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Abstract

Local House Price Comovements

We study the micro-level evolution of residential house prices using data on repeat sales

on Manhattan Island from 2004 to 2015. We document that excess price comovement is a

highly local and persistent phenomenon. The strength of such excess comovements vanishes

with both spatial and temporal distance. Local underperformance is more persistent than

local overperformance – particularly when house prices on aggregate level increase.

JEL Classification Codes: R30, R32

Key Words: Housing market, price comovements, urban economics, real estate, repeat

sales.



1 Introduction

The recent boom and bust in house prices dramatically illustrates the need for a better

understanding of price dynamics of residential homes. Since the pioneering work of Case

and Shiller (1989), it is a well-established fact that returns on national and city-wide house

price indices are subject to strong auto- and cross-sectional correlation. Two important

channels explaining these correlations are comovements and spillovers in residential house

prices. Comovements are caused by common underlying factors, such as gradually changing

credit conditions (e.g., Chambers et al., 2009; Landvoigt et al., 2015; Amromin et al., 2018).

Spillovers, on the other hand, are caused by a trigger, such as gentrification (Guerrieri et al.,

2013), or rent decontrol (Autor et al., 2014), that spills over from affected to unaffected

properties. For instance, a foreclosure also affects the trading prices of other properties in a

neighborhood that do not go through a foreclosure (e.g., Campbell et al., 2011; Gupta, 2019;

Guren and McQuade, 2019). Even interior renovations, which are generally unobservable,

can raise house prices in close proximity after transaction prices of the renovated homes

become public (Szumilo, 2018), suggesting that publicly available trading prices on their

own can affect trading prices of other homes.

In this paper, we document the existence of excess comovements, that is, comovements

beyond macroeconomic or common factors, in residential house prices on the micro level.

We show that even after controlling for price changes on the monthly macro level as well

as for zip-code-year based price developments, excess returns are positively related to past

excess returns in the nearest surrounding of the traded home. Excess comovements are most

pronounced when house prices depreciate.

Our work contributes to two important strands of literature. First, it contributes to the

literature that has documented the existence of excess comovements on the index level (e.g.,

Kallberg et al., 2014), by showing that excess comovements also exist in the trading prices

of individual homes on the micro level. Second, it contributes to the literature explaining

cross-sectional correlations in house prices on the local level through spill over effects, by

documenting that such cross-sectional correlation even exists in the absence of event-specific

externalities.

Consistent with the spillover effects documented in, e.g., Campbell et al. (2011), Guer-

rieri et al. (2013), and Rossi-Hansberg et al. (2010), we show that excess comovements are

strongest in the nearest neighborhood — particularly within the same building — and die

out quickly with increasing distance between traded homes. Our results are robust to con-

trolling for the evolution of house prices on the borough-level, on a monthly basis, as well

as zip-code-year based price movements. In extensive robustness checks, we document our
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results to withstand other model specifications and parameter choices.

We further document that excess comovements exist over longer time horizons. Even lo-

cal outperformance dating back as long as 2.5 years contributes to explaining present excess

returns. Similar to the generally higher level of correlation in stock returns in markets with

falling prices (e.g., Ang and Chen, 2002) and the evidence in Cotter et al. (2015), our results

reveal that excess comovements are stronger in markets with falling prices. Local underper-

formance is particularly persistent when house prices on the aggregate level appreciate. Our

results thus suggest a higher heterogeneity in terms of local house price changes when house

prices increase.

Apart from the well-documented specific events discussed in the literature, excess co-

movements should be largely driven through two main channels. First, homes in the same

neighborhood share common amenities, such as access to schools, recreational areas, shop-

ping facilities, etc. Hence, ceteris paribus, homes in the same neighborhood should be better

substitutes than more distant ones. When house prices in a given neighborhood increase, a

potential buyer’s budget constraint is more likely to be binding, thus increasing the incentive

to search for cheaper homes in the nearest surrounding. This substitution effect should cause

price increases in one neighborhood to also affect close-by neighborhoods.

Second, excess comovements can be caused through the information channel. Available

information is likely to affect both buyers’ and sellers’ behavior. For buyers, the market for

residential real estate is characterized by an information disadvantage (Coval and Moskowitz,

1999; Garmaise and Moskowitz, 2004; Kurlat and Stroebel, 2015). Information about locally

realized sales prices that is not (yet) publicly available is typically easier to access for sellers

via private channels, such as mouth-to-mouth propaganda. Thus, buyers have an incentive to

use previous sales prices in the neighborhood to reduce the information gap. Simultaneously,

sellers and their real estate agents should incorporate past sales prices in their offer prices

and during price negotiations – for instance, because they do not want to sell at a worse

price than their neighbors. Hence, past price changes in the neighborhood should affect

present trading prices via both buyers’ and sellers’ incentives to use past sales prices as

easily available anchors (Murfin and Pratt, 2019). Furthermore, the particularly strong

within-building excess comovements are likely to be affected by a second anchoring effect: If

a real estate agent has successfully sold a flat in a given building, other households wishing

to sell may want to hire the same real estate agent, who likely uses his past realized sales

price as an anchor for the new ask price. Ask prices, in turn, are known to affect the level

of transaction prices of properties in the neighborhood (Horowitz, 1992; Anenberg, 2016).

We investigate the micro-level price dynamics of homes in urban areas using repeat sales

on Manhattan Island between 2004 and 2015. We evaluate the order of magnitude, the per-
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sistence, and the state dependence of excess comovements. Manhattan Island seems ideal for

investigating excess comovements in residential house prices in many regards. First, Man-

hattan is a liquid real estate market. Second, Manhattan is densely populated, implying that

new constructions are scarce and unlikely to have major price impacts. Third, downpayments

in Manhattan are very high and, over the last years, more than 50% of the condominiums

and house sales have consistently closed without mortgage financing.1 This makes buyers

less dependent on the lending policy of banks, reducing trading frictions enormously and

turns Manhattan into a highly efficient real estate market. As most of the transactions are

conducted by a real estate broker, information travels quickly to the buyers who have ap-

pointed an agent. Finally, the exact trading prices for all homes are publicly available from

the New York City Department of Finance,2 implying that information is easily available for

all market participants.

In contrast to the work of Rossi-Hansberg et al. (2010), Campbell et al. (2011), Guerrieri

et al. (2013), and Szumilo (2018), which focuses on spillovers related to specific events,

our goal is to document that prices comove even in the absence of specific events and to

quantify the order of magnitude of such excess comovements along several dimensions. In

our empirical analysis, we focus on excess returns relative to the evolution of house prices

on the zip-code-year level, which should remove any event that affects an entire zip-code,

such as changes in air quality (Chay and Greenstone, 2005), for instance. We further include

variables controlling for the proximity to special areas such as the Central Park. Our results

show that excess comovements only exist in the nearest vicinity, dying out quickly with

increasing distance. Hence, our results are unlikely to be driven by events that affect larger

neighborhoods within a zip-code. For instance, a 6% increase (i.e., one standard deviation)

in the annualized excess return of an apartment leads to a 1.3% increase in the expected

returns of an apartment located in the same building. This effect decreases by 80% within

a 500 feet radius neighborhood.

In addition to the spatial dimension, performance is also persistent on the temporal di-

mension. For example, within the same building, even conditional on most recent excess

returns, 6% of past average excess returns from 2 to 2.5 years ago are reflected in excess

returns today. Local underperformance is more persistent than local overperformance, par-

ticularly in markets with generally appreciating house prices: Within the same building, 36%

of negative excess returns are reflected in today’s prices during booming periods, in contrast

to only 26% during non-booming states of the aggregate market.

1https://www.propertyshark.com/Real-Estate-Reports/2016/12/13/payments-manhattan-now-500k-
almost-double-median-sale-price-us/

2http://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page
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Our work contributes to a growing strand of literature investigating micro-level dynam-

ics of house prices. This literature demonstrates that local events, such as gentrification

(Guerrieri et al., 2013), urban revitalization (Rossi-Hansberg et al., 2010), air pollution

(Chay and Greenstone, 2005), legislative amendment (Autor et al., 2014), unnatural deaths

(Bhattacharya et al., 2017), the Low Income Housing Tax Credit (Diamond and McQuade,

2019), and foreclosures (Harding et al., 2009; Campbell et al., 2011; Anenberg and Kung,

2014; Gerardi et al., 2015; Gupta, 2019; Guren and McQuade, 2019) are important drivers

of micro-level house price dynamics. Our work contributes to this line of research by doc-

umenting that prices comove not only in the presence of specific events, but also in their

absence. We further quantify how the order of magnitude of such excess price comovements

changes with the distance between traded homes.

Our work further contributes to the literature on excess comovements by showing that

such comovements not only exists on the index level (e.g., Kallberg et al., 2014), but also in

the prices of individual homes. In our empirical analysis, we use individual property returns

in excess of Manhattan Island’s monthly repeat sales index as endogenous variable as well

as yearly zip-code specific deviations of annualized excess returns from this local index as

control variables in order to account for local and neighborhood-specific events.

