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Abstract

We study the general problem of information design for a policymaker—a central

bank—that communicates its private information (the “state”) to the public. We show

that it is optimal for the policymaker to partition the state space into a finite number

of “clusters” and to communicate to the public to which cluster the state belongs.

Optimal communication is more precise when the policymaker’s beliefs conform with

prior public expectations, but is more vague in case of divergence. We characterize

the policymaker’s trade-offs via a novel object—the information relevance matrix—

and label its eigenvectors as principal information components (PICs). PICs with the

highest eigenvalues determine the dimensions of information with the highest welfare

sensitivity and, hence, are the ones that the policymaker should be most precise about.
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1 Introduction

The importance of macroeconomic announcements is hard to overstate. Announcements help

market participants gauge the state of the economy, they serve as a coordination device for

different types of agents, and influence decisions taken by investors and firms. To the extent

that macroeconomic announcements simply release the latest data (e.g., on unemployment

or inflation), their design is straightforward. In the case of monetary policy, however,

announcements about the current policy and its future path are left at the discretion of a

policy-making body, such as the Federal Open Market Committee (FOMC) in case of the US

Federal Reserve. Viewed as a key tool in achieving monetary policy objectives, central bank

communication has received particular attention in the years following the global financial

crisis, but surveys of market participants suggest that the Fed does not always earn the

highest marks on this front (see Figure 1). This naturally raises the question of how a

policymaker should optimally design announcements so as to maximize public welfare. The

goal of this paper is to investigate this question.

Communicating the stance of monetary policy is a multifaceted task. Prior to the

announcement, the policymaker needs to process large amounts of data about economic

and financial conditions. It is then up to the policymaker to decide how to map this complex

information into a simpler message that informs the public about the policy rate decision and

conveys any supporting information on the policy stance. Adding to the complexity is the fact

that policy communication does not occur in a vacuum but involves a two-way information

flow between the central bank and the public (e.g., Shin (2017), Morris and Shin (2018)).

Market participants spend significant resources on forecasting and interpreting central bank

announcements. Central banks, in turn, pay close attention to signals in the market prices,

from which they try to infer the expectations of investors in anticipation of policy actions.

We accommodate those practical challenges of central bank communication into a the-

oretical model of policy announcement design. Our analysis follows the recent literature
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Figure 1: Fed communication effectiveness scores. The figure presents weighted average score from
the Survey of Primary Dealers and the Survey of Market Participants compiled by the New York Fed. The
survey question is: “How would you grade the Federal Reserve System’s communication with the markets
and with the public since the last policy survey? Please provide a rating between 1 and 5, with 1 indicating
ineffectiveness and 5 indicating effectiveness.”

on information design, initiated by Rayo and Segal (2010) and Kamenica and Gentzkow

(2011). As in these papers, we assume that the policymaker can commit to the choice

of the best information structure (from their perspective) that maximizes the social wel-

fare ex-ante, before the state of the economy is realized. In general, the structure of the

optimal design can be extremely complex and only existence results can be established

(e.g., Bergemann and Morris, 2017). We focus on a special case of the general problem of

“Bayesian persuasion” studied in Kamenica and Gentzkow (2011), with two modifications.

We assume that (i) the private information of the policymaker (the state) is a continuous

multidimensional random variable in R
L, whereas (ii) the information structure chosen by

the policymaker is finite, i.e., the signal sent to the public is always chosen from a finite

set of possible announcements. Intuitively, having observed the realization of the state, the

policymarker in our setting possesses a “dictionary” from which to select a small subset of

messages that are best suited to enhance the public welfare. As such, the policymaker needs
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to decide about how best to design its communication reaction function, which should be a

well-defined function of available data and opinions of the key decision makers.

Our first main result is that, under appropriate regularity conditions, it is optimal for

the policymaker to partition the state space into a finite number of “clusters” (e.g., intervals

when L = 1, rectangles when L = 2, etc.) and, then, to communicate to the public to

which cluster the state belongs. This form of communication resembles common central

bank practice. For example, central banks announce the interval to which the policy rate is

expected to belong over certain horizon or they provide a confidence bands for the economic

forecasts. Clearly, given the amount and dimensionality of information that policymakers

face, it is not feasible to communicate all information in its raw form. Hence, the role

of policy communication is to reduce the complexity of the multi-dimensional information

bundle in a way that is accessible to the public. Our result formalizes this idea implying

that, under optimal design, for each value of the state, the policymaker sends to the public

a unique signal revealing the specific cluster to which state belongs. We expect that these

clusters should have the property of “bunching” similar states together. We prove that this

intuition is correct when the economy is close to the steady state: In the linearized problem,

the partition consists of convex polytops.1 Specifically, if two states belong to the same bin,

then so does any convex combination of them, and therefore, mixing the two states does not

change the nature of the announcement.2 We use this general property to discuss some of

the communication policies used by the Fed. For example, we argue that by violating the

convexity property, the so-called “dot plots” are a suboptimal form of communication that

could be improved upon.

We derive two more important and universal properties of linearized information designs.

The first property corresponds to the one-dimensional case (L = 1), where the limiting

partition is given by a set of intervals. We further assume that the prior distribution

1For example, intervals for L = 1, convex polygons for L = 2, and convex polyhedra for L = 3.
2The underlying linearized problem is analogous to the standard first-order approximation used in the

macro literature; for example, it is this approximation that underlies the classical Taylor rule.
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characterizing the beliefs of agents is unimodal. In this situation, optimal communication

design implies that policymakers should be more precise when conforming with prior public

expectations, but to be more vague in the case of a divergence of their beliefs from those of

the public. This result lends credence to the idea that the central bank may want to avoid

“spooking” financial markets, which in turn could manifest as gradualism in its decision

making (see Stein and Sunderam (2018) for a recent discussion).

The second property corresponds to the multi-dimensional case (L > 1). We explicitly

characterize the problem of the policymaker using a novel object—the information relevance

matrix—which captures the trade-offs the policymaker faces given the public reaction func-

tion. The eigenvectors of that matrix correspond to what we call the principal information

components (PIC) in analogy to the standard principal components known in the statistics

literature. These eigenvectors define the directions of information that are most important for

welfare under the equilibrium constraints. We show how to characterize the optimal partition

in terms of these eigenvectors. Intuitively, we expect that the amount of information revealed

about a given PIC is monotonically decreasing in its eigenvalue ranking. In line with this

intuition, we derive “only reveal the essential” principle. When relevance of some PICs for

welfare (as measured by the corresponding eigenvalues) is sufficiently low, it is optimal not

to reveal any information about them at all.

These results point to the important role of central bank communication as an information

filtering device, and explain why financial markets pay considerable attention to central

bank announcements. In our model, the central bank’s optimal communication is akin to a

clustering algorithm, whereby the policymaker groups similar pieces of private information

together into “clusters” and then assigns a common message to all pieces of information that

fall in that cluster. In this regard, the actions of the central bank bear some resemblance to

those of a data compression algorithm as is common in the machine learning domain.

An important consequence of our findings is that randomization is never optimal, despite
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being a common property of information design in the literature (Kamenica and Gentzkow

(2011), Bergemann and Morris (2017)). Indeed, conditional on a particular realization of

the state, the policymaker should always reveal the same type of information (the same

partition) about the state. With randomization, instead, upon observing the state, the

policymaker selects a signal value randomly, thus effectively injecting noise into their com-

munication. Consequently, market participants confront different signals from the Fed in

otherwise identical economic conditions.

Related literature. Our paper is related to the growing literature on central bank com-

munication (see Blinder et al. (2008) for an excellent survey). The focus of investors and

the media suggests that the Fed exerts significant power over financial markets and, by

extension, the economy. The standard explanations for this impact comprise the conventional

short-rate channel, the information channel, and the risk-premium/beliefs channel, but

their relative importance remains debated. Yet, neither standard monetary shocks nor

Fed’s information advantage seem sufficient to justify the Fed’s ability to affect markets.

Measured monetary policy surprises are small and transitory (Kuttner, 2001). It is also

unclear whether the Fed has superior information about the economy and better forecasting

ability (Romer and Romer (2000), Faust et al. (2004)). Growing evidence suggests that the

Fed directly affects risk premia in financial markets (Ai and Bansal (2018), Cieslak et al.

(2019), Cieslak and Schrimpf (2019), Hanson and Stein (2015), Gertler and Karadi (2015),

Kroencke et al. (2019)). This fact points to a crucial role of the Fed’s communication for

affecting the public beliefs which then translate into actions that can have real economic

effects. In our model, we take the view of the Fed being a persuasive communicator able to

convince the public to certain actions that affect welfare. Importantly, we do not require the

Fed to possess any superior information about economic fundamentals, but merely require

that it has some private information that the public would find valuable to know.

A related strand of research investigates the impact of announcements on belief formation.
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Evidence suggests that people react to economic announcements even if that information is

public knowledge (Coibion et al. (2018), D’Acunto et al. (2019a), D’Acunto et al. (2019b)).

A key insight from this literature is that it is possible to manage expectations of households

and firms. Central bankers care a lot about expectations management and communication

is arguably the main device serving that goal. Recent experience suggests for instance

that forward guidance can be a powerful tool to steer market expectations and thereby

affect decisions when interest rates are at the effective lower bound (Coeuré (2017), Haldane

(2017)). However, as highlighted by Blinder et al. (2008), the large variation in communi-

cation strategies across central banks suggests that the optimal design of communication

remains an open question.

The problem of optimal policy announcement design is directly related to the classical

problem of optimal communication with commitment, also known as “Bayesian persuasion”

after Kamenica and Gentzkow (2011).3 In the context of monetary announcements, com-

munication with commitment is closely related to the so-called Odyssean forward guidance

(Campbell et al. (2012)), whereby a policymaker commits to a state-contingent policy that

maps outcomes to announcements. Morris and Shin (2018) show how such announcements

should be designed in the presence of the so-called reflection problem produced by the two-

way flow between the market participants and the central bank.4 They study a model where

market participants’ actions depend on monetary policy, whereas monetary policy reacts to

market participants’ actions. Our model also features a two-way interaction between market

participants and the policymaker, with the policymaker “coordinating the beliefs” of the

public in the spirit of Morris and Shin (2002), yet the mechanism is based on the Bayesian

3See also Aumann and Maschler (1995), Calzolari and Pavan (2006), Ostrovsky and Schwarz (2010), and
Rayo and Segal (2010)

4The reflection problem had been discussed and investigated in a large literature, e.g., Goodhart
(1975), Samuelson (1994), Woodford (1994), Svensson and Woodford (2004), Bond and Goldstein (2015),
Goldstein and Yang (2017).
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belief updating. The policymaker conditions its announcements on the (prior) beliefs of the

public, whereas the (posterior) beliefs of the public are influenced by the announcements.5

A key technical assumption we make in our model is that the set of communication

instruments available to a policymaker is discrete. Indeed, in practice, there is a large

but finite number of words and sentences which the central bank can use to formulate

announcements. Numerical values are also discrete; for example, policy rates are often

adjusted by a quarter or half of a percentage point. The discreteness in central bank

communication shares analogy with a rating agency that evaluates debtors’ creditworthiness,

and announces this assessment publicly by placing them into discrete rating buckets (e.g.,

above BBB-).

