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Abstract

We show how to correct a misspecified stochastic discount factor (SDF) to obtain

an admissible SDF, namely an SDF that prices a given set of assets correctly. We

construct the admissible SDF in the context of the traditional Arbitrage Pricing Theory

(APT), which we extend to capture misspecification from pervasive (systematic) risk

in addition to idiosyncratic risk. If the number of assets is large, the admissible SDF

recovers fully (1) the contribution of the missing pervasive factors without requiring

one to identify the missing factors and (2) the effect of idiosyncratic risk, which can

play a significant role in asset pricing. Our approach applies both to reduced-form and

equilibrium models, either linear or nonlinear. In an empirical application, we use our

methodology to correct the SDF based on the consumption CAPM model and find that

Size and Profitability are the most significant missing risk factors, whereas Value and

Intermediary Capital are not significant.
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1 Introduction

Hansen and Jagannathan (1991) provide the bound that any admissible stochastic discount

factor (SDF) must satisfy and Hansen and Jagannathan (1997) characterize the distance

between any given SDF and the set of admissible SDFs and provide the linear correction

to make any misspecified SDF admissible. There is a large literature that builds on these

papers: some of these papers show how to sharpen the bounds while others generalize the

correction; see, for example, Ghosh, Julliard, and Taylor (2017) and Orlowski, Sali, and

Trojani (2016). Our objective in this paper is to develop a new methodology to construct

an admissible SDF from a given candidate SDF that depends on K observed risk factors,

as commonly used in financial economics.

There are a number of challenges in going from the candidate factor SDF, called the

beta SDF, to an SDF that prices the N assets correctly, especially when N is large. The

first is the presence of model misspecification. For instance, the K risk factors may not

span the entire space of factors that are priced. Other sources of misspecification include

mismeasured factors, idiosyncratic pricing errors such as sentiment, and omitted nonlinear

terms that should have been included according to an equilibrium asset-pricing model. In

order to account for these sources of misspecification, we extend the traditional APT so that

it captures not just small idiosyncratic pricing errors but also pricing errors that are large

and pervasive, while still satisfying the no-arbitrage condition. Then, we use the extended

APT to show how the beta SDF can be corrected to obtain an admissible SDF; we call the

correction term the alpha SDF. The theory we provide ensures that the corrected admissible

SDF is nonnegative.

The next challenge is that the alpha SDF is a function of idiosyncratic risk, which is not

directly observable. We show how to construct a version of the corrected SDF using only

observable quantities based on the notion of linear projections; we label this the projection

SDF. To understand the economic forces driving the alpha SDF, we demonstrate that for

large N , the alpha SDF recovers fully the contribution of the missing factors, mismeasured

factors, and nonlinearities without requiring one to identify the missing factors. Indeed, the

regression R2 from projecting the alpha SDF on the space spanned by a set of candidate

2



missing factors converges to one as N increases, if the candidate factors span the true set

of missing factors. This result holds regardless of the length of the time series, T .

The final challenge is to estimate the corrected SDF. The general nonparametric formu-

lation of the admissible SDF by Hansen and Jagannathan (1991, eq. (5)) involves estimating

the covariance matrix of returns, which depends on N(N + 1)/2 quantities. The extended

APT addresses precisely this problem. It captures the rich cross-sectional structure of as-

set payoffs, while ensuring that the second-moment payoff matrix is nonsingular even when

N > T . Moreover, the extended APT accomplishes this with only a small number of param-

eters, of the order of N , once one imposes a suitable sparsity structure on the covariance

matrix of return idiosyncratic innovations. This sparsity structure is not overly restrictive

exactly because the cross-sectional dependence of payoffs is captured by the observed and

latent factors accommodated by the extended APT.

We evaluate our methodology using simulations based on the Fama-French five fac-

tor model. The simulations demonstrate that our methodology is remarkably effective in

correcting misspecification arising either from missing factors or idiosyncratic risk. In an

empirical application, we use our methodology to correct the beta SDF based that is based

on the consumption-CAPM. We then use the correction term to evaluate the contribution

of factors that are missing in the consumption CAPM but are prominent in the empirical

asset-pricing literature. We find that the Size and Profitability are missing risk factors,

whereas Value and Intermediary Capital are not.

The rest of the paper is arranged as follows. We discuss the related literature in Sec-

tion 2. In Section 3, we describe our modeling assumptions and the extended APT. In

Section 4, we characterize the SDF implied by the extended APT and study its behavior as

the number of assets increases. In Section 5, we provide two representations of the SDF—

the first in terms of returns and the second in terms of a one-factor beta model. In Section 6,

we describe how our approach applies also to nonlinear SDFs from equilibrium asset pricing

models, such as Breeden (1979), Campbell and Cochrane (1999), and Bansal and Yaron

(2004). In Section 7, we explain in greater detail how our approach compares to that in

Hansen and Jagannathan (1997), Ghosh, Julliard, and Taylor (2017), and Kozak, Nagel,
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and Santosh (2018). We illustrate our theoretical results using a simulation experiment in

Section 9 and using empirical data in Section 10. We conclude in Section 11.

Technical results are collected in a series of appendices. Appendix A contains the proofs

for all the theorems. A decomposition of the SDF return in terms of the returns on “alpha”

and “beta” portfolios is given in Appendix B. Different forms of misspecification that our

framework can capture are described in Appendix C. Basic notions about the SDF from the

existing literature are described in Appendix D. Details of how to estimate the extended

APT are given in Appendix E and our approach for computing p-values is described in

Appendix F.

2 Related Literature

Arrow (1964) introduces the notion of state prices that paved the way for the concept of the

SDF.1 Ross (1978) shows that the absence of arbitrage opportunities implies the existence

of a strictly positive SDF when there are only a finite number of states of the world; for a

survey of work in this area, including the extension to the case where the number of states

is infinite, see Delbaen and Schachermayer (2006). Chamberlain and Rothschild (1983)

show that the law of one price, a concept weaker than no arbitrage, implies the existence

of an SDF that is not necessarily positive when asset payoffs have finite variances. The

existence of an SDF for an infinite sequence of assets, as considered in our work, does not

follow directly from the law of one price but requires a form of asymptotic no arbitrage.

We complement these papers by providing a closed-form expression for the SDF. We allow

for correlation between latent and observed factors, which is not a problem when all factors

are unobserved, as is assumed in these papers.

The idea of misspecification of the SDF motivates the work of Hansen and Jagannathan

(1991), in which they provide the minimum-variance bound that must be satisfied by any

admissible SDF; Luttmer (1996) extends their analysis to economies with proportional

transaction costs, short-sale constraints, and margin requirements. Snow (1991) shows

how to bound higher moments of the pricing kernel. Stutzer (1995) shows how, using the

1For a comprehensive treatment of the SDF in the absence of misspecification, see the excellent textbooks
by Cochrane (2005) and Back (2017).
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Kullback-Leibler Information Criterion, one can construct an entropy bound for the risk-

neutral probability measure that naturally imposes the nonnegativity constraint on the SDF.

Ghosh, Julliard, and Taylor (2017) build on this approach to derive bounds on the SDF

(and, as explained below, also show how to correct the SDF for misspecification). Bansal

and Lehman (1997) and Alvarez and Jermann (2005) derive restrictions on the entropy

bound to decompose the SDF into transitory and permanent components.

Instead of the least-square projections in Hansen and Jagannathan (1997), Almeida

and Garcia (2012) consider minimum-discrepancy projections that take into account higher

moments of asset returns. Backus, Chernov, and Zin (2014) exploit the term structure of

entropy to measure the pricing ability of the SDF implied by models with recursive utility

and habit. Liu (2015) generalizes the basic entropy bounds of Stutzer (1995) and Backus,

Chernov, and Zin (2014) by developing bounds on the SDF based on a generalized entropy

function and uses these bounds to estimate the distribution of rare events. Almeida and

Garcia (2017) derive SDF bounds that generalize the variance (Hansen and Jagannathan,

1991), entropy (Stutzer, 1995; Bansal and Lehman, 1997; Backus, Chernov, and Zin, 2014),

and higher-moment bounds (Snow, 1991) that allow one to distinguish models where dis-

persion comes mainly from skewness from those where it comes from kurtosis. Orlowski,

Sali, and Trojani (2016) extend and unify the literature on bounds on SDFs by showing

how variance, entropy, and Hellinger bounds can be obtained from the same minimization

problem; an application of this theory to puzzles in international finance is presented in

Sandulescu, Trojani, and Vedolin (2017). In contrast to these papers, our objective is not

to identify a bound on the SDF; instead, we provide the exact correction required for a

proposed SDF to become admissible. As a by-product of our analysis, the corrected SDF,

expressed as a projection on the set of payoffs, satisfies the variance bound exactly.

In contrast to the large literature on bounds on the SDF, there is less work in the area

of correcting the SDF for misspecification error because of the intrinsic difficulty in finding

a satisfactory solution. Hansen and Jagannathan (1997) explicitly recognize that, when

using SDFs, there is the possibility of pricing errors, which may arise either because the

model used is an approximation to the true model or because there is an error in measuring

the relevant factors. They address the question: “How large is the misspecification of the

stochastic discount factor proxy [their emphasis]?” In doing so, they provide the pricing
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factor that is the smallest additive nonparametric adjustment (in a least-squares sense)

required to make a given SDF admissible. Almeida and Garcia (2012) provide an additive

correction term that is based on minimum-discrepancy projections. Ghosh, Julliard, and

Taylor (2017) provide a multiplicative nonparametric correction using a Kullback-Leibler

entropy-minimization approach. These papers provide a non-parametric specification of the

correction. Although this ensures admissibility of the corrected SDF, it is challenging to

estimate the correction accurately when the number of assets to be priced is large relative to

the number of observations.2 Our work contributes to this stream of the literature by using

the extended APT to identify the required correction for the SDF that, on the one hand is

sufficiently flexible to mitigate various sources of misspecification and, on the other hand,

can be estimated accurately even when the number of assets is large; in fact, having a large

number of assets allows us to reconstruct precisely the correction required to account for

model misspecification because the larger the number of assets the better one can span the

systematic variation in returns. Moreover, our approach allows us to tease out the source

of misspecification and to understand why is the correction leading to an admissible SDF:

we can distinguish between idiosyncratic and systematic pricing errors.

In contrast to the nonparametric approach adopted in these papers, Kozak, Nagel, and

Santosh (2018) assume that the SDF is spanned by a set of pervasive latent factors, which

they estimate using principal components. By assuming that all the factors are latent, they

successfully mitigate the risk of misspecification from omitted pervasive factors, assuming

that the correct number of factors is identified. Just like them, we allow for the possibility

of latent pervasive factors; however, we allow also for the possibility that the SDF depends

on a set of observed pervasive factors. More importantly, our approach allows for the

possibility of sentiment or firm-specific characteristics to influence the SDF. Feng, Giglio,

and Xiu (2019) provide one method for identifying the set of observed factors to include in

the specification of the beta SDF, while latent factors are reflected in the alpha SDF.

There are a number of papers that show how one can exploit the duality between mean-

variance optimal portfolios and SDFs. Chamberlain and Rothschild (1983) show that the

mean-variance frontier is spanned by the projection of the SDF on the space of payoffs

2This is precisely the same problem that is encountered when estimating the portfolio weights in a mean-
variance setting using the sample means and covariances of the individual asset returns; see, for instance,
DeMiguel, Garlappi, and Uppal (2009).
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(“projection-SDF”) together with the mean functional. This result has been extended by

Hansen and Richard (1987), who also show that the projection-SDF has minimum second

moment. This implies that the projection-SDF in terms of returns belongs to the lower

(inefficient) branch of the Markowitz mean-variance frontier. We show that both the can-

didate (beta) SDF and the correction (alpha) SDF can be expressed as inefficient returns

not belonging to the SDF frontier; however, the sum of the two is on the SDF frontier.3

Our analysis of the SDF in the presence of model misspecification is founded on the

classical APT, which allows for idiosyncratic pricing errors. The classical APT of Ross

(1976) is formalized by Chamberlain (1983), Chamberlain and Rothschild (1983), Huberman

(1982), and Ingersoll (1984). Just as in Chamberlain (1983), Chamberlain and Rothschild

(1983), and Ingersoll (1984), we do not restrict the covariance matrix of the residuals to be

diagonal; that is, we allow for correlated error terms. All these models deal with a large but

countable number of assets. Building on the work of Al-Najjar (1998), Gagliardini, Ossola,

and Scaillet (2016) extend the APT to allow for an uncountable number of assets and also

relax the boundedness assumption of the maximum eigenvalue of the residual covariance

matrix. In particular, Gagliardini, Ossola, and Scaillet (2016) show that the APT bound-

inequality leads to zero pricing error for each asset when there is a continuum of assets. This

is partly a consequence of the fact that they consider the unweighted sum of the squared

pricing errors, as in the traditional APT setting. In the same setting with a continuum

of assets, Renault, van der Heijden, and Werker (2017) extend the APT to squared excess

returns allowing one to price common factors in the idiosyncratic variance of returns. We

extend the classical APT and show that it can allow not just for idiosyncratic pricing errors

but also for pervasive (systematic) pricing errors.

3 The Extended APT: A No-Arbitrage Model with Misspec-

ification

In contrast to the traditional APT, which allows only for idiosyncratic pricing errors, in this

section we extend the APT so that it can capture also systematic pricing errors that would

3Moreover, we show that these returns can be expressed as the returns of the alpha and beta portfolios,
which are the two inefficient portfolios that span the entire Markowitz efficient frontier.
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arise if there are missing pervasive factors in the return-generating model.4 Then, in the

next section, we demonstrate how the extended APT model can be used to construct the

term that is required to make a misspecified SDF admissible; that is, the SDF that prices

all assets correctly.

3.1 The Traditional APT

We now list the assumptions on which the APT is founded. We then describe how to relax

these assumptions in order to obtain the extended APT. We study a market with an infinite

number of assets.5 Let the N -dimensional vector RN,t+1 = (R1,t+1, R2,t+1, . . . , RN,t+1)′

denote the vector of gross returns on the N risky assets with µN,t its conditional mean at

date t.

Let Rft be the gross return on the risk-free asset. If a risk-free asset does not exist, then

one needs to extend the set of payoffs with the unit payoff and use in place of the risk-free

rate one of the following three returns: (1) the return on the minimum-variance portfolio;

(2) the return on the zero-beta portfolio; (3) the constant-mimicking portfolio return.

The classical APT requires two main assumptions. The first assumption is of a linear

factor structure for the returns RN,t+1. Let ft+1 be the K× 1 entire vector of observed risk

factors; BN,t = (β1,t,β2,t, . . . ,βN,t)
′ denotes an N ×K full-rank matrix of factor loadings

with ith row β′i,t; and, εN,t+1 = (ε1,t+1, ε2,t+1, . . . , εN,t+1)′ denotes an N × 1 vector of

idiosyncratic residuals. Our definition of the classical APT may appear to be different

from the usual definition, which does not assume knowledge of the observed risk factors.

However, the difference is only illusory because ft+1−Et(ft+1) is still unobserved given that

Et(ft+1) is, in general, unknown regardless of whether the ft are observed or not. We prefer

to formulate the classical APT in this way because we will formulate the extended APT

below assuming that the K factors we observe are not the full set of risk factors.

4A statistical criterion to assess whether the error terms in a given model share at least one common
(pervasive) factor is provided by Gagliardini, Ossola, and Scaillet (2017).

5Instead of considering a sequence of distinct economies, we consider a fixed infinite economy in which
we study a sequence of nested subsets of assets. Therefore, in the Nth step, as a new asset is added to the
first N − 1 assets, the parameters of the first N − 1 stay unchanged. These unchanging parameters can be
interpreted as the parameters one would get in the limit as the number of assets becomes asymptotically
large.
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Assumption 3.1 (Linear factor model). We assume the N -dimensional vector RN,t of

gross asset returns can be characterized by:

RN,t+1 = µN,t + BN,t

(
ft+1 − Et(ft+1)

)
+ εN,t+1,

where, at any time t+ 1, ft+1 has the K ×K conditional covariance matrix Ωt and εN,t+1

is distributed with zero conditional mean and N × N conditional covariance matrix ΣN,t,

with Ωt and ΣN,t being positive definite. Moreover, εN,t+1 and ft+1 are conditionally un-

correlated; that is, Et(εN,t+1f
′
t+1) = 0N×K . Finally, assume that K < N .

The second assumption rules out arbitrage when the number of assets is large. Given an

arbitrary portfolio strategy a with weights wa
N,t = (wa1,t, w

a
2,t, . . . , w

a
N,t)

′ of N risky assets,

and using 1N to denote an N -dimensional vector of ones, we define the associated portfolio

gross return as Rat+1 = R′N,t+1w
a
N,t +Rft(1− 1′Nwa

N,t).

Assumption 3.2 (No arbitrage). There are no arbitrage opportunities for a sufficiently

large number of assets; that is, there is no sequence of portfolios along some subsequence

N ′ for which:

vart(R
′
N,t+1w

a
N ′,t)→ 0 as N ′ →∞ and (µN ′,t −Rft1N )′wa

N ′,t ≥ δ > 0 for all N ′,

where δ denotes an arbitrary positive scalar.6

Note that the above definition of no arbitrage for a large number of assets does not

rule out non-negative SDFs (see Chamberlain and Rothschild (1983) and Back (2017)), in

contrast to the definition of no arbitrage in Hansen and Richard (1987).

Under Assumptions 3.1 and 3.2, the expected excess return can be written as:

Et(RN,t+1 −Rft1N ) = µN,t −Rft1N = αN,t + BN,tλt,

where the vector of pricing errors is αN,t = (µN,t − Rft1N ) − BN,tλt, and the vector of

risk premia, λt, is the limit of
(
B′N,tΣ

−1
N,tBN,t

)−1
B′N,tΣ

−1
N,t(µN,t − Rft1N ) as N → ∞;

Ingersoll (1984) derives the precise condition for this limit to exist: Let giM (A) denote

the ith eigenvalue of a symmetric matrix A in decreasing order for 1 ≤ i ≤ M . Then, if

6Throughout the paper, we use δ to denote an arbitrary positive scalar, not always taking the same value.
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g1K((B′N,tΣ
−1
N,tBN,t)

−1) → 0 as N → ∞ and Assumptions 3.1 and 3.2 hold, then Ingersoll

(1984, Theorem 3 and ftn. 10) shows that λt is unique and prices assets with bounded

squared error. Obviously, if the observed factors are traded portfolio (gross) returns, then

λt = Et(ft+1)−Rft1K .

More importantly, Ross (1976), Huberman (1982), Chamberlain and Rothschild (1983),

and Ingersoll (1984) show that if ΣN,t has bounded eigenvalues for large N , then the APT

implies that the unique λt prices assets and the resulting pricing errors, αN,t, satisfy the

following bound:

α′N,tΣ
−1
N,tαN,t ≤ δapt <∞, (1)

where δapt is some arbitrary positive scalar.

Several comments apply to our specification of the data-generating process for asset

returns. First, the above arguments, such as the existence of the risk premia corresponding

to the observed factors ft+1, require the associated loadings matrix BN,t to be of full rank

for any N and t. In turn, this means that we are not allowing any of the observed factors,

to be spurious or almost-spurious, in the sense of Jagannathan and Wang (1998), Kan and

Zhang (1999) and Kleibergen (2009).7 Therefore, as customary in empirical asset pricing,

for instance when estimating risk premia, one needs to use the various tests for spurious

factors before implementing our method empirically. Second, all our theoretical results hold

at every instant t; hence our specification of the APT as a conditional asset pricing model.

When taking our model to the data, if time-variation is desired one needs to parametrize

this; we explain in Section 8 how this can be done using state variables.

3.2 The Extended APT

With respect to the restriction in (1), there are two possible cases for ΣN,t as N →∞. The

existing APT literature has focused on studying the first case in which ft+1 indeed includes

the entire set of risk factors, and thus, the pricing errors are idiosyncratic (implying that all

the eigenvalues of ΣN,t are bounded a.s.). We now extend the APT model in the existing

literature to the second case in which ft+1 does not include all the risk factors, and therefore,

7More generally, we are not allowing any column of BN,t to be a linear combination of the other columns.
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the pricing errors are related to pervasive factors; that is, at least one of the eigenvalues of

ΣN,t is unbounded.

Theorem 3.1 (No-arbitrage constraint on αN with large pricing errors). Suppose that

the vector of asset returns, RN,t+1, satisfies Assumptions 3.1 and 3.2. Suppose that for

some finite 1 ≤ p < N the following three conditions hold: (i) supN gpN (ΣN,t) = ∞;

(ii) supN gp+1N (ΣN,t) ≤ δ < ∞; and, (iii) infN gNN (ΣN,t) ≥ δ > 0. Then, the APT

restriction in (1) is satisfied by the pricing error αN , represented as

αN,t = AN,tλmiss,t + aN,t, (2)

and the idiosyncratic covariance matrix given by:

ΣN,t = AN,tA
′
N,t + CN,t, (3)

where CN,t is a symmetric matrix with bounded eigenvalues, AN,t is an N×p matrix whose

jth column equals g
1
2
jN (ΣN,t) vjN (ΣN,t), where 1 ≤ j ≤ p, vjN (ΣN,t) is the eigenvector of

ΣN,t associated with the eigenvalue gjN (ΣN,t), λmiss,t is some p × 1 vector, and aN,t is

some non-zero N × 1 vector that satisfies a′N,tC
−1
N,taN,t ≤ δ <∞.

Theorem 3.1 shows that the common perception that the pricing error αN needs to be

small in the APT is not accurate. In fact, it states that if the pricing errors are large so

that the maximum eigenvalue of ΣN is asymptotically unbounded, then the contribution

of the pricing error to the portfolio return could also be large, but for this to satisfy the

no-arbitrage condition, any portfolio earning this high return would not be well diversified

and would be bearing idiosyncratic risk.8

Recall that, in general, latent factors can be determined only up to a rotation. Our

formulation of αN,t and ΣN,t in Theorem 3.1 implies a specific rotation where, in particular,

we follow Chamberlain (1983), and assume that

covt(fmiss,t+1) = Ip. (4)

8For additional details of the relation between well-diversified portfolios and deviation from exact pricing,
see Chamberlain (1983, Corollary 1).
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However, other rotations might be considered although this one provides a nice interpreta-

tion of the risk premia λmiss,t as (multivariate) Sharpe ratios.9

Observe that the first term in (2), AN,tλmiss,t, is associated with p latent or missing

pervasive factors, indicated by fmiss,t, in which AN,t are the factor loadings and λmiss,t are

the risk premia for these missing factors. In particular, pervasiveness of the latent missing

factors is implied by A′N,tAN,t →∞ as N increases; see Connor, Goldberg, and Korajczyk

(2010) for further discussion. The second term in (2), aN,t, is the asset-specific part of

the pricing error αN,t; for instance, aN,t could be interpreted as representing managerial

skills or views of analysts about specific firms which, in contrast to AN,t, must satisfy

a′N,taN,t ≤ δ <∞ as N increases because of no arbitrage.

Our result in (3) implies that the purely idiosyncratic covariance matrix has bounded

eigenvalues for any N . Although this can be interpreted as a form of sparsity, for practical

implementation of our methodology one needs to parametrize CN,t, in particular, imposing

that it is a function of a number of parameters of the order of O(N). This implies an

even stronger form of sparsity than the one expressed by the bounded-eigenvalue condition.