This paper proceeds as follows: Section 2 explains the existence of comovements based

on a stylized model from which we derive our main hypotheses. In Section 3, we introduce

our data. Section 4 presents our results on excess comovements in residential house prices.

Section 5 documents the robustness of our results. Finally, Section 6 concludes.

2 A Simple Model

In this section, we motivate general excess comovements in residential house prices. In a

stylized market microstructure model for the housing market, we demonstrate why prices

should comove with future transactions in the neighborhood.

We consider a set of homes, H1, H2, . . . , Hn that only differ by their location. We denote

the physical distance between two homes Hi and Hj by Di,j. We assume that households

typically have a preference for a certain location of their homes. This preference could both

reflect the neighborhood’s facilities, such as good schools, restaurants, shops, as well as social

ties, such as other family members or friends living in the neighborhood. A home outside

the preferred location is a substitute for the home at the preferred location, because both

homes provide households with the same housing services. The prices Pi and Pj of the two
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homes Hi and Hj should therefore be positively correlated:

Pi = f (Pj) with
∂f

∂Pj

> 0. (1)

That is, comovements in residential house prices reflect that households react to price in-

creases for homes in a given neighborhood by purchasing substituting homes in close-by

neighborhoods, thus causing price increases in these neighborhoods. For instance, an in-

crease in house prices in a potential buyer’s preferred neighborhood increases the likelihood

that his budget constraint is binding and he thus has to search for alternatives in the sur-

rounding area of the preferred neighborhood.

The distance Di,j between two homes can be interpreted as a proxy for how well two

homes Hi and Hj can be substituted with each other. The distance is, among others, a good

proxy for the commuting costs and time it takes to get from Hi to the amenities at Hj.

The smaller the distance Di,j between two homes Hi and Hj, the better they proxy for each

other. That is, we can refine our model to

Pi = g (Pj, Di,j) with
∂g

∂Pj

> 0 and
∂g2

∂Pj∂Di,j

< 0. (2)

In other words, the evolution of two homes’ prices in the same neighborhood should be

positively correlated. More precisely, the smaller the distance Dij between two homes, the

more a price signal from a previous trade should affect the price of Hi.

The adjustment of prices due to substitution should not take place instantaneously, as

search for houses is time consuming. Thus, the gradual adjustment of prices brings up tem-

poral distance Ti,j as further dimension of excess comovements in local housing markets.

Consequently, the price, Pi should thus not only be affected by the spatial distance between

traded homes, but also by the temporal distance Ti,j. With increasing distance in the tem-

poral sense, prices of neighboring substitutes become less informative for contemporaneous

price movements:

Pi = h(Pj, Di,j, Ti,j) with
∂h2

∂Pj∂Ti,j
< 0. (3)

In order to find the best price estimate, i.e., the fair market value, for a home in a

given location, agents on both the seller and buyer side have to trade off substitutability

(i.e, physical distance Di,j) against timeliness for current market movements (i.e, temporal

distance Ti,j). In other words, if the physical distance between i and j is small, agents should
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be willing to accept a greater time distance for home Hj to enter the price estimation:

∂

(
∂h2

∂Pj∂Di,j

) /
∂ Ti,j < 0 (4)

Our simple model in this section makes three predictions. First, positive excess returns

from nearby homes should lead to positive excess returns for a given home. Second, the

strength of these excess comovements should die out with increasing spatial and temporal

distance between traded homes. Third, when physical distance is small, excess comovements

should be more persistent in the time dimension. We test these model predictions in Section

4, after introducing our data in Section 3.

3 Data and Methodology

Our data is from the CoreLogic database, which covers 99.9% of the U.S. population.3 We

focus on repeat sales in urban areas using data from Manhattan Island, New York City.

Manhattan Island seems ideal to investigate excess comovements in residential house prices

in several regards. First, given that Manhattan is generally perceived as a very attractive

place to live, the market for real estate is liquid and foreclosures are rare.4 Second, compared

to more rural areas, Manhattan Island is densely populated and space for new buildings is

therefore extremely scarce. This severely limits the amount of new construction and the price

impact of new buildings on existing places. Third, the exact prices of all trades are publicly

available at the New York City Department of Finance’s homepage. That is, information

about actual trading prices of adjacent homes is easily available for all market participants

and our results are less affected by information asymmetries. Our data spans the time period

from January 2004 to December 2015, plus past sales prices on the most recent previous

transactions dating back to 2000.

3.1 DATA CLEANING

We consider repeat sales of condominiums and apartments in order to compute returns

on investments for such places. Initially, our dataset of the market on Manhattan Island

consists of 43,466 observations, covering the period from January 2004 to December 2015.

The dates for the most recent prior sale dates range back until January 2000, allowing for

longer holding periods even at the beginning of the sample. The removal of observations

3https://www.corelogic.com/solutions/university-data-portal.aspx
4According to RealtyTrac.com, only one in every 12,410 trades in New York City relates to a foreclo-
sure. See http://www.realtytrac.com/statsandtrends/foreclosuretrends/ny/new-york-county/new-york/ as
of April 2019
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that are not classified as resales (e.g., subdivisions) or for which information about the date

of the transaction, the current or most recent preceding sales price (prior sales price) is not

available leaves us with 42,301 observations.5 The removal of duplicates with identical sales

prices, prior sales prices, transaction dates, and geographic coordinates leaves our sample

with 41,905 observations. Following Landvoigt et al. (2015), we remove speculative trades

with holding periods of less than 180 days, leaving us with 41,283 observations.6 Finally,

similar to Campbell et al. (2011), for every year we remove outliers with current or prior

sales prices in the first and 99th percentile, respectively, leading to a cleaned data set of

39,771 observations. To account for data errors or physical changes in a property, we follow

Standard & Poor’s (S&P Dow Jones Indices, 2017) in removing outliers. More specifically, we

remove observations in the third and 97th percentile of the annualized return distribution.7

Our final data set then consists of 37,385 observations.

Figure 1 summarizes the evolution of residential house prices in our cleaned data set

using a repeat sales index (Case and Shiller, 1989) constructed on a monthly basis for the

time period from January 2000 to December 2015. Similar to house prices on the national

level, from Figure 1, Manhattan Island experienced a significant boom during the 2000s,

with prices more than doubling from 2000 to 2006. Thereafter, house prices did not show a

clear trend until they sharply declined in late 2008 – later than on the national level.8 This

relatively late decline may reflect that layoffs in the financial industry and their implications

for house prices on Manhattan Island did not occur instantly when house prices on the

national level started declining, but with a certain delay.

[Figure 1 about here]

3.2 EXCESS RETURNS

The repeat sales in our data differ along two important dimensions that make a direct

comparison of returns difficult. First, the lengths of the time intervals between two trades

may differ substantially. Second, returns depend crucially on the phase of the housing

market cycle. To control for these two effects, we compute annualized market-adjusted

5In our data, the characteristics of repeat-sales and non-repeat-sales are remarkably similar, indicating that
the removal of non-repeat-sales does not leave us with a non-representative sample. For instance, the
average trading price of our repeat-sales is USD 1.41 million (in January 2015 dollars), whereas it is USD
1.42 million for the non-repeat sales. The similarity of both subsamples further suggests that the non-repeat
sales do not constitute a systematic, confounding factor in our analysis.

6Similarly, in the construction of the S&P 500 Case-Shiller house price index, observations with holding
periods of less than six months are removed (S&P Dow Jones Indices, 2017).

7The results are qualitatively robust to the removal of only one or two percent of each tail.
8In Section 4.2, we use these differences in the general evolution of house prices to investigate whether
comovements vary with the phase of the housing market cycle.
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excess returns, rt,t−, for properties traded at month t and previously traded at month t− as

follows:

rt,t− =

(
Pt

Pt−

) 1
y(t,t−)

−
(
Ct

Ct−

) 1
y(t,t−)

, (5)

in which Pt and Pt− denote the present and prior trading prices of the property in months t

and t−, respectively. y (t, t−) is the time distance in years between the two trades, and Ct

and Ct− denote the index levels of the Manhattan Island repeat-sales price index constructed

as in Case and Shiller (1989) from our cleaned data in months t and t−, respectively. By

subtracting the index return, we remove aggregate effects that systematically affect house

prices, such as inflation, seasonal effects, and the phases of the housing market cycle at

the moments of the two trading dates, as well as other common specific events, such as

the September 11 attacks. Simultaneously, excess returns allow us to distinguish between

states with local over- and underperformance, which, as we demonstrate in Section 4.2, are

associated with differential excess comovements.

3.3 CONTROL VARIABLES

Our control variables can be broadly split into three different categories: (1) transaction-

specific, (2) locational, and (3) macro-financial control variables.

3.3.a Transaction-Specific Variables

In our data cleaning procedure, we remove transactions with holding periods of less than 180

days, which are likely to be speculative trades. Short holding periods may be targeted at

larger renovations during that period, aiming at substantially increasing a property’s value.

To account for these possible effects, we include mutually exclusive dummy variables for

holding periods of less than one and less than two years, respectively.