In a similar way, central bank communication in our model amounts to announcing a

discrete “rating” for the state of the economy along with the appropriate policy stance

associated with it. Intuitively, one expects that it should be optimal for the information

designer to “pool” neighbouring states into clusters. This intuitive result has been established

in several recent papers under the assumption that the state is one-dimensional (Kolotilin

(2018), Hopenhayn and Saeedi (2019), Dworczak and Martini (2019)). Yet, little is known

about the optimal communication design in the multi-dimensional case.6 Remarkably, we

show that, under mild technical conditions, the partition result continues to hold true.

Additionally, we are able to characterize some universal properties of these partitions through

the principal information components.

5In earlier work, Amato and Shin (2002), Morris and Shin (2002) study how releases of public information
affect welfare in a static setting. Morris and Shin (2005) and Amador and Weill (2012) discuss dynamic
effects of public information revelation.

6The only result we are aware of is due to Dworczak and Martini (2019), who show that, under some
technical conditions, with a two-dimensional state, four possible actions, and sender’s utility that only
depends on the first two moments of the distribution of state, the optimal communication design is given by
a partition into four convex polygons.
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2 The Model

There are four time periods, t = 0−, 0, 0+, 1. The policymaker believes that the state

ω (the private information of the policymaker) is a random vector on Ω ⊂ R
L, a bounded,

open and convex subset of RL equipped with the Borel sigma-algebra B, distributed with a

density µ0(ω).

Following Kamenica and Gentzkow (2011), we assume that the policymaker is able to

commit to an information design at time t = 0−, before the state ω is realized.7 Full

commitment means that the policymaker is completely transparent about the exact structure

of the map from its private information to policy announcements. In particular, we abstract

from issues related to imperfect commitment and reputation building by the policymaker.

The policymaker learns the realization of the state ω at time t = 0, while the public only

learns it at time t = 1. The vector ω represents the full set of private information of the

policymaker. The policymaker’s objective is then to decide how much, and what kind of,

information about ω to reveal to the public through policy announcements.

The following graph illustrates the timing of the events in the model.

Formally, the policymaker needs to solve the problem of optimal announcement (infor-

mation) design. The intuition is as follows. After the policymaker (for short, the Fed)

7It is important to distinguish the optimal information design problem from the problem of optimal
signalling: In the latter, the policymaker cannot commit to an information structure, and the public needs to
rationally guess it within a signalling game. By contrast, in the former, due to the assumed full commitment,
guessing is not necessary. As a result, optimal information design is free from all the standard problems with
signalling games (such as, for example, a huge multiplicity of equilibria). As Morris and Shin (2018) argue,
such commitment policies are well suited for central bank communication.
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receives the private signal ω, they choose how to optimally communicate the information

to the public in a way that maximizes welfare. The menu of possible announcements that

the Fed could send is finite. Given that the economy is populated by rational optimizing

agents, when deciding on the optimal message to send, the Fed takes into account the action

of the public that the announcement will induce. Conditional on the announcement, agents

in the economy use the Bayes rule to form a posterior belief about the state, and then select

the optimal action that maximizes their individual utility. The Fed’s problem is therefore to

design communication that is optimal from the welfare perspective while taking into account

the rational reaction of the public that the Fed’s announcement will induce. We now lay out

the model details.

2.1 Policy announcements

We first define the information design that the policymaker commits to, and the basic

structure of the policymaker’s announcements.

Definition 1 (Information design) An information design is a probability space K (hence-

forth, signal space) and a probability measure P on K×Ω. An information design is K-finite

if the signal space K has exactly K elements: |K| = K. In this case, we can identify K with

the set {1, · · · , K}. An information design is finite if it is K-finite for some K ∈ N. Without

loss of generality, we assume that K = {1, · · · , K}.

Once the public observes a policymaker announcement k ∈ {1, · · · , K}, it updates the

beliefs about the probability distribution of ω using the Bayes rule. To do this, the public

just needs to know the probability πk(ω) of ω given the announcement k :

πk(ω) ≡ P(k|ω) .

As such, a K-finite information design can be equivalently characterized by a set of mea-
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surable functions πk(ω), k = {1, · · · , K} satisfying these conditions πk(ω) ∈ [0, 1] and
∑

k πk(ω) = 1 with probability one.

Intuitively, an announcement design is a map from the space Ω of possible states to a

“dictionary” of K messages,8 whereby the policymaker commits to a precise rule of selecting

an announcement from the dictionary for every realization of ω. In principle, it is possible

that this rule involves randomization, whereby, for given ω, the policymaker randomly picks

an announcement from a non-singleton subset of messages in the dictionary. Clearly, an

information design does not involve randomization if and only if it is a partition of the state

space Ω. The policymaker divides Ω into K subsets and makes the announcement k if and

only if ω belongs to the subset number k of the partition. The public knows that given state

ω, the Fed would send the k-th signal with probability 1, and signal m 6= k with probability

zero. We formalize this discussion in the following definition.

Definition 2 (Randomization) We say that information design involves randomization

if πk(ω) 6∈ {0, 1} with positive probability for some k. We say that information design is a

partition if πk(ω) ∈ {0, 1} with probability one for any k. In this case,

Ω̃ = ∪K
k=1{ω : πk(ω) = 1} (1)

is a Lebesgue-almost sure partition of Ω in the sense that Ω \ Ω̃ has Lebesgue measure zero,

and the subsets of the partition (1) are Lebesgue-almost surely disjoint.

We use π̄ = (πk(ω))
K
k=1 ∈ [0, 1]K to denote the random K-dimensional vector represent-

8Note that, in practice, many of these messages are related to future actions of the policymaker. We do
not assume that a message always implies a full commitment of the policymaker to implement the promised
action. The only assumption we make is that the public uses the Bayes rule to update its probabilistic beliefs
about the likelihood of the promised action.

11



ing the information design, and we use

Π = {(πk(ω))
K
k=1 : πk(ω) ≥ 0,

∑

k

πk(ω) = 1}

to denote the set of all possible information designs, equipped with the metric:

‖π̄1 − π̄2‖ = max
k

∫

Ω

|π1
k(ω)− π2

k(ω)|dω . (2)

In this paper, we only deal with finite information designs. We believe that this is a realistic

assumption as, even for central bank communication, the set of signals that the central bank

can send to the public is discrete and finite, albeit it can be quite large. A key implication of

this setting is that, with a continuous state space and under appropriate regularity conditions,

randomization is never optimal and, hence, optimal information design is always given

by a partition. Importantly, this implication is in contrast with the optimal information

design that assumes a discrete state space and in which randomization is typically present

(e.g., Kamenica and Gentzkow (2011) and Bergemann and Morris (2017)). To the extent

that randomization produces artificial ambiguity in communication, it is a counter-intuitive

property. Indeed, a randomized announcement design amounts to an injection of noise

into the public information set: upon observing a realization of a state ω, the policymaker

“tosses a coin” and then randomly picks a signal value. As such, market participants might

repeatedly observe different messages under otherwise identical economic conditions.

2.2 Agents

We assume that the economy is populated by N classes of agents, indexed by n = 1, · · · , N.

Each class n may consist of a continuum of agents or a single, large agent. In the former

case, we assume that all agents within each class are identical and take identical actions.

Furthermore, we allow for the possibility that agents in each class have private information
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or simply differ in their prior beliefs. Namely, each class n has a class specific prior with a

Radon-Nykodym density µn
0(ω), n = 1, · · · , N with respect to the central bank prior µ0(ω).

At time t = 0, upon observing the public policy signal k, each agent of class n selects an

action an from the action space R ⊂ R
m to maximize the expected utility function

En[Un(an, a, ω)|k] ,

where we use a = {an}
N
n=1 ∈ R

Nm to denote the vector of actions of all agents’ classes. Thus,

we allow each agent’s utility to depend on the actions of other agents in the economy. These

actions could for instance represent consumption, investment, production, or price setting

choices by market participants, consumers, or firms. Upon observing policymaker’s signal

k, agents of class n update their prior µn
0 (ω)µ0(ω) using the Bayes rule to the class-specific

posterior distribution

πk(ω)µ
n
0(ω)µ0(ω)∫

πk(ω)µn
0(ω)µ0(ω)dω

.

As a result, their expected utility conditional on observing k is given by

En[Un(an, a, ω)|k] =

∫
πk(ω)µ

n
0(ω)µ0(ω)U

n(an, a, ω)dω∫
πk(ω)µn

0(ω)µ0(ω)dω
,

and hence, instead of assuming heterogeneous priors, we can redefine Ũn(an, a, ω) ≡ µn
0(ω)U

n(an, a, ω)

and assume, without loss of generality, that all agents have a common prior µ0(ω), coinciding

with that of the policymaker.

Expected utility depends on agents’ own actions as well as on the vector a of actions of

other agents and the aggregate state of world ω. Thus, an equilibrium a(k) = {an(k)}
N
n=1

is a solution to the fixed point system

an(k) = argmax
an

E[Un(an, a(k), ω)|k] . (3)
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Given a bounded open set Ω, will will use C2(Ω̄) to denote the set of functions that are

continuously differentiable in Ω and whose first and second derivatives are continuous on

the close Ω̄ of Ω. We equip C2(Ω̄) with the standard norm ‖f‖ = maxΩ̄(|f(ω)|+ |∇f(ω)|+

|∇2f(ω)|), where ∇ and ∇2 denote the vectors of all first and second order derivatives of f,

respectively.

Assumption 1 (Action space) The action space R is an open subset of Rm. The function

Un(an, a, ω) ∈ C2(R̄ × R̄N × Ω̄), where we have defined9

R̄N = R̄ × · · · × R̄︸ ︷︷ ︸
N times

.

While the system (3) may potentially have multiple solutions, we assume that the

policymaker “believes” in a particular equilibrium structure10 a∗ : Π → RNm that maps

any given information design π̄ into an equilibrium a∗(π̄) = (a∗(k, π̄))k∈{1,··· ,K} .

Assumption 2 The equilibrium structure a∗ is continuous.

It will be helpful to rewrite the system (3) in form of agents’ first-order conditions by applying

several algebraic transformations. If there exist functions Gn : RN×Ω̄ → R
m, n = 1, · · · , N,

such that the set of solutions to

E[Gn(a(k), ω)|k] = 0, n = 1, · · · , N (4)

coincides with the set of equilibria, then we refer to such a system as an equivalent system.

