H), it follows that
vt(P |H, ηt = η∗t ) > vt(P |H, ηt = 1) and vt(T |H, ηt = 1) > vt(T |H, ηt = η∗t ).

When ηt = 1, the mean of Φt+1 in (A.2) becomes equal to ma
t (H) = Φt + ∆µ2/2νa, since λPt (1) =

λTt (1) = 0. Since the variance of Φt+1 in (A.3) is independent of ηt and equal to ςa = ∆µ2/νa, it follows
that (φt+1|at, H, ηt = 1) ∼ LogitN (Φt + (1/2)va, va). We use property (d) in Lemma A.1 to conclude
that vt(at|H, ηt = 1) is increasing in ςa. Since νP < νT , and hence ςP > ςT , it follows that

vt(P |L, ηt = 1) > vt(T |L, ηt = 1).

This implies that vt(P |H, ηt = η∗t ) > vt(T |H, ηt = η∗t ), and hence it is optimal for a high-skill manager to
always adopt a picking strategy.

Proof of Proposition 1. Given the assumption of diffuse investor’s prior about the manager’s type, we
consider an equal mass of high-skill and low-skill managers. The equilibrium self-selection implies that
the mass of managers implementing picking and timing strategies are given by

MassPt =
1

2

(
1− κ

2

)
+

1

2

[
η∗t

(
1− κ

2

)
+ (1− η∗t )

κ

2

]
=

1

2
[1 + η∗t (1− κ)] >

1

2
, (A.8)

MassTt =
1

2

(κ
2

)
+

1

2

[
η∗t
κ

2
+ (1− η∗t )

(
1− κ

2

)]
=

1

2
[1− η∗t (1− κ)] <

1

2
, (A.9)

respectively. High-skill managers, who account for half of the manager’s population, always choose to
pick, but given the possibility of a change of strategy out of their control, only (1 − κ/2) of them ends
up implementing a picking strategy. Among low-skill managers, who account for the other half of the
manager’s population, a fraction η∗t of these managers chooses to pick, but only η∗t (1 − κ/2) of them
ends up undertaking a picking strategy. Moreover, out of the fraction (1− η∗t ) of low-skill managers who
chooses to time, (1− η∗t )κ/2 of them ends up undertaking a picking strategy. The sum of these fractions
yields (A.8). Using the same logic, (A.9) obtains.
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Let Ma
t (s) denote the fraction of managers of skill s adopting strategy a at time t. It follows that

MP
t (H) =

1
2

(
1− κ

2

)
MassPt

=
1− κ

2

1 + η∗t (1− κ)
, (A.10)

MT
t (H) =

1
2

(
κ
2

)
MassTt

=
κ
2

1− η∗t (1− κ)
. (A.11)

The cross-sectional average of the expected performance of fund a at time t is given by

Ecst [Et[Rat+1]] = Ma
t (H)µH + (1−Ma

t (H))µL, (A.12)

where the unscript cs indicates that the average is taken cross-sectionally. Since MP
t (H) > MT

t (H)
for any η∗t ∈ [0, 1), it follows that Ecst [Et[RPt+1]] > Ecst [Et[RTt+1]]. The cross-sectional dispersion in the
expected performance of strategy a at time t, instead, is given by

Varcst [Et[Rat+1]] =
[
Ma
t (H)µ2

H + (1−Ma
t (H))µ2

L

]
− [Ma

t (H)µH + (1−Ma
t (H))µL]2

= µ2
L +Ma

t (H)
(
µ2
H − µ2

L

)
− [µL +Ma

t (H)∆µ]2

= µ2
L +Ma

t (H)2µ̄∆µ−
[
µ2
L +Ma

t (H)2 (∆µ)2 + 2µLM
a
t (H)∆µ

]
= 2Ma

t (H)∆µ (µ̄− µL)−Ma
t (H)2 (∆µ)2

= Ma
t (H) (∆µ)2 −Ma

t (H)2 (∆µ)2

= Ma
t (H) (1−Ma

t (H)) (∆µ)2 .