The results in Landvoigt et al. (2015) document that during the recent housing mar-

ket boom, housing returns varied substantially between homes in different price segments

in a nonlinear fashion. To account for this effect, we control for the log of the inflation-

adjusted prior sales price (in January 2015 dollars) as well as its square. Whereas private

investors profit from both their home as a durable consumption good and from house price

appreciations, corporations should place higher emphasis on earning higher returns on their

investments. To control for these effects, we include two dummies for whether a property

is sold or bought by a corporation and a dummy for whether a home is bought to become

an owner-occupied home. Transactions in which the buyer is a corporation or the home is

bought to serve as an owner-occupied home are already marked in our database. We further
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construct a dummy variable indicating whether the seller is a corporation or not.9

3.3.b Locational Variables

The location of a residential home is one of the key factors determining its price (e.g., Can,

1990; Case and Mayer, 1996). To control for possible changes in the pricing of location-

specific factors, we control for the view on the Central Park and the waterfront as well as the

walking-distance to these two amenities. We further control for distance to Times Square,

the New York Stock Exchange, and the nearest entry to the subway.10 More specifically,

we include mutually exclusive dummies for a view and a walking-distance to Central Park

if the beeline does not exceed 100 feet and the city block walking-distance does not exceed

500 feet, respectively. In similar fashion, we include a waterfront-view-dummy if a home

has a direct view on the water surrounding Manhattan Island; i.e., if the home is separated

from water only by a road, a park, or both, but not by a building. We further include a

walking-distance dummy, if the city block distance to the waterfront does not exceed 500

feet. To account for easy access to the subway system, we include two dummies: a dummy

for very close distances to the nearest entry for city block walking-distances of less than 100

feet and a dummy for close distances of 100 to less than 500 feet. For Times Square and the

New York Stock Exchange we include two dummies for short walking-distance and medium

walking-distance if the city-block distance is less than 1,000 feet and 1,000 to less than 2,000

feet, respectively.

Guerrieri et al. (2013) document substantial differences in house price growth across

neighborhoods. To account for these differences, we proceed similar to Campbell et al.

(2011), who use census-tract-year dummies, and control for zip-code-year fixed effects in

the current and the prior year of trade of the home. To attain a reasonable number of

observations per zip-code (at least 1,000 observations), we have to cluster a few adjacent

zip-codes. A detailed overview over the clustered zip-codes can be found in the Appendix.

To control for the impact of liquidity in the local housing market on transaction prices

(Caplin and Leahy, 2011), we control for the log of one plus the number of trades in the past

180 days on the zip-code level.

9We define a seller as a corporation if the seller’s name contains keywords such as ACQUI, ASSOC, AV-
ENUE, BANK, BOARD, CORP, CREDITOR, EQUIT, ESTATE, FUND, HDFC, HLDGS, HOLDING,
HOUSING, HSNG, INC, INVEST, L*L*C, LLC, LP, LTD, OWNER, PARTNER, PLC, PORTFOLIO,
PROP, QUATAR, REALTY, STREET, TRUST, or *LP, in which * signifies blank spaces. A manual
comparison of more than 3,000 observations did not indicate any missing words.

10The geographic coordinates of the New York subway entries are from NYC Open Data
(https://opendata.cityofnewyork.us)
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3.3.c Macro-Financial Variables

To control for changes in the macroeconomic environment, we include the seasonally-adjusted

real growth rate of the GDP relative to the previous quarter with a lag of one period from

the US Bureau of Economic Analysis, the seasonally-adjusted monthly growth rate of the

unemployment rate in New York City from the Bureau of Labor Statistics, and the percentage

change in the average fixed mortgage lending rate from the Federal Housing Finance Board.

Since the pioneering work of Case and Shiller (1989), it is known that residential house

prices exhibit a significant degree of autocorrelation. To explain price movements, it is

therefore important to control for this persistence. Our analysis focuses on explaining excess

returns rather than raw returns, thus removing the systematic autocorrelation.

Table 1 summarizes key properties of our data. As to be expected, the annualized excess

return is not significantly different from zero.11 The average holding period is only about

5.5 years, indicating that Manhattan is a fairly liquid market for residential homes. About

9% of properties are even resold within up to 2 years, which may, among others, reflect

institutional investors’ activities that account for about 15% of purchases and 10% of sales.

Yet, the majority of trades (53%) still represents sales of owner-occupied places. With an

average prior trading price of USD 1.279 million (inflation-adjusted to 2015 prices), prices

on Manhattan Island are among the most expensive in the U.S. This high average trading

price suggests that prices should be largely determined by location. In contrast, renovations

or a new kitchen should have a lower impact on the trading price, advocating the repeat

sales approach. Likewise, the short average holding period provides additional support for

the repeat sales approach.

[Table 1 about here]

3.4 METHODOLOGY

The goal of our work is to investigate how recent past excess returns in residential house

prices comove with present returns of homes in the neighborhood. We further ask whether

the strength of these effects varies with the stage of the housing market cycle and whether

excess comovements vanish with temporal distance between two trades. For that purpose,

we define K mutually exclusive neighborhoods for each observed trade. We refer to trades

with coinciding geographic coordinates, i.e., trades in the same building, as the first-order

neighborhood throughout. Additionally, we draw K − 1 circles around each observed trade.

We want to end up with the same expected number of observations in each of these K − 1

11The small positive value reflects that the market return constructed using the Case-Shiller methodology
weights observations unequally.
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circles to make sure that, on average, liquidity is the same in all circles and the average

excess returns from all of these neighborhoods are thus estimated with the same precision.

We therefore draw the circles such that the area inside each of them is identical.12

The first of the K− 1 circles, also referred to as the second-order neighborhood through-

out, is characterized by a maximum distance of 500 feet, roughly corresponding to two

blocks.13 The borders of the other circles, which we refer to as third-, fourth-, fifth-, and

sixth-order neighborhoods thus lie at 707, 866, 1,000, and 1,118 feet, respectively, leaving

us with on average 5.3 to 6.5 historical trades in the second- to sixth-order neighborhood

for every current trade. Figure 2 visualizes our construction of K = 6 neighborhoods for a

specific property. For every neighborhood k, we define a neighborhood-specific excess return,

r̄ei,k as the average of the observed excess returns in the T days prior to trade i.

[Figure 2 about here]

We employ the following regression setup:14

rei,t,t−,z = αz +
K∑
k=1

ρkr̄
e
i,k + δa(t),z − δa(t−),z +Xi,tβ + εi,t,t−,z, (6)

in which rei,t,t−,z is the annualized excess return on property i in zip-code z realized between

time t− and t, δa(t),z and δa(t−),z are the zip-code-z specific deviations of the annualized

excess returns from the Manhattan Island wide index. The subscripts a(t) and a(t−) refer

to the years in which the transactions took place, respectively. For example, if t corresponds

to any sale date in the year 2010, a(t) = 2010. Xi,t is a vector of control variables, εi,t,t−,z is

a normally-distributed error term, and αz reflect zip-code means.

The precision of our estimate for the annualized excess return is generally increasing

with the length of the time interval between two trades. Intuitively, when the two trades

occur within a relatively short time period, small deviations in observed trading prices of

individual properties and short-term fluctuations in the local house price index lead to sig-

nificant amplifications when being annualized. Hence, annualized excess returns tend to be

subject to higher variation when two trades occur within a relatively short time period. To

account for this phenomenon in our analysis, we allow the variance of εi,t,t−,z to depend

12The total number of observed past trading prices ranges from about 200,000 to 246,000 in the K − 1 = 5
circles of our empirical analysis, i.e., the numbers of observations among our defined neighborhoods are
roughly of equal size.

13In Section 5, we demonstrate the robustness of our results to applying the city-block metric.
14Equation (6) can be easily rewritten in spatial econometrics notation because r̄ei,k reflects the k-th spatial

lag. Nevertheless, under the assumption of homoskedastic error terms, OLS is applicable, since we account
for the time-directionality in constructing the spatial weights.
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on the difference D between t and t−: Var (εi,t,t−,z) = exp (γ1 + γ2D) where γ1 and γ2 are

regression-endogenously determined coefficients. We use the exponential function to ensure

positivity of the variance in the optimization process.15

Our goal is to explore whether recent past excess returns in the neighborhood comove

with present excess returns, i.e., whether the ρks are different from zero and, if so, whether

price comovements decay with increasing distance, i.e., whether |ρ1| > · · · > |ρK |.

4 Empirical Results

For our empirical analysis, we need to determine a few parameters for our model introduced

in Section 3.4. Specifically, we need to choose the number of distinct neighborhoods that

we want to consider. In particular, we want to understand whether excess comovements

are strongest in the first-order neighborhood and whether they die out in more distant

neighborhoods. We therefore set the number of neighborhoods to K = 6.16

We further need to choose the maximum number of days prior to our trade, T , such that

trades on other properties should reasonably have the potential of affecting a home’s price.

Hence, we consider the persistence of price comovements not only in the spatial, but also in

the temporal sense. The choice of T is driven by a tradeoff between two opposing objectives.