We often use the notation G = (Gn)
N
n=1 : R

Nm → R
Nm.

9R̄ denotes the closure of R.
10It is straightforward to extend our analysis to the case when the policymaker believes in multiple

equilibria occurring with some probabilities.
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2.3 The policymaker’s problem

In our perfect, rational model, for any information design {1, · · · , K}, the policymaker

exactly knows the vector of actions a(k) of the public in response to any given signal. Thus,

effectively, the policymaker induces an action a(k) by sending the signal k. In particular,

without loss of generality, we may assume that at the optimum we always have a(k) 6= a(k̃)

for any k 6= k̃. That is, different signals always induce different actions, as otherwise, out

of two signals k and k̃ that induce identical actions, one would be redundant. Formally, if

a(k) = a(k̃), then equation (4) implies that E[Gn(a(k), ω)|k] = E[Gn(a(k̃), ω)|k̃] and hence

E[Gn(a(k), ω)|{k or k̃}] = P (k)E[Gn(a(k), ω)|k] + P (k̃)E[Gn(a(k̃), ω)|k̃] = 0 ,

where we have defined

P (k) = Prob[k] =

∫

Ω

πk(ω)µ0(ω)dω

to be the unconditional probability of the policymaker sending signal k. Thus, a modified

information structure where k is announced whenever either k or k̃ were to be announced in

the old structure leads to the same equilibrium actions and, hence, also to the same expected

social welfare.

Definition 3 Given an information structure, a regular equilibrium is a solution to an

equivalent system (4) such that the Jacobian
(
E
[

∂
∂ai

Gn(a(k), ω)|k
])N

n,i=1
is non-degenerate

and a(k) 6= a(k̃) for any k 6= k̃.

Given their beliefs in the equilibrium structure a∗, the policymaker selects an information
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design π̄∗ = (π∗
k(ω)) to maximize the expected public welfare function W (ω, a):

π̄∗ = argmax
π̄

E[W (ω, a∗(π̄))] = argmax
π̄

{E[W (ω, a)] : a = maximizes agents′ utilities}

= max
π̄, a

{E[W (ω, a(k))] : E[G(a(k), ω)|k] = 0 ∀ k} .

(5)

By direct calculation, we can rewrite expected social welfare function as

E[W (ω, a∗(π̄))] =
K∑

k=1

∫
W (ω, a∗(k, π̄)) πk(ω)µ0(ω)dω . (6)

We say that π̄∗ is regular with respect to an equivalent system (4) if the Jacobian of (4) with

respect to a is non-degenerate at a∗(π̄∗). One class of regular equilibria corresponds to the

case when the dependence of a on ω is explicit, i.e., when a(k) = E[g(ω)|k]. Formally, this

is equivalent to specifying G(a, ω) = a − g(ω), so that E[G(a(k), ω)|k] = 0 is equivalent to

a(k) = E[g(ω)|k]. The following result is just a restatement of this observation.

Lemma 4 Suppose that G(a, ω) = a − g(ω) for some real analytic function g(ω) : Ω →

RNm. Then, there exists a unique equilibrium and this equilibrium is regular.

To state the main result—the optimal information design—we need the following defini-

tion and technical conditions.

Definition 5 We say that functions {f1(ω), · · · , fL1
(ω)}, ω ∈ Ω, are linearly independent

modulo {g1(ω), · · · , gL2
(ω)} if there exist no real vectors h ∈ R

L1 , k ∈ R
L2 with ‖h‖ 6= 0,

such that

∑

i

hifi(ω) =
∑

j

kjgj(ω) for all ω ∈ ω .
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In particular, if L1 = 1, then f1(ω) is linearly independent modulo {g1(ω), · · · , gL2
(ω)} if

f1(ω) cannot be expressed as a linear combination of {g1(ω), · · · , gL2
(ω)}.

We also need the following technical assumption.

Assumption 3 The welfare function W (a, ω) is real analytic11 in ω ∈ Ω for any a ∈ R
Nm.

Furthermore, there exists an equivalent system (4), such that Gn(a, ω), n = 1, · · · , N, is real

analytic in ω for all a ∈ RN and

• For any fixed a, ã ∈ RN , a 6= ã, the function W (ω, a)−W (ω, ã) is linearly independent

modulo
{
{Gn(a, ω)}

N
n=1, {Gn(ã, ω)}

N
n=1

}
;

Assumption 3 holds for generic real-analytic functions W and G. The real analyticity

conditions are also not restrictive. In fact, almost all utility functions used in economic

modelling are real analytic. Real analyticity is known to impose an important regularity

structure on equilibria (e.g., Hugonnier, Malamud and Trubowitz (2012)). The key property

of real analytic functions that we use in our analysis is stated in the following proposition.

Proposition 6 If a real analytic function f(ω) is zero on a set of positive Lebesgue measure,

then f is identically zero. Hence, if real analytic functions {f1(ω), · · · , fL1
(ω)} are linearly

dependent modulo {g1(ω), · · · , gL2
(ω)} on some subset I ⊂ Ω of positive Lebesgue measure,

then this linear dependence also holds on the whole Ω except, possibly, a set of Lebesgue

measure zero.

Using Proposition 6, it is possible to prove the main result of this paper:

Theorem 7 (Optimal information design) Suppose that the equilibrium a∗(π∗) is regu-

lar. Then, there exists an optimal information design π̄∗ and it is a partition.

11A function f(ω) is called real analytic in ω if it can be represented as a convergent power series in ω a
small neighbourhood of any point in its domain Ω.
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The proof of Theorem 7 is technical and is delegated to the appendix. However, the

intuition is as follows. Suppose on the contrary that π̄ is not a partition. Then, for some

k, we have πk(ω) ∈ (0, 1) on some positive measure subset I ⊂ Ω. At the global maximum,

under arbitrary small perturbations social welfare should decrease. We show that this can

only be true if Assumption 3 is violated for ω ∈ I. However, since I has a positive Lebesgue

measure, Proposition 6 implies that it has to be violated on the whole of Ω.

2.4 Distilling Information into Optimal Clusters

By Theorem 7, the optimal way for a policymaker to distill information that they commu-

nicate to the public is by partitioning the state space into clusters and then revealing the

cluster to which the state belongs. Thus, it is crucial to understand the properties (shapes)

of those clusters. The goal of this section is to provide a general characterization of the

“optimal clusters.”

We use DG(a, ω) ∈ R
(Nm)×(Nm) to denote the Jacobian of the map G, and, similarly,

DW (a, ω) ∈ R
1×(Nm) the gradient of the welfare function W (a, ω) with respect to a. For any

vectors xk ∈ R
Nm, k = 1, · · · , K and actions {a(k)}Kk=1, let us define the partition

Ω∗
k({xℓ}

K
ℓ=1, {aℓ}

K
ℓ=1) =

{
ω ∈ Ω : W (a(k), ω)− x⊤

k G(a(k), ω)

= max
1≤l≤K

(
W (a(l), ω) − x⊤

l G(a(l), ω)
)
} (7)

Equation (7) is basically the first-order condition for the optimization problem (5), whereby

xk are the Lagrange multipliers of agents’ participation constrains.

Theorem 8 For any regular equilibrium {a(k)}Kk=1 there exists a welfare-equivalent partition

that is characterized as follows:

18



• local optimality holds:

Ωk = Ω∗
k({xℓ}

K
ℓ=1, {aℓ}

K
ℓ=1)

with

xk = D̄W (k)(D̄G(k))−1 , k = 1, · · · , K ,

where we have defined

D̄W (k) =

∫

Ωk

DW (a(k), ω)µ0(ω)dω ,

D̄G(k) =

∫

Ωk

DG(a(k), ω)µ0(ω)dω , k = 1, · · · , K .

• the actions {a(k)}Kk=1 satisfy the fixed point system

∫

Ωk

G(a(k), ω)µ0(ω)dω = 0, k = 1, · · · , K . (8)

• the boundaries of Ωk are a subset of the real analytic variety12

∪k 6=l

{
ω ∈ R

m : W (a(k), ω) − x⊤
k G(a(k), ω) = W (a(l), ω) − x⊤

l G(a(l), ω)
}
.

(9)

and hence have a Lebesgue measure of zero.

Equations (8) and (9) in Theorem 8 are re-statements of agents’ first order conditions

12A real analytic variety in R
m is a subset of Rm defined by a set of identities fi(ω) = 0, i = 1, · · · , I where

all functions fi are real analytic. If at least one of functions fi(ω) is non-zero, then a real analytic variety
is always a union of smooth manifolds and hence has a Lebesgue measure of zero. By Assumption 3, the
variety

{
ω ∈ R

m : W (a(k), ω) − x⊤
k
G(a(k), ω) = W (a(l), ω) − x⊤

l
G(a(l), ω)

}
has Lebesgue measure

zero for each k 6= l.
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(4). The key insight of Theorem 8 comes from the characterization of the boundaries of the

different clusters. The policymaker has to solve the problem of maximizing social welfare (6)

by inducing the desired actions vector (an) for every realization of ω. Ideally, the policymaker

would like to solve the problem

a∗ = argmax
a

W (ω, a) .

However, the ability of the policymaker to induce desired actions is limited by the par-

ticipation constraints of the public, that is, the map from the posterior beliefs induced

by communication to the actions of the public. Indeed, while the policymaker can in-

duce any Bayes-rational beliefs (i.e., any posteriors consistent with the Bayes rule, see,

Kamenica and Gentzkow (2011)), she has no direct control over the actions of the public.

The degree to which these constraints are binding is precisely captured by the Lagrange mul-

tipliers xk, so that the policymaker is maximizing the Lagrangian maxa(W (ω, a)−x⊤
k G(a, ω)).

Formula (7) shows that, inside the cluster number k, the optimal action profile maximizes the

respective Lagrangian. The boundaries of the clusters are then determined by the indifference

conditions (9), ensuring that at the boundary between regions k and l the policymaker is

indifferent between the respective action profiles ak and al.

Several papers study the one dimensional case (that is, when L = 1 so that ω ∈ R
1)

and derive conditions under which the optimal signal structure is a monotone partition

into intervals. Such a monotonicity result is intuitive as one would expect that optimal

information design only pools nearby states. The most general results currently available

are due to Hopenhayn and Saeedi (2019) and Dworczak and Martini (2019),13 but they cover

the case when sender’s utility (social welfare function in our setting) only depends on E[ω] ∈

R
1.14 Under this assumption, Dworczak and Martini (2019) derive necessary and sufficient

13See also Mensch (2018).
14This is equivalent to G(a, ω) = a− g(ω) in our setting, see Lemma 4.
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conditions guaranteeing that the optimal signal structure is always a monotone partition of

the interval Ω into a union of disjoint intervals. Theorem 8 shows that, under mild additional

regularity conditions, optimal information design is in fact always a partition.15

2.5 The Information Relevance Matrix

The structure of the optimal partition (Theorem 8) can be complex and non-linear.16 There-

fore, it is useful to think about ways of simplifying. One may ask whether it is possible

to “linearize” these partitions, just like one can linearize equilibria in complex, non-linear

economic models, assuming the deviations from the steady state are small. As we show

below, this is indeed possible.