Since Ma
t (H) (1−Ma

t (H)) is a symmetric concave function in Ma
t (H) with its maximum achieved at

Ma
t (H) = 1/2, and since MP

t (H) > 1/2 > MT
t (H), it follows that

Varcst [Et[RPt+1]] > Varcst [Et[RTt+1]]⇔
(
MP
t (H)− 1

2

)
6

(
1

2
−MT

t (H)

)
⇔MP

t (H) +MT
t (H) 6 1.

Since

MP
t (H) +MT

t (H) =
1− κ

2

1 + η∗t (1− κ)
+

κ
2

1− η∗t (1− κ)
=

1− η∗t (1− κ)2

1− (η∗t )
2 (1− κ)2

6 1

we conclude that Varcst [Et[RPt+1]] > Varcst [Et[RTt+1]].

Proof of Proposition 2. Let Rat+1 be the level of performance such that Ft+1(Rat+1) = 0. Given the
fund flows in (16), it follows that Ft+1 > 0 if and only if φt+1 > φt. Given φt+1(Rat+1) in (14), we solve
for Rat+1 by setting φt+1(Rat+1) = φt0, which implies that

φt + (1− φt) e−
∆µ
νa (Rat+1−µ̄)

(
η∗t + (1− η∗t )

(
κ

2− κ

)1−21{at=T}
)

= 1,

and hence that

e−
∆µ
νa (Rat+1−µ̄)

(
η∗t + (1− η∗t )

(
κ

2− κ

)1−21{at=T}
)

= 1. (A.13)
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Taking log(·) on both sides of (A.13), and solving for Rat+1, (17) obtains: Rat+1 = µ̄ + (νa/∆µ)λat (η
∗
t ).

Since λTt (η∗t ) < 0 < λPt (η∗t ), it follows that RPt+1 < µ̄ < RTt+1.

Given the fund reputation φt, the flow-performance sensitivity at time t+ 1 induced by strategy at is
equal to

∂Ft+1

∂Rat+1

=
∂Ft+1

∂φt+1
· ∂φt+1

∂Φt+1
· ∂Φt+1

∂Rat+1

=

(
∆µ

µL + ∆µ · φt − f

)
· (φt+1(1− φt+1)) ·

(
∆µ

νa

)
, (A.14)

which simplifies to (18). Since all three partial derivatives in (A.14) are positive for any at ∈ {P, T}, the
flow-performance sensitivity is always positive for both pickers and timers. Moreover, if a picking and
a timing fund have the same reputation at time t, φt, and they obtain the same level of fund flows at
time t + 1, Ft+1(RPt+1) = Ft+1(RTt+1), it implies that φt+1(RPt+1) = φt+1(RTt+1). As a consequence, the
flow-performance sensitivity of the picking fund is higher than that of the timing fund since νP < νT .

Proof of Proposition 3. Let the function W φ
t (·) denote the difference in the value function of a low-

skill manager from implementing a picking and a timing strategy,

W φ
t (ηt, φt) ≡ vt(P |L, ηt, φt)− vt(T |L, ηt, φt).

The equilibrium η∗t is such that W φ
t (η∗t , φt) = 0. Using the implicit function theorem, we obtain that

∂η∗t
∂φt

= −∂W
φ
t (η∗t , φt)/∂φt

∂W φ
t (ηt, φt)/∂ηt

Since by property (a) in Lemma A.1 vt(at|L, ηt, φt) is increasing in ma
t (L), and since mP

t (L) is decreasing

in ηt and mT
t (L) is increasing in ηt, it follows that W φ

t (ηt, φt) decreases in ηt, ∂W
φ
t (ηt, φt)/∂ηt < 0.

Therefore,

sgn

(
∂η∗t
∂φt

)
= sgn

(
∂vt(P |L, η∗t , φt)

∂φt
− ∂vt(T |L, η∗t , φt)

∂φt

)
.