For instance, diagonal or even spherical CN,t represent special, important, cases of possible

parameterizations, as explained in our estimation section below. However, note that thanks

to the factor structure specified for the observed and latent common risk factors, ft+1 and

fmiss,t+1 respectively, assuming such sparsity is reasonable because it does not limit the

ability of the extended APT to capture cross-sectional dependence in asset returns.

9To better understand the implications of such a rotation, consider the factor structure in the (standard-
ized) latent factors:

αN,t + AN,t(fmiss,t+1 − Et(fmiss,t+1)) + ηt+1,

where ηt+1 has zero conditional mean, conditional covariance CN,t, and is conditionally uncorrelated with
fmiss,t+1. Then, such factor structure has mean αN,t and covariance ΣN,t, which for any symmetric non-
singular matrix Ωmiss,t, can be expressed as:

αN,t = aN,t + AN,tΩ
− 1

2
miss,tΩ

1
2
miss,tλmiss,t = aN,t + A†N,tλ

†
miss,t, and

ΣN,t = AN,tΩ
− 1

2
miss,tΩmiss,tΩ

− 1
2

miss,tA
′
N,t + CN,t = A†N,tΩmiss,tA

†′
N,t + CN,t,

where A†N,t = AN,tΩ
− 1

2
miss,t. In other words, we are assuming that the latent factors in Theorem 3.1 are

a rotation, by means of the matrix Ω
− 1

2
miss,t, of some un-normalized missing factors, say f†miss,t+1 with risk

premia λ†miss,t = Ω
1
2
miss,tλmiss,t, covariance Ωmiss,t, and loadings A†N,t. Therefore, λmiss,t = Ω

− 1
2

miss,tλ
†
miss,t;

that is the risk premia λmiss,t have the interpretation of Sharpe ratios. The same identification assumption

(4) is obtained when considering any rotation by means of HtΩ
− 1

2
miss,t, for any orthogonal matrix Ht.

Therefore, each of the elements of fmiss,t+1 is a given linear combination of all the elements of f†miss,t+1.
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4 The SDF with Model Misspecification

In this section, we report our main results about the SDF in the presence of model mis-

specification.10 We consider a situation where one wishes to price a given set of N assets

using a candidate SDF that is linear in a set of K observed risk factors; the nonlinear case

is treated in Section 6.

4.1 The SDF under the Extended APT

We now derive the closed-form expression for the SDF when the extended APT is used to

capture model misspecification. These results complement Chamberlain (1983), who shows

existence and continuity of the “cost functional” (i.e. the SDF) under the classical APT,

without providing closed-form expressions.

The salient aspect of the extended APT is that the implied SDF depends on both com-

mon and idiosyncratic risk premia and risks (unless αN,t = 0N ). In turn, this reflects

the possibility that pure idiosyncratic risk, arising when the elements of εN,t+1 are only

mildly cross-sectionally dependent, affects asset prices. This occurs when the idiosyncratic

component of expected returns, aN,t are not all zero. For this case, Chamberlain (1983,

Section 3) shows that the properties of the mean-variance frontier are still valid, although

the frontier will not be well-diversified. Raponi, Uppal, and Zaffaroni (2019) formalize fund

separation, namely that the mean-variance frontier is now spanned by two inefficient port-

folios, with special properties: one portfolio contains only common risk and the other only

idiosyncratic risk. However, the idiosyncratic component εN,t+1 can also mask unspanned

common risk, due to omitted pervasive factors. In this case, the elements of εN,t+1 will be

strongly cross-sectionally correlated because the missing pervasive factors induce a factor

structure. Although we start our analysis with the simplifying assumption of conditional

independence between the common observed factors ft+1 and the idiosyncratic shock εN,t+1,

the possibility that εN,t+1 contains missing pervasive factors requires us to generalize to the

case when the two components are correlated.

10For background information, we also described existing results about the SDF in the absence of model
misspecification in Appendix D, where we follow Hansen and Richard (1987) and often refer to Chamberlain
and Rothschild (1983); for textbook treatment, see Cochrane (2005) and Back (2017).
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Theorem 4.1 (SDF in closed form and its linear projection). Under Assumptions 3.1 and

3.2 of the APT, for a given µm,t, there exists an admissible SDF of the form

mt+1 = µm,t + b′t(ft+1 − Et(ft+1)) + c′N,tεN,t+1,

with

bt = −µm,t Ω−1
t λt,

cN,t = −µm,t Σ−1
N,tαN,t. (5)

and in terms of a linear projection on the set of payoffs (1,Re
N,t+1), the projection SDF is

m∗t+1 = proj(mt+1|(1,Re
N,t+1))

= µm,t + (b′tΩtB
′
N,t + c′N,tΣN,t)V

−1
N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
,

where VN,t is the (conditional) covariance matrix of excess returns.

Remark 4.1.1. Regarding m∗t+1, note that Et(Re
N,t+1) = µN,t − Rft1N = αN,t + BN,tλt,

implying that one always recovers the true expected excess return by combining the alpha

and beta components of returns. In other words, the extended APT mitigates completely

model misspecification.

Remark 4.1.2. Notice that, although they have the same pricing implications, E(m∗t+1)2 ≤

E(mt+1)2 because m∗t+1 is the unique minimum-variance SDF for a given mean µm,t.

Remark 4.1.3. Chamberlain (1983, Cor. 1 (i)) shows that exact pricing (i.e. when expected

excess returns are an exact linear combination of the betas) holds if and only if the SDF (i.e.

the cost functional) is well diversified. This is confirmed by our result in (5), from which

we see that cN,t = 0N if and only if the pricing errors αN,t = 0N . This implies that the

SDF mt+1 is not a function of idiosyncratic risk εN,t+1 if and only if exact pricing holds.11

Remark 4.1.4. The result in the theorem above holds for both traded and nontraded

observed factors, ft. In both cases, these factors can be constructed as the limit of portfolios

that have zero idiosyncratic risk. Indeed, for the case of nontraded factors, one just replaces

them with the corresponding mimicking portfolios that are asymptotically valid when N is

large, which is exactly the setting for which the APT is designed.

11The term c′N,tεN,t+1 has zero mean and (conditional) variance c′N,tΣ
−1
N,tcN,t. The latter is zero, implying

c′N,tεN,t+1 is zero a.s., if and only if cN,t = 0N , which by non-singularity of ΣN,t, is equivalent to αN,t = 0N .
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We now show how the SDF under the APT is related to the SDF under a traditional

factor model, as discussed above.

Theorem 4.2 (Decomposition of SDF and its linear projection). Under Assumptions 3.1

and 3.2, for any µm,t, the admissible SDF can be decomposed as

mt+1 = mα
t+1 +mβ

t+1,

where

mβ
t+1 = µm,t − µm,t(ft+1 − Et(ft+1))′Ω−1

t λt, (6)

mα
t+1 = −µm,tε′N,t+1Σ

−1
N,tαN,t,

such that covt(m
α
t+1,m

β
t+1) = 0.

The projection SDF can also be decomposed in terms of linear projection on the set of

payoffs (1,Re
N,t+1):

m∗t+1 = mα∗
t+1 +mβ∗

t+1,

where

mβ∗
t+1 = µm,t − µm,tλ′tB′N,tV−1

N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
, and

mα∗
t+1 = −µm,tα′N,tV−1

N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
.

Remark 4.2.1. The implications of the above theorem for the pricing of asset returns are:

Et
(
mβ
t+1

[
1

Re
N,t+1

])
= µm,t

[
1
αN,t

]

Et
(
mα
t+1

[
1

Re
N,t+1

])
= µm,t

[
0

−αN,t

]
,

and, because mt+1 = mα
t+1 +mβ

t+1, we have:

Et
(
mt+1

[
1

Re
N,t+1

])
= µm,t

[
1

0N

]
.

However, notice that although mβ
t+1 is misspecified for the excess returns Re

N,t+1, it prices

the observed factors correctly, because Et(mβ
t+1(ft+1 −Rft1K)) = 0K .
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Remark 4.2.2. In terms of the first two moments of the decomposition of the SDF, we

have that

Et(mβ
t+1) = µm,t, Et

(
(mβ

t+1)2
)

= µ2
m,t(1 + λ′tΩ

−1
t λt),

Et(mα
t+1) = 0, Et

(
(mα

t+1)2
)

= µ2
m,tα

′
N,tΣ

−1
N,tαN,t.

Remark 4.2.3. The term mβ
t+1 in (6) is exactly the “classic” factor SDF used in the

existing asset-pricing literature.

Remark 4.2.4. The term mα
t+1 is not an admissible SDF; for instance, Et(mα

t+1) = 0 for

any µm,t.

4.2 Nonnegativity of the SDF

The SDF characterized in the previous section may not always be nonnegative. In this

section, we show how one can identify the SDF implied by the extended APT so that the

SDF is always nonnegative. There are at least two approaches for addressing this problem.

The first approach is to specify that the SDF is an exponential function of the payoffs (see

Ghosh, Julliard, and Taylor (2017) and Gourieroux and Monfort (2007)), which then leads

to an SDF that is nonnegative by construction; this approach is illustrated below. The

second approach, not pursued here, is that of Hansen and Jagannathan (1997, Eq. (24)),

who show that it is convenient to express the SDF corrected for model misspecification as the

payoff to an option, which is always nonnegative. Both approaches require an assumption

regarding the distribution of payoffs.12 For simplicity, we assume throughout that returns

are conditionally normal but one can consider other distributions, allowing for asymmetry

and fat tails.13

Theorem 4.3 (Nonnegative SDF in closed form). Under Assumptions 3.1 and 3.2 of the

APT and assuming that returns are conditionally normally distributed, there exists an ad-

missible SDF m+
t+1, with the given mean µm,t, of the form

m+
t+1 = exp

[
µ+
m,t + b′t(ft+1 − Et(ft+1)) + c′N,tεN,t+1

]
,

12If the distribution of payoffs is absolutely continuous but time is discrete, then markets will be incomplete
and the admissible SDF is not uniquely defined.

13Examples are the generalized-elliptical distribution, the generalized-error distribution (Box and Tiao,
1973), and the variance-gamma distribution (Madan and Seneta, 1990).
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with

µ+
m,t = lnµm,t −

1

2
λ′tΩ

−1
t λt −

1

2
α′N,tΣ

−1
N,tαN,t,

bt = −Ω−1
t λt,

cN,t = −Σ−1
N,tαN,t.

When the risk-free asset is available

µ+
m,t = − lnRft −

1

2
λ′tΩ

−1
t λt −

1

2
α′N,tΣ

−1
N,tαN,t.

Theorem 4.4 (Decomposition of the nonnegative SDF). Under Assumptions 3.1 and 3.2 of

the APT and that returns are conditionally normally distributed, the admissible nonnegative

SDF can be decomposed as

m+
t+1 = mα+

t+1m
β+
t+1,

where

mβ+
t+1 = µm,t exp

[
− λ′tΩ−1

t (ft+1 − Et(ft+1))− 1

2
λ′tΩ

−1
t λt

]
,

mα+
t+1 = exp

[
−α′N,tΣ−1

N,tεN,t+1 −
1

2
α′N,tΣ

−1
N,tαN,t

]
,

such that covt(m
α+
t+1,m

β+
t+1) = 0.

Remark 4.4.1. The implications of the above theorem for the pricing of asset returns are:

Et
(
mβ+
t+1

[
1

Re
N,t+1

])
= µm,t

[
1
αN,t

]

Et
(
mα+
t+1

[
1

Re
N,t+1

])
=

[
1

BN,tλt

]
.

Given that m+
t+1 = mα+

t+1m
β+
t+1, we have:

Et
(
m+
t+1

[
1

Re
N,t+1

])
= covt(m

α+
t+1

[
1

Re
N,t+1

]
,mβ+

t+1) + Et(mα+
t+1

[
1

Re
N,t+1

]
)Et(mβ+

t+1)

= covt(m
α+
t+1

[
1

BN,t(ft −Rft1K − λt)

]
,mβ+

t+1) + µm,t

[
1

BN,tλt

]

= Et(mα+
t+1)covt(

[
1

BN,t(ft −Rft1K − λt)

]
,mβ+

t+1) + µm,t

[
1

BN,tλt

]
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= Et(mα+
t+1)Et(

[
0

BN,t(ft −Rft1K − λt)

]
mβ+
t+1) + µm,t

[
1

BN,tλt

]

= µm,t

[
1

0N

]
,

because Et(ft −Rft1K − λt)mβ+
t+1) = −µm,tλt and Et(mα+

t+1) = 1.

Notice that, just like in the case where the SDF is a linear function of the factors, mβ+
t+1

prices correctly ft+1 − Rft1K (and the risk-free asset), because Et(mβ+
t+1(ft+1 − Rft1K)) =

0K , although it is misspecified for the returns Re
N,t+1, unless αN,t = 0N . Moreover, the

pricing errors αN,t still have the interpretation of prices for the idiosyncratic shocks because

Et(mα+
t+1εN,t+1) = −αN,t.

Remark 4.4.2. In terms of the first two moments of the decomposition of the SDF, we

have that

Et(mβ+
t+1) = µm,t, Et

(
(mβ+

t+1)2
)

= µ2
m,te

λ′tΩ
−1
t λt ,

Et(mα+
t+1) = 1, Et

(
(mα+

t+1)2
)

= eα
′
N,tΣ

−1
N,tαN,t .

4.3 Projection of Components of Nonnegative SDF under Extended APT

Just like in the case where the SDF is a linear function of the factors, m+
t+1 is a function of

the unobservable quantity εN,t+1, and hence, cannot be implemented. Thus, we develop a

projection version for it that is feasible.

Corollary 4.4.1 (Representation and decomposition of the nonnegative SDF in terms

of nonlinear projection). The nonnegative SDF m+
t+1 can be represented in terms of the

exponential function of the linear projections on the set of payoffs (1,Re
N,t+1), which can be

decomposed as:

m∗+t+1 = mα∗+
t+1 m

β∗+
t+1 ,

where

mβ∗+
t+1 = µm,t exp

[
− λ′tB′N,tV−1

N,t(R
e
N,t+1 − Et(Re

N,t+1)− 1

2
λ′tΩ

−1
t λt

]
, and

mα∗+
t+1 = exp

[
−α′N,tV−1

N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
− 1

2
α′N,tΣ

−1
N,tαN,t

]
.
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Remark 4.4.3. It follows that:

Et(m∗+t+1 Re
N,t+1) = 0N and Et(m∗+t+1)→ µm,t as N →∞.

Therefore, the feasible m∗+t+1 prices correctly the risky assets, and it prices correctly the

unit payoff asymptotically, whilst maintaining nonnegativity.14

Remark 4.4.4. Note that the linear projection versions of both mt+1 and m+
t+1, in view of

their admissibility property, are identical and equal to m∗t+1, which is given in Theorem 4.1.

However, because m∗t+1 has the form of a portfolio return, there is no guarantee that it is

nonnegative, unlike m∗+t+1.

Remark 4.4.5. Close analogies exist between m∗+t+1 and the nonnegative nonparametric

SDF of Ghosh, Julliard, and Taylor (2017); in particular, between our correction factor

mα∗+
t+1 and their equation (8), because the latter can be expressed as an exponential function

of the payoffs (1,Re
N,t+1), net of a constant. These analogies are discussed in greater detail

in Section 7.

4.4 Characterizing Components of the SDF for Large N

In this section, we study the properties of the SDFs when the number of risky assets is

large. In particular, we characterize the behavior of the components of the linear projection

SDFs, mα∗
t+1 and mβ∗

t+1, as the number of assets, N , increases to infinity. As an important

by product, these results allow us to directly derive the behavior of the nonlinear projection

SDFs, mα∗+
t+1 and mβ∗+

t+1 , without additional arguments. These results are practically relevant

but also economically important, because studying the behavior of the correction terms (the

mα∗
t+1 and mα∗+

t+1 ) for large N sheds light on the reasons why the alpha SDFs are able to

successfully mitigate misspecification in the candidate beta SDFs.

Recalling the expression for the linear SDF given above,

mt+1 = µm,t + b′t
(
ft+1 − Et(ft+1)

)
+ c′N,tεN,t+1,

14One can construct also another, asymptotically equivalent, nonnegative SDF that prices the unit payoff

correctly for any N by setting m∗∗+t+1 = mα∗∗+
t+1 mβ∗∗+

t+1 with mβ∗∗+
t+1 = µm,t exp

[
− λ′tB′N,tV−1

N,t(R
e
N,t+1 −

Et(Re
N,t+1))− 1

2
E′t(Re

N,t+1)′V−1
N,tEt(R

e
N,t+1)

]
, and mα∗∗+

t+1 = exp
[
−α′N,tV−1

N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)]

.
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one needs to ensure that mt+1 is well defined, i.e. is not diverging when N is arbitrarily

large. Noticing that the last term of the SDF is the only part that depends on N , a

sufficient condition for this is that vart(c
′
N,tεN,t+1) < ∞ almost surely. It turns out that

this is implied by the no-arbitrage condition that underlies the APT; in fact,

vart(m
α
t+1) = c′N,tΣN,t cN,t = µ2

m,tα
′
N,t Σ

−1
N,tΣN,tΣ

−1
N,tαN,t < µ2

m,tδapt,

where δapt is defined in (1). Similarly, with respect to our nonnegative-SDF formulation,

Et
(
(mα+

t+1)2
)

= eα
′
N,tΣ

−1
N,tαN,t < eδapt .

Having ensured that our formulations of the SDF are, by non-arbitrage, well-defined for

arbitrarily large N , we start by studying the behavior or mβ∗
t+1, which is the SDF implied

by a factor structure in the absence of any type of pricing error.

Theorem 4.5 (Properties of mβ∗
t+1 and mβ∗+

t+1 for large N). Under Assumptions 3.1, 3.2,

and N−1B′N,tΣ
−1
N,tBN,t →p Dt > 0, then as N →∞,

mβ∗
t+1 →p m

β
t+1 = µm,t − µm,tλ′tΩ−1

t (ft+1 − Et(ft+1)),

mβ∗+
t+1 →p m

β+
t+1 = µm,t exp

[
− λ′tΩ−1

t (ft+1 − Et(ft+1))− 1

2
λ′tΩ

−1
t λt

]
.

Thus, the projection versions mβ∗
t+1 and mβ∗+

t+1 recover, respectively, mβ
t+1 and mβ+

t+1 ex-

actly with respect to the set of observed factors as N →∞. Of course, the SDF components

mβ
t+1 and mβ+

t+1 will still be potentially misspecified, in general, unless αN,t = 0N .

Next, we look at the component of the admissible SDF associated with misspecification,

mα∗
t+1 and mα∗+

t+1 . To simplify the analysis, we first consider the setting where this component

depends only on firm-specific attributes, such as characteristics or sentiment; that is, αN,t =

aN,t. We then, subsequently, study the case when misspecification is solely due to missing

pervasive factors. In practice, both effects are likely to be relevant when correcting a

misspecified SDF. It is important to allow for firm-specific attributes because these cannot

be captured by common (systematic) factors that are missing from the model. Our theory

indicates that the pricing effect of such firm-specific attributes is first-order important and,

indeed, our empirical work will show that these have a substantial affect on asset prices.

Theorem 4.6 (Properties of mα∗
t+1 and mα∗+

t+1 for large N when αN,t = aN,t). Under As-

sumptions 3.1, 3.2, we have that N−1B′N,tΣ
−1
N,tBN,t →p Dt > 0 and N−

1
2α′N,tΣ

−1
N,tBN,t →p
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0, then as N →∞,

mα∗
t+1 −mα

t+1 →p 0, (7)

mα∗+
t+1 −m

α+
t+1 →p 0. (8)

Remark 4.6.1. Equations (7) and (8) suggest that αN,t, the idiosyncratic pricing error

associated with firm-specific attributes, has a non-negligible contribution to the prices of

assets, even though the no-arbitrage condition of the APT requires these pricing errors to

be small, as specified in (1).

Remark 4.6.2. The additional assumption N−
1
2α′N,tΣ

−1
N,tBN,t →p 0 is not strictly nec-

essary for our result but it simplifies our exposition, namely that the projected and non-

projected version of the alpha SDF, although both provide the required correction, have

exactly the same limiting behavior. Moreover, such additional condition does not imply

that α′N,tΣ
−1
N,tαN,t must equal zero at the limit, that is it allows some assets to exhibit a

potentially very large pricing error.

Note that, unlike for the case of the beta SDF, Theorem 4.6 does not specify the exact

form of the limit of mα∗
t+1 and f mα∗+

t+1 . However, this can be derived as follows. Further to

the regularity conditions made, now assume that

α′N,tΣ
−1
N,tεt+1 →d N(0, δt), where α′N,tΣ

−1
N,tαN,t →p δt.

Then, mα∗
t+1 and mα

t+1 share the same limit (in distribution), namely

mα
t+1 →d µm,tδ

1
2
t ηt+1,

where ηt+1 ∼ N(0, 1). Therefore, even though the APT condition in (1) implies that the

large majority of the pricing error aN,t vanishes asymptotically in N , both mα
t+1 and mα∗

t+1

do not vanish asymptotically. In other words, mα
t+1 and mα∗

t+1 have a first-order effect on

asset prices that does not dissipate even for large N . The same applies to the nonnegative

SDFs, namely mα+∗
t+1 and mα+

t+1 share the same limit (distribution), namely

mα+
t+1 →d exp

[
− δ

1
2
t ηt+1 −

1

2
δt

]
.

When N is very large, it appears that the nonnegative formulation is more useful as the

limit alpha SDF will exhibit a Gaussian distribution (around zero), and thus it will take
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negative values with probability of 50%. In turn, this could lead to negative values of the

limiting corrected SDF, although with a smaller probability, than 50%, as the corrected

SDF is centered around µm,t.

Next, in contrast to the case above, we consider the case where the misspecification in

the model is related only to pervasive factors; that is, αN,t = AN,tλmiss,t with aN,t = 0N .

Theorem 4.7 (Properties of mα∗
t+1 and mα∗+

t+1 for large N when αN,t = AN,tλmiss,t). Under

Assumptions 3.1, 3.2, N−1B′N,tΣ
−1
N,tBN,t →p Dt > 0, N−1B′N,tC

−1
N,tBN,t →p Ft > 0,

N−1A′N,tC
−1
N,tAN,t →p Et > 0, and AN,t and BN,t are not asymptotically collinear,15 then

as N →∞,

mα∗
t+1 −mα

t+1 →p 0 with mα
t+1 →p −µm,tλ′miss,t(fmiss,t+1 − Et(fmiss,t+1)),

mα∗+
t+1 −m

α+
t+1 →p 0 with mα+

t+1 →p exp
[
− λ′miss,t(fmiss,t+1 − Et(fmiss,t+1))− 1

2
λ′miss,tλmiss,t

]
,

where fmiss,t+1 is the p × 1 vector of missing factors and λmiss,t are the associated risk

premia.

Remark 4.7.1. The limit of mα∗
t+1 and mα∗+

t+1 will have precisely the same mathematical

form as an SDF corresponding to a factor model (i.e. just like mβ∗
t+1 and mβ∗

t+1), but with

respect to the set of missing factors fmiss,t+1. That is, in light of the identification condition

that vart(fmiss,t+1) = Ip, the above result becomes

mα∗
t+1 →p −µm,tλ′miss,t

(
vart(fmiss,t+1)

)−1(
fmiss,t+1 − Et(fmiss,t+1)

)
.