On the one hand, we want to estimate price comovements as precisely as possible, suggesting

that we should use as much past data as possible. On the other hand, the precision can be

reduced by using outdated observations that may have little informational content for present

prices, among others, because the information is already incorporated in more recent prices.

We set T = 180 for three main reasons. First, gathering information in the housing market

costs more time than for example gathering information about the stock market. Second,

finding a buyer for a given home typically takes time. Third, our choice of about half a year

provides us with a reasonable number of observations to estimate effects with good precision.

We document the robustness of our results to the choice of T in Section 5.

4.1 EXCESS COMOVEMENTS

In this section, we provide empirical evidence on the existence and strength of excess co-

movements in residential housing markets. Table 2 summarizes the results of five Maximum

Likelihood regressions explaining the annualized excess returns of repeat sales relative to

15Our estimates are qualitatively robust to the homoskedastic case.
16Empirically, it turns out that a larger number of neighborhoods does not further contribute significantly

to explaining house prices, while a smaller number does not allow us to fully capture the decay in the
comovement magnitude with increasing distance.
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trades on Manhattan Island. The first-order neighborhood relates to trades in the same

building. Second-, third-, fourth-, fifth-, and sixth-order neighborhoods are less than 500,

500 to 707, 707 to less than 866, 866 to less than 1,000, and 1,000 to less than 1,118 feet.

Our choice of distances from the traded homes is motivated by the goal to build neighbor-

hoods of identical sizes in order to end up with similar numbers of traded homes in every

neighborhood. Locational controls are our measure for liquidity, as well as dummies indi-

cating Central Park view, Central Park walking distance, a very close subway station, a

close subway station, short distance to Times Square, medium distance to Times Square,

short distance to the NYSE, medium distance to the NYSE, waterfront view, and waterfront

walking distance. Transaction-specific controls include two dummy variables indicating that

a resale took place within one year, or between one and two years, respectively, log inflation-

adjusted prior sale price and its square, two dummies indicating whether the seller or buyer

of the property is a corporation, and a dummy indicating whether the property is owner-

occupied. Macro-financial controls are lagged GDP growth, lagged unemployment growth,

and lagged percentage interest rate change. Fixed effects are on the zip-code level (zip) or

the zip-code-year level (zip-year).17

4.1.a Excess Comovements and Spatial Distance

In this section, we put emphasis on the spatial dimension of price comovements. From Sec-

tion 2, prices should exhibit excess comovements and these comovements should decay in

magnitude as the distance between homes increases. From Table 2, the coefficients for neigh-

borhoods one to five are all positive and significant. That is, Table 2 confirms the existence

of excess comovements in regular sales. From the first- to the sixth-order neighborhood the

coefficients generally decrease, indicating that comovements decrease with increasing dis-

tance between two traded homes. Coefficients are monotonically decreasing in space, except

for the third-order neighborhood, for which the strength of comovements is of slightly lower

magnitude.

For all specifications in Table 2, the sharpest decline in excess comovements is observed

for the transition from the first- to the second-order-neighborhood, for which coefficients

drop by at least 63%. This result should be mainly driven through two channels. First,

trades within the same building should be among the closest substitutes.18 Second, within

17Similarly to Campbell et al. (2011) who use census-tract-year clusters, we cluster standard errors over the
zip-code-year level. In Table 8 in our online appendix (currently at the end of this document), we show
that our results are robust to alternative ways of clustering.

18To investigate the substitution channel in more detail, we also explored a setting in which we identified co-
operatives. Two dwellings within a given co-op tend to be more homogeneous than two random dwellings.
Co-ops often span over several buildings or even an entire building block. Hence, co-op homes in adjacent
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the first-order neighborhood both the transmission of information via informal channels, such

as chats among neighbors, but also active search for information, should be most intense.19

[Table 2 about here]

Local price movements should generally be driven by location-specific events. It is there-

fore important to control for them. A comparison of columns (1) and (2) in Table 2 reveals

that after including our locational controls and controlling for zip-code fixed effects, the

coefficients generally decrease, but remain highly significant for the first five neighborhoods.

That is, even after controlling for location-specific events, there is still a strong informational

content in excess house price movements in the closest neighborhoods.

However, our results also reveal that the coefficient for the most remote, the sixth-order

neighborhood, becomes close to zero and insignificant. In other words, our local controls

and zip-code fixed effects already capture local price trends quite well. Furthermore, the

insignificance of the coefficient for the sixth-order neighborhood in column (2) points to

two conclusions: First, beyond general price trends, the sixth-order neighborhood no longer

contains price information. Second, the reduction in the coefficients for the first- to fifth-

order neighborhood largely reflects the removal of the location- and zip-code-specific events.

The locational controls and the zip-code fixed effects thus should not only capture the gen-

eral price movement in the sixth-, but also in the first- to fifth-order neighborhoods very

well. Changes in our coefficients in the transition from column (2) to (3), in which we add

transaction-specific controls, are rather small. In the transition from column (3) to (4), in

which we include macro-financial controls, these changes are even smaller, indicating that

the excess returns, which our work builds on, already capture the effects of macroeconomic

events very well.

Column (5) reports the estimates for our full specification. Compared to the model

presented in column (4), we include zip-code-year fixed effects as opposed to zip-code fixed

effects. From column (5), 21% of the increase in the annualized excess return in the first-order

neighborhood are reflected in future home prices. For example, a one standard deviation

increase in the annualized excess return in the first-order neighborhood, i.e., an increase in

the annualized excess return by about 6%, leads to an increase in the expected annualized

buildings should be better substitutes than non-co-op homes. Our results in Table 9 in the online ap-
pendix (currently at the end of this document) reveal that excess comovements in second to fourth-order
neighborhood from co-op homes are stronger and within-building excess comovements are weaker, since
the excess comovements in the adjacent buildings already capture some of the effects.

19A further reason for stronger comovements within the same building could be rent stabilization, which
applies to entire buildings when built before 1974 containing more than six units. Rent stabilization should
have only little effect on price comovements in our work, since we use repeat sales and the stabilization
should be priced into the initial purchase.
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excess return of future home prices of about 1.3%. For an average holding period of about

five years, the expected excess return is then about 6.5%. For the second- to fourth-order

neighborhoods these effects are around 80% weaker than for the first-order neighborhood.

Here, a one standard deviation increase in the second- to fourth-order neighborhood’s excess

return leads to an increase in the expected future excess return after the typical holding

period of five years of 0.9 to 1.2 percent, respectively. With past excess returns of identical

signs in the first- to fifth-order neighborhoods, the effects accumulate and expected future

excess returns can be even higher. For example, a one standard deviation increase in all five

neighborhoods leads to an increase in the expected future excess return of around 11% over

five years.

4.1.b Excess Comovements and Temporal Distance

Our results in the previous section document that excess comovements exist in the spatial

dimension, but are dying out with increasing distance between traded properties. In this

section, we turn to the second prediction from section 2, and ask whether in addition to

the spatial dimension, excess comovements also exist over longer time horizons, i.e., above

systematic autocorrelation. Specifically, we investigate whether adding more lagged excess

returns from previous periods has additional predictive power for present excess returns,

and, if so, whether the predictive power is decaying with increasing temporal distance. More

technically, instead of investigating the informational content of only the most recent T = 180

days, we analyze the excess comovements of prices from multiple lags of intervals of length

T .

Table 3 summarizes our baseline results when choosing a total of five mutually exclusive

lags. Accordingly, to be included in lag 1, a neighboring trade should have been settled in the

most recent 180 days prior to the respective sale, for lag 2 during the most recent 181 to 360

days, etc. As for all following tables, we only show results for our most advanced specification,

including all sets of control variables, as well as zip-code-year fixed effect dummies. In order

to keep the amount of coefficients to be estimated at a tractable amount, we unify second-

and third-order, as well as fourth- and fifth-order neighborhoods. Coefficients for the sixth-

order neighborhood remain insignificant in all our specifications. We therefore exclude the

sixth-order neighborhood throughout our analysis in this section.20

The results in Table 3 reveal that excess comovements in residential house prices do not

only exist in the spatial dimension, but also over longer time horizons. Lagged excess returns

extending beyond the first lag have a strong predictive power for present excess returns

20We report results when keeping the number of neighborhoods at K = 6 in the online appendix in Table
10 (currently at the end of this document).
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– particularly the first-order neighborhood. These effects are decreasing with increasing

temporal distance and are dying out completely in all but the first-order neighborhood.

Compared to our results from Table 2 with only one temporal lag of excess returns, the

point estimates for the first-order neighborhood are smaller, reflecting that the additional

lags are already picking up some of the effects. The persistence of comovements in the first-

order neighborhood confirms the third prediction from our model: When spatial distance

between properties is small, excess comovements die out slower in the temporal dimension.

[Table 3 about here]

Our results in Table 3 suggest implications for the efficiency of local housing markets:

Even conditional on the most recent, price movements from greater temporal distances are

reflected in excess returns today to a both economically and statistically significant extent.

Our results thus indicate that on the local level, information is processed very slowly, sug-

gesting an explanation for the well-documented autocorrelation of residential house prices

on the macro level.