An increase in φt, increases the mean ma
t (L) in (A.2). Using property (a) in Lemma A.1, we conclude

that for a given ηt,

∂vt(at|L, ηt, φt)
∂φt

=
∂vt(at|L, ηt, φt)

∂ma
t (L)

· 1

φt(1− φt)
> 0, (A.15)

for at = P, T . Since both vt(P |L, ηt, φt) and vt(T |L, ηt, φt) increase with φt, we need to establish which
of the two value functions increases more at the equilibrium η∗t . To to so, we first note that, since
(φt+1|at, s) ∼ LogitN (ma

t (s), ς
a) with ma

t (s) and ςa as in (A.2) and (A.3), respectively, the value function
in (A.7) can be written as vt(at|L, ηt, φt) = EMt [fa(Z)], where

fa(Z) =
e−(1/2)ςa+

√
ςaZ

1−φt
φt

Λt(at) + e−(1/2)ςa+
√
ςaZ

,
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and Z ∼ N (0, 1). When φt → 0, ma
t (L)→ −∞, and consequently

vt(at|L, ηt, φt)→ 0 (A.16)

for both at = P and at = T . Similarly, when φt → 1, ma
t (L)→∞, and consequently

vt(at|L, ηt, φt)→ 1 (A.17)

for both at = P and at = T . Therefore, as a function of φt, both value functions start at 0 and
monotonically go to 1. Analyzing the derivative in (A.15) when φt → 0, we obtain that

lim
φt→0

∂vt(at|L, ηt, φt)
∂φt

= lim
φt→0

EMt
[
fa(Z) · (1− fa(Z)) · 1

φt(1− φt)

]
= lim

φt→0
EMt

[
Λt(at)e

(1/2)ςa+
√
ςaZ(

(1− φt)Λt(at)e(1/2)ςa + φte
√
ςaZ
)2
]

=
1

Λt(at)
EMt

[
e−(1/2)ςa+

√
ςaZ
]

=
1

Λt(at)
,

where the last equality follows from the expectation of a log-normal random variable. Since Λt(P ) < 1 <
Λ(T ), it follows that

∂vt(P |L, ηt, φt)
∂φt

∣∣∣∣
φt→0

>
∂vt(T |L, ηt, φt)

∂φt

∣∣∣∣
φt→0

. (A.18)

From Theorem 1, we know that for any φt ∈ (0, 1) there always exists a unique η∗t < 1. This means that,
given η∗t , the two value functions vt(P |L, η∗t , φt) and vt(T |L, η∗t , φt) must cross at a value of φt between 0
and 1. We denote this value by φ∗t . Putting together (A.16), (A.17), and (A.18), it implies that

∂vt(T |L, η∗t , φt)
∂φt

∣∣∣∣
φt=φ∗t

>
∂vt(P |L, η∗t , φt)

∂φt

∣∣∣∣
φt=φ∗t

,

and hence that ∂η∗t /∂φt 6 0.

Proof of Proposition 4. Let the function W ρ(·) denote the difference in the value function of a low-skill
manager from implementing a picking and a timing strategy,

W ρ
t (ηt, ρ) ≡ vt(P |L, ηt, ρ)− vt(T |L, ηt, ρ).

The equilibrium η∗t is such that W ρ
t (η∗t , ρ) = 0. Using the implicit function theorem, we obtain that

∂η∗t
∂ρ

= − ∂W
ρ
t (η∗t , ρ)/∂ρ

∂W ρ
t (ηt, ρ)/∂ηt
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Since by property (a) in Lemma A.1 vt(at|L, ηt, ρ) is increasing in ma
t (L), and since mP

t (L) is decreasing in
ηt and mT

t (L) is increasing in ηt, it follows that W ρ
t (ηt, ρ) decreases in ηt, ∂W

ρ
t (ηt, ρ)/∂ηt < 0. Therefore,

sgn

(
∂η∗t
∂ρ

)
= sgn

(
∂vt(P |L, η∗t , ρ)

∂ρ
− ∂vt(T |L, η∗t , ρ)

∂ρ

)
.