Therefore, the corrected SDF m∗t+1, satisfies

m∗t+1 = mβ∗
t+1 +mα∗

t+1 →p µm,t − µm,t(Ft+1 − Et(Ft+1))′(vart(Ft+1))−1Λt = mt+1,

where we define: Ft+1 = (f ′t+1, f
′
miss,t)

′ and Λt = (λ′t,λ
′
miss,t)

′. Notice that vart(Ft+1) is

block-diagonal, as we assumed uncorrelatedness between the observed and missing factors;

below, we will show how to modify our results when this assumption is relaxed.

15By asymptotic collinearity of the generic matrices CN ,DN we mean that, as N → ∞, either
C′NMDN CN → 0 or D′NMCN DN → 0 or both, depending on whether the number of unobserved fac-
tors p ≤ K, p ≥ K or p = K, where MCN = IN − CN (C′NCN )−1C′N is the matrix that spans the space
orthogonal to any full-column-rank matrix CN , where CN is a N × p matrix and DN is a N ×K matrix.
When p ≤ K, a sufficient condition for asymptotic collinearity is CN = DNδ+GN , for some constant K×p
matrix δ and some residual matrix GN satisfying G′NGN → 0. When GN is a matrix of zeroes, then CN

and DN are perfectly collinear.
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Similarly, for the nonnegative corrected SDF

m∗+t+1 = mβ∗+
t+1 m

α∗+
t+1 →p µm,t exp

[
−(Ft+1−Et(Ft+1))′(vart(Ft+1))−1Λt−

1

2
Λ′t(vart(Ft+1))−1Λt

]
= m+

t+1.

It is important to note that preliminary estimation of the missing factors, ft,miss is not

required for deriving the corrected, admissible, SDF, reducing the impact of sampling vari-

ability of the estimated SDF.

Remark 4.7.2. Notice that the mα
t+1 is rotation-free, meaning that it is independent of

the rotation assumed for the latent factors. In other words, we are recovering the SDF

associated with the true missing factors, f †miss,t+1. In fact,

−µm,tλ′miss,t(fmiss,t+1 − Et(fmiss,t+1)) = −µm,tλ′miss,tΩ
1
2
miss,tΩ

−1
miss,tΩ

1
2
miss,t(fmiss,t+1 − Et(fmiss,t+1))

= −µm,tλ†′miss,tΩ
−1
miss,t(f

†
miss,t+1 − Et(f †miss,t+1)),

and

λ′miss,tλmiss,t = λ†′miss,tΩ
−1
miss,tλ

†
miss,t,

recalling that λ†miss,t and Ωmiss,t define the risk premia and covariance matrix associated

with the f †miss,t+1.

Recall that, as pointed out above, mα∗
t+1 and mβ∗

t+1, the projections of mα
t+1 and mβ

t+1,

are not orthogonal for any finite N . However, as N →∞, mα∗
t+1 and mβ∗

t+1 becomes (condi-

tionally) orthogonal; that is, covt(m
α∗
t+1,m

β∗
t+1)→p 0, implying that:

Et
(
mβ∗
t+1m

∗
t+1

)
= Et

(
(mβ∗

t+1)2
)

+Op(N
− 1

2 ) = Et
(

(mβ
t+1)

)2
+Op(N

− 1
2 ).

4.5 Detecting the Missing Factors

Our result above shows that, for the case of missing pervasive factors, mα∗
t+1 converges to

a linear function of the missing factors themselves. Note that this result does not require

identification of the factors because the spanning arises automatically as N becomes large.

The same argument applies to the logarithm of mα+∗
t+1 . Although not necessary for the sake

of pricing, economically it is interesting to detect such missing factors. It turns out that, in

our framework, a simple regression approach achieves this goal.
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In particular, the R2 of the regression of mα
t on an intercept and the missing factors

fmiss,t is defined as:

R2
miss =

γ̂ ′missF
′
missM1TFmissγ̂miss
mα′M1Tmα

,

in which Fmiss = (fmiss,1 · · · fmiss,T )′, mα = (mα
1 · · ·mα

T )′ and

γ̂miss = (F′missM1TFmiss)
−1F′missM1Tmα = (F̃′missF̃miss)

−1F̃′missm̃
α.

Defining Ã = M1TA for any T × a matrix A and the projecting matrix PA = Ia −MA =

A(A′A)−1A′, for any full-column rank matrix A of rank a we get the following result.

Theorem 4.8 (Detecting the missing factors). Under Assumptions 3.1 and 3.2, as N →∞,

(i) If αN,t = AN,tλmiss,t. If B′N,tΣ
−1
N,tBN,t →p Dt > 0, B′N,tC

−1
N,tBN,t →p Ft > 0,

A′N,tC
−1
N,tAN,t →p Et > 0 and AN,t and BN,t are not asymptotically collinear, then as

N →∞:

γ̂miss →p γA = −(F̃′missF̃miss)
−1(

T∑
t=1

f̃miss,tξAt)

and R2
miss →p

γ′AF̃′missF̃missγA
ξ′AM1T ξA

=
ξ′APF̃miss

ξA

ξ′AM1T ξA
=
ξ̃′APF̃miss

ξ̃A

ξ̃′Aξ̃A
,

in which ξA = (ξA1, · · · , ξAT )′ with ξAt = µm,t−1(fmiss,t − Et−1(fmiss,t))
′λmiss,t−1.

Moreover, when µm,t = µm,λmiss,t = λmiss and Et−1(fmiss,t) = E(fmiss,t) then:

γ̂m →p γA = −µmλmiss, and

R2
miss →p 1.

(ii) If αN,t = aN,t. If the conditions of Remark 4.6.2 hold, then as N →∞:

γ̂miss →d γa = −(F̃′missF̃miss)
−1(F̃′missξa), and

R2
miss →d

γ′aF̃
′
missF̃missγa
ξ′aM1T ξa

=
ξ′aPF̃miss

ξa

ξ′aM1T ξa
=
ξ̃′aPF̃miss

ξ̃a

ξ̃′aξ̃a
,

setting ξa = (ξa1, · · · , ξaT )′ with ξat ∼ N(0, µ2
m,t−1(δt−1 − ht−1H

−1
t−1ht−1)) mutually inde-

pendent. Moreover, when µm,t = µm, the same result holds except that the limit R2 will

now be functionally independent of µm.
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Remark 4.8.1. When the nonnegative SDFs are considered, the same results above apply

replacing mα
t with log(mα+

t ).

Remark 4.8.2. In the above theorem, the result of part (i) holds for every finite T , as

long as T > K. Regarding part (ii), under the following three mild conditions T−1ξ̃′aξ̃a →p

Σξa > 0, F̃′missξ̃a = Op(T
1
2 ), and, T−1F̃′missF̃miss →p ΣFmiss > 0:

R2
miss →p 0 as N,T →∞.

This implies that we can detect whether the pricing errors are driven only by aN as opposed

to missing factors.

Remark 4.8.3. If one erroneously considers a set of observed factors Fwrong, none of

which is spanning the α-SDF, assuming for simplicity that aN = 0N and assuming that

µm,t = µm,λmiss,t = λmiss,Et−1(fmiss,t) = E(fmiss,t), then as N →∞,

R2
miss →p

λ′missF̃
′
missPF̃wrong

F̃missλmiss,

λ′missF̃
′
missF̃missλmiss

. (9)

Moreover, as T → ∞, if the correct and the wrong missing factors, Fmiss and Fwrong,

respectively, are uncorrelated (in population), the right-hand side of (9) converges to zero.

This is contrast to part (ii) of the theorem. The right-hand side of (9) is identically equal

to zero if Fmiss and Fwrongfactors are orthogonal for a given T .

4.6 The SDF under the Extended APT: Non-Orthogonal Components

All the previous results were derived under the assumption that the observed risk factors ft

and the unobserved idiosyncratic shock εt+1 are (conditionally) orthogonal, as formalized

in Assumption 3.1. However, one can envisage situations where orthogonality does not

necessarily hold, the best example being when there are missing pervasive factors that are

hidden in the idiosyncratic shock and are correlated with the observed risk factors.

In this case, note that an observationally equivalent representation of the SDF mt+1

exists such that the observed risk factors ft and the unobserved idiosyncratic shock εN,t+1

are orthogonal. In particular, setting εN,t+1 = ηN,t+AN,t(fmiss,t+1−Et(fmiss,t+1)), as from

Section 3, with ηN,t and fmiss,t+1 being mutually uncorrelated,

mt+1 = µm,t + b′t(ft+1 − Et(ft+1)) + c′N,tεN,t+1, (10)
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= µm,t + b̃′t(ft+1 − Et(ft+1)) + c′N,tε̃N,t+1, (11)

setting the K × p matrix of covariances Qt = covt(ft+1, f
′
miss,t+1) with

b̃t = bt + Ω−1
t QtA

′
N,tcN,t,

ε̃N,t+1 = ηN,t+1 + AN,t

(
f̃miss,t+1 − Et(f̃miss,t+1)

)
, where

f̃miss,t+1 = (Ip,−Q′tΩ
−1
t )

(
fmiss,t+1 − Et(fmiss,t+1)

ft+1 − Et(ft+1)

)
.

Notice that covt(ft+1, f̃
′
miss,t+1) = 0K×p by construction, because f̃miss,t+1 represent the

linear-projection residual from projecting fmiss,t+1 − Et(fmiss,t+1) on ft+1 − Et(ft+1).

Although the two representations (10) and (11) are observationally equivalent, the one

based on correlated components, that is (10), has the advantage of ensuring a clearer inter-

pretation of the parameters, such as the ones for loadings and risk premia. For instance, the

loadings associated with ft+1 in representation (11) differ from the (true) loadings of ft+1 in

representation (10), a consequence of the omitted-variable bias. This can be immediately

seen by comparing the extended APT in the orthogonal and non-orthogonal representations:

Re
N,t+1 = aN,t + (AN,t,BN,t)

(
λmiss,t
λt

)
+ (AN,t,BN,t)

(
fmiss,t+1 − Et(fmiss,t+1)

ft+1 − Et(ft+1)

)
+ ηt+1,

= aN,t + (ÃN,t, B̃N,t)

(
λ̃miss,t
λt

)
+ (ÃN,t, B̃N,t)

(
f̃miss,t+1 − Et(f̃miss,t+1)

ft+1 − Et(ft+1)

)
+ ηt+1,

where

ÃN,t = AN,t(Ip −Q′tΩ
−1
t Qt)

1
2 , (12)

B̃N,t = BN,t + AN,tQ
′
tΩ
−1
t , (13)

λ̃miss,t = (Ip −Q′tΩ
−1
t Qt)

− 1
2 (λmiss,t −Q′tΩ

−1
t λt), (14)

and f̃miss,t+1 have (conditionally) unit covariance matrix and are uncorrelated with the

ft+1.16

16In particular, the f̃miss,t+1 are given by:

f̃miss,t+1 = (Ip −Q′tΩ
−1
t Qt)

− 1
2 (Ip,−Q′tΩ

−1
t )

(
fmiss,t+1 − Et(fmiss,t+1)

ft+1 − Et(ft+1)

)
.
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It follows that, unless one makes use of the mappings between the parameters of the

orthogonal and non-orthogonal representations, namely (12)-(13)-(14), the orthogonal rep-

resentation parameters confound completely the original parameters, in particular in terms

of loadings and risk premia of the missing factors, without any additional computational

and efficiency gain, because the total number of parameters remains unchanged. On the

other hand, if one makes use of the mappings to back out one set from the other, then

it is unclear whether keeping the orthogonal representation brings any advantages to the

analysis. Based on this consideration, this section is written in terms of the non-orthogonal

representation of the extended APT.

We now show how all our results can be generalized to allow for the case of correlated

observed and missing factors. In particular, we need to generalize Assumption 3.1 to:

Assumption 4.1 (Linear factor model: correlated case). Assumption 3.1 holds with

Et(ft+1ε
′
t+1) = PN,t,

for some non-zero K × N matrix PN,t such that perfect (conditional) correlation between

the ft+1 and the εt+1 is ruled out:

IN −Σ
− 1

2
N,tP

′
N,tΩ

−1
t PN,tΣ

− 1
2

N,t > 0.

Although the expression for expected excess returns is unchanged, the (conditional)

second moment for excess returns becomes:

covt(RN,t+1 −Rft1N ) = VN,t = BN,tΩtB
′
N,t + ΣN,t + P′N,tB

′
N,t + BN,tPN,t.

We first show how the expression for the linear and exponential SDF changes, as a result

of the lack of orthogonality. Then, we analyze their large-N behavior.

Theorem 4.9 (SDF in closed form for the correlated case). Under Assumptions 4.1 and

3.2 of the APT, for a given µm,t, there exists an admissible SDF of the form

mt+1 = µm,t + b′t(ft+1 − Et(ft+1)) + c′N,tεN,t+1,

with

bt = −µm,t
(
Ω−1
t λt −Ω−1

t PN,tH
−1
N,t(αN,t −P′N,tΩ

−1
t λt)

)
,

27



cN,t = −µm,t
(
H−1
N,t(αN,t −P′N,tΩ

−1
t λt)

)
,

setting

HN,t = ΣN,t −P′N,tΩ
−1
t PN,t.

When expressed in terms of a linear projection on the set of payoffs (1,Re
N,t+1), the

SDF is

m∗t+1 = proj(mt+1|(1,Re
N,t+1))

= µm,t + (b′t[ΩtB
′
N,t + PN,t] + c′N,t[ΣN,t + P′N,tB

′
N,t])V

−1
N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)

= µm,t − (αN,t + BN,tλt)
′V−1

N,t

(
Re
N,t+1 − Et(Re

N,t+1),

where VN,t is the (conditional) covariance matrix of excess returns.

Although the expressions for the coefficients in the SDF, namely bt and cN,t differ from

before, one obtains the decomposition into the alpha and beta SDF:

mt+1 = mα
t+1 +mβ

t+1,

where

mβ
t+1 = µm,t − µm,tb′t(ft+1 − Et(ft+1)) and mα

t+1 = −µm,tε′N,t+1cN,t,

where bt and cN,t are defined in Theorem 4.9. In terms of the pricing of asset returns:

Et
(
mβ
t+1

[
1

Re
N,t+1

])
= µm,t

[
1

(ΣN,t + BN,tPN,t)cN,t

]

Et
(
mα
t+1

[
1

Re
N,t+1

])
= µm,t

[
0

−(ΣN,t + BN,tPN,t)cN,t

]
.

Notice that now covt(m
α
t+1,m

β
t+1) = µ2

m,tb
′
tPN,tcN,t 6= 0. Despite this, as for the previ-

ous orthogonal case, the misspecified mβ
t+1 prices the observed factors correctly, that is

Et(mβ
t+1(ft+1 −Rft1K)) = 0K .

Likewise, one obtains the decomposition in terms of linear projections as:

m∗t+1 = mα∗
t+1 +mβ∗

t+1,

with

mβ∗
t+1 =µm,t + b′t[ΩtB

′
N,t + PN,t]V

−1
N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
,
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mα∗
t+1 =c′N,t[ΣN,t + P′N,tB

′
N,t])V

−1
N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
.

Given the strong analogies found between the specifications of the linear and nonnegative

SDF cases, we can introduce the nonnegative SDF for the case of correlated components,

and its corresponding decomposition in terms of (nonlinear) projections, without a formal

proof.

Theorem 4.10 (Nonnegative SDF in closed form for the correlated case). Under Assump-

tions 4.1 and 3.2 of the APT and that returns are conditionally normally distributed, there

exists an admissible SDF m+
t+1, with the given mean µm,t, of the form

m+
t+1 = exp

[
µ+
m,t + b+′

t (ft+1 − Et(ft+1)) + c+′
N,tεN,t+1

]
,

with

µ+
m,t = lnµm,t −

1

2
(b+′

t , c
+′
N,t)

(
Ωt PN,t

P′N,t ΣN,t

)
(

b+
t

c+
N,t

),

b+
t = −

(
Ω−1
t λt −Ω−1

t PN,tH
−1
N,t(αN,t −P′N,tΩ

−1
t λt)

)
,

c+
N,t = −

(
H−1
N,t(αN,t −P′N,tΩ

−1
t λt)

)
,

recalling HN,t = ΣN,t − P′N,tΩ
−1
t PN,t. When the risk-free asset is available one replaces

lnµm,t with − lnRft into µ+
m,t.

The relevant decomposition of the nonnegative SDF in terms of (nonlinear) projections

is given by:

m∗+t+1 = mα∗+
t+1 m

β∗+
t+1 ,

where

mβ∗+
t+1 = µm,t exp

[
b+′
t (ΩtB

′
N,t + PN,t)V

−1
N,t(R

e
N,t+1 − Et(Re

N,t+1)− 1

2
b+′
t Ωtb

+
t

]
,

and

mα∗+
t+1 = exp

[
c+′
N,t(ΣN,t + P′N,tB

′
N,t)V

−1
N,t

(
Re
N,t+1 − Et(Re

N,t+1)
)
− 1

2
(b+′

t , c
+′
N,t)

(
0K×K PN,t

P′N,t ΣN,t

)
(

b+
t

c+
N,t

)
]
.

We complete this section by showing how the previous large-N results extend to the non-

orthogonal case. For simplicity we focus on the case when the pricing errors are only driven
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by missing pervasive factors, that is αN,t = AN,tλmiss,t. This implies

PN,t = covt(ft+1, f
′
miss,t+1)A′N,t = QtA

′
N,t,

setting the K × p matrix of covariances Qt = covt(ft+1, f
′
miss,t+1).

For the linear SDFs, under Assumptions 3.1, 3.2, andN−1(AN,t,BN,t)
′C−1

N,t(AN,t,BN,t)→p

Dt > 0, as N →∞,

m∗t+1 = mα∗
t+1 +mβ∗

t+1

= µm,t − µm,t(λ′miss,t,λ′t)(AN,t,BN,t)
′V−1

N,t

(
(AN,t,BN,t)

(
fmiss,t+1 − Et(fmiss,t+1)

ft+1 − Et(ft+1)

))

→p µm,t − µm,t(λ′miss,t,λ′t)
(

Ip Q′t
Qt Ωt

)(
fmiss,t+1 − Et(fmiss,t+1)

ft+1 − Et(ft+1)

)
= µm,t − µm,tΛ′t(vart(Ft+1))−1(Ft+1 − Et(Ft+1)) = mt+1,

recalling that Ft+1 = (f ′miss,t, f
′
t+1)′ and Λt = (λ′miss,t,λ

′
t)
′, where now vart(Ft+1) =(

Ip Q′t
Qt Ωt

)
is not block-diagonal any longer.17

By the same arguments, regarding the (nonlinear) projection of the nonnegative SDF,

m+∗
t+1 = mα+∗

t+1 m
β+∗
t+1 →p µm,texp

[
−Λ′t(vart(Ft+1))−1(Ft+1 − Et(Ft+1))− 1

2
Λ′t(vart(Ft+1))−1Λt

]
.

Therefore, the correction carried out by the (feasible) mα∗
t+1 and mα∗+

t+1 delivers, for large

N , precisely the infeasible SDFs, respectively in the linear and exponential form, that

correspond to the case of K + p common risk factors (f ′miss,t, f
′
t+1)′. As for the orthogonal

case, we are selecting a specific rotation of the true factors (f †′miss,t, f
′
t+1)′ such that

(
fmiss,t
ft+1

)
= Ht

(
Ω
− 1

2
miss,t 0p×K

0K×p IK

)(
f †miss,t
ft+1

)
,

for any p+K × p+K orthogonal matrix Ht.

17By an extension of Lemma 1, under our assumptions,

(AN,t,BN,t)
′V−1

N,t(AN,t,BN,t)→p

(
Ip Q′t
Qt Ωt

)−1

,

recalling that VN,t = (AN,t,BN,t)

(
Ip Q′t
Qt Ωt

)
(AN,t,BN,t)

′ + CN,t.
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5 Representations of the SDF

In this section, we establish two important representations of the SDF under the extended

APT. The first one is in terms of the returns of mean-variance efficient portfolios. The

second is the one-factor beta representation.

5.1 The SDF Frontier in Terms of Returns

This section describe the interpretation of the SDF as returns. In particular, we extend

the well-know duality between admissible SDF and efficient portfolio to a duality between

misspecified SDFs and inefficient portfolios, yet with very special properties. In particular,

once we map the SDF components mα∗
t+1 and mβ∗

t+1 into the returns’ space, we show that

they correspond to the (excess) returns of two portfolios, denominated as the alpha and

beta portfolios, respectively, (these portfolios are described in detail in Raponi, Uppal,

and Zaffaroni (2019)). These two portfolios turn out to be inefficient; that is, they lie

inside the efficient frontier, as opposed of being on the efficient frontier. However, they

satisfy two-fund separation: they span the efficient frontier, in particular the lower branch

of the efficient frontier, which corresponds to the SDF frontier; that is, the set of admissible

minimum-variance SDFs.

We first need some definitions. Under Assumption D.3 from Hansen and Richard (1987,

Assumption 2.4), the return

R∗t+1 =
m∗t+1

Et
(
(m∗t+1)2

)
is well defined, implying that the space of returns R = {xt+1 ∈ X : p(xt+1) = 1} is not

empty. We define R∗t+1 the pricing functional, namely the SDF mapped into the returns

space. Hansen and Richard (1987, Lemma 3.1) show that the return R∗t+1 is the minimum

conditional second moment return: Et(R∗t+1)2 ≤ Et(Rt+1)2 for every Rt+1 ∈R. Moreover,

R∗t+1 prices all excess returns: Et(R∗t+1R
e
n,t+1) = 0 for every Ren,t+1 ∈ Re = {xt+1 ∈ X :

p(xt+1) = 0}).
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We first show how the return pricing functional R∗t+1 is related to mα∗
t+1 and mβ∗

t+1. In

particular, define:

Rα∗t+1 =
mα∗
t+1

Et
(
mα∗
t+1m

∗
t+1

) , Rβ∗t+1 =
mβ∗
t+1

Et
(
mβ∗
t+1m

∗
t+1

) .
Then, under Assumptions 3.1 and 3.2, the pricing functional R∗t+1 has the following decom-

position in terms of returns:

R∗t+1 =
m∗t+1

Et
(
m∗t+1

)2 = κα∗t R
α∗
t+1 + (1− κα∗t )Rβ∗t+1 with (15)

κα∗t =
Et
(
mα∗
t+1m

∗
t+1

)
Et
(
m∗t+1

)2 .

Unlike mα
t+1 and mβ

t+1, the projections mα∗
t+1 and mβ∗

t+1, and thus Rα∗t+1 and Rβ∗t+1, are not

orthogonal for any finite N . However, as N → ∞, Rα∗t+1 and Rβ∗t+1 become (conditionally)

orthogonal, namely: In fact,

covt(R
α∗
t+1, R

β∗
t+1) =

covt(m
α∗
t+1,m

β∗
t+1)

Et(m∗t+1m
α∗
t+1)Et(m∗t+1m

β∗
t+1)

=
µ2
m,tα

′
N,tV

−1
N,tBN,tλt

Et(m∗t+1m
α∗
t+1)Et(m∗t+1m

β∗
t+1)

→p 0.

This implies that 0 ≤ κα∗t ≤ 1 as N → ∞, although these bounds on κα∗t follows,

for any N , whenever −α′N,tV
−1
N,tBN,tλt ≤ α′N,tV

−1
N,tαN,t and − α′N,tV

−1
N,tBN,tλt ≤ 1 +

λ′tB
′
N,tV

−1
N,tBN,tλt.