4.2 EXCESS COMOVEMENTS OVER MARKET CYCLES

Having demonstrated the local nature of excess comovements, our next step is to ask whether

the order of magnitude of excess comovements varies with phases of the housing market

cycle, i.e., whether the strength of excess comovements and the distance, over which they

are measurable, differs with the stage of the housing market cycle at the time of the sale;

i.e., whether it differs between good states with generally increasing house prices and other

stages of the housing market cycle. We differentiate between aggregate (macro) and local

(micro) market trends. For the macro perspective, we define boom and non-boom periods

ex-post using our price index for Manhattan Island from Figure 1. According to this index,

the boom in the early 2000s ends in October 2005, and house prices start booming again in

March 2013. We therefore define the period from November 2005 to February 2013 as the

non-boom period and the remaining months as the boom period.21

Taking on the local, micro perspective, we define local positive (negative) markets ac-

cording to the sign of the average excess returns in each neighborhood from the past T days.

21Using the publicly available S&P CoreLogic Case-Shiller New York City condominium index (down-
load link https://us.spindices.com/documents/additionalinfo/20170926-589149/589149 cs-condoindices-
0926.xls?force download=true), we identify a non-boom period between February 2006 and April 2012.
Using the S&P Case-Shiller National home price index, we identify a period from March 2006 to March
2012. Similarly, we characterize our non-boom period using a purely liquidity-based approach building on
the number of observed trades. In Section 5.2, we document that our results are robust to all of these
alternative specifications.
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Consequently, the k-th order neighborhood is above (below) average markets when we ob-

serve a positive (negative) average excess return for the past T = 180 days. Put differently,

we ask whether positive and negative information from past excess returns affect future ex-

cess returns asymmetrically.22 Formally, we extend our empirical application from Equation

(6) to:

rei,t,t−,z = αz +
2∑

s=1

K∑
k=1

ρk,s × r̄ei,k × 1t∩s + δa(t),z − δa(t−),z +Xi,tβ + εi,t,t−,z, (7)

in which the two stages of the cycle are defined by s ∈ {boom,non-boom} for the macro, and

s ∈ {above average, below average} for the micro trend, and 1t∩s is an indicator function

that equals one if the housing market is in stage s at time t.

Table 4 summarizes the results of two separate regressions explaining the annualized

excess return of repeat sales relative to trades on Manhattan Island in boom and non-boom

periods for the macro panel (Panel A: Macro) and positive (negative) trends on the micro

level (Panel B: Micro). For both regressions, the full set of control variables from Section

3.3 as well as zip-code-year fixed effect dummies are used.

From Panel A of Table 4, coefficients are generally smaller in booming stages of the

housing market cycle than in other stages. That is, consistent with Cotter et al. (2015),

excess comovements in residential house prices seem to be stronger in markets with falling

prices. Similarly, from Panel B, coefficients for above-average excess returns are generally

smaller than for below-average excess returns. That is, excess comovements in residential

house prices seem to be stronger for negative deviations from the market than for positive

deviations. For instance, about a third of a negative excess return in the first-order neigh-

borhood is reflected in the excess return of an existing trade, whereas only less than 17% of

a positive excess return is.

[Table 4 about here]

Having documented differences in how excess returns comove with past ones in positive

and negative states of the housing market cycle on both the macro and micro level in Table 4,

we next investigate these two effects jointly. In particular, we want to shed light on whether

the generally stronger negative persistence in bad market environments is further amplified

by a negative macro trend or not.

22It is important to note, that a negative excess return does not necessarily mean a loss for the seller. A
negative sign simply indicates that the performance of the trade was smaller than the performance of the
market.
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Table 5 presents results from a single regression for four mutually exclusive sets of vari-

ables, which we select according to the phase of the housing market cycle on the macro and

the micro level as in Table 4. Irrespective of the stage of the housing market cycle on the

macro level, underperformance on the micro level is generally more persistent than local

overperformance - particularly in the first- and second-order neighborhoods.

Excess comovements are strongest for below-average returns on the micro level in booming

stages of the housing market cycle. That is, local underperformance is most persistent

when house prices are generally increasing. Simultaneously, excess comovements from above-

average local returns in a booming market are relatively weak. In a non-booming stage of

the housing market cycle, differences between the strength of comovements induced by local

above- and below-average performance are much weaker.

[Table 5 about here]

In sum, our results in Table 5 thus suggest that there is more heterogeneity in terms of

the local evolution of house prices in booming stages of the housing market cycle than in

non-booming ones.

5 Robustness Analysis

This section documents the robustness of our key findings with respect to various assump-

tions. Section 5.1 provides evidence for our base case parameter setting, in which we do not

distinguish between boom and non-boom periods. Section 5.2 provides results for different

definitions of the boom and non-boom periods. Additional robustness results are placed in

an online appendix (currently at the end of this document).

5.1 ROBUSTNESS OF BASE CASE RESULTS

With our results in Table 2, we demonstrate that excess comovements in residential house

prices are a highly local phenomenon. In this section, we demonstrate the robustness of our

results with regard to four key dimensions and report these results in Table 6. To simplify

the comparison with our base-case results, we repeat the results from Table 2 in Panel A of

Table 6.

In Panel B of Table 6, we allow for a different number of past days used to compute

average excess returns in the neighborhoods. In our base case parameter setting, we used

the past T = 180 days, which we consider a good tradeoff between the two opposing goals of

having a reasonably larger number of observations and very recent up-to-date observations.
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In Panel B, we explore the cases in which we set T = 120 or T = 240 days. Our results

for these two cases demonstrate the robustness of our key findings that effects are strongest

in the same building, i.e., the first-order neighborhood, remain significant in the second-

to fourth-order neighborhood, and fade out for higher-order neighborhoods. Similarly, the

point estimates for the strength of comovement in the various neighborhoods are of a very

similar order of magnitude.

In Panel C, we vary the definitions of the neighborhoods. In our base case parameter

setting, the second-order neighborhood was characterized by a maximum distance from the

traded home of not more than 500 feet, roughly corresponding to two blocks. Here, we

report results when shrinking this distance measure by two thirds, i.e., to 333 feet. Again,

the borders of the higher-order neighborhoods are defined such that the area is the same

as in the second-order neighborhood. We also depict results for the case, in which the

neighborhoods are defined as in Campbell et al. (2011), i.e., a maximum distance of 0.1

miles, corresponding to 528 feet, for the second-order and 0.25 miles, corresponding to 1,320

feet, for the third-order neighborhood. As in Campbell et al. (2011), we do not account

for neighborhoods of a higher order. Finally, we depict results for the case in which the

second-order neighborhood is defined by the City of New York (e.g., Chinatown, Lower East

Side, etc.) and the third-order neighborhood consists of the corresponding neighborhoods

adjacent to the second-order neighborhood.23

Our results in Panel C again document the robustness of our key finding that comove-

ments are strongest in the first-order neighborhood. With smaller second- to sixth-order

neighborhoods for the former case, results remain significant even in the sixth-order neigh-

borhood, reflecting that the maximum distance of a trade in this neighborhood is 744 feet,

corresponding to a trade in the fourth neighborhood in our base-case parameter setting. A

more narrow definition of neighborhoods again suffers from the problem of relatively small

numbers of historical trades in each of the neighborhoods, which, among others, leads to the

coefficient for the third-order neighborhood being insignificant. For instance, the number of

historical trades in this neighborhood decreases by about 65% compared to our base-case

parameter setting with wider neighborhoods. Using the definition of City of New York neigh-

borhoods yields strong comovements of within-neighborhood excess returns from the first-

and second-order neighborhoods, but virtually no connection to adjacent neighborhoods,

23Data on the neighborhoods is obtained from New York City Open Data:
https://data.cityofnewyork.us/City-Government/Neighborhood-Tabulation-Areas/cpf4-rkhq (retrieved
on July 13, 2018), which provides a shape file defining the neighborhoods. The shape file includes a
“miscellaneous” area that consists of several dispersed areas, such as parks, cemeteries, etc., that are not
related to a particular neighborhood. A few trades in our data fall into this area, but are only a few feet
away from the nearest non-“miscellaneous” neighborhood. We assign these observations to the nearest
non-“miscellaneous” neighborhood.
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suggesting that in Manhattan, where adjacent neighborhoods are often very heterogeneous,

the preferred locations of households have sharp boundaries.

[Table 6 about here]

In Panel D, we restrict the maximum holding period to seven and ten years, respectively.24

Further restricting the maximum holding period to less than seven years leads to such a strong

decline in the number of observations that it no longer provides a representative picture of

market movements and – due to the lack of this information – predicts largely insignificant

effects. Specifically, reducing the maximum holding period to six years removes more than

a third of all trades and the information contained in these trades.

In Panel E, we change the distance measure used in the definition of our neighborhoods

from the Euclidean to the city-block metric and ask whether our results are affected by

excluding observations for which the waterfront lies within at least the sixth-order neighbor-

hood. Intuitively, for such observations, the area covered by higher-order neighborhoods may

be smaller than that of smaller-order neighborhoods giving rise to potentially significantly

different numbers of past trades in the different neighborhoods. Our results for both cases

confirm our key findings that prices comove the strongest in the first-order neighborhood

and fade out for the most distant neighborhoods.25 Further robustness checks can be found

in Table 11 in our online appendix (currently at the end of this document).