An increase in ρ, increases the variance νT in (3), which in turns increases mT
t (L) and decreases ςT

in (A.2) and (A.3), respectively. Since mT
t (L) can be written as Φt − (1/2)ςT − λTt (ηt), using property

(c) in Lemma A.1, we conclude that for a given ηt,

∂vt(T |L, ηt, ρ)

∂ρ
=
∂vt(T |L, ηt, ρ)

∂ςT
· ∂ς

T

∂ρ
> 0.

Moreover, since νP is not affected by ρ, it follows that for a given ηt, ∂vt(P |L, ηt, ρ)/∂ρ = 0. This implies
that ∂η∗t /∂ρ 6 0.

Since the fractionsMP
t (H) andMT

t (H) in (A.10) and (A.11) are respectively decreasing and increasing
in η∗t , they are respectively increasing and decreasing in ρ. Therefore, when market volatility is high,
ρTt = ρ+∆ρ, a higher fraction of picking funds is run by high-skill managers, whereas a higher fraction of
timing funds is run by low-skill managers. This implies that the cross-sectional average of the expected
performance in (A.12) of picking funds increases, whereas that of timing funds decreases.
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Table 1: Summary Statistics

Distribution of dop

Low-dop Medium-dop High-dop Full Sample

(bottom 20%) (middle 60%) (top 20%)

Averages (1) (2) (3) (4)

Degree of Picking (dop) 0.52 0.77 0.91 0.77

Age (Q) 35 37 39 37

Size ($M) 208 239 252 236

Family Funds 11 11 11 11

Turnover 0.67 0.52 0.48 0.54

Expense Ratio (%) 1.15 1.11 1.11 1.12

Tracking Error (%) 5.01 3.47 3.23 3.64

Fraction of Small Cap Funds 0.29 0.32 0.35 0.32

Fraction of Growth Funds 0.46 0.42 0.39 0.42

Fraction of Value Funds 0.03 0.03 0.03 0.03
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Table 2: Fund Flow Sensitivity to Core and Non-Core Performance

This table shows the quarterly fund flow sensitivity to lagged fund’s total, core and non-core performance measured
as active returns, in percentage. Flows are calculated as a percentage of lagged asset value at quarterly frequency
and then annualized. Column 3 and 4 uses the sub-sample of funds with above and below median dop, respectively.
All specifications include time and style fixed effects. Superscripts *, **, and *** indicate significance at less than
1%, 5% and 10%, respectively.

Panel A: Regressions

Dependent Variable % Fund Flows (t)

Sample All Funds Pickers Timers

(1) (2) (3) (4)

Active Return (t-1) 0.135***
(0.006)

Core Active Return (t-1) 0.186*** 0.244*** 0.150***
(0.008) (0.010) (0.011)

Non-Core Active Return (t-1) 0.047*** 0.075*** 0.046**
(0.015) (0.019) (0.020)

Tracking Error (t-1) 0.164*** 0.161*** 0.131*** 0.161***
(0.025) (0.026) (0.032) (0.027)

Log Assets (t-1) 0.032 0.029 0.053 -0.011
(0.041) (0.041) (0.047) (0.043)

Log Fund Age (t-1) -4.015*** -4.007*** -4.081*** -3.932***
(0.099) (0.099) (0.116) (0.111)

Expense Ratio (t-1) -0.704** -0.724** -0.446 -1.027***
(0.314) (0.314) (0.374) (0.222)

Turnover (t-1) -0.301*** -0.304*** -0.209** -0.387***
(0.086) (0.087) (0.094) (0.082)

Intercept 11.094*** 11.048*** 11.426*** 11.523***
(0.798) (0.804) (0.970) (0.992)