In order to understand the relative positions of R∗t+1 and its components, in the returns’

space, it is useful to study their first and second moments for large-N . In particular,

Et(R∗t+1) =
1

µm,t(1 +α′N,tV
−1
N,tαN,t + λ′tΩ

−1
t λt)

+Op(N
− 1

2 ),

where Et
(
Rα∗t+1

)
= 0 and Et

(
Rβ∗t+1

)
= 1

µm,t(1+λ′tΩ
−1
t λt)

+ Op(N
− 1

2 ), and, in terms of (condi-

tional) variances,

vart(R
∗
t+1) =

1

µ2
m,t

(α′N,tV
−1
N,tαN,t + λ′tΩ

−1
t λt)

(1 +α′N,tV
−1
N,tαN,t + λ′tΩ

−1
t λt)

2
+Op(N

− 1
2 ),

where vart(R
α∗
t+1) = 1

µ2m,t

1
(αN,tV

−1
N,tαN,t)

+ Op(N
− 1

2 ) and vart(R
β∗
t+1) = 1

µ2m,t

λ′tΩ
−1
t λt

(1+λ′tΩ
−1
t λt)2

+

Op(N
− 1

2 ). Therefore, under our assumption that a risk-free asset is traded,

Et(R∗t+1) < Rf,t =
1

µm,t
,
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then it follows that R∗t+1 is on the lower part of the mean-variance frontier, because it

earns an expected return smaller than Rft but with a non-zero variance. It is exactly on

the frontier because, as indicated above, it is has the minimum second moment. Under the

same conditions for 0 ≤ κα∗ ≤ 1, always valid for large N , one obtains

0 = Et
(
Rα∗t+1

)
< Et

(
R∗t+1

)
< Et

(
Rβ∗t+1

)
< Rft =

1

µm,t
.

A more formal way to understand the role of Rα∗t+1 and Rβ∗t+1 as returns in the mean-standard

deviation space is presented in the next theorem, where we decompose the R∗t+1 in excess

of the risk-free rate, in terms of the returns of two special inefficient portfolios, called the

alpha and beta portfolios, with corresponding weights indicated by wα
N and wβ

N portfolios

(see Raponi, Uppal, and Zaffaroni (2019) for details).

Theorem 5.1 (Decomposition of pricing functional R∗t+1 in terms of return on wα
N and

wβ
N portfolios). Under Assumptions 3.1 and 3.2, for any µm,t, R

∗
t+1 satisfies:

R∗t+1 −Rft = φαt wα′
0,tR

e
N,t+1 + φβt w

β′
0,tR

e
N,t+1,

for some coefficients φαt and φβt (see Eq.? in the proof) satisfying φαt + φβt →p 1 as N

diverges, and wα
µ∗,t and wβ

µ∗,t are the α-portfolio and the β-portfolio, for given target mean

µ∗, defined respectively by:

wα
µ∗,t =

(µ∗ −Rft)
α′N,tV

−1
N,tαN,t

V−1
N,tαN,t, wβ

µ∗,t =
(µ∗ −Rft)

λ′tB
′
N,tV

−1
N,tBN,tλt

V−1
N,tBN,tλt.

Remark 5.1.1. In Raponi, Uppal, and Zaffaroni (2019), it is shown that the wα
N and wβ

N

portfolios are both inefficient (that is, belong to the interior of the mean-variance frontier)

but still satisfy the two-fund separation theorem (that is, span the efficient frontier). In

fact, wα
N and wβ

N have very special properties: wα
N is the minimum-variance orthogonal

portfolio to wβ
N and, vice-versa, wβ

N is the minimum-variance orthogonal portfolio to wα
N .

Moreover, although inefficient, both portfolios satisfy the mean-variance property by which

their expected return is equal to the variance or, alternatively, their Sharpe ratios coincide

with the portfolios’ standard deviations. Therefore, all these properties are inherited by

Rα∗t+1 and Rβ∗t+1 so, in particular, they are positioned in the interior of the SDF frontier, with

Rα∗t+1 on the horizontal axis.
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5.2 Beta Representation of the SDF

Recall from the existing literature that the SDF can be used to obtain a single-beta rep-

resentation for returns.18 At the same time, when the SDF is linear in a set of K factors,

expected returns follow a K-factor beta representation. In this section, we combine these

two results to show that under the extended APT one obtains a (K+1)-factor representation

of expected returns.

From the existing literature, if an admissible SDF satisfies a K-factor structure,

mt+1 = Et(mt+1) + b′t
(
ft+1 − Et(ft+1)

)
, (16)

for some observed random vector ft such that Et(mt+1) > 0, then the K-factor beta repre-

sentation follows:

Et(Ren,t+1) = β′n,tλt, (17)

where βn,t = Ω−1
t covt(ft+1, Rn,t+1). The converse is also true; namely, if (17) is true, then

(16) is true.19

Regarding the single-factor representation in the existing literature, we need the follow-

ing definition.

Definition 5.1 (Reference return; Hansen and Richard (1987, Equation (3.28))). A return

Rbeta,t+1 is a reference return for a single-beta representation conditional on information at

date t if prob(vart(Rbeta,t+1) = 0) = 0 and

Et(Rn,t+1)− at =
covt(Rn,t+1), Rbeta,t+1

vart(Rbeta,t+1)
[Et(Rbeta,t+1)− at] ∀ Rn,t+1 ∈R.

If there is a unit payoff, then at = Rft; otherwise, at is arbitrary.

Then, Hansen and Richard (1987, Lemma 3.5) show that, under Assumptions D.1, D.2,

D.3, and the absence of risk neutrality and arbitrage opportunities, then Rbeta,t+1 is a

18These well-known results have been pioneered by Ross (1978), Dybvig and Ingersoll, Jr. (1982), Cochrane
(1996), and Lettau and Ludvigson (2001); for textbook treatment, see Cochrane (2005) and Back (2017).

19Notice that the factor-structure representation of the SDF in (16) does not rule out the possibility of a
negative SDF, that is, mt+1 < 0. However, we know from Hansen and Richard (1987, Lemma 2.3) that in
this case arbitrage opportunities are not ruled out. For a discussion of the conditions under which mt+1 > 0,
see Back (2017). In particular, if markets are complete, then to rule out arbitrage one needs to restrict the
support of the distribution of ft+1.
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reference return for a conditional single-beta representation, if and only if,

Rbeta,t+1 = R∗t+1 + wbetat Re∗t+1,

where wbetat differs from
Et(R∗t+1)

1−Et(Re∗t+1) with probability one.

We now show how the admissible SDF implied by the extended APT leads to a (K+1)-

beta representation for returns, where K refers to the number of observed factors corre-

sponding to the beta SDF, mβ
t+1.

Theorem 5.2 ((K+1) factor structure for expected returns). Under Assumptions 3.1 and

3.2, for any µm,t 6= 0, every Rn,t+1 and Ren,t+1satisfy a (K + 1)-factor structure:

Et(Ren,t+1) = βαn,tλ
α
t + β′n,tλt,

where βn,t = Ω−1
t covt(ft+1, Rn,t+1), βαn,t =

covt(mαt+1,Rn,t+1)

vart(mαt+1) , and λαt = −Rftvart(m
α
t+1).

Remark 5.2.1. If the risk-free rate is constant, then Et(mβ
t+1) is constant, implying that

b′tft+1 is serially uncorrelated.

Our result implies that, starting from a given beta SDF that has a K-factor represen-

tation, the admissible SDF has a K + 1 factor structure, even when one does not know the

exact number of missing factors. This is in contrast to the principal-components approach,

where the admissible SDF is written as a function of the estimated factors. Identifying

the precise number of factors that are needed for an admissible SDF could be problematic,

and the consequences of both under- and over-estimating the number of true factors can

lead to severe problems when pricing assets. In the case where the number of factors is

underestimated, we face the typical problem arising from missing variables in regression

analysis. In the case where the number of factors is overestimated, we face the problem of

spurious factors, namely highly significant risk premia when the true risk premia is zero for

the spurious factor.

6 The SDF for Equilibrium Asset-Pricing Models

Our methodology has been developed within the set of linear factor SDF. In this section,

we explain how our methodology applies also to nonlinear SDFs, which arise in the context

of equilibrium asset-pricing models.
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Suppose that we are interested in a class of equilibrium SDFs generically specified as:

meq
t+1 = m(ft+1),

for some function m(·), an S-dimensional vector of state-variables ft+1 (for example, con-

sumption growth ct+1) that are Gaussian conditional on past information. Note that above

we have written mt+1 to indicate that for pricing purposes, the SDF is an argument of a

one-step-ahead conditional expectation, the specification of any aspect of the SDF that is

a function of information at dates prior to t+ 1 add no additional difficulty to our analysis.

For instance, the consumption-CAPM model of Breeden (1979) can be expressed as

meq
t+1 = ζ

(
Ct+1

Ct

)−γ
,

where ζ is the subjective rate of time preference, γ is the relative risk aversion, and Ct is

aggregate consumption at date t, implying that the single state variable ft = ln(Ct/Ct−1).

Similarly, the model of Campbell and Cochrane (1999) with external habit can be expressed

as

meq
t+1 = ζ

(
Ct+1

Ct

)−γ (St+1

St

)−γ
,

where St = Ct−Xt
Ct

denotes the surplus consumption ratio and Xt represents the level of

external habit, where now the state-variable vector is ft =
(

ln(Ct/Ct−1), ln(St/St−1)
)′

.

The model of Bansal and Yaron (2004) with long-run risk can be written as

meq
t+1 = ζθ

(
Ct+1

Ct

)−θ/ρ
Rθ−1
c,t+1,

where θ = 1−γ
1−1/ρ , ρ is the elasticity of intertemporal substitution, and Rc,t+1 is the unob-

servable return on an asset that pays out aggregate consumption as its dividend, where now

the state-variable vector is ft =
(

ln(Ct/Ct−1), lnRc,t
)′

.

We first consider the scalar state variable case, that is S = 1, together with conditionally

constant moments, that is Et(mt+1) = E(mt+1) = µm, and then discuss the case with time-

varying moments, as well as the case of multiple state variables.

Theorem 6.1 (SDF for equilibrium models). Assume that ft+1 has a standard normal

distribution. If

E(m2(ft+1)) <∞
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the following orthogonal decomposition holds:

meq
t+1 = mα

t+1 +mβ
t+1, with E(mα

t+1m
β
t+1) = 0,

setting

mβ
t+1 = µm + bft+1,

mα
t+1 =

∞∑
h=2

αhHh(ft+1),

where Hk(x) = (−1)hex
2/2dke−x

2/2/dxk denote the h-th Hermite polynomial (h = 0, 1, . . .)

and µm = a0, b = a1, for

αh =
1

h!

∫ ∞
−∞

m(f)Hh(f)
e−f

2/2

√
2π

df = E(m(f)Hh(f)), h = 0, 1, . . . .

Remark 6.1.1. This result demonstrates the roles of the alpha and beta SDFs, respectively:

the latter captures the linear part of the model-implied nonlinear SDF whereas the former

captures the remaining, nonlinear, component, through the (possibly infinite) set of missing

factors, given by f2
t+1, f

3
t+1, . . .. In fact, the first few Hermite polynomials are:

H0(x) = 1; H1(x) = x; H2(x) = x2 − 1; H3(x) = x3 − 3x; · · · .

Therefore mα
t+1 is a (infinite-order) polynomial in the state variable ft+1 (skipping the terms

of order zero and one). Given that it represents a convergence series, it can be approximated

by the finite sum mαJ
t+1 =

∑J
h=2 αhHh(ft+1), which is makes it computationally easier to be

handle and, at the same time, one can make the approximation error arbitrarily small by

taking J large enough.

Remark 6.1.2. Note that no differentiability assumption is required on the (nonlinear)

SDF. This is relevant when applying our result to highly non-smooth SDF. However, it turns

out that if m(.) is n-th order differentiable, then one obtains a much simplified expression

for the mα
t+1 coefficients αh (see Hannan (1970)[Chapter II.7, p.86])

αh =
1

h!

∫ ∞
−∞

m(h)(f)
e−f

2/2

√
2π

df,

setting m(h)(f) = dhm(f)/dfh.
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Remark 6.1.3. The dependence structure for the SDF mt+1 follows. In particular, one

obtains (see Hannan (1970, Chapter II.7, p.83)):

cov(mt,mt+u) = α2
1γ(u) +

∞∑
h=2

h!α2
hγ

h(u) for any lag u = 0,±1,±2, · · · ,

setting by γ(u) = cov(ft, ft+u) the autocovariance function of the state variable. Moreover,

one can also obtain the spectral density of the SDF20

pm(λ) = α2
1pf (λ) +

∞∑
h=2

h!α2
hp
∗h
f (λ) for any frequency − π ≤ λ ≤ π,

where p∗hf (λ) is the h-fold convolution of the spectral density of the state variable ft.
21 The

spectral density decomposition allows to quantify the importance of the linear term, as well

as of the various nonlinear terms, in terms of the cyclical characteristics of the SDF.

Time-variation of conditional moments is allowed for (see, for instance, Aı̈t-Sahalia

(2002) for another example of a conditional Hermite expansion). Assume that Et(ft+1) =

µf,t and vart(ft+1) = σ2
f,t. Then ft+1 = σf,tf̃t+1 +µf,t, for a standard normal iid f̃t+1. The

previous result then applies with respect to the function m̃t(f) = m(σf,tf + µf,t), yielding:

mβ
t+1 = µt,m + bt

(
ft+1 − µf,t

σf,t

)
,

mα
t+1 =

∞∑
h=2

αt,hHh

(
ft+1 − µf,t

σf,t

)
,

for αt,h =
1

h!

∫ ∞
−∞

m̃t(f)Hh(f)
e−f

2/2

√
2π

df

= E(m̃t(f)Hh(f)) = Et
(
m(ft+1)Hh

(
ft+1 − µf,t

σf,t

))
, h = 0, 1, . . . ,

setting µt,m = αt,0 and bt = αt,1.

A multivariate extension of our result can be obtained as follows (see Ait-Sahalia (2008)

for a multivariate Hermite expansion for the log-likelihood function of multivariate diffusions

20The spectral density for a covariance stationary stochastic process is formally the Fourier transform
of its autocovariance function and characterizes the dynamic properties of the stochastic process across
frequencies.

21For example, when h = 2 one obtains p∗hf (λ) =
∫∞
−∞ pf (µ)pf (λ− µ)dµ.
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sampled at discrete time intervals). Define the multivariate Hermite polynomials for an S-

dimensional vector x:

Hh(x) = (−1)tr(h)φ−1(x)
∂tr(h)φ(x)

∂xh11 · · · ∂x
hS
S

for every vector h = (h1, . . . , hS)′ ∈ NS ,

where tr(h) = h1 + · · ·hS , φ(x) = (−2π)S/2e−x′x/2 and N = {0, 1, 2, · · · }. Then, when the

state vector ft+1 is multivariate normal with conditional mean µf,t and covariance Σf,t,

mβ
t+1 = µt,m + b′t

(
Σ
−1/2
f,t (ft+1 − µf,t)

)
,

mα
t+1 =

∞∑
k=2

 ∑
h=(h1,··· ,hS)′ such that tr(h)=k

αt,hHh

(
Σ
−1/2
f,t (ft+1 − µf,t)

) ,

with

αt,h =
1

h1! · · ·hS !
= Et

(
m(ft+1)Hh

(
Σ
−1/2
f,t (ft+1 − µf,t)

))
for every h = (h1, · · · , hS)′ ∈ NS ,

setting µt,m = αt,0 = Et(m(ft+1)),bt = (αt,(1...0), αt,(0,1,0...0), · · · , αt,(0...1))
′ setting

α
t, (0...1...0)︸ ︷︷ ︸
in the s-th position

= Et
[
m(ft+1)H(0...1...0)

(
Σ
−1/2
f,t (ft+1 − µf,t)

)]
= Et

(
m(ft+1)f̃st

)
for every 1 ≤ s ≤ S,

setting f̃t+1 = (f̃1t+1...f̃st+1...f̃St+1)′ =
(
Σ
−1/2
f,t (ft+1 − µf,t)

)
, givenH(0...1...0) (x) = −φ−1(x)∂φ(x)

∂xs
=

xs, where tr(0...1...0) = 1, for every 1 ≤ s ≤ S.

7 Analogies to Related Work on the SDF

We now clarify the analogies of our approach with the literature. We start with the finite-N

case, and then discuss the large-N case.

7.1 Analogy to Hansen and Jagannathan (1997)

Hansen and Jagannathan (1997) consider the problem in which yt+1 is the possibly misspec-

ified SDF that has been adopted, while mt+1 is an admissible but unknown SDF. They wish
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to solve the following optimization problem, leading to the so-called Hansen-Jagannathan

distance δHJt :

δHJt = min
mt+1

(
Et[yt+1 −mt+1]2

)1/2
,

such that Et(mt+1R
e
N,t+1) = 0N and Et(mt+1) = Et(yt+1).

The first constraint says that mt+1 is admissible and the second constraint says that we

believe that yt+1 has the correct mean. This, for instance, follows if a risk-free asset is

traded, implying Et(yt+1) = R−1
ft .

Hansen and Jagannathan (1997) show that the solution to the above problem is

mHJ
t+1 = yt+1 − c′t

[
Re
N,t+1 − Et(Re

N,t+1)
]
,

where ct = V−1
N,tEt(yt+1R

e
N,t+1). Therefore, like us, Hansen and Jagannathan (1997), pro-

vide a linear adjustment to the possibly misspecified SDF.22 Without the (semiparametric)

APT assumptions, the expression for the correction required to make yt+1 admissible, is

extremely difficult to estimate, unless N is small and T is large, because the correction

term is nonparametric: it requires one to compute VN,t and the, possibly wrong, prices

Et(yt+1R
e
N,t+1), which in turn will depend also on the parameters determining expected

returns, notably another quantity very difficult to estimate accurately regardless of the size

of N . This was know to Hansen and Jagannathan (1997), whose main objective was to

develop an asymptotic distribution theory for δHJt , for any candidate SDF yt+1.

Importantly, by evaluating the above expression under our APT assumptions, we can

show that

c′t

[
Re
N,t+1 − Et(Re

N,t+1)
]

= −mα∗
t+1,

where the Hansen-Jagannathan distance satisfies the APT bound in (1):

δHJt =
(
Et[mα∗

t+1]2
)1/2

=

(
α′N,tV

−1
N,tαN,t

)1/2
Rft

≤
(
α′N,tΣ

−1
N,tαN,t

)1/2
Rft

≤ δapt.

22Hansen and Jagannathan (1997) demonstrate how construct the correction term also when ensuring
non-negativity of the so-obtained admissible SDF, by means of option pricing mathematics.

40



7.2 Analogy to Ghosh, Julliard, and Taylor (2017)

Ghosh, Julliard, and Taylor (2017) show how to construct an admissible SDF mGJT
t+1 starting

from a possibly misspecified SDF yt+1:

mGJT
t+1 = yt+1ψt+1,

where the multiplicative term ψt+1 ensures that mGJT
t+1 is admissible. In particular, Ghosh,

Julliard, and Taylor (2017) show that (up to a positive constant scale factor):23

ψt =
eytγ

′Re
N,t∑T

s=1 e
ysγ′Re

N,s
,

for a set of coefficients γ = argminc
1
T

∑T
s=1 e

ysc′Re
N,s . This correction guarantees non-

negativity of the admissible SDF. Moreover, just like Hansen and Jagannathan (1997), the

correction is nonparametric because its implementation depends on the sample moments of

excess returns Re
N,t, as can be seen by expanding eysc

′Re
N,s around the zero vector 0N .

7.3 Analogy to Kozak, Nagel, and Santosh (2018)

Kozak, Nagel, and Santosh (2018) show that the SDF is spanned by a small number of the

dominant PCA estimates of the risk factors, regardless of whether the underlying asset-

pricing model is behavioral or rational. Because they estimate the latent risk factors by

PCA they automatically solve the problem of missing pervasive factors. A special case of

our approach also allows for having latent factors that entirely span the SDF. In particular,

for the case where aN = 0N , there are no observed factor (K = 0), and there might exist

some latent factors (p ≥ 0), we recover from Theorem 4.7 the admissible SDF

m∗t+1 = µm,t − µm,tα′NV−1
N (Re

N − Et(Re
N ))→p µm,t − µm,tλ′miss,t(fmiss,t+1 − Et(fmiss,t+1)),

where fmiss,t denotes the vector of missing pervasive factors arising when p ≥ 1. Note that

our methodology allows one to identify m∗t+1 without having to first estimate the latent

factors, even though the latent factors can be estimated if needed. More importantly, our

approach allows one to include in the SDF observed risk factors (such as the market factor or

23Ghosh, Julliard, and Taylor (2017) show that other formulations for the correction term ψt exist, de-
pending on how the Kullback-Leibler Information Criterion is formulated.
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the Fama-French factors) as well as deviations from exact pricing arising from firm-specific

characteristics; that is, aN 6= 0N

8 Estimation of the Extended APT

In this section, we explain how to estimate the extended APT model of returns, based

on the (pseudo) Gaussian maximum likelihood (ML) estimation principle. The Gaussian

ML estimator is a natural estimator for our model when the first two moments of asset

returns are specified correctly, although distributional assumptions (such as normality) are

not required, except for efficiency; hence, the use of pseudo ML. Our ML estimator allows

to impose the APT no-arbitrage constraint in a very natural way, leading to identification

of model parameters. Moreover, it permits to disentangle the effect of the large pricing

errors associated with unobserved (missing) factors, allowing for possible correlation be-

tween missing and observed factors, from the effect of the small pricing errors, unrelated to

common sources of risk. Moreover, the estimation of the risk premia associated with either

non-traded and unobserved factors, take the form of the classical GLS two-pass estimator.

Finally, our ML estimator easily permits to handle time-varying parameters by means of

state-variables.24

For simplicity let us assume that all conditional moments are constant, and then we

discuss how to handle time-variation. Moreover, assume that the number of missing factors

p is known.

Assume the following general form of the extended APT, that includes observed, traded

and non-traded, and latent factors, as well as idiosyncratic pricing errors:

Re
N,t+1 = aN + ANλmiss + B1N (λ1 + f1t+1 − E(f1t+1)) + B2N f e2t+1 + εN,t+1, with

εN,t+1 = AN (fmiss,t+1 − E(fmiss,t+1)) + ηN,t+1,

24An alternative, popular, approach to estimate the SDF of factor asset pricing models is by means of
GMM. In particular, there are 2N moment conditions, which enable us to estimate the N+K parameters bt
and cN,t. However,the structural parameters of the extended APT, even for the simplest case when p = 0,
K = 1 and CN,t = σ2IN , cannot be estimated, unless suitable instruments are used to formulate conditional
moment conditions, because (σ2,a′N,t,B

′
N,t,λ

′
t, vech

′(Ωt)
′ totals 2N +K2 +K/2 + 1 parameters. Moreover,

the GMM estimator does not allow one to disentangle the differential effect of small pricing errors, large
pricing errors (latent factors), and observed risk factors, because it will only estimate the (reduced-form)
parameters of the SDF (bt and cN,t) and not the (structural) parameters governing the extended APT.
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where the unobserved innovation ηN,t+1 has mean zero, covariance CN and is uncorrelated

with all the common factors, f1t+1 is a K1 × 1 vector of observed non-traded factors, with

corresponding risk premia λ1, f e2t+1 is a K2× 1 vector of observed traded factors, expressed

as an excess portfolio return, with corresponding risk premia λ2 = E(f e2t+1) and fmiss,t+1

denotes a p×1 vector of latent factors. Moreover, the first and second moment of the assets’

excess returns satisfy:

E(Re
N,t+1) = aN + ANλmiss + B1Nλ1 + B2Nλ2,

var(Re
N,t+1) = (AN ,BN )

(
Ip Q
Q′ Ω

)
(AN ,BN )′ + CN ,

where we allow for the observed and latent factors to be correlated, that is cov(fm,t+1, f
′
t+1) =

Q for a possibly non-zero matrix Q, where Ω = var(ft+1) is the covariance matrix cor-

responding to the K = K + 1 + K2 observed factors ft+1 = (f ′1t+1, f
e′
2t+1)′ with mean

(µ′1,λ
′
2)′ = E(ft+1) and risk premia (λ′1,λ

′
2)′, where by tradability of the f e2t+1 one ob-

tains Ef e2t+1 = λ2. Finally, note that we have assumed that the latent factors are rotated

such that their covariance matrix is the identity matrix Ip. This rotation is arbitrary but

convenient as it ensures the interpretation of the missing factors risk premia as Sharpe

ratios. It turns out that imposing an identification assumption, i.e. a rotation, is necessary

too, as discussed below.