Everywhere in the sequel, we make the following assumption.

Assumption 4 There exists a small parameter ε such that the functions defining the equi-

librium conditions, G, and the welfare function, W, are given by G(a, εω) and W (a, εω).

Parameter ε has two interpretations. First, it could mean small deviations from a steady

state (as is common in the literature on log-linear approximations). Second, ε could be

interpreted as capturing the sensitivity of economic quantities to changes in ω. In the context

of policy communication, one could think about the policymaker trying to stabilize the

economy by steering public expectations towards its desired equilibrium.

In the limit when ε = 0, equilibrium does not depend on shocks to ω. We use a0 to

denote this “steady state” equilibrium. By definition, it is given by the unique solution to

the system G(a0, 0) = 0, and the corresponding social welfare is W (a0, 0). We assume that

there exists a globally unique solution a0 to G(a0, 0) = 0 and DG(a0, 0) is non-degenerate.

15Of course, as Dworczak and Martini (2019) explain, even in the one-dimensional case the monotonicity
cannot be ensured without additional technical conditions. No such conditions are known in the multi-
dimensional case. Dworczak and Martini (2019) present an example with four possible actions (K = 4) and
a two-dimensional state space (L = 2) for which they are able to show that the optimal information design
is a partition into four convex polygons.

16In general, the boundaries of the sets Ωk might be represented by complicated hyper-surfaces, and some
of Ωk might even feature multiple disconnected components.
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The following matrices are important in our characterization of the optimal information

design:

• DG(a0, 0) ∈ R
(Nm)×(Nm) is the Jacobian of the map G : R

Nm → R
Nm w.r.t. a;

• Gω(a
0, 0) = (∂Gn/∂ωi) ∈ R

(Nm)×L is the gradient of the map G with respect to ω;

• DW (a0, 0) ∈ R
1×(Nm) is the gradient of the welfare function with respect to a;

• DWω(a
0, 0) ∈ R

(Nm)×L is the matrix of second order partial derivatives (∂2W/(∂an∂ωi));

• D2W (a0, 0) ∈ R
(Nm)×(Nm) is the matrix of second order partial derivatives (∂2W/(∂an ∂am));

• D̃Gω(a
0, 0) ∈ R

(Nm)×L is given by

(D̃Gω(a
0, 0))i,j =

∑

n

(DW (a0, 0)DG(a0, 0)−1)n
∂2Gn(a

0, 0)

∂ai∂ωj
;

• D̃2G(a0, 0) ∈ R
(Nm)×(Nm) is given by

(D̃2G(a0, 0))i,j =
∑

n

(DW (a0, 0)DG(a0, 0)−1)n
∂2Gn(a

0, 0)

∂ai∂aj
.

When the policy-maker sends signal k, the public realizes that ω ∈ Ωk. As a result, the

public posterior estimate of the conditional mean of ω is then given by

M1(Ωk) ≡ E[ω|ω ∈ Ωk] =

∫
Ωk

ωµ0(ω)dω

Pk
∈ R

m ,

where

Pk = Prob[k] =

∫

Ωk

µ0(ω)dω .
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In our linearized approximation, the policymaker only cares about the first moments of

the random variables in ω. When deviations from the steady state are small, it is enough for

the policymaker to send signal k that induces the public to update their beliefs about E[ω|k]

towards the “optimal” level. Higher order moments, such as E[ω2|k] become negligible. As

a result, similar to the standard Taylor rule that is derived using a log-linear approximation,

policy can be formulated exclusively in terms of the first moments of the random variables

in question. However, interestingly enough, the shape of optimal linearized clusters (see

Theorem 8) depends on the interactions between different ωi, i = 1, · · · , m in a non-trivial

way.

Define

G ≡ (DG(a0, 0))−1Gω(a
0, 0) ∈ R

(Nm)×L .

The following lemma follows by direct calculation.

Lemma 9 For any sequence εν → 0, ν ∈ Z+, there exists a sub-sequence ενj , j > 0, such

that the optimal partitions {Ωk(ε)}
K
k=1 converge to a limiting partition {Ωk(0)}

K
k=1 . In this

limit,

ak(ενj) = a0k − ενjGM1(Ωk(0)) + o(ενj) .

Lemma 9 provides an intuitive explanation for the role of the matrix G. Namely, in the

linear approximation, the public action is given by a linear transformation of E[ω|k], the

first moment of ω given the policy announcement: ak ≈ a0k − GE[ω|k]. Thus, −G captures

the sensitivity of actions to beliefs.

Assumption 5 (The information relevance matrix) We assume that the L × L sym-
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metric matrix D given by

D ≡ G⊤ (D2W (a0, 0) − D̃2G(a0, 0))G

+ G⊤(D̃Gω(a
0, 0)−DWω(a

0, 0)) + (D̃Gω(a
0, 0)−DWω(a

0, 0))⊤G .

is non-degenerate. We refer to D as the information relevance matrix.

The information relevance matrix plays a key role in our subsequent analysis. It captures

the relevance of different parts of the private information vector, ω, for social welfare.

The first term, G⊤ D2W (a0, 0)G is the second order derivative (the Hessian) of social wel-

fare to the action profile a, multiplied by the sensitivity −G of actions to beliefs. Thus,

G⊤ D2W (a0, 0)G captures the second order sensitivity of welfare to beliefs. Similarly, the

terms −G⊤DWω(a
0, 0) and−DWω(a

0, 0)G are the mixed derivatives with respect to E[ω] and

ω, capturing the sensitivity of welfare to simultaneous changes in ω and public expectations

about ω. Finally, each of these terms is “compensated” by the counter-acting term coming

from the function G. The latter determines how public posterior expectations affect agents’

actual decisions. Section 2.7 explains that the definiteness of matrix D is closely tied to the

amount and type of information being optimally revealed.

We are now ready to state the main result of this section, showing how the optimal

linearized partition can be characterized explicitly in terms of the information relevance

matrix D.

Theorem 10 (Linearized partition) Under the hypothesis of Theorem 7 and Assump-

tions 4 and 5, let {Ωk(ε)}
K
k=1 be the corresponding optimal partition. Then, for any sequence

εk → 0, k > 0, there exists a sub-sequence εkj , j > 0, such that the optimal partition

{Ωk(εkj)}
K
k=1 converges to an almost sure partition {Ω̃∗

k} satisfying

Ω̃∗
k = {ω ∈ Ω : (M1(k)−M1(l))

⊤Dω > 0.5(M1(k)
⊤ DM1(k)−M1(l)

⊤ DM1(l)) ∀ k 6= l} ,
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where we have defined M1(k) ≡ M1(Ω̃
∗
k) . In particular, for this limiting partition each set

Ω̃∗
k is convex. If the matrix D from Assumption 5 is negative semi-definite, then all sets Ω∗

k

are empty except for one: That is, it is optimal to reveal no information.

To understand the result of Theorem 10, it is important to remember that we are

designing an announcement mechanism under full commitment, that is, the policymaker

commits to the announcement policy before ω is realized. The following two examples

illustrate the mechanism.

Example 1 (Concealing all information) Suppose that the policymaker commits to

an announcement policy about the interest rate, so that ω = r. For simplicity, assume that

public action is proportional to public expectations about ω. Mathematically, this equivalent

to G(a, ω) = a−ω . This public action in turn affects important aggregate outcome variables

(such as the output gap and/or inflation). We assume that the policymaker’s welfare function

is negative quadratic in the public action: W (a, ω) = −a2, so that the objective of the

policymaker is to choose the information design {1, · · · , K} to maximize

E[W ] = −E[E[a|k]2] = −
∑

k

PkE[ω|k]2 ,

where Pk = Epm[k] is given by the policymaker’s expectations about the probability of

signal k. Suppose first that the beliefs of the policymaker coincide with those of the public.

Then, a direct application of Jensen’s inequality implies that

∑

k

PkE[ω|k]2 ≥

(
∑

k

PkE[ω|k]

)2

= E[ω]2 . (10)

That is, it is ex-ante optimal for the policymaker to commit not to reveal any information

at all. This result depends crucially on the commitment assumption (much like a commit-

ment to the Odyssean forward guidance). Ex post, the policymaker would find it optimal to
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reveal good news and conceal bad news, but this would require breaking the commitment.

The consequences of breaking commitment could be very severe. Once the public loses the

belief in policymakers’ commitment power, the economy ends up is a signalling game regime,

whereby the public attempts to interpret every unclear communication to understand, what

is it that the policymaker is trying to conceal. This makes policymaker’s job incredibly

difficult because it is impossible to directly influence the way the public interprets commu-

nication. This example shows that clear, transparent policy announcement design with full

commitment is crucial for the ability the policymaker to communicate with the public in an

efficient manner.

Example 2 (Communication with differences in beliefs) The above result is sensitive

to the assumption of identical expectations. Indeed, suppose that policymaker over- or

under-weights some states so that W = w(a)f(ω) for some function f > 0 capturing the

weights and some w. Then, by direct calculation,

D = w′′(a0) + 2w′(a0)f
′(ω),

with a0 given by the ex-ante expectations, a0 = E[ω]. In this setting, “bad” states correspond

to high (low) values of ω if function w is decreasing (increasing) in a. By Theorem 10, it may

be optimal to reveal some information only if D > 0. If the policymaker significantly over-

weights “bad” states (i.e., f ′(ω) and w′(a0) have the same sign), this pushes D up and the

policymaker may find it optimal to reveal some information. By contrast, if the policymaker

under-weights bad states relative to the public (for example, because they views those states

as being less likely), this pushes D down and may potentially make information revelation

sub-optimal. It is interesting to draw some parallels between this example and the behaviour

of the Fed during the 2007-2009 financial crisis. Anecdotal evidence suggests that the Fed

might have had inside information about the actual state of the financial system, but decided
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not to reveal it.17 The above theoretical result suggests that this might have been optimal

if the public was in panic and significantly over-estimated the probabilities of “bad” states.

Example 3 (Communicating two-dimensional information) Consider now a two-

dimensional example, where the public tries to learn about two policy-relevant variables

ω1, ω2. For example, ω1 might contain information about policy rate and its future path,

while ω2 might contain information about the size and composition of the balance sheet.