Fund-Quarter Obs 147787 147786 74729 73047
Adjusted R-Sq 0.122 0.124 0.126 0.124

Panel B: Hypothesis Testing

F -test of H0: βcore = βnon-core

Degree of Freedom 3707 3660 3680
F -score 49.52 4535 13.77
p-value (2 Tailed) 0 0 0.0002
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Table 3: Performance of Pickers and Timers

This table shows the relationship between fund performance and degree of picking (dop). Columns 1-2 regress
quarterly active return and value added on quarterly dop. Columns 3-4 do the same but excluding the fund-
quarters having bottom 20% of tracking error. All the columns controls for time fixed effects. Standard errors are
clustered at fund level. Superscripts *, **, and *** indicate significance at less than 1%, 5% and 10%, respectively.

Sample All Funds Excluding Indexers

Dependent Variable Return (t) Value (t) Return (t) Value (t)

(1) (2) (3) (4)

dop (t) 3.053*** 29.007*** 3.437*** 27.821***
(0.344) (9.397) (0.400) (10.217)

Log Assets (t-1) -0.182*** 4.921* -0.236*** 1.516
(0.030) (2.594) (0.037) (2.825)

Log Fund Age (t-1) 0.151** -0.809 0.224*** -0.871
(0.061) (1.172) (0.073) (1.369)

Expense Ratio (t-1) 0.489*** 2.736 0.192 -1.495
(0.117) (2.037) (0.165) (2.901)

Turnover (t) -0.225*** -2.089*** -0.285*** -2.665**
(0.067) (0.806) (0.094) (1.054)

Intercept 5.642*** 35.364* 6.104*** 62.984***
(0.620) (20.983) (0.675) (23.025)

Time FE Yes Yes Yes Yes

Fund-Quarter Obs 149462 149462 119395 119395
Adjusted R-Sq 0.059 0.013 0.064 0.013
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Table 4: Performance of Pickers and Timers: Additional Effects

In this table we regress quarterly fund performance (measured either as active returns or dollar value) on quarterly
dop. All columns include style×time fixed effects. Columns 3 and 4 use net-of-fees performance. The variable
Large is a dummy for funds with above median fund size. Standard errors are clustered at fund level. Superscripts
*, **, and *** indicate significance at less than 1%, 5% and 10%, respectively.

Effect Style Expense Ratio Size

Dependent Variable Return (t) Value (t) Net Return (t) Net Value (t) Return (t)

(1) (2) (3) (4) (5)

dop (t) 2.215*** 21.070** 2.228*** 23.363** 1.921***
(0.342) (9.572) (0.343) (9.628) (0.499)

Large (t-1) 0.895*
(0.509)

Large (t-1) × dop (t) 0.523
(0.604)

Log Assets (t-1) -0.175*** 5.112** -0.169*** -7.451*** -0.478***
(0.030) (2.571) (0.031) (2.234) (0.048)

Log Fund Age (t-1) 0.074 -2.755** 0.067 -2.895** 0.087
(0.059) (1.211) (0.061) (1.207) (0.059)

Expense Ratio (t-1) 0.057 -1.967 -0.874*** -7.789*** 0.035
(0.162) (2.703) (0.198) (2.727) (0.163)

Turnover (t) -0.214*** -1.717** -0.218*** -1.481** -0.214***
(0.070) (0.802) (0.071) (0.731) (0.070)

Intercept 44.554*** 38.360** 44.427*** 98.506*** 45.789***
(5.100) (19.306) (5.102) (20.588) (5.087)

Style×Time FE Yes Yes Yes Yes Yes

Fund-Quarter Obs 149443 149443 149443 149443 149443
Adjusted R-Sq 0.117 0.020 0.117 0.021 0.117
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Table 5: Performance of Picking and Timing Strategies Within Fund

This table exhibits the relationship between quarterly active returns and degree of picking (dop) using a first-
difference model. For a given variable x, ∆xt ≡ xt − xt−1. Drop (Rise) in dop (t) is a dummy with value of 1 if
dopt − dopt−1 < (>)0. All columns include style×time fixed effects. Standard errors are clustered at fund level.
All the models control for quarterly time fixed effects. Superscripts *, **, and *** indicate significance at less than
1%, 5% and 10%, respectively.