The joint Gaussian log-likelihood function of the observables (Re′
N,t, f

′
t)
′ equals:25

L(θ̆) =− 1

2
log(det(ĂN (Ip − Q̆′Ω̆−1Q̆)Ă′N + C̆N )) (18)

− 1

2T

T−1∑
t=0

(
Re
N,t+1 − ăN − ĂN λ̆miss − (B̆1N , B̆2N )

(
f1t+1 − µ̆1 + λ̆1

f2t+1

)
− ĂNQ̆′Ω̆−1(

f1t+1 − µ̆1

f2t+1 − λ̆2
)
)′

× (ĂN (Ip − Q̆′Ω̆−1Q̆)Ă′N + C̆N )−1

×
(
Re
N,t+1 − ăN − ĂN λ̆miss − (B̆1N , B̆2N )

(
f1t+1 − µ1 + λ1

f2t+1

)
− ĂNQ̆′Ω−1(

f1t+1 − µ̆1

f2t+1 − λ̆2
)
)

− 1

2
log(det(Ω̆))− 1

2T

T−1∑
t=0

(
f1t+1 − µ̆1

f2t+1 − λ̆2
)′Ω−1(

f1t+1 − µ̆1

f2t+1 − λ̆2
),

25Note that det(·) denotes the determinant, vec(·) denotes the operator that stacks the columns of a
matrix into a single column vector, and vech(·) denotes the operator that stacks the unique elements of the
columns of a symmetric matrix into a single column vector.
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for any generic vector θ̆ that collects all parameters values, where we factorized the joint

distribution as the product of a conditional distribution and a marginal distribution.26 Re-

laxing the i.i.d. assumption requires specification of time-varying conditional means, condi-

tional variances, and conditional covariances: below we extend it by means of introducing

dependence of the conditional first and second-moments from observed state-variables.

We now derive the closed-form expression for the constrained maximum likelihood esti-

mator (henceforth MLC), feasible for some of the parameters, formalizing the crucial role of

the APT constraint, which is relevant for practical implementation of our estimation proce-

dure. A formal analysis of the statistical properties of the MLC is relegated to a companion

technical paper.27

Theorem 8.1 (Parameter estimates of extended APT). Suppose that the vector of asset

returns, RN,t, satisfies Assumption 3.1, that p is known and that Σfe2 f
e
2
− f̄2

e
f̄2
e′

is nonsin-

gular, where Σfe2 f
e
2

= T−1
∑T

t=1 f e2tf
e′
2t and f̄2

e
= T−1

∑T
t=1 f e2t. Then the penalized-MLE is

defined as:

θ̂MLC = argmax
θ̆

L(θ̆) subject to ă′NC̆−1
N ăN ≤ δ,

where L(θ̆) is defined in (18), and θ̂MLC = (â′N,MLC, λ̂′miss,MLC , λ̂′1,MLC, λ̂′2,MLC , µ̂′1,MLC ,

vec(ÂN,MLC)′, vec(B̂N,MLC)′, vech(ĈN,MLC)′, vech(Ω̂MLC)′)′.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ > 0, setting

DN = (AN ,B1N ), λ = (λ′miss,λ
′
1)′,

26We decompose the excess returns into its linear projection onto the space spanned by F = (f1, · · · , fT )′

as:
Re
N,t = proj(Re

N,t|1T ,F) + (Re
N,t − proj(Re

N,t|1T ,F),

where

proj(Re
N,t|1T ,F) = ăN + ĂN λ̆miss + (B̆1N , B̆2N )

(
f1t+1 − µ̆1 + λ̆1

f2t+1

)
+ ĂNQ̆′Ω̆−1(

f1t+1 − µ̆1

f2t+1 − λ̆2
),

and
var((Re

N,t − proj(Re
N,t|1T ,F)) = (ĂN (Ip − Q̆′Ω̆−1Q̆)Ă′N + C̆N ).

When the (Re
N,t, ft) are jointly Gaussian the linear projections always coincide with the conditional first

moment so we use them interchangeably, aligned with the PMLE principle.
27The of case N fixed and large T is standard and one can rely on existing results whereas the cases

when N diverges, with either T fixed or diverging, are not-standard and require a separate methodological
analysis.
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then

vec(B̂2N,MLC) =
(

(Σfe2 f
e
2
⊗ I)− (f̄ e2 f̄ e′2 ⊗ (2GN −GNGN ))

)−1
vec
(
Σhfe2

− (2GN −GNGN )h̄N f̄ e
′

2

)
,

(19)

λ̂MLC = (D̂′N,MLC Σ̂−1
N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1

N,MLC

(
h̄N − B̂2N,MLC f̄ e2

)
,

âN,MLC =
1

κ̂+ 1

(
h̄N − B̂2N,MLC f̄ e2 − D̂N,MLCλ̂MLC

)
, (20)

where Σ̂N,MLC = ÂN,MLCÂ′N,MLC + ĈN,MLC, Σhfe2
= 1

T

∑T
t=1 htf

e′
2t, h̄N = 1

T

∑T
t=1 ht with

ht = Re
N,t − B̂1N,MLC(f1t − f̄1t), and

GN =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
D̂N,MLC(D̂′N,MLC Σ̂−1

N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1
N,MLC.

Note that D̂N,MLC = (ÂN,MLC, B̂1N,MLC) and ĈN,MLC do not admit a closed-form solution

and (µ̂′1,MLC, λ̂
′
2,MLC)′ and Ω̂MLC coincide with the sample mean and sample covariance of

the observed factors ft = (f ′1t, f
e′
2t)
′.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0 one can

estimate only αN = aN + DNλ but not the three components separately, and one obtains

α̂N,MLC = R̄e
N − B̂2N,MLC f̄ e2 ,

and the expression for vec(B̂2N,MLC) can be obtained by setting κ̂ = 0 in the terms that

appear in (19). The expressions for (µ̂′1,MLC, λ̂
′
2,MLC)′ and Ω̂MLC are unchanged, and, as

for case (i), the expressions for the estimators of D̂N,MLC and ĈN,MLC do not admit a

closed-form solution.

Although our estimation procedure is essentially standard, being based on the ML prin-

ciple, it raises many delicate issues, especially with respect to its practical implementation,

which we now discuss in detail.

8.1 Estimation Strategy

For practical implementation of the MLE, one needs to implement a procedure that also

entails to select the correct number of missing factors p. We propose the following strategy:
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(i) Estimate the model without the APT constraint, where we indicate the estimates as

θ̂MLE . When no missing factors are assumed, that is p = 0, this coincides with the

OLS estimator unless restrictions are imposed on CN .

(ii) Estimate p based on an analysis of the estimated covariance matrix Σ̂N,MLE =

ÂN,MLE(Ip − Q̂′MLEΩ̂−1
MLEQ̂MLE)Â′N,MLE + ĈN,MLE . This can be done in various

was, using either a statistical or an economic approach. In particular, one can analyze

the relative magnitude of the eigenvalues associated with Σ̂N,MLE or, more formally,

applying the criterion of Gagliardini, Ossola, and Scaillet (2019). Alternatively, given

the ultimate scope of constructing an admissible SDF, one can select the p that corre-

sponds to the minimized empirical Hansen-Jagannathan distance associated with the

estimated SDF, defined as:28

HJ =
√
T

(
(

1

T

T∑
t=1

m̂tXt − p)′(
1

T

T∑
XtX

′
t)
−1(

1

T

T∑
t=1

m̂tXt − p)

) 1
2

,

where m̂t = mt(θ̂MLC) denotes the corrected SDF (either based on m∗t or m∗+t ),

estimated with our MLC estimator, and Xt = (Rf ,R
e′
N,t)

′ is the vector of payoffs with

prices p = (1, 0, ..., 0)′.

(iii) Having selected p from the previous step, re-estimate the model using the MLC esti-

mator described in Theorem 8.1. Notice that the APT theory is silent on δ. As various

δ lead to different parameter estimates, and thus to different estimated SDF, we pro-

pose to identify δ by minimizing the Hansen-Jagannathan distance corresponding to

the estimated, corrected, SDF. One can show that the Hansen-Jagannathan distance,

based on the corrected estimated SDF, is small when true and parameter estimates

are close one another. Therefore, an excessively small δ will be as harmful as a big

28We adopt, for simplicity, the first HJ distance, which ignores the non-negativity constraint. The first
and second HJ distances developed by Hansen and Jagannathan (1991, 1997) measure specification errors
of SDF models by least-squares distances between an SDF model and the set of admissible SDFs that can
correctly price a set of test assets. The first HJ distance considers the set of all admissible SDFs, which we
denote as M. The second HJ distance considers only the smaller set of strictly positive admissible SDFs .
The positivity constraint of the second HJ distance guarantees the admissible SDFs to be arbitrage-free and
is important for pricing derivatives associated with the test assets. Hansen and Jagannathan (1997) show
that, while the first HJ distance represents the maximum pricing error of a portfolio of the test assets with
a unit norm, the second represents the minimax bound of the pricing errors of a portfolio of both the test
assets and their related derivatives with a unit norm. The second HJ distance represents a more stringent
criterion for evaluating asset pricing models and is generally larger than the first.
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one, because it will leads to significant estimation error. In practice, this entails doing

a grid search over several values of δ from 0 to δmax = â′N,MLEĈN,MLE âN,MLE , which

is the value corresponding to the (unconstrained) MLE derived in step (i). In fact,

for any δ ≥ δmax, the constrained and unconstrained estimator will coincide, as the

Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0.

8.2 Sparsity Parameterizations for CN

The theoretical predictions of the extended APT require N to be large. For instance, the

alpha SDF permits one to disentangle the pricing effects of the idiosyncratic pricing errors

from the effect of missing pervasive factors, precisely when N diverges. At the same time,

the rich cross-sectional dependence, characterizing asset returns, is captured by the factor

structure which depends on a number of parameters of the order O(N). This implies one

can tightly parameterize the (purely) idiosyncratic covariance matrix CN , in particular

imposing some sparsity condition, without affecting the flexibility of the APT to explain

asset returns. Although the APT (see Theorem 3.1) simply implies that CN has bounded

eigenvalues, uniformly in N , this does not necessarily rule out that CN is governed by

O(N2) parameters. Therefore, without further restriction on the form of CN , there would

not be computational advantages of our approach over the nonparametric approaches, such

as Hansen and Jagannathan (1991, 1997) and Ghosh, Julliard, and Taylor (2017), which

leave the form of the first- and second-moments of returns completely unspecified. For

this reason, for practical estimation, we advocate to parameterize CN = C(cN ), for some

vector of parameters cN of order O(N) and a parametric function C(·). Important special

cases are CN = σ2IN implying cN = σ2, that is when the idiosyncratic innovation is cross-

sectionally uncorrelated and homoskedastic, or CN = diag(σ2
1, · · · , σ2

N ) implying cN =

(σ2
1, · · · , σ2

N )′, that is, when the idiosyncratic innovation is cross-sectionally uncorrelated

and heteroskedastic; of course, other sparsity assumptions are also possible.

Once suitable parameterizations for CN are identified, substantial computational gains

can be made for computing the loglikelihood, and its first- and second-derivatives, necessary

to compute standard errors analytically, making use of the special structure of the matrix

Σ̆N = (ĂN (Ip − Q̆′Ω̆−1Q̆)Ă′N + C̆N ). Assume for simplicity that C̆N = σ̆2IN . Then, by
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the Sherman-Morrison formula

Σ̆−1
N = σ̆−2

(
IN − ĂN (σ̆2(Ip − Q̆′Ω̆−1Q̆)−1 + Ă′NĂN )−1Ă′N

)
,

implying that one needs to invert a low-dimensional matrix, of size p × p, as opposed to a

large-dimensional matrix of size N ×N . Moreover, for N large,

Ğ′NΣ̆−1
N ĂN ≈ σ̆−2(Ğ′NĂN )(Ă′NĂN )−1(Ip − Q̆′Ω̆−1Q̆)−1,

setting ĞN to be equal to either ăN , ĂN or B̆N , leading to substantial computational gains,

as there are at least eight terms like Ğ′NΣ̆−1
N ĂN in the log-likelihood expression.

8.3 Identification of the Missing Factors.

Dealing with latent factors necessarily implies that such factors, and their moments, are

identified up to an unknown rotation. In turn, this asks for an identification assumption, As

explained above, we advocate to consider the identification that leads to a standardization,

in terms of unit variances and zero covariances, of the latent (true) factors f †miss,t+1, which

moreover still allows for orthogonal rotations as

Hvar(fmiss,t+1) = HIpH
′ = Ip,

for any arbitrary orthogonal matrix H. More generally, this implies that, in practice, every

element of λmiss is a linear combination of all true risk premia corresponding to the true

latent factors and, even more importantly, mα∗
t+1 is a linear combination of a constant and

of the set of p true missing factors f †miss,t+1, regardless of whether the correct number of

missing factors p is considered to construct mα∗
t+1.

To further demonstrate the necessity of an identification assumption, consider the sim-

plest version of the extended APT, without any observed factors (K = 0) and with p = 1

setting aN = 0N (and thus without the APT constraint), CN = σ2IN , without imposing

the restrictions var(fmiss,t+1) = ωm = 1. One can then show that the first-order condi-

tions for σ2, λmiss, ωm and AN , setting M̂ = T−1
∑T

t=1(Re
N,t− ÂN,MLCλ̂miss,MLC)(Re

N,t−

ÂN,MLCλ̂miss,MLC)′ are:

for σ2 : trace(Σ̂−1
N,MLC) = trace(Σ̂−1

N,MLCM̂Σ̂−1
N,MLC);
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for λmiss : λ̂miss,MLC =
Â′N,MLC Σ̂−1

N,MLCR̄e
N

(Â′N,MLC Σ̂−1
N,MLC ÂN,MLC)

;

for ωm : ω̂m,MLC =

(
(Â′N,MLCM̂ÂN,MLC)

(Â′N,MLCÂN,MLC)2
−

σ̂2
MLC

(Â′N,MLCÂN,MLC)

)
;

for AN : ÂN,MLC =

(
ω̂m,MLC

λ̂miss,MLC

(M̂−1Σ̂N,MLC − IN )− λ̂miss,MLCIN

)−1

R̄e
N .

Setting N = 1, one can immediately see that the first-order conditions for σ2 and ωm

are identical, but one can derive the ratio λm/ωm, hence our identification strategy to set

ωm = 1.

Notice that for constructing any of the SDF correction terms, such as mα
t+1,m

α+
t+1 and

their projection-versions, we do not need to estimate the (normalized) latent factors them-

selves but we only need their loadings and risk premia. In other words, one does need to

estimate the latent factors in order to estimate an admissible SDF even if the latter, in

population, depends on such latent factors. However, if one is interested in backing out the

estimates of the latent factors, having estimated the APT parameters, one can derive such

estimates by means of OLS cross-sectional regressions such as:

f̂∗miss,t+1 = (Â′N,MLCÂN,MLC)−1Â′N,MLC p̂t+1,MLC

setting p̂t+1,MLC = (Re
N,t+1 − âN,MLC − ÂN,MLCλ̂miss,MLC − B̂1N,MLC(λ̂1,MLC + f1t+1 −

µ̂1,MLC) − B̂2N f e2t+1) and where for simplicity we denote the demeaned latent factors as

f∗miss,t+1 = fmiss,t+1 − E(fmiss,t+1). A GLS estimator of the latent factors is also available,

such as

(Â′N,MLCĈ−1
N,MLCÂN,MLC)−1Â′N,MLCĈ−1

N,MLC p̂t+1,MLC ,

which of course is identical to f̂∗miss,t+1 when CN is assumed spherical.

8.4 Time-Variation of Conditional Moments

Although various approaches are possible, we advocate to use observe state variables to

capture time-variation of risk premia, loadings and factors’ conditional expectations. In

particular, following the formulation of Gagliardini, Ossola, and Scaillet (2016) and Giglio
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and Xiu (2017), assume that there are Kc × 1 common observed state variables, zt, which

includes the unit constant and the observed factors ft = (f ′1t, f
e′
2t)
′, and N ×Ks asset-specific

state variables, ZN,t = (z1,t, · · · , zN,t)′ observed at every period t. Although our formulation

is completely general, typical examples of state-variables commonly used are the dividend

yield, bond spreads, CAPE with respect to common variates, and firms’ characteristics with

respect to asset-specific variates.

Then assume the following specifications for the parameters of the (time-varying) ex-

tended APT:

λmiss,t = Gmzt for a p×Kc matrix Gm,

λ1,t = G1zt for a K1 ×Kc matrix G1,

Et(ft+1) =

(
µ1,t

λ2,t

)
= Gfzt for a K ×Kc matrix Gf ,

aN,t =

 z′1t 0 · · ·
· · · · · · · · ·
· · · 0 z′Nt


 a1

...
aN

 for Ks × 1 vectors ai,

AN,t = (IN ⊗ z′t)

 A′c1
...

A′cN

+

 z′1t 0 · · ·
· · · · · · · · ·
· · · 0 z′Nt


 A′s1

...
A′sN


for p×Kc and p×Ks matricies Aci and Asi,

BN,t = (B1N,t,B2N,t) = (IN ⊗ z′t)

 B′c1
...

B′cN

+

 z′1t 0 · · ·
· · · · · · · · ·
· · · 0 z′Nt


 B′s1

...
B′sN


for K ×Kc and K ×Ks matricies Bci and Bsi,

and where time-variation of the covariance matrices Qt = Q(zt),Ωt = Ω(zt) and CN,t =

C(cN (Zt)) is also permitted, for some given parametric functions Q(·),Ω(·) and cN (·), such

as for example ARCH and GARCH specifications.29 Finally, inserting the above expressions

into the log-likelihood yields a suitable generalization of (18) that permits time-variation.30

29The formulae for the MLC parameter estimates established in Theorem 8.1 are not valid but can be
generalized.

30Using the prediction decomposition of the joint density function, pdf(X1, · · · ,XT ) =
pdf(X1)pdf(X2|X1) · · · pd(XT |XT−1, ...,X1) for a generic stochastic process {Xt}, the joint Gaussian log-
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8.5 Roles of the APT Constraint

Imposing the APT constraint on the idiosyncratic pricing errors aN serves several important

purposes in our estimation strategy. First, it is theoretically justified because, when not

imposed, its violation could be lead to arbitrage opportunities. Second, it possibly leads to

a more precise estimator of aN compared to the unconstrained estimator; in particular (20)

has the expression of a ridge estimator. Third, it provides exactly the condition required

to econometrically identify the extended APT, in the sense that λ = (λ′miss,λ
′
1)′ and

αN,t cannot be identified separately unless the APT restriction is imposed.31 In contrast,

when κ̂ = 0, and identification fails, obviously formula (20) continue to hold providing the

(classical) interpretation of the estimated aN as the empirical residual of a cross-sectional

regression, namely the difference between the sample excess returns and the estimated risk

premia multiplied by their corresponding loadings. Fourth, when the APT constraint binds,

âN,MLC obviously represents the solution to the first-order conditions of a ML problem, and

therefore one can derive its standard errors using the ML mathematics; that is, combining

the estimated Hessian and covariance matrix of the score. In turn, as an important by-

product, this would lead to a test for correct model specification, with respect to the null

hypothesis aN = 0N .

likelihood function of the observables (Re′
N,t, f

′
t)
′, when time-variation is allowed for, equals

L(θ̆) =− 1

2T

T−1∑
t=1

log(det(ĂN,t(Ip − Q̆t
′
Ω̆t
−1

Q̆t)Ă
′
N,t + C̆N,t))

− 1

2T

T−1∑
t=1

(
Re
N,t+1 − ăN,t − ĂN,tλ̆miss,t − (B̆1N,t, B̆2N,t)

(
f1t+1 − µ̆1,t + λ̆1,t

f2t+1

)
− ĂN,tQ̆

′
tΩ̆
−1
t (

f1t+1 − µ̆1,t

f2t+1 − λ̆2t
)
)′

× (ĂN,t(Ip − Q̆′tΩ̆
−1
t Q̆t)Ă

′
N,t + C̆N,t)

−1

×
(
Re
N,t+1 − ăN,t − ĂN,tλ̆miss,t − (B̆1N,t, B̆2N,t)

(
f1t+1 − µ1,t + λ1,t

f2t+1

)
− ĂN,tQ̆

′
tΩ
−1
t (

f1t+1 − µ̆1,t

f2t+1 − λ̆2,t
)
)

− 1

2T

T−1∑
t=1

log(det(Ω̆t))−
1

2T

T−1∑
t=1

(
f1t+1 − µ̆1,t

f2t+1 − λ̆2,t
)′Ω−1

t (
f1t+1 − µ̆1,t

f2t+1 − λ̆2,t
),

where, unlike the iid case (18), to compute L(θ̆) we skipped the term corresponding to the marginal log-
density of (Re′

N,1, f
′
1)′, that is for time t = 1, as it is asymptotically irrelevant.

31Incidentally, regarding the MLC estimator for λ = (λ′miss,λ
′
1)′, that is the risk premia associated

with both missing factors and non-traded factors, it is interesting to note that coincide with the GLS CSR
estimator. Although this is well-known with respect to non-traded factors, we are the first to establish this
result with respect to the risk premia of the missing pervasive factors. In other words, from the point of view
of estimation of risk premia, missing factors and observed non-traded factors receive the same treatment
from the MLC estimator.
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We have expressed the APT constraint as a′NC−1
N aN ≤ δ but it is equivalent to express

it as a′NaN ≤ δ (the constant δ can change), as CN has bounded eigenvalues. One might

wonder whether, in the absence of the aN and when missing factors are allowed for, one

should still impose the APT constraint in terms of the large pricing errors αN = ANλmiss,

such as α′NΣ−1
N αN ≤ δ. However, it turns out that this constraint is always satisfied, for

some finite δ, and therefore it is not necessary to impose it in the estimation. In fact,

α′NΣ−1
N αN → λ′missλmiss as N →∞.

This means that the APT restriction is always satisfied for the case of only missing

pervasive factors, for any δ ≥ λ′missλmiss as N diverges. In turn, this result stems from

recognizing that both ΣN and αN contain the loadings of the missing factors, AN , inducing

a compensation in α′NΣ−1
N αN . It is also interesting to note that this feature, namely that

AN appears in both the (conditional) mean and covariance matrix of returns, bears an

important implication in terms of precision of the MLC estimator, as both the first and

second moments of returns contribute to the estimation of the AN .32

9 Simulation Experiment

In this section, we evaluate our theoretical results in a controlled environment using sim-

ulated data. In particular, we check whether we can take an SDF based on a misspecified

return-generating model and correct the SDF so that it is admissible.