Again, we assume for simplicity that the public action is a linear function of expectations:

G(a, ω) = a− (c1ω1 + c2ω2), so that a(k) = E[c1ω1 + c2ω2|k]. The policymaker has W =

w(a)f(ω1, ω2). In this case, G = −(c1, c2) ∈ R
1×2, whereas

D =



 c21 c1c2

c1c2 c22



w′′(a0) + w′(a0)



 2c1fω1
c1fω2

+ c2fω1

c1fω2
+ c2fω1

2c2fω2





If w is concave, w′′(a0) < 0 and this discourages information revelation. Yet, if the disagree-

ment between the public and the policymaker is sufficiently large, the policymaker may find

it optimal to reveal some information. Here, interesting new effects may occur. If both fω1
c1

and fω2
c2 are sufficiently large and positive, this may make D positive definite just like in the

previous example: Over-weighting “bad” states encourages information revelation. However,

here, a non-trivial interaction effect may occur. Even if both fω1
c1 and fω2

c2 are negative,

a sufficiently large |c1fω2
+ c2fω1

| will make D have at east one positive eigenvalue, making

it optimal to reveal some information. The nature of this information will be different: It

will depend on the relative behaviour of ω1 and ω2. For example, it might be optimal not

to reveal any information about ω1, ω2, but only about ω1 − ω2. We formalize this intuition

below in Proposition 15.

Theorem 10 shows that the standard linearization intuition is correct when applied to

optimal information design: Non-linear partitions become piecewise-linear in the limit of

17Note however that one a crisis example might correspond to a large value of ε and hence might not
satisfy Assumption 5.
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small shock size. Boundaries of different regions become unions of hyperplanes, and are thus

much easier to understand. Another key result of Theorem 10 is convexity: Since Ωk is

defined by a set of linear inequalities, it is always convex. Thus, optimal partition consists of

convex polytopes (intervals for L = 1, convex polygons for L = 2, and convex polyhedra for

L = 3, etc). While convexity of the sets Ωk, k = {1, · · · , K}, can by no means be guaranteed

in Theorem 8 when shocks are large, optimal partitions are always convex for small shocks.

In particular, since convex sets are always connected,18 we obtain the result that optimal

partitions always consist of connected subsets when shocks are sufficiently small. Thus, for

small shocks, the intuition behind “pooling nearby states” is correct.

2.6 Optimal Information Precision

Suppose that the state space Ω is a subset of R1 (that is, L = 1). Then, since convex subsets

of R1 are intervals, we get that each Ωk is an interval. The following proposition is a direct

consequence of Theorem 10.

Proposition 11 Under the hypotheses of Theorem 10, let L = 1. Then:

• if D < 0, then, in the limit as ε → 0, the optimal partition converges to no information

revelation.

• if D > 0, then, in the limit as ε → 0, the optimal partition converges to a partition of

[a, b] by

a ≤
x0 + x1

2
≤ · · · ≤

xK−1 + xK

2
≤ b

18Recall that a set is connected if any two points in the set can be linked through a continuous curve
belonging to the set.
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where xk, k = 0, · · · , K satisfy the system of equations

x0 =

∫ 0.5(x0+x1)

a
ωµ0(ω)dω∫ 0.5(x0+x1)

a
µ0(ω)dω

xk =

∫ (xk+xk+1)/2

(xk−1+xk)/2
ωµ0(ω)dω

∫ (xk+xk+1)/2

(xk−1+xk)/2
µ0(ω)dω

, k = 1, · · · , K

xK+1 =

∫ b

0.5(xK+xK+1)
ωµ0(ω)dω

∫ b

0.5(xK+xK+1)
µ0(ω)dω

In general, this system may have multiple solutions, each of these solutions being a

candidate optimal partition. As we now show, the nature of these solutions depends crucially

on the behaviour of the prior distribution µ0(ω). Suppose first that µ0(ω) is uniform. This

corresponds to a 100% diffuse prior with a constant likelihood.

Corollary 12 (Uniform Distribution) In the case when µ0(ω) is uniform (fully uni-

formed, diffused) on [a, b], the optimal partition is also uniform:

xk+1 − xk = xk − xk−1 for all k = 1, · · · , K .

By Corollary 12, with a uniform prior, optimal information design has a constant precision:

for every value of ω, the signal revealed by the policymaker always has exactly the same

precision. By contrast, when the prior is not uniform, it is natural to expect that the

optimal information design features a precision that depends on the behaviour of the public

prior, µ0(ω). The following proposition explicitly characterizes the link between information

precision and the prior distribution.

Proposition 13 Suppose that µ0(ω) ∈ C1[a, b] and |µ′
0(ω)| is sufficiently small. Then,
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optimal information precision19 is increasing whenever µ0(ω) is increasing, and decreasing

whenever µ0(ω) is decreasing. Namely,

• xk+1 − xk ≤ xk − xk−1 when µ0(ω) in increasing on Ωk ∪ Ωk+1;

• xk+1 − xk ≥ xk − xk−1 when µ0(ω) in decreasing on Ωk ∪ Ωk+1.

The following proposition follows from Proposition 13 and is the main result of this

section.

Proposition 14 (Confirmations are precise, surprises are vague) Suppose that

µ0(ω) ∈ C1[a, b] and |µ′
0(ω)| is sufficiently small. If µ0(ω) is unimodal, with a mode at ω∗,

then precision is increasing on [a, ω∗] and then decreasing on [ω∗, b], being highest when ω is

close to ω∗.

Proposition 14 shows that optimal information precision depends in an intuitive way on

the prior distribution of public beliefs. If the actual value of ω observed by the policymaker

is close to where the public prior beliefs are concentrated (i.e., the mode ω∗ of µ0), then it

is optimal for the policymarket to provide a more precise signal about where exactly ω is.

By contrast, when the actual value of ω is different from the public expectations, then it is

optimal not to surprise the public too much. In this case, the policymaker sends a vague

signal of the type: “maybe we are close to the old prior ω∗, but one cannot know for sure.”

2.7 Principal Information Components and “Only Reveal The

Essential” Principle

Theorem 10 shows that the matrix D completely determines the nature of optimal informa-

tion design. In this subsection, we aim to gain a deeper understanding of the link between

19Note that we use the term “precision” to denote the length of the interval Ωk. However, since the
measures µ0(ω) are, by assumption, close to uniform (this is what the assumption of a sufficiently small
|µ′

0
(ω)| guarantees), the length of the interval is roughly proportional to the variance of ω conditional on the

event that ω takes values in that interval.
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the properties of this matrix and the exact nature of “optimal clusters.” Since matrix D is

symmetric, it can be diagonalized in the basis of eigenvectors:

D = V diag(Λ)V⊤ ,

where V is the L × L matrix with columns being the eigenvectors of D, and with Λ =

(λ1, · · · , λL) being the eigenvalues of D in the decreasing order,

λ1 ≥ · · · ≥ λL .

As we explain above, when D is negative semi-definite (that is, all eigenvalues λi, i = 1, · · · , L

are non-positive), it is optimal not to reveal any information. Intuitively, eigenvectors

with negative eigenvalues correspond to the directions such that the information about

projections on them should not be revealed. By contrast, directions corresponding to large,

positive eigenvalues are the most important ones: These are the directions of information

that are optimal to be revealed. Thus, in analogy with principal components used in

statistics, eigenvectors of the matrix D represent a decomposition of the information space

into directions, ordered with respect to their importance in terms of impact on welfare. We

call these eigenvectors Principal Information Components (PICs). Since eigenvectors (the

columns of V) form an L-dimensional orthonormal basis of RL, we can write any state as

ω =
L∑

i=1

(ω · Vi)Vi ,

where

ω · Vi =

L∑

j=1

ωjVj,i
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is the (linear) component of the state along the i-th PIC. Thus, revealing information about

the L-dimensional vector ω = (ω1, · · · , ωL) is equivalent to revealing information about the

projections ωV = (ωV
i )

L
i=1 ≡ (ω · Vi)

L
i=1. Intuitively, one might expect that the optimal

precision of information revealed about ωV
i corresponding to large λi (high PICs) will be

higher, while little (or, equivalently, very imprecise) information will be revealed about lower

PICs, with the amount of information going to zero as λi converges to zero.

Defining xV
k ≡ VM1(k), we can rewrite the system of Theorem 10 as

ΩV
k = {ωV ∈ ΩV : (xV

k − xV
l )

⊤ΛωV ≥ (xV
k )

⊤ΛxV
k − (xV

l )
⊤ΛxV

l ∀ l}

xV
k =

∫

ΩV

k

ωVµV(ωV)dω/MV(ΩV
k ) .

(11)

Let us now split the eigenvalues into two groups: Λ1 = (λ1, · · · .λi1) and Λ2 = (λi1+1, · · · , λL).

Let also ω =
(ωV

1

ωV
2

)
and xk =

(x1
k

x2
k

)
be the respective splits of the ωV and xV

k variables. Then,

we have

ΩV
k =

{
ωV ∈ ΩV :

2∑

i=1

(xi
k − xi

l)
⊤Λiω

V
i ≥

2∑

i=1

((xi
k)

⊤Λix
i
k − (xi

l)
⊤Λix

i
l) ∀l

}
, (12)

Suppose that ω1 contains no information about the expectation of ω2, so that E[ω2|ω1] =

E[ω2] is independent of ω1. Then, while there might be multiple solutions to the system (11),

there exists a solution that reveals no information about ω2 : Indeed, such a solution has

x2
k = E[ω2] independent of k; in this case, by (12), the system (11) takes the form

ΩV
k =

{
ωV ∈ ΩV : (x1

k − x1
l )

⊤Λ1ω
V
1 ≥ ((x1

k)
⊤Λ1x

1
k − (x1

l )
⊤Λ1x

1
l ) ∀l

}

x1
k =

∫

ΩV

k

ωV
1 µ

V(ωV)dω/MV(ΩV
k ) ,

(13)

where MV is the “rotated” probability measure, MV(A) = M(V−1A) . As the following
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proposition shows, the partition (13) is indeed optimal if the relevance of information in ωV
2

is sufficiently small.

Proposition 15 (“Only reveal the essential” principle) Under the hypotheses of The-

orem 10, suppose that ωV
1 contains no information about the expectation of ωV

2 and vice-versa,

that is,

E[ωV
2 |ω

V
1 ] = E[ωV

2 ] , E[ωV
1 |ω

V
2 ] = E[ωV

1 ] . (14)

Then, for a generic µ0(ω) ∈ {µ0 ∈ C(Ω̄) : (14) holds}, the gain from revealing information

about ωV
2 is bounded from above by a constant times max(Λ2). In particular, these gains

vanish when min(Λ1)/|max(Λ2)| is sufficiently small. In this case, the best partition solving

(13) is approximately optimal.