Overall, our results in this section confirm the robustness of our key findings on house

price comovements to various assumptions in our base case parameter setting, in which we

do not split the sample into boom and non-boom periods. We next proceed to demonstrate

that our key results on comovements in boom and non-boom periods remain robust when

using different criteria to determine these two subperiods.

5.2 ROBUSTNESS OF BOOM VERSUS NON-BOOM

In Section 4.2, we defined boom and non-boom periods based on our Manhattan Condo-

minium index, constructed using the Case-Shiller methodology (Case and Shiller, 1989). Us-

ing this database, our non-boom period lasted from November 2005 to February 2013. We

24For shorter holding periods, larger reconstructions and major changes in the neighborhood should be less
likely. That is, the repeat-sales approach should yield particularly precise estimates.

25We apply the city block metric to proxy commuting distance between properties. This is possible by
exploiting the geometric design of Manhattan. We therefore shift the coordinates of the properties in our
sample such that the streets approximately align with the lines of longitude and latitude. More precisely,
we shift the coordinates (after standardizing) by 35 degrees counterclockwise around the south-east corner
of the Central Park. Again, we construct six neighborhoods (of cubic form due to the metric) around each
property. To ease comparison with our base case results, each cube encompasses the same area as our
base-case circles.
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further documented that excess comovements in the first-order neighborhood are stronger

during non-boom periods and weaker during boom periods and that the other estimates are

of comparable magnitude. In this section, we use alternative definitions for the boom and

non-boom periods, using different house price indices and a liquidity measure.

The left panel of Figure 3 depicts the evolution of real house price indices for Manhattan

(dotted line), New York (dashed line), and the entire United States (solid line). Similar to

our proceeds from Section 4.2, we define the beginning of a non-boom period as the month

in which a previously sharp incline in house prices ends. Likewise, the end of a non-boom

period is the month in which a new sharp incline in house prices begins. That is, for the

NYC Condominium Index, the non-boom period is March 2006 to April 2012 and for the US

National House Price Index, this period is March 2006 to February 2012. The right panel in

Figure 3 depicts the number of sold apartments and condominiums on Manhattan Island after

removing observations with missing values in sales prices, sales dates, and duplicates. From

this panel, the number of sales declined from 4,381 to 2,906 trades in October 2008 and did

not recover systematically before March 2012. As an additional definition for our non-boom

period, we therefore use the time period October 2008 to March 2012 as a liquidity-based

definition of our non-boom period.

[Figure 3 about here]

Table 7 summarizes our results for the different definitions of the non-boom period. For

ease of comparison, the results from Table 4 are repeated in Panel A of Table 7. Consistent

with our key findings from Section 4.2, our robustness results with different definitions of

the non-boom period confirm that during non-boom periods, excess comovements with the

first-order neighborhood are stronger. Irrespective of the exact definition of our non-boom

period, point estimates for our coefficients are very similar. Our results in Table 7 thus

confirm the finding from Section 4.2 that during non-booming periods, excess comovements

are stronger for within-building trades. Otherwise, the role of spatial distance is similar for

both phases.

[Table 7 about here]

6 Conclusion

The housing market boom and bust of the early 2000s highlights the importance for a better

understanding of the evolution of residential house prices. We contribute to this challenging

endeavor by exploring the micro-level evolution of residential house prices, using data from

trades on Manhattan Island between 2000 and 2015.
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We document that even after controlling for monthly aggregate market movements and

zip-code-year based price movements, excess comovements in residential house prices are

a highly persistent local phenomenon. The strength of these excess comovements vanishes

with the distance between traded homes. In addition to these spatial excess comovements,

excess comovements in residential house prices also have a persistent temporal dimension.

Unlike in stock markets, house prices seem to adjust slowly to new information, and even

price movements from more than two years ago still have a significant impact on present

price movements. Moreover, local underperformance is more persistent than local overper-

formance. This phenomenon is particularly strong when house prices on the aggregate level

appreciate.
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Figure 1
Evolution of house prices on Manhattan Island
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Nominal repeat sales index of Manhattan Island’s condominium/apartment market based on our final data

set. The index level is normalized to 100 in January 2000.
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Figure 2
Construction of neighborhoods
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This figure visualizes our construction of neighborhoods. The center symbolizes a trade for a given home.

Other trades in the same building are defined as trades in the first-order neighborhood. The dotted circles

surrounding the center depict edges of mutually exclusive neighborhoods of orders two to six.
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Figure 3
Identification of non-booming periods
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The left panel of this figure depicts the evolution of the S&P US National House Price Index (solid line), the

S&P Case-Shiller Condominium Index for New York City (dashed line) and the Manhattan Condominium

Index (dotted line) constructed using the methodology of Case and Shiller (1989). Index levels are

normalized to 100 in January 2000. The right panel depicts the absolute number of sales of apartments

and condominiums on Manhattan Island from the first quarter of 2004 to the fourth quarter of 2015 after

removing observations with missing values in sales prices, sales dates, and duplicates.
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Table 1
Summary statistics

Variable name Mean Standard deviation

Annualized excess return 0.007 0.056
Holding period (in years) 5.407 2.666
Liquidity 168.709 100.86
Central Park view 0.029 0.167
Central Park walking 0.042 0.200
Very close subway 0.024 0.154
Close subway 0.185 0.389
Short distance Times Square 0.003 0.056
Medium distance Times Square 0.007 0.085
Short distance NYSE 0.013 0.114
Medium distance NYSE 0.019 0.135
Waterfront view 0.027 0.162
Waterfront walking distance 0.050 0.218
Dummy one year 0.018 0.134
Dummy two years 0.074 0.261
Price (in mio USD) 1.279 1.301
Seller corporation 0.103 0.304
Buyer corporation 0.156 0.363
Owner-occupied 0.531 0.499
Lagged GDP growth 0.005 0.005
Lagged unemployment growth -0.007 0.018
Lagged interest change * 10,000 -1.935 300.379

This table provides descriptive statistics of the variables used. Annualized excess returns are defined in Equation (5). Holding

period (in years) is the number of years between two trades of a given residential home. Liquidity is the number of sales during

the past 180 days in the respective zip-code. Central Park view and Central Park walking are two dummies indicating whether

a home has a view on the Central Park (distance of less than 100 feet beeline) and the city-block distance to the nearest entrance

is less than 500 feet, respectively. Very close subway and Close subway are two mutually exclusive dummies indicating whether

the city-block distance to the nearest subway entrance is less than 100 feet or 100 to less than 500 feet, respectively. Short

distance Times Square / NYSE and Medium distance Times Square / NYSE are mutually exclusive dummies for whether

the city-block distance to Times Squares / NYSE is less than 1,000 feet or 1,000 to less than 2,000 feet, respectively. Water

front view is a dummy indicating whether a home has direct view on the water surrounding Manhattan Island. Waterfront

walking distance is a dummy indicating whether the city-block distance to the waterfront does not exceed 500 feet. Dummy

one year and Dummy two years are indicators for holding periods of one and two years, respectively. Price (in mio USD) is

the most recent available prior trading price of the home CPI-adjusted to January 2015 dollars. Seller/Buyer corporation is a

dummy indicating whether the seller/buyer is a corporation. Owner-occupied is a dummy indicating whether the buyer is the

new inhabitant. Lagged GDP growth is the previous quarter’s U.S. GDP growth. Lagged unemployment growth is the previous

month’s New York City wide unemployment growth rate. Lagged interest change is the percentage change of the average fixed

mortgage lending rate in the month prior to the sale.
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Table 2
Estimation results, base case

Variable name (1) (2) (3) (4) (5)

First-order neighborhood 0.273*** 0.254*** 0.231*** 0.229*** 0.210***
(0.015) (0.015) (0.014) (0.014) (0.013)

Second-order neighborhood 0.100*** 0.064*** 0.060*** 0.056*** 0.041***
(0.010) (0.011) (0.010) (0.010) (0.010)

Third-order neighborhood 0.075*** 0.043*** 0.042*** 0.039*** 0.029**
(0.011) (0.011) (0.010) (0.010) (0.010)

Fourth-order neighborhood 0.090*** 0.053*** 0.050*** 0.048*** 0.042***
(0.009) (0.009) (0.009) (0.009) (0.009)

Fifth-order neighborhood 0.074*** 0.045** 0.037** 0.035** 0.025*
(0.012) (0.013) (0.012) (0.012) (0.011)

Sixth-order neighborhood 0.051*** 0.018 0.017 0.014 0.002
(0.011) (0.011) (0.010) (0.011) (0.012)

ln(1+Liquidity) -0.005*** -0.002*** -0.002** -0.001
(0.001) (0.001) (0.001) (0.001)

Central Park view 0.006** 0.006* 0.006* 0.007*
(0.002) (0.002) (0.002) (0.003)