We simulate data according to the Fama and French (2015) model with five factors:

Market, Size, Value, Profitability, and Investment. To set the parameters for our model, we

estimate the five-factor model on monthly returns from 1963:07 to 2019:02 for N = 96 asset

portfolios that are formed by sorting stocks based on: (1) Size-BM-Operating Profitability;

(2) Size-BM-Investment; and (3) Size-Operating Profitability-Investment. Consequently,

the simulated data matches the properties of the empirical returns data. The estimated

Sharpe ratio for aN is 2.29 and σ2 = 0.0037 per year.

32MacKinlay and Pástor (2000) firstly pointed out this insight for improving the precision of the estimated
AN parameters. However, MacKinlay and Pástor (2000) consider a different identification assumption. For
p = 1, they estimate αN without distinguishing between AN and λmiss, implying that the contribution of
the single missing factor to the return variance equals αNα

′
N/(SRmiss)2, where SRmiss is the Sharpe ratio

of the missing factor.
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Table 1: Pricing errors using true parameter values
This table reports three measures of the pricing error: the GMM J test where the weighting matrix is
the matrix of second moments of the pricing errors, the GMM J test where the weighting matrix is the
covariance matrix of the pricing errors, and the Hansen-Jagannathan distance.

GMM (second mom.) GMM (cov.) HJ dist.

Panel A: Using both the alpha and beta SDFs
Statistic 106.551 126.808 170.146
p-value 0.572 0.572 0.406
quantile 95% 140.178 177.476 215.085

Panel B: Using only the beta SDF when KK = 5, P = 0
Statistic 265.838 442.000 437.664
p-value 0.000 0.000 0.000
quantile 95% 122.302 149.763 149.854

Panel C: Using only the beta SDF when KK = 4, P = 1
Statistic 271.596 458.151 468.333
p-value 0.000 0.000 0.000
quantile 95% 121.953 149.240 147.469

Panel D: Using only the beta SDF when KK = 3, P = 2
Statistic 273.930 464.830 481.342
p-value 0.000 0.000 0.000
quantile 95% 120.786 147.496 146.427

Panel E: Using only the beta SDF when KK = 2, P = 3
Statistic 276.649 472.716 482.542
p-value 0.000 0.000 0.000
quantile 95% 119.800 146.028 143.845

Panel F: Using only the beta SDF when KK = 1, P = 4
Statistic 280.646 484.508 486.006
p-value 0.000 0.000 0.000
quantile 95% 119.387 145.416 143.758

Panel G: Using only the beta SDF when KK = 0, P = 5
Statistic 284.645 496.549 492.783
p-value 0.000 0.000 0.000
quantile 95% 117.229 142.226 144.861

We undertake our empirical analysis in two steps. In the first step, we consider the

case where the parameter values are known. In the second step, we consider the case where

the parameter values are not known and need to be estimated. In each of these two steps,

we consider a variety of models. (1) The full model with no misspecification. (2) The

model where misspecification arises because aN is omitted. (3) The model with omitted aN

and also missing factors, where the number of missing factors ranges from one to five. In

both steps, to evaluate the pricing errors we report three metrics: the Hansen-Jagannathan
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distance (HJ), the GMM J statistic with the weighting matrix being the matrix of second

moments of the pricing errors, and the J statistic with the weighting matrix being the

covariance matrix of the pricing errors.

In Table 1, Panel A gives the pricing errors for the full model with no misspecification.

Panels B to G report the pricing errors for misspecified models: in Panel B, we consider

the model where only aN is omitted, while in Panels C to G, we consider models where in

addition to aN being omitted also P = {1, 2, . . . , 5} risk factors are missing. The pricing

errors for the models considered in Panels B to G, after correction for misspecification, is

given again by Panel A. That is, when misspecification is corrected in the models considered

in Panels B to G, one recovers exactly the true model reported in Panel A. Therefore, for

the case where one knows the true parameters of the model, no matter what is the source of

misspecification—omitted aN and P missing factors—the alpha-SDF is able to fully correct

for the misspecification.

Next, in Table 2, we consider the setting where one does not know the true parameter

values, and therefore, these need to be estimated. We estimate the model over T = 1, 000

monthly return observations using maximum-likelihood estimation.33 When estimating the

model, we impose the APT restriction by setting δapt = 0.44, which corresponds to the

Sharpe ratio of aN being 2.29. The six panels in Table 2 are grouped in pairs, with the

first panel of each pair reporting the pricing-error statistics for the corrected model and the

second panel of the pair reporting the statistics for the model based only on the beta SDF.

In Panel A, we consider the model where aN is omitted. In Panels B to F, we consider

models where aN is omitted and there are P = {1, 2, . . . , 5} missing factors. Looking at

the pricing errors reported in this table, we draw the same conclusion as for Table 1: even

for the case where the parameters of the return-generating model need to be estimated, the

alpha SDF is remarkably effective in reducing the pricing error and correcting the model

for the various sources of misspecification considered in these panels.

Table 3 illustrates how the alpha SDF spans the space of missing pervasive factors (after

adjusting for the effect of aN ). In this table, we report the R2 from regressing the alpha

SDF on a number of missing factors. For instance, in the first row of the table the number

33The large value for T ensures convergence of the empirical Hansen-Jagannathan distance to its population
counterpart but it is not required for our theory.



Table 2: Pricing errors using estimated parameter values
This table reports three measures of the pricing error for the setting where the parameters of the model
have to be estimated: the GMM J test where the weighting matrix is the matrix of second moments of the
pricing errors, the GMM J test where the weighting matrix is the covariance matrix of the pricing errors,
and the Hansen-Jagannathan distance.

GMM (second mom.) GMM (cov.) HJ dist.

Panel A1: Using both the alpha and beta SDFs when KK = 5, P = 0
Statistic 61.441 67.674 79.670
p-value 0.998 0.998 1.000
quantile 95% 141.439 179.503 214.686

Panel A2: Using only the beta SDF when KK = 5, P = 0
Statistic 265.189 440.210 430.984
p-value 0.000 0.000 0.000
quantile 95% 124.488 153.054 152.204

Panel B1: Using both the alpha and beta SDFs when KK = 4, P = 1
Statistic 61.269 67.467 78.898
p-value 1.000 1.000 1.000
quantile 95% 142.533 181.268 218.867

Panel B2: Using only the beta SDF when KK = 4, P = 1
Statistic 274.469 466.386 460.891
p-value 0.000 0.000 0.000
quantile 95% 120.869 147.619 145.566

Panel C1: Using both the alpha and beta SDFs when KK = 3, P = 2
Statistic 116.307 140.871 159.376
p-value 0.326 0.326 0.495
quantile 95% 138.438 174.696 206.284

Panel C2: Using only the beta SDF when KK = 3, P = 2
Statistic 277.420 474.970 478.330
p-value 0.000 0.000 0.000
quantile 95% 120.609 147.232 144.569

Panel D1: Using both the alpha and beta SDFs when KK = 2, P = 3
Statistic 58.697 64.361 76.256
p-value 1.000 1.000 1.000
quantile 95% 140.283 177.645 214.088

Panel D2: Using only the beta SDF when KK = 2, P = 3
Statistic 278.971 479.535 480.059
p-value 0.000 0.000 0.000
quantile 95% 119.370 145.389 142.988

Panel E1: Using both the alpha and beta SDFs when KK = 1, P = 4
Statistic 58.270 63.848 75.804
p-value 1.000 1.000 1.000
quantile 95% 142.861 181.800 219.342

Panel E2: Using only the beta SDF when KK = 1, P = 4
Statistic 283.819 494.042 481.023
p-value 0.000 0.000 0.000
quantile 95% 119.459 145.522 143.488

Panel F1: Using both the alpha and beta SDFs when KK = 0, P = 5
Statistic 111.062 133.249 147.388
p-value 0.452 0.452 0.733
quantile 95% 141.255 179.207 211.817

Panel F2: Using only the beta SDF when KK = 0, P = 5
Statistic 284.644 496.548 492.782
p-value 0.000 0.000 0.000
quantile 95% 116.935 141.793 140.788
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Table 3: Spanning the effect of missing pervasive factors
This table measures how the alpha-SDF spans the space of missing pervasive factors (after adjusting for the
effect of aN ). The table reports the R2 from regressing the alpha-SDF on a number of missing factors. In
the first row of the table, the number of observed factors is K = 4 and the number of missing factors is 1.
In the second row, the number of observed factors is K = 3 and the number of missing factors is 2.

Experiment Accounting for missing factors
1 2 3 4 5

K = 4 0.94
K = 3 0.42 0.92
K = 2 0.03 0.31 0.95
K = 1 0.06 0.10 0.34 0.95
K = 0 0.01 0.03 0.18 0.21 0.92

of observed factors is K = 4 and the number of missing factors is 1, while in the second

row the number of observed factors is K = 3 and the number of missing factors is 2. The

table shows that as we complete the space of missing factors, the R2 goes to 1, confirming

the result in Theorem 4.8.

10 Empirical Analysis

In this section, we illustrate how our methodology can be used to study stock-return data.

The design of our empirical analysis is motivated by the work in Ghosh, Julliard, and

Taylor (2017). Just like them, we use quarterly returns on 26 Fama-French portfolios over

the postwar period: 1947:Q2 to 2015:Q4. The 26 portfolios we study consist of 6 size and

book-to-market portfolios, 10 industry portfolios, and 10 momentum portfolios. We also

use quarterly data on per capita real personal consumption expenditures on nondurable

goods for a total of 275 quarterly observations.

We consider a setting where the candidate beta SDF is the consumption CAPM; that is,

the beta SDF is given by the single-factor (K = 1) consumption growth. Then, we estimate

the extended-APT factor model and find that the best admissible SDF (the one with the

smallest Hansen-Jagannathan distance) is one with 5 missing factors; that is, P = 5. For

this case, the Hansen-Jagannathan distance is 80 and the optimal δ = 0.054. The mean

and standard deviation of the beta SDF, the alpha SDF, and the admissible SDF are given

in Table 4.
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Table 4: Moments of the admissible SDF and its components
This table reports the mean and standard deviation of the α-SDF, the β-SDF, and the admissible SDF.

Quantity Mean Std. Dev.

log(mβ) −0.2311 0.7093
log(mα) −0.1277 0.5022
log(m) −0.3588 0.7023

mβ 1.0232 0.9696
mα 0.9983 0.5827
m 0.9189 1.0116

Figure 1: Time series of the admissible SDF and its components
This figure plots the admissible SDF along with the α-SDF and the β-SDFs. The grey bars on the plots
indicate NBER recessions.
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To get a sense of how the the admissible SDF and its alpha and beta components vary

with the business cycle, we estimate these stochastic discount factors and they are plotted

in Figure 1. We see that there is considerable variation in the admissible SDF and its

components and that this variation has increased over time. We also notice that the level

and volatility of the SDF and its components is higher during recessionary periods of the

business cycle.
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Figure 2: Components of the risk-premia for the 26 portfolios
This figure plots the components of the risk premia for the 26 Fama-French portfolios. The figure includes
plots for the (i) the risk premium for consumption growth; (ii) the risk premia for the 5 missing factors;
(iii) the risk premium arising from firm-specific (idiosyncratic) risk; and, (iv) the total risk premium.
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To interpret the risk-premia, we decompose the total risk-premia that we have estimated

for the 26 portfolios into the following components: (i) the risk premium for consumption

growth (blue line with crosses); (ii) the risk premia for the 5 missing factors (orange line

with plus signs); (iii) the risk premium arising from firm-specific (idiosyncratic) risk (pink

line with triangles); and, (iv) the total risk premium (bold green line with diamonds). These

risk-premia are plotted in Figure 2. We see from the figure that if one were to consider

only the risk premium for consumption growth (the blue line), one would over-estimate the

true risk premium. The reason for this is that the risk premia for the missing factors are

negative for most of the portfolios. The risk premium for idiosyncratic risk are close to

zero, but positive for some portfolios and negative for others.

To understand the importance of the risk premia for the 5 missing factors and for

idiosyncratic risk, we first plot mean excess returns against just the risk premium for con-
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Figure 3: Plot of mean excess returns on risk premia
Panel A in this figure contains a plot of mean excess returns against the risk premium for consumption
growth, while Panel B contains a plot of mean excess returns against the total risk premium (that is, the
risk premium for consumption growth, the missing factors, and idiosyncratic risk).
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Panel B: Plot of mean excess returns on total risk premia
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Table 5: Regression of mean excess returns on risk premia
This table reports the results of regressing log(mα) on various common factors considered in the empirical
asset-pricing literature: market (Mkt.), size (SMB), value (HML), momentum (Mom.), profitability, mea-
sured as Robust minus Weak (RMW), investment, measured Conservative minus Aggressive (CMA), and
intermediary capital (Interm.). The table reports the coefficient estimate, its t-value, and the cumulative
R2 (adjusted) as each new factor is added.

1947:Q2–2015:Q4 1963:Q2 1970:Q1
275 qrtly. obs. 210 qrtly. obs. 184 qrtly. obs.

Factor Mkt. SMB HML Mom. RMW CMA Interm. Const.

estimate −1.33 4.88 1.02 −0.74 −5.13 −3.12 0.02 −0.01
t-value −2.63 10.37 1.66 −2.51 −9.33 −3.66 0.06 −0.41

cumulative

R2 (adj.) 0.04 0.32 0.32 0.32 0.55 0.57 0.57

sumption growth. We see from Panel A of Figure 3 that the risk-premium for consumption

growth does not line up very well with mean excess returns. In contrast, once we consider

the total risk premia that corrects the risk premium for consumption growth with the risk

premia for the missing factors and idiosyncratic risk, mean excess returns line up almost

perfectly with the total risk premium, as can be seen in Panel B of Figure 3.

Finally, we show how our methodology can be used to understand the factors that drive

the α-SDF. To do this, we regress log(mα) on common factors that have been considered in

the empirical asset-pricing literature. These results are presented in Table 5. From the row

reporting the t-value for each factor, we see that size (SMB) and profitability (RMW) are

the most prominent of the missing factors with t-values of 10.37 and −9.33, respectively.

This can also be observed from the last row that reports the cumulative R2 (adjusted) for

each of the factors. On the other hand, value (HML) and intermediary capital (Interm.)

have t-values that are not significant.

11 Conclusion

In this paper, we have shown how, given a misspecified stochastic discount factor (SDF),

one can construct an admissible SDF, namely an SDF that prices assets correctly. There

is a large literature that builds on the work of Hansen and Jagannathan (1991, 1997) to
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provide bounds that an admissible SDF must satisfy and to characterizes the distance

between a given, potentially misspecified, SDF and an admissible SDF. We first extend

the classical Arbitrage Pricing Theory (APT) so that it allows not only for idiosyncratic

pricing errors but also for pervasive pricing errors that are related to factors. Then, using

the extended APT, we show how to construct an admissible SDF, which prices assets

correctly, given a misspecified SDF. Our approach can handle misspecification arising from

a number of sources, such as, missing factors, mismeasured factors, incorrect specification

of the distribution of the factors, and idiosyncratic pricing errors unrelated to factors.

We show that the admissible SDF is on the mean-variance efficient frontier, and thus,

satisfies the Hansen and Jagannathan (1991) bound exactly. We also show how this ad-

missible SDF can be decomposed into two orthogonal components: one that corresponds

to the misspecified SDF based on the chosen set of factors, which we label the beta SDF,

and the other that corresponds to the required correction, which we call the alpha SDF.

The alpha SDF corrects various prominent sources of misspecification considered in the

literature: for example, if one were working with a linear factor model, then the misspeci-

fication could arise from missing or mismeasured factors; alternatively, if one were working

with a representative-agent model, then the misspecification could arise from an erroneous

specification of the utility function or the state variables.

For the case where the number of assets, N , is asymptotically large, we obtain results

that are even stronger, in contrast to the existing literature that requires N to be small.

For the case of large N , we show that our admissible SDF recovers exactly the contribution

of any missing pervasive factors without requiring one to identify which factors are miss-

ing. Moreover, because of the structure imposed by the extended APT, estimation of our

admissible SDF does not suffer from the curse of dimensionality that typically arises when

the number of assets is large.

We illustrate the implications of our theoretical results using both simulated data and

U.S. stock-return data. These illustrations demonstrate that the theory we develop is

remarkably effective in correcting various sources of model misspecification.
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A Proofs for Theorems

Proof of Theorem 3.1

By Chamberlain and Rothschild (1983, Theorem 4) the residual covariance matrix satisfies

ΣN,t = AN,tA
′
N,t + CN,t,

where CN is a positive definite matrix with eigenvalues uniformly bounded by gp+1N (ΣN,t).
34

By the Sherman-Morrison-Woodbury decomposition,

Σ−1
N,t = C−1

N,t −C−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,t.

Therefore, by substitution,

α′N,tΣ
−1
N,tαN,t = α′N,tC

−1
N,tαN,t −α

′
N,tC

−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,tαN,t

= (AN,tλmiss,t + aN,t)
′C−1

N,t(AN,tλmiss,t + aN,t)

− (AN,tλmiss,t + aN,t)
′C−1

N,tAN,t(Ip + A′N,tC
−1
N,tAN,t)

−1A′N,tC
−1
N,t(AN,tλmiss,t + aN,t)

= λ′miss,tA
′
N,tC

−1
N,tAN,tλmiss,t

− λ′miss,tA′N,tC−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,tλmiss,t

+ a′N,tC
−1
N,taN,t − a′N,tC

−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,taN,t

+ 2a′N,tC
−1
N,tAN,tλmiss,t − 2a′N,tC

−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,tλmiss,t.

We now show that α′N,tΣ
−1
N,tαN,t is bounded even as N diverges. We look each of the term

on the right-hand side of the last equality sign, one by one. Thus,

λ′miss,tA
′
N,tC

−1
N,tAN,tλmiss,t − λ′miss,tA′N,tC−1

N,tAN,t(Ip + A′N,tC
−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,tλmiss,t

= λ′miss,t(IN −A′N,tC
−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1)A′N,tC
−1
N,tAN,tλmiss,t

= λ′miss,t(Ip + A′N,tC
−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,tλmiss,t ≤ λ′miss,tλmiss,t,

because Ip − (Ip + A′N,tC
−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,t is positive semidefinite. Next, for the

third term,

a′N,tC
−1
N,taN,t ≤ a′N,taN,tg

−1
NN (CN,t).

34We differ slightly from Chamberlain and Rothschild (1983, Theorem 4) as our model is conditional,
where all quantities are time-varying, but such time-variation plays no role in our proof.
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Now, the jth element of a′N,tC
−1
N,tAN,t, obtained by considering the jth column of AN,t, for

every 1 ≤ j ≤ p, satisfies

|a′N,tC−1
N,tg

1
2
jNvjN | ≤ g

1
2
jN (a′N,tC

−1
N,taN,t)

1
2 (v′jNC−1

N,tvjN )
1
2 ≤ g

1
2
jNg

−1
NN (CN,t)(a

′
N,taN,t)

1
2 ,

recalling that v′jNvjN = 1, where for simplicity we set vjN = vjN (ΣN,t), and gjN =

gjN (ΣN,t). Moreover, the (i, j)th element, for every 1 ≤ i, j ≤ p, of (A′N,tC
−1
N,tAN,t) is

equal to g
1
2
iNg

1
2
jNv′iNC−1

N,tvjN . Therefore, assuming without loss of generality that g1N =

max[g1N , · · · , gpN ] for N large enough, then (Ip + A′N,tC
−1
N,tAN,t)

−1 decreases at rate g−1
1N .

On the other hand, for the same reason, the elements of the vector A′N,tC
−1
N,taN,t diverge

at most at rate g
1
2
1N . Thus, the fourth term satisfies:

|a′N,tC−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,taN,t| ≤ δg

1
2
1Ng

1
2
1Ng

−1
1N = δ.

Concerning the last two terms, it turns out that their difference converges to zero. In fact,∣∣2a′N,tC
−1
N,tAN,tλmiss,t − 2a′N,tC

−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,tAN,tλmiss,t

∣∣
= 2
∣∣a′N,tC−1

N,tAN,t(Ip + A′N,tC
−1
N,tAN,t)

−1λmiss,t
∣∣

≤ (a′N,tC
−1
N,tAN,t(Ip + A′N,tC

−1
N,tAN,t)

−1A′N,tC
−1
N,taN,t)

1
2 (λ′miss,t(Ip + A′N,tC

−1
N,tAN,t)

−1λmiss,t)
1
2

≤ δg−
1
2

pN → 0.

Proof of Theorem 4.1

In general, the SDF can always be re-written as linear in payoffs or excess returns. Without

loss of generality we can assume that the factors are traded, implying Etft+1 = Rft1K +λt.

In fact, if the factors are non traded, by standard arguments one replaces them with the

corresponding (traded) mimicking portfolios.

0N = Et(mt+1(RN,t+1 −Rft1N ))

= Et(mt+1(RN,t+1 −Rft1N ))

= Et
(

proj(mt+1|RN,t+1 −Rft1N )(RN,t+1 −Rft1N )
)
.

Therefore, given that in the APT payoffs (excess returns) are linear in ft, εN,t, and 1, then

the SDF under the APT must satisfy:

mt+1 = Et(mt+1) + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1, (A1)
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for some given coefficient vector bt, which is K × 1, and coefficient vector cN,t, which is

N × 1. We determine bt and cN,t below whereas Et(mt+1) = µm,t.

Given that we assumed the existence of a risk-free asset, Rft = 1 + rft, it must be that:

0K = Et(mt+1(ft+1 −Rft1K)

0N = Et(mt+1(RN,t+1 −Rft1N )),

leading to a total of K +N constraints. Substituting mt+1 from (A1) one gets:

0K = Et
[(
Et(mt+1) + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1

)
(ft+1 −Rft1K)

]
= E

[(
µm,t + b′t(ft+1 −Rft1K − λ) + c′N,tεN,t+1

)
(ft+1 −Rft1K)

]
= µm,tE(ft+1 −Rft1K) + E

(
(ft+1 −Rft1K)(ft+1 −Rft1K − λ)′bt

)
+ E

(
(ft+1 −Rft1K)ε′N,t+1

)
cN,t

= µm,tλt + Ωtbt,

implying that

bt = −µm,tΩ−1
t λt.

Next,

0N = Et
[(
µm,t + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1

) (
RN,t+1 −Rft1N

)]
= Et

[ (
µm,t + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1

)
×(

αN,t + BN,tλt + BN,t(ft+1 −Rft1K − λt) + εN,t+1

)]
= µm,t(αN,t + BN,tλt) + BN,tΩtbt + ΣN,tcN,t

= µm,t(αN,t + BN,tλt)− µm,tBN,tΩtΩ
−1
t λt + ΣN,tcN,t

= µm,t(αN,t + BN,tλt)− µm,tBN,tλN,t + ΣN,tcN,t

= µm,tαN,t + ΣN,tcN,t,

implying that

cN,t = −µm,tΣ−1
N,tαN,t.