It is important to note that the result of Proposition 15 depends in a non-trivial way on

the joint distribution of ωV
1 and ωV

2 (e.g., when inflation and output are correlated): Even if

revealing information about ωV
2 is suboptimal in isolation, the policymaker may still decide

to reveal some information if it reveals important information about ωV
1 .

The result of Proposition 15 implies an “Only Reveal The Essential” Principle in the

optimal information design, whereby the relevance of information is determined by the size

of the respective eigenvalues.

As an illustration of the underlying mechanisms, let us rotate coordinates to the PIC

basis and assume for simplicity that G(a, ω) = a− ω. Then,

E[W ] ≈
∑

k

Pk

∑

i

λiE[ωi|k]
2 =

∑

i

λi

∑

k

PkE[ωi|k]
2, (15)

and the Jensen inequality argument of (10) suggests that it is only optimal to reveal infor-

mation about those ωi with λi > 0. The following proposition formalizes this intuition.
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Proposition 16 Suppose that E[ωV
2 |ω

V
1 ] = E[ωV

2 ] and E[ωV
1 |ω

V
2 ] = E[ωV

1 ], so that ωV
1 and

ωV
2 are mean independent. If maxΛ2 < 0, then it is optimal not to reveal any information

about ωV
2 .

3 Discussion

In a recent article, Cecchetti and Schoenholtz (2019) call for improvement of the Fed’s com-

munication strategies by ways of “... simplifying public statements, clarifying how policy will

react to changing conditions, and highlighting uncertainty and risks.” Our model describes

from a normative standpoint how central banks should communicate under commitment. It

is therefore informative to examine some of the actual communication choices of the Fed

through the lens of this theory.

The implication of our setting that randomization is suboptimal provides a formal backing

of the view expressed by many current and former policymakers. Indeed, Cecchetti and Schoenholtz

(2019) write:

(...) in conducting policy, there is one uncertainty that policymakers can and
should reduce: the uncertainty they themselves create. Everyone agrees that
monetary policymakers should do their best to minimize the noise that their ac-
tions add to the environment. When policy is transparent and effective, people in
the economy and financial markets respond to the data, not to the policymakers.

Historically, however, the Fed’s communication has not followed this prescription. The

discretionary communication style of Chair Greenspan (Blinder and Reis, 2005) can be viewed

as deliberately injecting noise into Fed statements, with Greenspan publicly admitting that

“Since I’ve become a central banker, I’ve learned to mumble with great coherence... If I

seem unduly clear to you, you must have misunderstood what I said.” While in recent years

the Fed has increased emphasis on clarity and consistency of communication, one could

argue that randomization (albeit, most likely, unintentional) continues to characterize some

of its choices. A case in point is the decision to hold a press conference after every other
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FOMC meeting, thus potentially inducing changes in communication that are independent

of macroeconomic conditions.20 Such a design has been criticized by the Fed watchers, as

documented in the recent Brookings survey by Olson and Wessel (2016), with the former

president of the Minneapolis Fed, Narayana Kocherlakota, calling the Fed to hold a press

conference after every FOMC meeting (Kocherlakota, 2016)—a change that the Fed ulti-

mately implemented in June 2019.

The implication of Theorem 7, that policymakers communicate a partition of the state

space, has analogy in the practice of central bank communication. For example, FOMC

members’ projections of the future path of the policy rate are communicated in form of

ranges as opposed to point estimates. Similarly, projections for key macroeconomic variables

such as output and inflation are published with confidence intervals. Our theoretical result

that “confirmations are precise, surprises are vague” implies that the amount of uncertainty

conveyed by the Fed, intuitively described by the “size” of the partition, should be related

to the differences in the beliefs between the Fed and the public. From a perspective of

communication efficacy, it may therefore be beneficial for the Fed to disclose the amount

of uncertainty that they face as an integral part of the statement about the policy decision

itself. In its current practice, however, the Fed releases uncertainty indicators to its quarterly

forecasts as part of the FOMC minutes about three weeks following the policy decision

announcements.

The convexity property of the optimal partition established in Theorem 10 has impli-

cations for whether it is advisable for the Fed to rely on the so-called “dot plots”—one

of the more controversial devices used in recent years. Effectively, the dot plots serve to

communicate a 19-dimensional state vector ω to describe individual forecasts for the federal

funds rate target by the FOMC members and regional Fed presidents. In doing so, the Fed

partitions the real line into intervals with a step of 25 basis points, and then, for each interval

20Between 2011 and 2018, the Fed held a press conference after every other meeting. It is well-known that
the meetings followed by the press conference were characterized by a disproportionate response in financial
markets (Boguth et al., 2018).

35



and forecast horizon, communicates the number of FOMC members whose forecast belongs

to a given interval, but without revealing the members’ identities. Such a design leads to a

partition into bins that are not convex. Hence, under the linear approximation, our result

implies that the dot plots are a suboptimal form of communication. It could be improved,

for instance, by revealing to the public an interval to which an average of individual forecasts

belongs.

Finally, by characterizing the properties of the information relevance matrix and deriving

the “only reveal the essential” principle, we formalize the notion that cacophony in commu-

nication can be counterproductive, especially when it disseminates information with little

effect for welfare. As argued by Kliesen et al. (2019), the Fed’s communication has become

more complex on multiple dimensions, such as the length and linguistic sophistication of the

FOMC statements, frequency of speeches by the Fed officials, and usage of different media

(e.g., interviews with the press). Part of this development is justified by the transparency

goals, the attainment of the Fed’s mandate, and the inherent uncertainty that the Fed faces.

However, our results suggest that “the more is better” does not necessarily apply in the

context of optimal communication. Instead, “less can be more,” in the sense that the Fed

could benefit from a targeted choice of topics to emphasize.

4 Conclusion

Central banks around the world use a variety of strategies to communicate to financial

markets information about the state of the economy and monetary policy. The observed

heterogeneity of approaches raises the question which communication strategies are appro-

priate and which should be discarded. Building on the Bayesian persuasion literature,

in this paper, we study the optimal design of communication by a policymaker under

commitment. We extend the literature by introducing features necessary to capture the

practical challenges faced by central banks. Most importantly, we allow the information set
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of the policymaker to be multidimensional, reflecting the fact that central banks process vast

amounts of information which they need to condense into a concise message to be shared with

the public. We show that optimal communication is given by a partition of the state space,

whereby the policymakers reveals to the public the “cluster” to which the state belongs. This

result provides a micro-foundation for the preference for rules versus discretion, with the key

implication that randomization in central bank communication—whereby the policymaker

injects noise into the public information set—is never optimal. Optimal communication is

more precise when the beliefs of the central bank align with those of the public and is vague

in case of divergence. To characterize the properties of the optimal communication in the

multidimensional case, we introduce a novel object, the information relevance matrix, along

with the principal information components (PICs) associated with it. We use the PICs to

describe the information vectors that the central bank should focus on to maximize welfare

and which they should discard.
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A Proof of Theorem 7

We start the proof with a simple technical compactness result.

Lemma 17 The set of information designs is compact in the topology induced by the metric

(2), and so is the set of partition in the corresponding induced metric.

Proof. Denote by Ω̄K the set of K copies of Ω̄. Clearly, any signal structure π corresponds

to a unique probability measure mπ on Ω̄K : for any set A = (A1, · · · , AK) ⊂ Ω̄K (with

Ak ⊂ Ω̄), we can define

mπ(A) =
∑

k

∫

Ak

πk(ω)dω.

Since Ω̄ is compact, Prokhorov’s theorem implies that the set of probability measures on Ω̄K

is compact in the topology of weak convergence. Since πk(ω) ∈ (0, 1), it is straightforward

to show that weak convergence also implies convergence in the metric (2). Furthermore, if

an information design is a partition, so that πk ∈ {0, 1} Lebesgue-almost surely, then in the

limit it also has to converge to a partition. Q.E.D.

The equilibrium conditions can be rewritten as

Eµs
[G(a(s), ω)|s] = 0 .

Here,

µs(ω) =
π(s|ω)µ0(ω)∫
π(s|ω)µ0(ω)dω

and hence

Eµk
[G(a(s), ω)] =

∫
π(k|ω)µ0(ω)G(a(k), ω)dω∫

π(k|ω)µ0(ω)dω
.
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By assumption, equilibrium a depends continuously on {πk}. Since the map

({πk}, {ak}) →

{∫
πk(ω)µ0(ω)G(a(k, ε), ω)dω

}

is real analytic, and has a non-degenerate Jacobian with respect to a, the assumed continuity

of a and the implicit function theorem implies that a is in fact real analytic in {πk}. To

compute the Frechet differentials of a(s), we take a small perturbation η(ω) of πk(ω). By

the regularity assumption and the Implicit Function Theorem,

a(k, ε) = a(k) + εa(1)(k) + 0.5ε2a(2)(k) + o(ε2)

for some a(1)(k), a(2)(k) . Let us rewrite

0 =

∫
(πk(ω) + εη(ω))µ0(ω)G(a(k, ε), ω)dω

=

∫
(πk(ω) + εη(ω))µ0(ω)G(a(k) + εa(1)(k) + 0.5ε2a(2)(k), ω)dω

≈

(∫
πk(ω)µ0(ω)

(
G(a(k), ω) +Ga(εa

(1)(k) + 0.5ε2a(2)(k))

+ 0.5Gaa(εa
(1)(k), εa(1)(k))

)
dω

+ ε

∫
η(ω)µ0(ω)

(
G(a(k)) +Gaεa

(1)(k)

)
dω

))

=

(
ε

(∫
πk(ω)µ0(ω)Gaa

(1)(k)dω +

∫
η(ω)µ0(ω)G(a(k))dω

)

+ 0.5ε2

(∫
πk(ω)µ0(ω)[Gaa

(2)(k) +Gaa(a(k), ω)(a
(1)(k), a(1)(k))]dω

+ 2

∫
η(ω)µ0(ω)Ga(a(k), ω)a

(1)(k)dω

)))
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As a result, we get

a(1)(k) = −Ḡa(k)
−1

∫
η(ω)µ0(ω)G(a(k), ω)dω, Ḡa(k) =

∫
πk(ω)µ0(ω)Gadω ,

while

a(2)(k) = −Ḡa(k)
−1

(∫
πk(ω)µ0(ω)Gaa(a(k), ω)(a

(1)(k), a(1)(k))dω

+ 2

∫
η(ω)µ0(ω)Ga(a(k), ω)a

(1)(k)dω

)
.

Consider the social welfare function

W̄ (π) = E[W (ω, a(s))] =
∑

k

∫

Ω

W (ω, a(k))πk(ω)µ0(ω)dω .