Dependent Variable ∆ Return (t)

(1) (2) (3)

∆ dop (t) -0.736**
(0.348)

∆ Log Assets (t-1) -13.342*** -13.351*** -13.349***
(0.557) (0.557) (0.557)

∆ Expense Ratio (t-1) -1.138** -1.140** -1.140**
(0.484) (0.484) (0.484)

∆ Turnover (t) 0.082 0.083 0.082
(0.156) (0.156) (0.156)

Drop in dop (t) 0.080
(0.096)

Rise in dop (t) -0.101
(0.093)

Intercept -35.190*** -35.248*** -35.171***
(8.437) (8.436) (8.430)

Style×Time FE Yes Yes Yes

Fund-Quarter Obs 146127 146127 146127
Adjusted R-Sq 0.116 0.116 0.116
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Table 6: Fund Flow Sensitivity of Picking and Timing Strategies

This table shows the quarterly fund flow sensitivity to the lagged fund performance, measure as quarterly active
return. Both active returns and flow variables are winsorized at 1%. Young (old) funds denote the group of funds
with a fund age below (above) median during the performance period. All columns include style×time fixed effects.
Column 2 additionally includes fund fixed effects. Standard errors are clustered at fund level. Superscripts *, **,
and *** indicate significance at less than 1%, 5% and 10%, respectively.

Dependent Variable % Fund Flows (t)

Sample All Funds Young Funds Old Funds

(1) (2) (3) (4)

Active Return (t-1) 0.076*** 0.037** 0.084*** 0.046**
(0.019) (0.018) (0.028) (0.019)

Active Return (t-1) × dop (t-1) 0.171*** 0.167*** 0.197*** 0.154***
(0.026) (0.025) (0.039) (0.026)

dop (t-1) -0.063 0.172 -0.458 1.619***
(0.353) (0.330) (0.594) (0.327)

Tracking Error (t-1) 0.135*** 0.145*** 0.167*** 0.040
(0.032) (0.038) (0.051) (0.029)

Log Assets (t-1) -0.049 -2.983*** -0.389*** -0.026
(0.044) (0.131) (0.071) (0.040)

Log Fund Age (t-1) -4.223*** -7.600*** -6.585*** -0.808***
(0.109) (0.249) (0.199) (0.176)

Expense Ratio (t-1) -0.607* -0.290 -0.705 -0.502**
(0.345) (0.426) (0.521) (0.202)

Turnover (t-1) -0.320*** 0.010 -0.323*** -0.139*
(0.092) (0.094) (0.100) (0.084)

Intercept 12.794*** 46.163*** 20.098*** -5.889
(4.885) (1.484) (5.398) (4.278)

Style×Time FE Yes Yes Yes Yes
Fund FE Yes

Fund-Quarter Obs 147387 147387 73054 74333
Adjusted R-Sq 0.111 0.157 0.117 0.041
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Table 7: Fund Reputation and Investment Strategy

This table shows the relation between fund reputation as measured by past fund flows and degree of picking (dop).
Flows are double sorted within quarter and style and normalized between 0 and 1. Columns 1 and 4 use quarterly
dop and lagged normalized flows while columns 2, 3 and 5 use average dop from t to t+ 3 and average normalized
flows between t − 4 and t − 1. Low-skill (high-skill) funds are funds within bottom (top) 20% of the long-term
average of active returns quantile. Diverse fund family is a dummy that takes 1 if within family-quarter standard
deviation of dop falls within top 20%. All columns include fund fixed effects and style×time fixed effects. Standard
errors are clustered at the fund level. Superscripts *, **, and *** indicate significance at less than 1%, 5% and
10%, respectively.