We now establish the result for the projection SDF,m∗t+1. By construction, setting XN,t+1 =

(1,R′N,t+1)′ and µN,t = Et(RN,t+1),

m∗t+1 = Et(mt+1X
′
N,t+1)(Et(XN,t+1X

′
N,t+1)−1XN,t+1
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= (µm,t, µm,tµ
′
N,t + b′tΩtB

′
N,t + c′N,tΣN,t)

(
1 + µ′N,tV

−1
N,tµN,t −µ′N,tV

−1
N,t

−V−1
N,tµN,t V−1

N,t

)
Xt+1

= (µm,t − (b′tΩtB
′
N,t + c′N,tΣN,t)V

−1
N,tµN,t, (b

′
tΩtB

′
N,t + c′N,tΣN,t)V

−1
N,t)Xt+1

= µm,t + (b′tΩtB
′
N,t + c′N,tΣN,t)V

−1
N,t(RN,t+1 − µN,t),

where we use the block formula for the inverse of a square matrix to simplify Et(Xt+1X
′
t+1).

Proof of Theorem 4.2

The decomposition of mt+1 into mα
t+1 and mβ

t+1 follows from Theorem 4.1. Moreover,

Et(mα
t+1m

β
t+1) = Et

(
(−c′N,tεN,t+1)(µm,t − b′t(ft+1 − Et(ft+1)))

)
= −µm,tc′N,tEt(εN,t+1) + b′tEt((ft+1 − Et(ft+1))ε′N,t+1)cN,t = 0.

Proof of Theorem 4.3

Without loss of generality, assume that the factors are traded, implying that Etft+1 =

rf1K + λt and

Re
t+1 = αN,t + BN,tλt + BN,t(ft+1 − rf1K − λt) + εN,t+1.

Given this, let the candidate non-negative SDF be:

m+
t+1 = exp(µ+

m,t + (b+
t )′(ft+1 − rf1K − λt) + (c+

N,t)
′εN,t+1),

which implies that to identify m+
t+1, we need to find: µ+

m,t, b+
t , and c+

N,t.

Imposing the following 1 +K +N constraints,

µm,t = Et(m+
t+1),

0K = Et(m+
t+1(ft+1 −Rft1K)),

0N = Et(m+
t+1R

e
N,t+1),

allows one to identify m+
t+1, as we show below. Starting with the first restriction, using

Lemma A.1 below, we get:

µm,t = Et(m+
t+1) = Et(exp[µ+

m,t + (b+
t )′(ft+1 −Rft1K − λt) + c+′

N,tεN,t+1])
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= exp[µ+
m,t] exp[(

1

2
b+′
t Ωtb

+
t +

1

2
c+′
N,tΣN,tc

+
N,t]

implying

exp[µ+
m,t] = µmt exp[−(

1

2
b+′
t Ωtb

+
t +

1

2
c+′
N,tΣN,tc

+
N,t)].

Next, considering the K restrictions and using Lemma A.1 again, we obtain:

0K = Et(m+
t+1(ft+1 −Rft1K))

= E(m+
t+1(ft+1 −Rft1K − λt)) + λtEt(m+

t+1)

= λtEt(m+
t+1) + eµ

+
m,tEt(ec

+′
N,tεN,t+1)Et(eb

+′
t (ft+1−Rft1K−λt))(ft+1 −Rft1K − λt))

= λtµm,t + e(µ+m,t+
1
2
c+′N,tΣN,tc

+
N,t+

1
2
b+′
t Ωtb

+
t )Ωtb

+
t

= λtµm,t + µm,tΩtb
+
t

yielding

b+
t = −Ω−1

t λt.

Finally, imposing the N restrictions and using Lemma A.1 again, we get:

0N = Et(m+
t+1R

e
t+1)

= Et
(
m+
t+1(αN,t + BN,tλt + BN,t(ft+1 −Rft1K − λt) + εN,t+1)

)
= (αN,t + BN,tλt)Et(m+

t+1) + Et(m+
t+1BN,t(ft+1 −Rft1K − λt)) + Et(m+

t+1εN,t+1)

= (αN,t + BN,tλt)E(m+
t+1)−BN,tλtEt(m+

t+1) + µm,tΣN,tcN,t,

implying that

cN,t = −Σ−1
N,tαN,t,

where we used

Et(m+
t+1εN,t+1) = e(µ+m,t+

1
2
b+′
t Ωtb

+
t )Et(ec

+′
N,tεN,t+1εN,t+1) = µm,tΣN,tcN,t.

Putting the terms together

m+
t+1 = µm,te

−(λ′tΩ
−1
t (fet+1−λt)+

1
2
λ′tΩ

−1
t λt)e−(α′N,tΣ

−1
N,tεN,t+1+ 1

2
α′N,tΣ

−1
N,tαN,t).

Lemma A.1. For the vector of random variables z ∼ N(µz,Σz), and any constant vector

d, one gets:

(i)

E(ed
′z) = ed

′µz+ 1
2
d′Σzd.
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(ii)

E(zed
′z) = µ∗e

1
2

(µ∗′Σ−1
z µ∗−µ′zΣ

−1
z µz),

setting

µ∗ = (µz + Σzd).

An alternative expression is

E(zed
′z) = (µz + Σzd)e( 1

2
d′Σzd+µ′zd).

Proof. (i) is well-known. For (ii), denoting by nz the dimensionality of the vector z,

E(zed
′z) =

1

(
√

2π)nz |Σz|
1
2

∫
zed

′ze−
1
2

(z−µz)′Σ−1
z (z−µz)dz.

Then

ed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz) = ed

′z− 1
2
z′Σ−1

z z− 1
2
µ′zΣ

−1
z µz+µ′zΣ

−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ

−1
z µz+(Σzd+µz)′Σ−1

z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ

−1
z µz+µ∗′Σ−1

z z

= e−
1
2
µ′zΣ

−1
z µz+ 1

2
µ∗′Σ−1

z µ∗e−
1
2
z′Σ−1

z z+µ∗′Σ−1
z z− 1

2
µ∗′Σ−1

z µ∗

= e−
1
2
µ′zΣ

−1
z µz+ 1

2
µ∗′Σ−1

z µ∗e−
1
2

(z−µ∗)′Σ−1
z (z−µ∗),

implying

E(zed
′z) = e−

1
2
µ′zΣ

−1
z µz+ 1

2
µ∗′Σ−1

z µ∗

(
1

(
√

2π)nz |Σz|
1
2

∫
ze−

1
2

(z−µ∗z)′Σ−1
z (z−µ∗z)dz

)
.

Lemmata

Below, we list a series of lemmas that will be useful for proving the next set of results, valid

when N →∞. These lemmas are proved under assumptions that are to be added.

Lemma A.2. Let V = BΩB′ + Σ with N ×N and K ×K matrices Σ > 0 and Ω > 0 for

any N , and a full-column rank N ×K matrix B satisfying B′Σ−1B/N → D > 0 for some

non-singular D. Then:

B′V−1B→ Ω−1.
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Proof: The result follows from

V−1 = Σ−1 −Σ−1B(Ω−1 + B′Σ−1B)−1B′Σ−1,

and pre-multiplying by B′, and re-arranging terms, yields

B′V−1 = B′Σ−1 −B′Σ−1B(Ω−1 + B′Σ−1B)−1B′Σ−1

= (IK −B′Σ−1B(Ω−1 + B′Σ−1B)−1)B′Σ−1

= ((Ω−1 + B′Σ−1B)−B′Σ−1B)(Ω−1 + B′Σ−1B)−1B′Σ−1

= Ω−1(Ω−1 + B′Σ−1B)−1B′Σ−1.

Post-multiplying by B and taking the limit as N →∞ gives

B′V−1B→ Ω−1,

because (Ω−1 + B′Σ−1B)−1B′Σ−1B→ IK .

Lemma A.3. Under the assumptions of Lemma A.2 and for a random vector ε with mean

zero and covariance Σ:

B′V−1ε = Op(N
− 1

2 ).

Proof: Pre-multiplying by B′ and post-multiplying by ε one obtains:

B′V−1εt = Ω−1(Ω−1 + B′Σ−1B)−1B′Σ−1ε.

The result follows noticing that B′Σ−1ε = Op((B
′Σ−1B)

1
2 ) using the resultX = Op((E(X))

1
2 )

for any random variable X with finite second moment.

Lemma A.4. Under the assumptions of Lemma A.2 and letting Σ = AA′ + C for a

column full-rank N × p matrix A and a N ×N matrix C non-singular for any N such that

A′C−1A/N → E > 0 and B′C−1B/N → F > 0. Then:

A′Σ−1B = O(1).

Proof: Along the same lines of the proof to Lemma A.2

A′Σ−1B = (Ip + A′C−1A)−1A′C−1B = (
Ip
N

+
A′C−1A

N
)−1 A′C−1B

N
= O(1),

where, by Schwartz inequality, ‖ A′C−1B ‖≤‖ A′C−1A ‖‖
1
2 B′C−1B ‖

1
2 with ‖ . ‖ denoting

the Euclidean norm.
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Lemma A.5. Under the assumptions of Lemma A.4:

A′Σ−1A→ Ip.

Proof: This is a special case of Lemma A.2.

Lemma A.6. Under the assumptions of Lemma A.4 and for a random vector η with mean

zero and covariance C: Then:

A′Σ−1η = Op(N
− 1

2 ).

Proof: This is a special case of Lemma A.3.

Lemma A.7. Under the assumptions of Lemma A.4, setting α = a+Aλm with a′C−1a =

O(1) and a p× 1 vector of constants λm, then:

α′V−1B = O(N−
1
2 ).

Proof: Given

α′V−1B = a′V−1B + λ′mA′V−1B

= a′(Σ−1 −Σ−1B(Ω−1 + B′Σ−1B)−1B′Σ−1)B

+ λ′mA′(Σ−1 −Σ−1B(Ω−1 + B′Σ−1B)−1B′Σ−1)B

= a′Σ−1B(Ω−1 + B′Σ−1B)−1Ω−1 + λ′mA′Σ−1B(Ω−1 + B′Σ−1B)−1Ω−1

= O(N−
1
2 ) +O(N−1),

by Lemma A.4, the bound ‖ a′Σ−1B ‖≤‖ a′Σ−1a ‖
1
2 ‖ B′Σ−1B ‖

1
2 and

|a′Σ−1a| = |a′(C−1 −C−1A(Ip + A′C−1A)−1A′C−1)a|

≤ |a′C−1a|+ |aC−1A(Ip + A′C−1A)−1A′C−1a|

≤ |a′C−1a|+ |aC−1a|
1
2 ‖ A′C−1A ‖

1
2 ‖ (Ip + A′C−1A)−1 ‖ |aC−1a|

1
2 ‖ A′C−1A ‖

1
2

= |a′C−1a|+ |aC−1a| ‖ A′C−1A ‖‖ (Ip + A′C−1A)−1 ‖= O(1).

Proof of Theorem 4.5

The result follow by Lemmas A.2 and A.3.
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Proof of Theorem 4.6

From V−1
N,t = Σ−1

N,t −Σ−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,t one obtains

mα∗
t+1 =− µm,tα′N,tΣ−1

N,tεt+1 − µm,tα′N,tΣ−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,tεt+1(A2)

+ µm,tα
′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1Ω−1
t (ft+1 −Rft1N − λt). (A3)

We now show that the third term on the right hand side is Op(N
− 1

2 ). In fact,

‖ α′N,tΣ−1
N,tBN,t ‖ ≤ ‖ α′N,tΣ−1

N,tαN,t ‖
1
2 ‖ B′N,tΣ

−1
N,tBN,t ‖

1
2 = Op(N

1
2 ),

whereas

‖ (Ω−1
t + B′N,tΣ

−1
N,tBN,t)

−1 ‖ = Op(N
−1).

Remark A.0.1. Given that mα
t+1 and mα∗

t+1 have the same pricing implications, that is,

E(mα
t+1(Rit − Rf )) = E(mα∗

t+1(Rit − Rf )), it follows that the last two terms on the right

hand side of (A2) and (A3) induce, in terms of pricing, the same quantity in absolute value

but opposite sign.

Proof of Theorem 4.7

Consider

mα∗
t+1 =− µm,tα′N,tΣ−1

N,tεN,t+1 − µm,tα′N,tΣ−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,tεN,t+1

+ µm,tα
′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1Ω−1
t (ft+1 −Rft1N − λt).

Setting εN,t+1 = AN,tzmiss,t+1 + ηN,t+1 and fm,t+1 = zmiss,t+1 + Et(fm,t+1), the first term

on the right-hand side satisfies

−µm,tα′N,tΣ−1
N,tεN,t+1 = −µm,tλ′miss,tA′N,tΣ−1

N,t(AN,tzmiss,t+1 + ηN,t+1)

= −µm,tλ′miss,tA′N,tΣ−1
N,tAN,tzmiss,t+1 − µm,tλ′miss,tA′N,tΣ−1

N,tηN,t+1

= −µm,tλ′miss,tzmiss,t+1 +Op(N
− 1

2 ),

by Lemmas A.5 and A.6. The second term satisfies

µm,tα
′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,tεN,t+1

70



= µm,tλ
′
miss,tA

′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,tAN,tzmiss,t+1

+ µm,tλ
′
miss,tA

′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1B′N,tΣ
−1
N,tηN,t+1

= Op(N
−1) +Op(N

− 1
2 ),

by Lemmas A.4, recalling that B′N,tΣ
−1
N,tBN,t = Op(N) and making use of B′N,tC

−1
N,tηN,t+1 =

Op((B
′
N,tC

−1
N,tBN,t)

1
2 ) and A′N,tC

−1
N,tηN,t+1 = Op((A

′
N,tC

−1
N,tAN,t)

1
2 ).

Finally, the third term satisfies

µm,tα
′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1Ω−1
t (ft+1 −Rft1N − λt)

=µm,tλ
′
miss,tA

′
N,tΣ

−1
N,tBN,t(Ω

−1
t + B′N,tΣ

−1
N,tBN,t)

−1Ω−1
t (ft+1 −Rft1N − λt) = Op(N

−1),

by Lemma A.4 and B′N,tΣ
−1
N,tBN,t = Op(N).

Proof of Theorem 4.8

Proof. Case (i). By Theorem 4.7, mα∗
t →p −µm,t−1λ

′
miss,t−1(fmiss,t−Et−1(fmiss,t)) = −ξAt,

yielding γA and the limit ofR2
miss. However, when µm,t = µm,λmiss,t = λmiss,Et−1(fmiss,t) =

E(fmiss,t), then

γA = −(F̃′missF̃miss)
−1(

T∑
t=1

f̃miss,t(fmiss,t − Et−1(fmiss,t))
′)µmλmiss

= −(F̃′missF̃miss)
−1(

T∑
t=1

f̃miss,tf
′
miss,t)µmλmiss

= −(F̃′missF̃miss)
−1F̃′missF̃missµmλmiss

= −µmλmiss.

Regarding the limit of the R2, its numerator simplifies to

γ′AF̃′missF̃missγA = µ2
mλ
′
missF̃

′
missF̃missλmiss,

and, given that ξA = −(Fmiss − 1TE(f ′miss))λmissµm, its denominator becomes

ξ′AM1T ξA = µ2
mλ
′
miss(Fmiss − 1TE(f ′miss))

′M1T (Fmiss − 1TE(f ′miss))λmiss

= µ2
mλ
′
miss(F

′
missM1TFmiss)λmiss = µ2

mλ
′
missF̃

′
missF̃missλmiss,
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and thus identical to the numerator of the limit R2.

Part (ii). By Remark 4.6.2

mα∗
t →d ξat,

yielding convergence in distribution to γa. The limiting distribution of the R2 easily follows

both under the case of time-varying and constant µm,t.

Proof of Theorem 4.9

We start with the conjecture that the SDF is still linear in the observed factors ft+1 and

idiosyncratic risk εN,t+1, although now these can be cross-correlated. Staking the K + N

pricing equations:

0K = Et(mt+1(ft+1 −Rft1K)

0N = Et(mt+1(RN,t+1 −Rft1N )),

yields,

0N+K =

 Et
[(
µm,t + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1

)
(ft+1 −Rft1K)

]
Et
[(
µm,t + b′t(ft+1 −Rft1K − λt) + c′N,tεN,t+1

)(
RN,t+1 −Rft1N

)] 
= µm,t

(
λt

BN,tλt +αN,t

)
+

(
Ωtbt + PN,tcN,t

(BN,tΩt + P′N,t)bt + (ΣN,t + BN,tPN,t)cN,t

)

= µm,t

(
λt

BN,tλt +αN,t

)
+

(
Ωt PN,t

(BN,tΩt + P′N,t) (ΣN,t + BN,tPN,t)

)(
bt

cN,t

)
.

Using the block-wise formula for the inverse of a matrix, in view of the lack of perfect

correlation between the ft+1 and the εN,t+1, one derives the solution:(
bt

cN,t

)
= −µm,t

(
Ωt PN,t

(BN,tΩt + P′N,t) (ΣN,t + BN,tΩt)

)−1(
λt

BN,tλt +αN,t

)

= −µm,t

(
Ω−1
t + Ω−1

t PN,tH
−1
N,t(BN,t + P′N,tΩ

−1
t ) −Ω−1

t PN,tH
−1
N,t

−H−1
N,t(BN,t + P′N,tΩ

−1
t ) H−1

N,t

)(
λt

BN,tλt +αN,t

)

= −µm,t

(
Ω−1
t λt −Ω−1

t PN,tH
−1
N,t(αN,t −P′N,tΩ

−1
t λt)

H−1
N,t(αN,t −P′N,tΩ

−1
t λt)

)
.
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We now establish the result for the projection SDF m∗t+1. By construction, setting XN,t+1 =

(1,R′N,t+1)′ and µN,t = Et(RN,t+1),

m∗t+1 = Et(mt+1X
′
N,t+1)(Et(XN,t+1X

′
N,t+1)−1XN,t+1

= (µm,t, µm,tµ
′
N,t + b′t[ΩtB

′
N,t + PN,t] + c′N,t[ΣN,t + P′N,tB

′
N,t])

(
1 + µ′N,tV

−1
N,tµN,t −µ′N,tV

−1
N,t

−V−1
N,tµN,t V−1

N,t

)
Xt+1

= (µm,t − (b′t[ΩtB
′
N,t + PN,t] + c′N,t[ΣN,t + P′N,tB

′
N,t])V

−1
N,tµN,t, (b

′
t[ΩtB

′
N,t + PN,t] + c′N,tΣN,t)V

−1
N,t)Xt+1

= µm,t + (b′t[ΩtB
′
N,t + PN,t] + c′N,t[ΣN,t + P′N,tB

′
N,t])V

−1
N,t(RN,t+1 − µN,t),

where we use the block formula for the inverse of a square matrix to Et(Xt+1X
′
t+1), which

exists in view of our assumption of not-perfect correlation between observed factors and

idiosyncratic shocks. Finally, by means of algebraic manipulations,

b′t[ΩtB
′
N,t + PN,t] + c′N,t[ΣN,t + P′N,tB

′
N,t] = λ′tB

′
N,t +α′N,t.

Proof of Theorem 5.2

We have that:

0 = Et(R
e
n,t+1mt+1) = Et(R

e
n,t+1)Et(mt+1) + covt(R

e
n,t+1,mt+1)

= Et(R
e
n,t+1)µm,t + covt(R

e
n,t+1,m

α
t+1 +mβ

t+1)

= Et(R
e
n,t+1)µm,t + covt(R

e
n,t+1,m

α
t+1) + covt(R

e
n,t+1,m

β
t+1),

and re-arranging

Et(R
e
n,t+1) = −

covt(R
e
n,t+1,m

α
t+1)

vart(mα
t+1)

vart(m
α
t+1)

µm,t
−

covt(R
e
n,t+1,m

β
t+1)

µm,t

= −
covt(R

e
n,t+1,m

α
t+1)

vart(mα
t+1)

vart(m
α
t+1)

µm,t
− covt(R

e
n,t+1, f

′
t+1)cov−1

t (ft+1)
covt(ft+1)bt

µm,t
.

The result then follows.

Proof of Theorem 6.1

The result follows by applying Hannan (1970, Ch. II.7) to the SDF m(ft+1) relying on the

square-integrability assumption.
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B Decomposition of SDF Return in Terms of α- and β-Portfolio
Returns

In the theorem below, we decompose the SDF return in excess of the risk-free rate, R∗t+1,

in terms of the return on the wα
N and wβ

N portfolios, both of which are inefficient. In

particular, we show that we can span the entire SDF frontier based on the return of these

two portfolios. The theorem below provides the correction, mα∗
t+1, required to make the

possibly wrong mβ∗
t+1 admissible, as a function only of the return on the wα

N portfolio.

Theorem B.1 (Decomposition of the excess return in terms of return on wα
N and wβ

N

portfolios). Under Assumptions 3.1 and 3.2, for any µm,t, R
∗
t+1 satisfies:

R∗t+1 −Rft = φαt wα′
0,tR

e
N,t+1 + φβt w

β′
0,tR

e
N,t+1 + (

1

µm,t
−Rft),

where we set φαt =
µm,tα′N,tV

−1
N,tαN,t

RftE((m∗t+1)2)
, φβt =

µm,tλ′tB
′
N,tV

−1
N,tBN,tλt

RftE((m∗t+1)2)
and wα

µ∗,t and wβ
µ∗,t are the

α-portfolio and the β-portfolio, for given target mean µ∗, respectively:

wα
µ∗,t =

(µ∗ −Rft)
α′N,tV

−1
N,tαN,t

V−1
N,tαN,t, wβ

µ∗,t =
(µ∗ −Rft)

λ′tB
′
N,tV

−1
N,tBN,tλt

V−1
N,tBN,tλt,

with excess return Rαt+1 −Rft = wα′
0,tR

e
N,t+1 and Rβt+1 −Rft = wβ′

0,tR
e
N,t+1.

Proof: Using (15), and subtracting Rft from both sides,

R∗t+1 −Rft = κα
(
Rα∗t+1 −Rft

)
+ (1− κα)

(
Rβ∗t+1 −Rft

)
=

κα

E(m∗t+1m
α∗
t+1)

(
− µm,tα′N,tV−1

N,t(R
e
N,t+1 −αN,t −BN,tλt)−Rftµ2

m,tα
′
N,tV

−1
N,t(αN,t + BN,tλt)

)

+
(1− κα)

E(m∗t+1m
β∗
t+1)

(
µm,t − µm,tλ′tB′N,tV−1

N,t(R
e
N,t+1 −αN,t −BN,tλt)

−Rftµ2
m,t(1 + λ′tB

′
N,tV

−1
N,t(αN,t + BN,tλt)

)
=

καµm,t
E(m∗t+1m

α∗
t+1)

(
−α′N,tV−1

N,t(R
e
N,t+1 −αN,t −BN,tλt)−Rftµm,tα′N,tV−1

N,t(αN,t + BN,tλt)
)

+
(1− κα)µm,t

E(m∗t+1m
β∗
t+1)

(
1− λ′tB′N,tV−1

N,t(R
e
N,t+1 −αN,t −BN,tλt)−Rftµm,t(1 + λ′tB

′
N,tV

−1
N,t(αN,t + BN,tλt)

)
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=
καµm,t

E(m∗t+1m
α∗
t+1)

(
−α′N,tV−1

N,tR
e
N,t+1 − (Rftµm,t − 1)α′N,tV

−1
N,t(αN,t + BN,tλt)

)
+

(1− κα)µm,t

E(m∗t+1m
β∗
t+1)

(
− λ′tB′N,tV−1

N,tR
e
N,t+1 − (Rftµm,t − 1)(1 + λ′tB

′
N,tV

−1
N,t(αN,t + BN,tλt)

)

=
καµm,t

E(m∗t+1m
α∗
t+1)

(
−α′N,tV−1

N,tR
e
N,t+1

)
+

(1− κα)µm,t

E(m∗t+1m
β∗
t+1)

(
− λ′tB′N,tV−1

N,tR
e
N,t+1

)
−
µm,t(Rftµm,t − 1)

E((m∗t+1)2)

(
1 + (αN,t + BN,tλt)

′V−1
N,t(αN,t + BN,tλt)

)
=

καµm,t
E(m∗t+1m

α∗
t+1)

(
−α′N,tV−1

N,tR
e
N,t+1

)
+

(1− κα)µm,t

E(m∗t+1m
β∗
t+1)

(
− λ′tB′N,tV−1

N,tR
e
N,t+1

)
=

καµm,t
E(m∗t+1m

α∗
t+1)

(
−α′N,tV−1

N,tR
e
N,t+1

)
+

(1− κα)µm,t

E(m∗t+1m
β∗
t+1)

(
− λ′tB′N,tV−1

N,tR
e
N,t+1

)
+ (

1

µm,t
−Rft)

=
µm,tα

′
N,tV

−1
N,tαN,t

RftE((m∗t+1)2)
wα′

0,tR
e
N,t+1 +

µm,tλ
′
tB
′
N,tV

−1
N,tBN,tλt

RftE((m∗t+1)2)
wβ′

0,tR
e
N,t+1 + (

1

µm,t
−Rft)

= φαt wα′
0,tR

e
N,t+1 + φβt w

β′

0,tR
e
N,t+1 + (

1

µm,t
−Rft)

= φαt (Rαt+1 −Rft) + φβt (Rβt+1 −Rft) + (
1

µm,t
−Rft).