Central Park walking distance 0.000 -0.002 -0.002 -0.001
(0.002) (0.002) (0.002) (0.003)

Very close subway 0.003 0.003 0.003 0.003
(0.002) (0.002) (0.002) (0.002)

Close subway 0.003*** 0.003*** 0.003*** 0.003***
(0.001) (0.001) (0.001) (0.001)

Short distance Times Square -0.006* -0.005* -0.005 -0.007*
(0.002) (0.002) (0.002) (0.003)

Medium distance Times Square 0.002 -0.001 -0.001 -0.002
(0.002) (0.002) (0.002) (0.002)

Short distance NYSE -0.002 -0.004 -0.004 -0.012*
(0.004) (0.004) (0.004) (0.005)

Medium distance NYSE -0.011*** -0.010*** -0.010*** -0.016***
(0.002) (0.002) (0.002) (0.003)

Waterfront view 0.006** 0.004 0.004 0.000
(0.002) (0.003) (0.003) (0.003)

Waterfront walking distance -0.008*** -0.005*** -0.005*** -0.003
(0.001) (0.001) (0.001) (0.002)

Dummy one year 0.060*** 0.060*** 0.050***
(0.006) (0.006) (0.006)

Dummy two years 0.034*** 0.033*** 0.024***
(0.002) (0.002) (0.002)

ln(Price) -0.176*** -0.177*** -0.175***
(0.017) (0.018) (0.017)

ln(Price)2/100 0.618*** 0.621*** 0.612***
(0.063) (0.064) (0.059)

Seller corporation 0.010*** 0.010*** 0.010***
(0.002) (0.002) (0.002)

Buyer corporation 0.012*** 0.012*** 0.013***
(0.001) (0.001) (0.001)

Owner-occupied -0.001 -0.001* -0.001*
(0.001) (0.001) (0.001)

Lagged GDP growth -0.001 -0.052
(0.061) (0.058)

Lagged unemployment growth 0.096*** 0.061**
(0.021) (0.023)

Lagged interest change -0.005 -0.013
(0.009) (0.010)

Fixed effects no zip zip zip zip-year
Akaike criterion -117,834 -118,571 -120,729 -120,771 -121,762

This table summarizes the results of Maximum Likelihood regressions explaining the annualized excess return of repeat sales
relative to trades on Manhattan Island. The first-order neighborhood relates to trades in the same building. Second-, third-,
fourth-, fifth-, and sixth-order neighborhoods have distances to the traded home of less than 500 feet, 500 to less than 707 feet,
707 to less than 866 feet, 866 to less than 1,000 feet, 1,000 to less than 1,118 feet, respectively. For further variable descriptions
see Table 1. Fixed effects are on the zip-code level (zip) or the zip-code-year level (zip-year). Heteroskedasticity-robust standard
errors are clustered over the zip-code-year level and reported in parentheses. ***, **, and * denote significance at the 0.1%,
1%, and 5% levels, respectively.
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Table 3
Estimation results, temporal distance

Variable name lag 1 lag 2 lag 3 lag 4 lag 5

First-order neigh. 0.153*** 0.129*** 0.096*** 0.051*** 0.060***
(0.011) (0.011) (0.009) (0.011) (0.010)

Second & third-order neigh. 0.039*** 0.025* 0.020 0.022* 0.014
(0.012) (0.010) (0.012) (0.010) (0.010)

Fourth & fifth-order neigh. 0.026* 0.021* 0.020* 0.022* -0.010
(0.011) (0.010) (0.010) (0.011) (0.010)

Akaike criterion -122,600

This table summarizes the results of Maximum Likelihood regressions explaining the annualized excess return
of repeat sales on Manhattan Island. The first-order neighborhood relates to trades in the same building.
Second-, third-, fourth-, fifth-, and sixth-order neighborhoods have distances to the traded home of less than
500 feet, 500 to less than 707 feet, 707 to less than 866 feet, 866 to less than 1,000 feet, 1,000 to less than
1,118 feet, respectively. For the lags, mutually exclusive time intervals of 180 days are set for which the
average excess returns are calculated, e.g., for lag 1 the sales in the most recent 180 days are used. The
regression includes all control variables as in column (5) of Table 6. Fixed effects are on the zip-code level
(zip) or the zip-code-year level (zip-year). Heteroskedasticity-robust standard errors are clustered over the
zip-code-year level and reported in parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5%
levels, respectively.
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Table 4
Estimation results, cycle dependencies

Market trend
Panel A: Macro Panel B: Micro

Neighborhood Boom Non-boom Above avg. Below avg.

First-order neigh. 0.186*** 0.239*** 0.166*** 0.323***
(0.018) (0.016) (0.016) (0.022)

Second-order neigh. 0.039* 0.043*** 0.020 0.096***
(0.017) (0.013) (0.013) (0.022)

Third-order neigh. 0.033* 0.026* 0.032** 0.017
(0.015) (0.012) (0.011) (0.025)

Fourth-order neigh. 0.044*** 0.040*** 0.040*** 0.046*
(0.012) (0.012) (0.011) (0.021)

Fifth-order neigh. 0.030 0.020 0.029* 0.012
(0.018) (0.013) (0.013) (0.023)

Sixth-order neigh. 0.000 0.003 0.005 -0.011
(0.020) (0.013) (0.015) (0.022)

LR test (p-value) 0.000 0.000
Akaike criterion -121,763 -121,819

This table summarizes Maximum Likelihood regression results on two separate regressions explaining the

annualized excess return of repeat sales relative to trades on Manhattan Island. The two regressions depict

explanatory power of neighboring excess returns conditional on being in a specific phase of a macro, and

a micro cycle. For the macro cycle, we define a boom (January 2004 to October 2005, and March 2015 to

December 2015) and a non-boom (November 2005 to February 2013) period. For the micro cycle, we define

an above (below) average local market by a positive (negative) average excess return in the past T = 180

days. The first-order neighborhood relates to trades in the same building. Second-, third-, fourth-, fifth-,

and sixth-order neighborhoods have distances to the traded home of less than 500 feet, 500 to less than 707

feet, 707 to less than 866 feet, 866 to less than 1,000 feet, 1,000 to less than 1,118 feet, respectively. The

locational, transaction-specific and macro-financial control variables used for the two regressions are defined

in Section 3.3. Fixed effects are on the zip-code-year level. The Likelihood Ratio test (LR test) is a test of

joint equality of neighborhood coefficients, i.e. under the hypothesis that ρ1,m = ρ1,nm, . . . , ρ6,m = ρ6,nm,

where m (nm) denotes being (not being) in micro or macro phase m, respectively. Heteroskedasticity-robust

standard errors are clustered over the zip-code-year level and reported in parentheses. ***, **, and * denote

significance at the 0.1%, 1%, and 5% levels, respectively.
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Table 5
Estimation results, cross-cycle dependencies

Macro level Boom Non-boom

Micro level Above avg. Below avg. Above avg. Below avg.

First-order neigh. 0.102*** 0.363*** 0.232*** 0.258***
(0.023) (0.029) (0.020) (0.030)

Second-order neigh. -0.004 0.123*** 0.035* 0.067*
(0.021) (0.031) (0.016) (0.029)

Third-order neigh. 0.040* 0.013 0.025 0.022
(0.018) (0.035) (0.014) (0.032)

Fourth-order neigh. 0.035* 0.068** 0.044** 0.016
(0.017) (0.025) (0.015) (0.033)

Fifth-order neigh. 0.031 0.027 0.025 -0.004
(0.021) (0.031) (0.014) (0.032)

Sixth-order neigh. -0.005 0.004 0.011 -0.032
(0.027) (0.028) (0.016) (0.034)

Akaike criterion -121,763

This table summarizes Maximum Likelihood regression results for a single regression explaining the annual-

ized excess return of repeat sales relative to trades on Manhattan Island. The average past excess returns

within neighborhoods are divided according to the current state of the macro and micro cycle in which each

transaction was settled. The macro state describes booming and non-booming periods of the Manhattan

Island market, where the non-booming period is set to November 2005 to February 2013. Above (below) aver-

age returns on the micro level are defined as average excess returns in a neighborhood from the past T = 180

days being positive (negative). The first-order neighborhood relates to trades in the same building. Second-,

third-, fourth-, fifth-, and sixth-order neighborhoods have distances to the traded home of less than 500 feet,

500 to less than 707 feet, 707 to less than 866 feet, 866 to less than 1,000 feet, 1,000 to less than 1,118 feet,

respectively. The locational, transaction-specific and macro-financial control variables used in this regression

are defined in Section 3.3. Fixed effects are on the zip-code-year level (zip-year). Heteroskedasticity-robust

standard errors are clustered over the zip-code-year level and reported in parentheses. ***, **, and * denote

significance at the 0.1%, 1%, and 5% levels, respectively.
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Table 6
Robustness, base case

Neighborhood order First Second Third Fourth Fifth Sixth

Panel A: Base case 0.210*** 0.041*** 0.029** 0.042*** 0.025* 0.002
(0.013) (0.010) (0.010) (0.009) (0.011) (0.012)