Sample Low-Skill Funds High-Skill Funds

Dependent Variable dop (t) dop (t, t+3) dop (t) dop (t, t+3)

(1) (2) (3) (4) (5)

Normalized Flows (t-1) -3.216*** 0.188
(0.461) (0.391)

Average Normalized Flow (t-4, t-1) -7.206*** -6.164*** 1.279**
(0.661) (0.648) (0.523)

Diverse Fund Family (t-1) -1.646***
(0.461)

Diverse Fund Family (t-1) × -3.002***
Average Normalized Flow (t-4, t-1) (0.835)

Log Assets (t-1) -0.031 -0.405* -0.483** 1.200*** 0.925***
(0.241) (0.226) (0.219) (0.134) (0.134)

Expense Ratio (t-1) 2.032** 2.078** 2.042** 0.500* 0.388
(0.976) (0.964) (0.948) (0.266) (0.254)

Turnover (t) -0.163 -0.779
(0.188) (0.500)

Turnover (t, t+3) -0.358 -0.336 -1.049
(0.276) (0.265) (0.647)

Intercept 72.514*** 76.107*** 76.664*** 68.664*** 69.181***
(1.964) (1.955) (1.909) (1.055) (0.912)

Style×Time FE Yes Yes Yes Yes Yes
Fund FE Yes Yes Yes Yes Yes

Fund-Quarter Obs 28799 29387 29387 29577 30027
Adjusted R-Sq 0.003 0.025 0.038 0.006 0.011
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Table 8: Volatility, Investment Strategy and Fund Performance

This table shows the relationship between aggregate volatility and investment strategies, and between aggregate
volatility and fund performance. Aggregate volatility is measured in three ways: (i) average level of VIX index
during a quarter; (ii) quarter volatility of CRSP value-weighted index (i.e., market volatility); (iii) quarter volatility
of fund benchmarks. A quarter in the sample is categorized in one of the following three volatility quantiles: low
(bottom 20%), medium (middle 60%) and high (top 20%). Superscripts *, **, and *** indicate significance at less
than 1%, 5% and 10%, respectively.

Dependent Variable dop (t) Active Return (t)

Sample Low-Skill and Low-Skill and

Low-Skill Funds High-Skill Funds High-Skill Funds

Volatility Measures VIX Market Benchmark Benchmark Benchmark

(1) (2) (3) (4) (5)

Medium-Vol (t) -0.171 -0.459* -4.048*** -4.684*** 0.076
(0.329) (0.259) (0.219) (0.243) (0.728)

High-Vol (t) -6.218*** -5.965*** -11.534*** -13.194*** -10.963***
(0.421) (0.349) (0.350) (0.387) (1.275)

High-Skill 2.879***
(0.309)

Medium-Vol (t) × High-Skill 0.459
(0.294)

High-Vol (t) × High-Skill 1.546***
(0.476)

dop (t) 6.202***
(0.769)

Medium-Vol (t) × dop (t) -1.725*
(0.914)

High-Vol (t) × dop (t) 10.193***
(1.680)

Log Assets (t-1) -1.242*** -0.607*** -0.470** -0.369*** -0.227***
(0.225) (0.219) (0.217) (0.081) (0.068)

Log Fund Age (t-1) 3.522*** 3.276*** 2.318*** 1.069*** 0.423***
(0.262) (0.264) (0.261) (0.129) (0.130)

Expense Ratio (t-1) 2.224** 2.569*** 1.829** -1.147*** 0.497***
(0.872) (0.872) (0.875) (0.423) (0.185)

Turnover (t) -0.163 -0.201 -0.160 -0.553** -0.235**
(0.180) (0.189) (0.175) (0.243) (0.094)

Intercept 65.148*** 62.520*** 69.115*** 77.184*** -2.661***
(1.902) (1.829) (1.866) (0.692) (0.763)

Fund FE Yes Yes Yes

Fund-Quarter Obs 29335 29335 29335 59179 59179
Adjusted R-Sq 0.041 0.040 0.064 0.087 0.026
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