Suppose that the optimal information structure is not a partition. Then, there exists a

subset I ⊂ Ω of positive µ0-measure and an index k such that πk(ω) ∈ (0, 1) for µ0-almost

all ω ∈ I. Since
∑

i πi(ω) = 1 and πi(ω) ∈ [0, 1], there must be an index k1 6= k and a subset

I1 ⊂ I such that πk1(ω) ∈ (0, 1) for µ0-almost all ω ∈ I1. Consider a small perturbation

{π̃(ε)}i of the information design, keeping πi, i 6= k, k1 fixed and changing πk(ω) → πk(ω) +

εη(ω), πk1(ω) → πk1(ω)− ε(ω) where η(ω) in an arbitrary bounded function with η(ω) = 0

for all ω 6∈ I1. Define ηk(ω) = η(ω), ηk1(ω) = −η(ω), and ηi(ω) = 0 for all i 6= k, k1. A
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second-order Taylor expansion in ε gives

∑

i

∫

Ω

W (ω, a(i, ε))(πi(ω) + εηi(ω))µ0(ω)dω

≈

∫

Ω

(
W (ω, a(i)) +Wa(ω, a(i))(εa

(1)(i) + 0.5ε2a(2)(i))

+ 0.5Waa(ω, a(i))ε
2(a(1)(i), a(1)(i))

)
(πi(ω) + εηi(ω))µ0(ω)dω

= W̄ (π) + ε
∑

i

(∫

Ω

(W (ω, a(i))ηi(ω) +Wa(ω, a(i))a
(1)(i)πi(ω))µ0(ω)dω

)

+ 0.5ε2
∑

i

∫

Ω

(
Waa(ω, a(i))(a

(1)(i), a(1)(i))πi(ω)

+Wa(ω, a(i))a
(2)(i)πi(ω) +Wa(ω, a(i))a

(1)(i)ηi(ω)
)
µ0(ω)dω

(16)

Since, by assumption, {πi} is an optimal information design, it has to be that the first order

term in (18) is zero, while the second-order term is always non-positive. We can rewrite the

first order term as

∑

i

(∫

Ω

(W (ω, a(i))ηi(ω) +Wa(ω, a(i))a
(1)(i)πi(ω))µ0(ω)dω

)

=
∑

i

∫

Ω

(
W (ω, a(i))

−
(∫

Wa(ω1, a(i))πi(ω1)µ0(ω1)dω1

)
Ḡa(i)

−1G(a(i), ω)

)
ηi(ω)µ0(ω)dω

(17)

and hence it is zero for all considered perturbations if and only if

W (ω, a(k)) −
(∫

Wa(ω1, a(k))πk(ω1)µ0(ω1)dω1

)
Ḡa(k)

−1G(a(k), ω)

= W (ω, a(k1)) −
(∫

Wa(ω1, a(k1))πk1(ω1)µ0(ω1)dω1

)
Ḡa(k1)

−1G(a(k1), ω)

(18)
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Lebesgue-almost surely for ω ∈ I1. By Proposition 6, (18) also holds for all ω ∈ Ω. Hence,

by Assumption 3, a(k) = a(k1), which contradicts Definition 3 of a regular equilibrium.

Proof of Theorem 8. Suppose a partition ω = ∪kΩk is optimal:

∫

Ωk

G(a(k), ω)µ0(ω)dω = 0

defines (an(k)) . Consider a small perturbation, whereby we move a small mass on a set

I ⊂ Ωk to Ωl. Then, the marginal change in an(k) can be determined from

0 =

∫

Ωk

G(a(k), ω)µ0(ω)dω −

∫

Ωk\I

G(a(k, I), ω)µ0(ω)dω

≈ −

∫

Ωk

DG(a(k), ω)∆a(k) µ0(ω)dω +

∫

I

G(a(k), ω)µ0(ω)dω ,

implying that the first order change in a is given by

∆a(k) = (D̄G(k))−1

∫

I

G(a(k), ω)µ0(ω)dω

Thus, the change in welfare is21

∆W =

∫

Ωk

W (a(k), ω)µ0(ω)dω −

∫

Ωk\I

W (a(k, I), ω)µ0(ω)dω

+

∫

Ωl

W (a(l), ω)µ0(ω)dω −

∫

Ωl∪I

W (a(l, I), ω)µ0(ω)dω

≈ −

∫

Ωk

DW (a(k), ω)∆a(k)µ0(ω)dω +

∫

I

W (a(k), ω)µ0(ω)dω

−

∫

Ωl

DW (a(l), ω)∆a(l)µ0(ω)dω −

∫

I

W (a(l), ω)µ0(ω)dω

= −D̄W (k)(D̄G(k))−1

∫

I

G(a(k), ω)µ0(ω)dω +

∫

I

W (a(k), ω)µ0(ω)dω

+ D̄W (l)(D̄G(l))−1

∫

I

G(a(l), ω)µ0(ω)dω −

∫

I

W (a(l), ω)µ0(ω)dω

21Note that DW is a horizontal (row) vector.
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This expression has to be non-negative for any I of positive Lebesgue measure. Thus,

− D̄W (k)(D̄G(k))−1G(a(k), ω) +W (a(k), ω)

+ D̄W (l)(D̄G(l))−1G(a(l), ω) − W (a(l), ω) ≥ 0

for Lebesgue almost any ω ∈ Ωk. Q.E.D.

Proof of Lemma 9. By Lemma 17, the set of partitions is compacts and hence we can find

a subsequence {Ωk(εj)} converging to some partition {Ωk(0)}. We have

0 =

∫

Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω =

∫

Ω̃k(ε)

G(a(k, ε), ω)µ0(ω)dω

Now,

0 =

∫

Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω

= G(a(k, ε), 0)M(Ωk(ε)) + εGω(a(k, ε), 0)M1(Ωk(ε)) + O(ε2) .

(19)

Let us show that a(k, ε) − a(k, 0) = O(ε). Suppose the contrary. Then there exists a

sequence εm → 0 such that ‖a(k, ε)− a(k, 0)‖ε−1 → ∞. We have

G(a(k, ε), 0) − G(a(k, 0), 0) =

∫ 1

0

DG(a(k, 0) + t(a(k, ε)− a(k, 0)))(a(k, ε)− a(k, 0))dt

≥ c‖a(k, ε)− a(k, 0)‖

for some c > 0 due to the continuity and non-degeneracy of DG(0) = DG(a(k, 0)). Dividing

(20) by ε, we get a contradiction.

Define

a(1)(k) ≡ −DG(0)−1Gω(a(k), 0)M1(Ωk(0)) = −GM1(Ωk(0)) .

48



Let us now show that a(k, ε) − a(k, 0) = εa(1)(k) + o(ε). Suppose the contrary. Then,

‖ε−1(a(k, ε)− a(k, 0))− a(1)(k)‖ > c for some c > 0 along a sequence of ε → 0. By (20),

0 =

∫

Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω

= G(a(k, ε), 0)M(Ωk(ε)) + εGω(a(k, ε), 0)M1(Ωk(ε)) + O(ε2)

= εDG(0)ε−1(a(k, ε)− a(k, 0))M(Ωk(ε)) + εGω(a(k), 0)M1(Ωk(ε)) + O(ε2) ,

(20)

and we get a contradiction taking the limit as ε → 0. Q.E.D.

Proof of Theorem 10. Consider the real analytic hyper-surface

Ψk,l(ε) = {ω ∈ Ω : −D̄W (k, ε)(D̄G(k, ε))−1G(a(k, ε), εω) +W (a(k, ε), εω)

+ D̄W (l, ε)(D̄G(l, ε))−1G(a(l, ε), εω) − W (a(l, ε), εω) = 0} .

We have

D̄W (k, ε) =

∫

Ωk(ε)

DW (a(k, ε), εω)µ0(ω)dω

=

∫

Ωk(ε)

(DW (0) + εω⊤DWω(0)
⊤ + εa(1)(k)⊤D2W (0) + o(ε))µ0(ω)dω

= (DW (0) + ε(a(1)(k))⊤D2W (0) + εM1(Ωk(0))
⊤(DWω(0))

⊤)M(Ωk(ε)) + o(ε) ∈ R
1×(Nm) .

At the same time, an analogous calculation implies that

D̄G(k, ε) = (DG(0) + ε(a(1)(k))⊤D2G(0) + εDGω(0)M1(Ωk(0)))M(Ωk(ε)) + o(ε)

Here, DG(0) = (∂Gi/∂aj)
A
i,j=1 and hence

(DGω(0)M1(Ωk(0)))i,j =
∑

k

∂2Gi

∂aj∂ωk
M1,k ,
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and, similarly,

((a(1)(k))⊤D2G(0))i,j =
∑

l

(a(1)(k))l
∂2Gl

∂ai∂aj
∈ R

(Nm)×(Nm) .

Thus, the inverse of DG can be computed as

M(Ωk(ε))D̄G(k, ε)−1

= DG(0)−1 −DG(0)−1ε
(
(a(1)(k))⊤D2G(0) + εDGω(0)M1(Ωk(0))

)
DG(0)−1 + o(ε) ,

and therefore

D̄W (k, ε)(D̄G(k, ε))−1 = DW (0)DG(0)−1

+ ε(M⊤
1 DWω(0)

⊤DG(0)−1 + (a(1)(k))⊤D2W (0)DG(0)−1)

− εDW (0)DG(0)−1
(
(a(1)(k))⊤D2G(0) + DGω(0)M1(Ωk(0))

)
DG(0)−1 + o(ε)

= DW (0)DG(0)−1

+ ε(M⊤
1 DWω(0)

⊤DG(0)−1 −M⊤
1 G

⊤D2W (0)DG(0)−1)

− εDW (0)DG(0)−1
(
−M⊤

1 G
⊤D2G(0) + DGω(0)M1

)
DG(0)−1 + o(ε)

= DW (0)DG(0)−1 + εΓ + o(ε) ,

where

Γ = M⊤
1 DWω(0)

⊤DG(0)−1

−M⊤
1 G

⊤D2W (0)DG(0)−1 −DW (0)DG(0)−1
(
−M⊤

1 G
⊤D2G(0) + DGω(0)M1

)
DG(0)−1 .

Define

ã(1)(k, ε) ≡ ε−1(a(k, ε)− a(k, 0)) = a(1)(k) + o(1) .