Panel B: Varying computation of excess returns in neighborhoods

T = 240
0.222*** 0.047*** 0.027* 0.042*** 0.031** -0.003
(0.012) (0.011) (0.011) (0.009) (0.011) (0.014)

T = 120
0.186*** 0.030** 0.032*** 0.042*** 0.019 -0.017
(0.014) (0.010) (0.010) (0.008) (0.010) (0.009)

Panel C: Varying neighborhood definitions

333 feet
0.211*** 0.037*** 0.015 0.037*** 0.023** 0.029***
(0.013) (0.010) (0.009) (0.009) (0.009) (0.009)

0.1, 0.25 miles
0.210*** 0.053*** 0.072***
(0.013) (0.010) (0.018)

NYC neighborhoods
0.211*** 0.170*** -0.009
(0.013) (0.036) (0.052)

Panel D: Varying maximum holding period

Seven years
0.206*** 0.03** 0.014 0.034** 0.009 0.000
(0.013) (0.010) (0.009) (0.011) (0.012) (0.010)

Ten years
0.210*** 0.039*** 0.024** 0.036*** 0.022* 0.003
(0.012) (0.010) (0.009) (0.009) (0.010) (0.010)

Panel E: City block and waterfront

City block metric
0.210*** 0.039*** 0.040*** 0.041*** 0.025** 0.014
(0.013) (0.010) (0.009) (0.011) (0.009) (0.010)

Exclude waterfront obs.
0.208*** 0.046*** 0.032** 0.034*** 0.025* -0.003
(0.013) (0.011) (0.011) (0.009) (0.011) (0.013)

This table documents the robustness of our key results with respect to various assumptions. Panel B presents results when

varying the definition of T , the maximum number of past days used to compute average excess returns in the neighborhood.

Panel C presents results for different neighborhood definitions. In the row “333 feet”, the second-order neighborhood is defined

by a maximum distance of 333 feet. The subsequent neighborhoods are defined such that the area within each neighborhood

is the same as in the second-order, yielding borders of 470, 576, 666, and 744 feet. In the row marked “0.1, 0.25 miles”, the

second- and third-order neighborhoods are defined by maximum distances of 0.1 and 0.25 miles from the traded home, i.e., 528

and 1,320 feet, respectively. “NYC Neighborhoods” depicts results for the case in which the second-order neighborhood is the

neighborhood as defined by the City of New York (e.g., Chinatown, Lower East Side, etc.) and the third-order neighborhood

are the neighborhoods adjacent to the second-order neighborhood. In Panel D, observations with a holding period of more than

seven or ten years, respectively, are excluded. Panel E shows results for a change in the distance measure to the city block

metric, and when excluding observations for which the waterfront lies within at least the sixth-order neighborhood (i.e., 1,118

feet). All regressions include the entire set of controls: locational, transaction-specific, and macro-financial. Fixed effects are

on the zip-code-year level. Heteroskedasticity-robust standard errors are clustered over the zip-code-year level and reported in

parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5% levels, respectively.
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Appendix

CLUSTERING OF ZIP-CODES

The zip-codes have been clustered the following way:

• 10001 & 10011 (Chelsea and Clinton)

• 10002 & 10003 & 10009 (Lower East Side)

• 10004 & 10005 & 10006 & 10007 & 10038 & 10280 & 10282 (Lower Manhattan)

• 10012 & 10013 (Greenwich Village/Lower Manhattan)

• 10017 & 10163 (Gramercy Park and Murray Hill)

• 10018 & 10019 & 10036 & 10129 (Chelsea and Clinton)

• 10023 & 10069 (Upper West Side)

• 10026 & 10027 & 10030 & 10037 & 10039 (Central Harlem)

• 10029 & 10035 & 10128 (East Harlem, 10128 is Upper East)

• 10031 & 10032 & 10033 & 10034 & 10040 (Inwood and Washington Heights)
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ONLINE APPENDIX

Table 8
Alternatively clustered standard errors

Neighborhood order Zip-code-year Two-way Zip-code Year

s.e. t-stat s.e. t-stat s.e. t-stat s.e. t-stat

First-order neigh.

Second-order neigh.

Third-order neigh.

Fourth-order neigh.

Fifth-order neigh.

Sixth-order neigh.

0.013

0.010

0.010

0.009

0.011

0.012

16.662

4.011

2.892

4.848

2.223

0.107

0.021

0.010

0.010

0.008

0.010

0.014

10.023

4.153

2.880

5.203

2.463

0.089

0.019

0.012

0.011

0.011

0.012

0.014

11.079

3.461

2.618

3.784

2.053

0.089

0.015

0.008

0.009

0.005

0.008

0.011

14.033

5.191

3.200

8.326

3.079

0.114

This table presents standard errors (s.e.) and corresponding t-statistics (t-stat) for different ways of clus-

tering. The estimated model is our base case, presented in column (5) of Table 2. Column “Zip-code-year”

serves for ease of comparison and presents results when clustering over zip-code-year level as used throughout

the paper. Column “Two way” shows results when applying the two-way clustering by Cameron et al. (2011)

with zip-code and year dimension. Columns “Zip-code” and “Year” depict standard errors and t-statistics

when clustering over zip-code and year, respectively.
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Table 9
Evidence on substitution: co-operatives

Neighborhood Base case returns Co-operative returns

First-order neigh.

Second-order neigh.

Third-order neigh.

Fourth-order neigh.

Fifth-order neigh.

Sixth-order neigh.

0.23***
(0.018)

0.024*
(0.012)

0.019
(0.012)

0.031***
( 0.01)

0.018
(0.012)

-0.001
(0.013)

-0.064*
(0.026)

0.093***
(0.021)

0.048*
(0.022)

0.07**
(0.023)

0.037
(0.021)

0.013
(0.022)

AIC -121812.08

This table documents results for a single regression explaining annualized excess returns of homes. The

column “Base case returns” depicts estimates for the average excess returns in each neighborhood as for the

base case results in Table 2. The column “Co-operative returns” shows estimates for the comovement of

average excess returns of co-operatives with the subsequent excess returns of single co-operative units. We

define a building as co-operative if its land use is flagged as co-operative. All regressions include the entire

set of controls: locational, transaction-specific, and macro-financial. Fixed effects are on the zip-code-year

level. Heteroskedasticity-robust standard errors are clustered over the zip-code-year level and reported in

parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5% levels, respectively.
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Table 10
Estimation results, time dimension with six neighborhoods

Neighborhood lag 1 lag 2 lag 3 lag 4 lag 5

First-order neigh.

Second-order neigh.

Third-order neigh.

Fourth-order neigh.

Fifth-order neigh.

Sixth-order neigh.

0.153***
(0.011)

0.027**
( 0.01)

0.011
(0.009)

0.025**
(0.009)

0.012
(0.011)

-0.003
(0.011)

0.129***
(0.011)

0.018*
(0.008)

0.015
(0.009)

0.025**
(0.009)

0.011
(0.008)

0.017
(0.009)

0.095***
(0.009)

0.015
(0.009)

0.01
( 0.01)

0.018*
(0.009)

0.01
(0.009)

-0.011
(0.009)

0.051***
(0.011)

0.015
(0.008)

0.007
(0.009)

0.017*
(0.009)

0.001
(0.009)

-0.004
(0.008)

0.06***
( 0.01)

0.007
(0.009)

0.024*
( 0.01)

-0.009
(0.008)

-0.003
(0.009)

0.018*
(0.008)

AIC -122573.75

This table documents the robustness of our results on the time dimension. In contrast to the base case

results reported in Table 3, we report results when keeping the neighborhoods of order one to six separated.

The lags are defined in mutually exclusive intervals of T = 180 days. The regression includes the entire

set of controls: locational, transaction-specific, and macro-financial. Fixed effects are on the zip-code-year

level. Heteroskedasticity-robust standard errors are clustered over the zip-code-year level and reported in

parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5% levels, respectively.
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Table 11
Further robustness checks, base case

Neighborhood (1) Risk-adjusted (2) Zip-code restriction

First-order neigh.

Second-order neigh.

Third-order neigh.

Fourth-order neigh.

Fifth-order neigh.

Sixth-order neigh.

0.194***
(0.013)

0.034***
( 0.01)

0.029***
(0.009)

0.037***
(0.008)

0.025*
( 0.01)

0.003
(0.011)

0.211***
(0.013)

0.039***
( 0.01)

0.026**
( 0.01)

0.037***
(0.008)

0.027*
(0.012)

-0.006
(0.012)

AIC 89440.209 -121752.97

This table documents further robustness checks on our key results. Column (1) presents the results when risk-

adjusting the excess returns by the annualized standard deviation of the monthly market return between

the respective prior sale date and the second sale date. In column (2), excess returns of neighbors are

restricted to be in the same zip-code as the corresponding observation. All regressions include the entire

set of controls: locational, transaction-specific, and macro-financial. Fixed effects are on the zip-code-year

level. Heteroskedasticity-robust standard errors are clustered over the zip-code-year level and reported in

parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5% levels, respectively.
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