50



Let also

G(2)(k) ≡ 0.5ε2(a(1)(k)⊤D2G(0)a(1)(k) + 2ω⊤DGω(0)a
(1)(k) + ω⊤Gωω(0)ω)

so that

G(a(k, ε), εω) − (εDG(0)ã(1)(k, ε) + εGω(0)ω) = ε2G(2)(k) + o(ε2) ,

where we have used that G(0) = 0. While we cannot prove that εã(1)(k) = o(ε2), we show

that this term cancels out. We have

− D̄W (k, ε)(D̄G(k, ε))−1G(a(k, ε), εω) +W (a(k, ε), εω)

≈ −D̄W (k, ε)(D̄G(k, ε))−1
(
εDG(0)ã(1)(k, ε) + εGω(0)ω + ε2G(2)(k) + o(ε2)

)

+

(
W (0) + εDW (0)ã(1)(k, ε) + εWω(0)ω

+ 0.5ε2
(
(a(1)(k))⊤D2W (0)a(1)(k) + ω⊤Wω,ω(0)ω + 2(a(1)(k))⊤DWω(0)ω

)
+ o(ε2)

)

= −
(
DW (0)DG(0)−1 + εΓ + o(ε)

)

×
(
εDG(0)ã(1)(k, ε) + εGω(0)ω + ε2G(2)(k) + o(ε2)

)

+

(
W (0) + εDW (0)ã(1)(k) + εWω(0)ω

+ 0.5ε2
(
(a(1)(k))⊤D2W (0)a(1)(k) + ω⊤Wω,ω(0)ω + 2(a(1)(k))⊤DWω(0)ω

)
+ o(ε2)

)
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= W (0)

+ ε

(
−DW (0)DG(0)−1

(
DG(0)ã(1)(k, ε) +Gω(0)ω

)
+DW (0)ã(1)(k, ε) +Wω(0)ω

)

+ ε2

(
−DW (0)DG(0)−1ε2G(2)(k)− Γ

(
DG(0)a(1)(k) +Gω(0)ω

)

+ 0.5
(
(a(1)(k))⊤D2W (0)a(1)(k) + ω⊤Wω,ω(0)ω + 2a(1)(k)⊤DWω(0)ω

))
+ o(ε2) .

We have

Γ
(
DG(0)a(1)(k) +Gω(0)ω

)
=
(
M⊤

1 DWω(0)
⊤DG(0)−1

−M⊤
1 G

⊤D2W (0)DG(0)−1 −DW (0)DG(0)−1
(
−M⊤

1 G
⊤D2G(0) + DGω(0)M1

)
DG(0)−1

)

×Gω(0)(ω −M1)

=
(
M⊤

1 DWω(0)
⊤ −M⊤

1 G
⊤D2W (0)−DW (0)DG(0)−1

(
−M⊤

1 G
⊤D2G(0) + DGω(0)M1

))

× G(ω −M1) = M⊤
1 D1G(ω −M1)

where

D1 = DWω(0)
⊤−DW (0)DG(0)−1DGω(0)−(G⊤D2W (0)−G⊤DW (0)DG(0)−1D2G(0)) ∈ R

L×(Nm)

and where the three-dimensional tensor multiplication is understood as follows:

M⊤
1 DW (0)DG(0)−1DGω(0) =

∑

k

M1,kDW (0)DG(0)−1DGωk
(0)

M⊤
1 G

⊤DW (0)DG(0)−1DGω(0) =
∑

k

(GM1)kDW (0)DG(0)−1DGak(0) .
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Rewriting, we get

W (0) + ε

(
−DW (0)DG(0)−1Gω(0)ω +Wω(0)ω

)

+ ε2

(
−DW (0)DG(0)−1ε2G(2)(k)−M⊤

1 D1G(ω −M1)

+ 0.5
(
(a(1)(k))⊤D2W (0)a(1)(k) + ω⊤Wω,ω(0)ω + 2a(1)(k)⊤DWω(0)ω

))
+ o(ε2)

= W (0) + ε

(
−DW (0)Gω +Wω(0)ω

)

+ ε2

(
−DW (0)DG(0)−1ε2G(2)(k)−M⊤

1 D1G(ω −M1)

+ 0.5
(
M⊤

1 G
⊤D2W (0)GM1 + ω⊤Wω,ω(0)ω − 2(GM1)

⊤DWω(0)ω
))

+ o(ε2) .

Now,

ε2G(2)(k) = 0.5(M⊤
1 G

⊤D2G(0)GM1 − 2(GM1)
⊤DGω(0)ω + ω⊤Gωω(0)ω) .

Thus, the desired expression is given by

W (0) + ε

(
−DW (0)Gω +Wω(0)ω

)
+ ε2(0.5M⊤

1 AM1 +M⊤
1 Bω + ω⊤Cω)
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where we have defined

A ≡ −DW (0)DG(0)−1G⊤D2G(0)G + 2D1G + G⊤D2W (0)G

= −DW (0)DG(0)−1G⊤D2G(0)G + 2
(
DWω(0)

⊤ −DW (0)DG(0)−1DGω(0)

− (G⊤D2W (0)−DW (0)DG(0)−1G⊤D2G(0))
)
G + G⊤D2W (0)G

= G⊤DW (0)DG(0)−1D2G(0)G − G⊤D2W (0)G + 2(DWω(0)
⊤G − G⊤DW (0)DG(0)−1DGω(0)) ∈ R

L×L

B ≡ G⊤DW (0)DG(0)−1DGω(0)−D1G − G⊤DWω(0)

= G⊤DW (0)DG(0)−1DG⊤
ω (0)−

(
G⊤DWω(0)− G⊤DW (0)DG(0)−1DGω(0)

− (G⊤D2W (0)G −DW (0)DG(0)−1G⊤D2G(0))G
)
−DWω(0)

⊤G

Here, the first term is given by

(DW (0)DG(0)−1DG⊤
ω (0))i,j =

∑

k

((DW (0)DG(0)−1)k
∂2Gk

∂ai∂ωj

Q.E.D.

B Proofs for Linearized Partitions: One Dimension

Proof of Proposition 11. In this case, the region Ωk takes the form

Ωk = {ω : (q̃k − q̃l)
⊤

(
∇ωZ(0)

∇ωG(0)

)
ω ≥ ṽk − ṽl ∀ l}
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for all l 6= k, while the system takes the form

q̃k = ∇2V (Z(0), G(0))A
(1)
k

ṽk = 0.5(A
(1)
k )⊤∇2V (Z(0), G(0))A

(1)
k

A
(1)
k =

(
∇Zω(0)

∇Gω(0)

)
xk

xk =

∫

Ω∗

k

ωµ0(ω)dω/M(Ω∗
k) .

Thus,

ṽk = x2
kν, q̃

⊤
k

(
∇Zω(0)

∇Gω(0)

)
= νxk,

and the partition take the form

Ωk = {ω : ν(xk − xl)ω ≥ 0.5(x2
k − x2

l )ν ∀l} .

Let us order xk in the increasing order. If ν > 0, then this means

(xk − xl)ω ≥ 0.5(x2
k − x2

l )

for all l 6= k, which means ω ≥ 0.5(xk + xl) for all xl ≤ xk and ω ≤ 0.5(xk + xl) for all

xl ≥ xk. That is, Ωk = ((xk−1 + xk)/2, (xk + xk+1)/2). By contrast, if ν < 0, then the sets is

empty. This is intuitive: If Ṽ is convex, then there are gains from concavification. But if it

is concave, then it is optimal not to reveal any information.

Then, the system takes the form

xk =

∫ (xk+xk+1)/2

(xk−1+xk)/2
ωµ0(ω)dω

∫ (xk+xk+1)/2

(xk−1+xk)/2
µ0(ω)dω

.
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Or, equivalently,

∫ (xk+xk+1)/2

(xk−1+xk)/2

ωµ0(ω)dω − xk

∫ (xk+xk+1)/2

(xk−1+xk)/2

µ0(ω)dω = 0 .

Q.E.D.

Proof of Proposition 14. Let x∗
k be the uniform partition of [0, 1]. Define

η
(p)
k ≡

∫ (x∗

k
+x∗

k+1
)/2

(x∗

k−1
+x∗

k
)/2

ωpη(ω)dω .

Then, define

α∗
k ≡

8

x∗
k+1 − x∗

k−1

(x∗
kη

(0)
k − η

(1)
k ) .

Then, we can rewrite (21) as

∫ (xk+xk+1)/2

(xk−1+xk)/2

ωdω − xk

∫ (xk+xk+1)/2

(xk−1+xk)/2

µ0(ω)dω = ε
x∗
k+1 − x∗

k−1

8
α∗
k + O(ε2) . (21)

That is,

1

8
(xk+1 − xk−1)(xk−1 + xk+1 − 2xk) = ε

x∗
k+1 − x∗

k−1

8
α∗
k + O(ε2)

Let xk = x∗
k + εx̃k +O(ε2). Then, xk−1 + xk+1 − 2xk = O(ε) and hence

1

8
(x∗

k+1 − x∗
k−1)ε(x̃k−1 + x̃k+1 − 2x̃k) = ε

x∗
k+1 − x∗

k−1

8
α∗
k + O(ε2) .

Thus, we get the system

x̃k−1 + x̃k+1 − 2x̃k = α∗
k .
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Thus, the precision of the signal is determined by α∗
k : if α

∗
k > 0, then the precision is locally

increasing, and is decreasing otherwise. By direct calculation, if η is monotone increasing on

the k’th interval then α∗
k is negative. Otherwise, it is positive.

The solution to this system is given by

x̃k = kx̃1 +

k−1∑

m=1

(k −m)α∗
k ,

Q.E.D.

Proof of Proposition 15. Let us rewrite the system (11) as

F (µ0(·), {xk},Λ2) = 0 . (22)

Suppose first that all solutions {x1
k}

K
k=1 to (22) are regular in the sense that ∇{xk}

K
k=1

F is

non-degenerate and F (µ0(·), {x
1
k},Λ2) is continuously differentiable in Λ2 at Λ2 = 0. Under

this assumption, the implicit function theorem immediately yields that all solutions to (11)

solve (13) for sufficiently small Λ2.

Suppose that the claim of the proposition is not correct. Then, there exists a sequence

Λ2(ℓ) → 0 as ℓ → ∞, and solutions {x̃V
k (ℓ)}

K
k=1 with non-zero x̃2

k(ℓ) that solve (11). By

continuity, we can pick a sub-sequence that converges to a solution to (11) with Λ2 = 0, and

the claim in the previous paragraph implies the required.

Finally, the Sard theorem implies that all solutions {x1
k}

K
k=1 to (22) are regular for generic

µ0(ω) in the linear manifold defined by condition 14 The proof is complete.

More generally, it is all about the fixed number K: distorting the rectangular structure

introduces randomization into the partition. So, if we look aK on the essential part, then the

gain cannot be offset, and hence it is better not to reveal anything about the non-essential

part (all appealing to the sub-optimality of randomization).

Q.E.D.
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Proof of Proposition 16. Consider the optimal partition for revealing information only

about ωV
1 . Then, it maximizes the part of (15) with positive eigenvalues, while at the

same time revealing no information about ωV
2 . At the same time, revealing any information

about ωV
2 would introduce randomization into the revealed information about ωV

1 (which we

know is sub-optimal) while at the same time reducing the utility component with negative

eigenvalues.

Q.E.D.
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