Remark B.1.1. When a risk-free asset is traded, µm,t = R−1
ft and one obtains:

R∗t+1 −Rft = φαt wα′
0,tR

e
N,t+1 + φβt w

β′
0,tR

e
N,t+1, with

φαt =
α′N,tV

−1
N,tαN,t

1 + (αN,t + BN,tλt)′V
−1
N,t(αN,t + BN,tλt)

, φβt =
λ′tB

′
N,tV

−1
N,tBN,tλt

1 + (αN,t + BN,tλt)′V
−1
N,t(αN,t + BN,tλt)

.

Moreover, asN →∞, one obtains φαt +φβt →p 1 because α′N,tV
−1
N,tBN,t →p 0 by Lemma A.7.

Remark B.1.2. Note that the formulae used for the α- and β-portfolios are slightly differ-

ent from the ones adopted by Raponi, Uppal, and Zaffaroni (2019). In fact, here we use the

population values for αN,t, as opposed to the finite-N projection. However, as N → ∞,

the formulae for the β-portfolio coincide, because, element by element,

wβ
µ∗,t =

(µ∗ −Rft)
λ′tB

′
N,tV

−1
N,tBN,tλt

V−1
N,tBN,tλt →p

(µ∗ −Rft)
λ′tΩ

−1
t λt

V−1
N,tBN,tλt.
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C Different Forms of SDF Misspecification

In this section, we describe the different forms of misspecification affecting the SDF. Re-

call from our results above that any admissible SDF can be expressed as the sum of two

components:

mt+1 = mβ
t+1 +mα

t+1,

where for simplicity, we have not included an orthogonal component (with zero price),

which would arise if markets were not complete. In the equation above, mβ
t+1 represents

the conventional SDF that has the factor representation in (16); that is:

mβ
t+1 = Et(mβ

t+1) + b′t
(
ft+1 − Et(ft+1)

)
=

1

λ0,t
− 1

λ0,t
λ′1,t Ω

−1
t

(
ft+1 − Et(ft+1)

)
.

The mα
t+1 component represents the correction required in order to obtain the admissibility

of mt+1; only in the case of zero pricing error in the return-generating process would this

term equal to zero. Alternatively, when the pricing errors are non-zero , then mα
t+1 takes

the following form:

mα
t+1 = − 1

λ0,t
α′N,tΣ

−1
N,tεN,t+1.

Below, we describe four forms of model misspecification that are captured by the frame-

work we have described in the paper. The first is related to the “beta” component of the

SDF. The second, third, and fourth are related to the “alpha” component of SDF, aris-

ing from the presence of: a pricing error that is unrelated to factors, missing factors, and

mismeasured factors.

Case 1: Pure pricing errors (unrelated to factors)

Next, consider the case where all factors are observed without error, but expected returns

have pricing errors (that is, returns depend also on non-factor-related characteristics), de-

noted by aN,t 6= 0, implying that

mα
t+1 = − 1

λ0,t
(aN,t)

′Σ−1
N,t εN,t+1.

In contrast to the next case, in this setting aN,t does not influence the variance-covariance

matrix of returns, VN,t.
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Case 2: Missing factors

Suppose now that of the true K0 factors, only K are observed and p = K0 − K > 0 are

missing and suppose for simplicity that the observed and missing factors are uncorrelated.

For simplicity, we assume aN,t = 0. Then,

mα
t+1 = − 1

λ0,t
α′N,tΣ

−1
N,tεN,t+1

= − 1

λ0,t
(AN,t λmiss,t)

′ (AN,tA
′
N,t + CN,t)

−1(aN,t+1 + AN,t zmiss,t).

where CN,t is the conditional covariance of uN,t+1, Et[zmiss,t+1] = 0, and Et[zmiss,t+1z
′
miss,t+1]

= Ip to achieve identification.

Case 3: Mismeasured factors

Finally, consider the case where all K0 factors are measured with error. In particular, the

observed factors satisfy ft+1 = f0
t+1 + ηt+1, where the measurement error ηt+1 has mean

Et[ηt+1] = µη,t and covariance matrix Et[(ηt+1−µη,t)(ηt+1−µη,t)′] = Ση,t. Recall that for

simplicity we assume a0
N,t = 0. Then,

mα
t+1 = − 1

λ0,t
α′N,tΣ

−1
N,tεN,t+1

= − 1

λ0,t
(−BN,tµη,t)

′(BN,tΣη,tB
′
N,t + CN,t)

−1
(
εN,t+1 −BN,t(ηt+1 − µη,t)

)
.

Case 4: Incorrect mean of the SDF

Above, we have looked at the cases where model misspecification is present in the return-

generating process for the risky assets, expressed in terms of the excess return of the risky

assets net of the zero-beta rate, γ0
0,t. In practice, unless a risk-free rate is traded, we need

to use one of the three alternatives discussed above, each of which could be misspecified;

that is, we choose γ0,t 6= γ0
0,t. This would affect the specification of both mα

t+1 and mβ
t+1.

Case 5: Incorrect functional form of the SDF

For example, if one were working with a representative-agent model, then the misspecifica-

tion could arise from an erroneous specification of the utility function or the state variables,
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or it could arise from using a Taylor-series expansion of a nonlinear SDF instead of the

exact model-implied nonlinear SDF.
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D The SDF: Basic Notions

Just as in Hansen and Jagannathan (1997), we consider asset-market transactions that take

place at two dates, t and t + 1. There are N financial assets that are traded at date t.

Each asset delivers a payoff at date t + 1. We let pN,t = (p1t, . . . , pNt)
′ denote the vector

of prices and xN,t+1 the corresponding vector of random payoffs on these N assets.35 This

single period between t and t+ 1 is replicated over time in a stationary manner.36

In addition to the primitive assets described above, the payoff space also includes new

payoffs that can be formed from portfolios of the primitive assets. We assume that investors

can form any portfolio of traded assets.

Assumption D.1 (Portfolio formation). Let X = X t+1 denote the space of portfolio pay-

offs, which includes the primitive payoffs xN,t+1 along with arbitrary portfolios constructed

with these primitive payoffs; that is, X is a linear space. Moreover, we assume that it is

closed.

Assumption D.2 (Law of one price). The price p(·) of a portfolio payoff is a linear func-

tional on X , p(a xn,t+1 + b xn′,t+1) = a p(xn,t+1) + b p(xn′,t+1), which is continuous at every

point (including zero).

In order to rule out nontrivial pricing functions, we impose the following assumption,

which implies that there is at least one payoff whose price is non-zero.

Assumption D.3 (Nontrivial price). There exists a payoff xn,t+1 ∈ X for which we have

probt(p(xn,t+1) = 0) = 0.

35To make clear the dependence on the number of assets, we index quantities that are N -dimensional by
the subscript N .

36The payoff space X is the set of all the payoffs that investors can receive at the end of each period. If,
for example, there are S discrete states at date t+ 1, then the payoff of asset n in state s is denoted by xns,
in which case

X =

 x11 . . . x1S
...

...
...

xN1 . . . xNS

 .

Although not made explicit in our main analysis, in order to ensure that prices are well defined, we are
implicitly modeling portfolio payoffs that are elements of a Hilbert space, which is included in the space
L2
t+1 of all random variables with finite second moments conditional on information at date t. Moreover,

L2
t+1 is endowed with the usual inner product and norm: for any h1, h2 ∈ L2

t+1

〈h1|h2〉 = Et(h1h2) and ‖ h1 ‖= 〈h1|h1〉1/2.
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Definition D.1 (Admissible SDF). An admissible SDF is a random variable mt+1 with

finite second moment such that the expected price of a payoff xn,t+1 can be represented as

the inner product of the payoff and mt+1:

p(xn,t+1) = Et(xn,t+1mt+1) ∀xn,t+1 ∈ X ,

where M is the set of all admissible SDFs.

For certain results, it will be important to rule out arbitrage opportunities in an economy

with a finite number of risky assets, N . Below, we define a notion of no arbitrage for the

price functional, p(·) on X .

Definition D.2 (No arbitrage opportunities; Hansen and Richard (1987, Definition 2.4)).

A price functional p(·) has no arbitrage opportunities on X if for any payoff xn,t+1 ∈ X for

which probt(xn,t+1 > 0) = 1, then probt({p(xn,t+1) ≤ 0} ∩ {xn,t+1 > 0}) = 0, where probt(·)
denotes the probability conditional on information at date t.

Given Assumptions D.1 and D.2, Hansen and Richard (1987, Theorem 2.1) and Hansen

and Jagannathan (1991) show that there exists an admissible stochastic discount factor

(SDF), that is, the unique payoff m∗t ∈ X such that pN,t = p(xN,t+1) = Et(m∗t+1xN,t+1) for

all xN,t+1 ∈ X . This m∗t+1 is:

m∗t+1 = p′N,t
[
Et(xN,t+1x

′
N,t+1)

]−1
xN,t+1. (D4)

If financial markets are complete, there is no other admissible SDF. On the other hand,

if markets are incomplete, then there are an infinite number of SDFs such that mt+1 =

m∗t+1 + εt+1 where Et(εt+1xN,t+1) = 0N for all xN,t+1 ∈ X . Observe that m∗t+1 is the

projection of any admissible SDF on the space of payoffs X : the pricing implication of any

SDF is the same as those of its projection on X :37

pN,t = Et(mt+1xN,t+1) = Et
([

proj(mt+1|X )+εN,t+1

]
xN,t+1

)
= Et

(
proj(mt+1|X ) xN,t+1

)
,

where proj(Y |X ) = [Et(xN,t+1Y )]′
[
Et(xN,t+1x

′
N,t+1)

]−1
xN,t+1, for any Y ∈ L2

t+1. Observe

that m∗t+1 is the minimum-variance SDF that lies on the boundary of the SDF frontier

identified in Hansen and Jagannathan (1991).

37Note that when Assumption D.2 holds, then p(·) has no arbitrage opportunities in X if and only if
probt(m

∗
t+1 > 0) = 1; see Hansen and Richard (1987, Lemma 2.3).
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There are several representations of the SDF m∗t+1, depending on the nature of the

payoffs. One is in terms of generic payoffs, as in Hansen and Jagannathan (1991, eq. (11)):

m∗t+1 = Et(m∗t+1) +
[
pN,t − Et(m∗t+1)Et(xN,t+1)

]′
cov−1

t (xN,t+1)
(
xt+1 − Et(xN,t+1)

)
,

where covt(xN,t+1) = Et
[(

xN,t+1 − Et(xN,t+1)
)(

xN,t+1 − Et(xN,t+1)
)′]

is the covariance

matrix of payoffs.

Given our assumption that a risk-free asset is available, then

Et(m∗t+1) =
1

Rft
,

which allows us to obtain the following representation:

m∗t+1 =
1

Rft
− 1

Rft
Et(Re

N,t+1)′cov−1
t (Re

N,t+1)
(
Re
N,t+1 − Et(Re

N,t+1)
)
, (D5)

where covt(R
e
N,t+1) = Et

[(
Re
N,t+1 − Et(Re

N,t+1)
)(

Re
N,t+1 − Et(Re

N,t+1)
)′]

is the covariance

matrix of excess returns, Re
N,t+1 = RN,t+1 − Rft1N .38 Given that gross returns are given

by RN,t+1 = Re
N,t+1 +Rft1N , then by the law of one price, the SDF in (D5) can also price

gross returns. That is,

p(RN,t+1) = p(Re
N,t+1) +Rft p(1N ) = Rft p(1N ) = Rft

1

Rft
1N = 1N .

38Note that when studying excess returns, one needs to consider the projection on the payoff space of
excess returns as well as 1; otherwise, equation (D4) would imply that m∗t+1 = 0.
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E Estimation of the Extended APT

In this section, we explain how to estimate the extended APT model of returns. Our

arguments apply to virtually any (parametric) estimation procedure, but we will illustrate

it with respect to the (pseudo) Gaussian ML estimator; the estimation could also be done

using a Bayesian approach. The Gaussian ML estimator is a natural estimator for our model

when the first two moments of asset returns are specified correctly, although distributional

assumptions (such as normality) are not required; hence, the use of pseudo ML.

However, because the APT restriction could be violated leading to arbitrage opportu-

nities, one needs to consider the maximum-likelihood estimator subject to the APT restric-

tion. Moreover, not only does the APT restriction lead to a more precise estimator of αN

compared to the unconstrained estimator, but it provides exactly the condition required to

econometrically identify the extended APT, as demonstrated in the theorem below; that is,

λmiss,t and αN,t cannot be identified separately unless the APT restriction is imposed.

Finally, for simplicity let us assume that all conditional moments are constant.

Assume that

Re
N,t+1 = αN + B1N (λ1 + f1t+1 − E(f1t+1)) + B2N f e2t+1 + εt+1,

with

αN = aN + ANλmiss var(Re
N,t+1) = VN = BNΩB′N + ANA′N + CN ,

where we set BN = (B1N ,B2N ), Ω = var(ft+1), ft+1 = (f ′1t+1, f
e′
2t+1)′, with f1t+1 denoting

the set of K1 non-traded observed factors and f e2t+1 the set of K2 traded observed factors,

expressed as excess returns, where K = K1 + K2. Note that, for simplicity, we initially

assume that the missing factors are uncorrelated with the observed factors, and later discuss

the case where they are correlated. Given that f e2t are excess returns on traded assets, their

risk premia satisfy λ2 = E(f e2t+1) and, to avoid confusion with the risk premia of the non-

traded assets, we will use the expectation formulation for λ2t.

The joint log-likelihood function takes the following form:39

L(θ̃) =− 1

2
log(det(ÃNÃ′N + C̃N )) (E6)

− 1

2T

T∑
t=1

(
Re
N,t − ÃN λ̃miss − ãN − B̃1N (λ̃1 + f1t − Ẽ(f1t))− B̃2N f e2t

)′
× (ÃNÃ′N + C̃N )−1

(
Re
N,t − ÃN λ̃miss − ãN − B̃1N (λ̃1 + f1t − Ẽ(f1t))− B̃2N f e2t

)
39Note that det(·) denotes the determinant, vec(·) denotes the operator that stacks the columns of a

matrix into a single column vector, and vech(·) denotes the operator that stacks the unique elements of the
columns of a symmetric matrix into a single column vector.
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− 1

2
log(det(Ω̃))− 1

2T

T∑
t=1

(
(f ′1t, f

e′
2t)− (Ẽ(f1t)

′
, Ẽ(f e2t)

′
)
)
Ω̃−1

(
(f ′1t, f

e′
2t)− (Ẽ(f1t)

′
, Ẽ(f e2t)

′
)
)′
.

Notice that we have expressed the joint distribution as the product of a conditional distri-

bution and a marginal distribution. Relaxing the i.i.d. assumption requires specification of

time-varying conditional means, conditional variances, and conditional covariances.

Theorem E.1 (Parameter estimation of extended APT). Suppose that the vector of as-

set returns, RN,t, satisfies Assumption 3.1 and that Σfe2 f
e
2
− f̄2

e
f̄2
e′

is nonsingular, where

Σfe2 f
e
2

= T−1
∑T

t=1 f e2tf
e′
2t and f̄2

e
= T−1

∑T
t=1 f e2t. Then

θ̂MLC = argmax
θ̃

L(θ̃) subject to ã′NΣ̃−1
N ãN ≤ δ,

where L(θ̃) is defined in (E6), and θ̂MLC = (â′N,MLC, λ̂′miss,MLC , λ̂′1,MLC, Ê(f1t)
′
MLC ,

Ê(f e2t)
′
MLC , vec(ÂN,MLC)′, vec(B̂N,MLC)′, vech(ĈN,MLC)′, vech(Ω̂MLC)′)′.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ > 0, setting

DN = (AN ,B1N ), λ = (λ′miss,λ
′
1)′,

then

vec(B̂2N,MLC) =
(

(Σfe2 f
e
2
⊗ I)− (f̄ e2 f̄ e′2 ⊗ (2GN −GNGN ))

)−1
vec
(
Σhfe2

− (2GN −GNGN )h̄N f̄ e
′

2

)
,

(E7)
λ̂MLC = (D̂′N,MLC Σ̂−1

N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1
N,MLC

(
h̄N − B̂2N,MLC f̄ e2

)
,

âN,MLC =
1

κ̂+ 1

(
h̄N − B̂2N,MLC f̄ e2 − D̂N,MLCλ̂MLC

)
,

where Σ̂N,MLC = ÂN,MLCÂ′N,MLC + ĈN,MLC, Σhfe2
= 1

T

∑T
t=1 htf

e′
2t, h̄N = 1

T

∑T
t=1 ht with

ht = Re
N,t − B̂1N,MLC(f1t − f̄1t), and

GN =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
D̂N,MLC(D̂′N,MLC Σ̂−1

N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1
N,MLC.

Note that D̂N,MLC = (ÂN,MLC, B̂1N,MLC) and ĈN,MLC do not admit a closed-form solution

and, as before, Ê(ft)MLC and Ω̂MLC coincide with the sample mean and sample covariance

of the observed factors ft = (f ′1t, f
′
2t)
′.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0 one can

estimate only αN = aN + DNλ but not the three components separately, and one obtains

α̂N,MLC = R̄e
N − B̂2N,MLC f̄ e2 ,
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and the expression for vec(B̂2N,MLC) can be obtained by setting κ̂ = 0 in the terms that

appear in (E7). The expressions for Ê(ft)MLC and Ω̂MLC are unchanged, and, as before, the

expressions for the estimators of D̂N,MLC and ĈN,MLC do not admit a closed-form solution.

Proof. Within this proof, for simplicity, we do not use the ·̃ notation to denote feasible

parameter values.

Defining by θ̂ the MLC corresponding to κ̃ = 0, this is unfeasible whenever we have

that â′N,MLCΣ̂−1
N,MLC âN,MLC > δ. Similarly, case κ̃ > 0 is unfeasible whenever, for every

κ̃ > 0,(
R̄e
N − B̂2N,MLC f̄ e2 − D̂N,MLC λ̂MLC

)′
Σ̂−1
N,MLC

(
R̄e
N − B̂2N,MLC f̄ e2 − D̂N,MLC λ̂MLC

)
< δ,

because (1+κ̂)2 =

[
R̄e
N−B̂2N,MLC f̄e2−D̂N,MLC λ̂MLC

]′
Σ̂−1
N,MLC

[
R̄e
N−B̂2N,MLC f̄e2−D̂N,MLC λ̂MLC

]
δ . When

both cases are feasible, the optimal value for the Karush-Kuhn-Tucker multiplier κ̃ will be

greater, or equal to zero, depending on which case maximizes the log-likelihood, namely

depending on whether L(θ̂MLC) or L(θ̂) is largest, respectively. Note that when κ̃ > 0 then

â′N,MLCΣ̂−1
N,MLCâN,MLC = δ by construction.

We now derive the formulae for the estimators. Assume for now that case κ̂ > 0

holds. Differentiating the penalized log-likelihood with respect to λ, aN , and the Lagrange

multiplier κ, the first K +N equations (after some algebra) are:

( DN
′Σ−1

N

IN

)(
R̄e
N −B2N (f̄ e2 )

)
=
( D′NΣ−1

N DN D′N,MLCΣ−1
N,MLC

DN (1 + κ̂)IN

)(
λ̂MLC

âN,MLC

)
,

where recall that ΣN = ANA′N + CN . It is straightforward to see that, because of the

APT restriction, λ and aN can now be identified separately, as long as κ̂ > 0. In fact, the

above system of linear equations can be solved because the matrix pre-multiplying λ̂MLC

and âN,MLC is non-singular for every κ̂ > 0, leading to the closed-form solution:

λ̂MLC = (D′NΣ−1
N DN )−1D′NΣ−1

N

(
R̄e
N −B2N f̄ e2

)
,

âN,MLC =
1

κ̂+ 1

(
R̄e
N −B2N f̄ e2 −DN λ̂MLC

)
.

Turning now to the first-order condition with respect to the generic (a, b)th element of

B2N , denoted by B2ab, one obtains,

− 1

T

T∑
t=1

g′tΣ
−1
N (−∂B2N

∂B2ab
f e2t + GN

∂B2N

∂B2ab
f̄ e2 ) = 0, with 1 ≤ a ≤ N, 1 ≤ b ≤ K,
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setting, for simplicity,

gt =
(
hN,t −GN h̄N − B̂2N,MLCf e2t + GN B̂2N,MLCf̄ e2

)
and g =

1

T

T∑
t=1

gt,

with

GN =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
DN (D′NΣ−1

N DN )−1D′NΣ−1
N .

Taking the vec operator for both sides of the first-order condition above gives

1

T

T∑
t=1

(f e′2t⊗g′tΣ
−1
N )vec

(∂B2N

∂B2ab

)
= (f̄ e′2 ⊗g′Σ−1

N GN )vec
(∂B2N

∂B2ab

)
, with 1 ≤ a ≤ N, 1 ≤ b ≤ K,

which can be rewritten more succinctly as

1

T

T∑
t=1

f e2tg
′
t = f̄ e2g′Σ−1

N GNΣN .

Next, recalling that Σhfe = 1
T

∑T
t=1 hN,tf

e′
2t , and Σfe2 f

e
2

= 1
T

∑T
t=1 f e2tf

e′
2t , with Σfe2h

=

Σ′hfe2
, one obtains Σ−1

N GNΣN = 1
(κ̂+1)IN + κ̂

(κ̂+1)Σ
−1
N DN (D′NΣ−1

N DN )−1D′N = G′N and

rearranging the above first order-condition gives

Σfe2h
− f̄ e2 h̄′NG′N −Σfe2 f

e
2
B̂′N,MLC + f̄ e2 f̄ e′2 B̂′N,MLCG′N − (f̄ e2 h̄′N − f̄ e2 f̄ e′2 B′2N,MLC)(IN −G′N )G′N

= Σfe2h
− f̄ e2 h̄′N (2G′N −G′NG′N )−Σfe2 f

e
2
B̂′N,MLC + f̄ e2 f̄ e′2 B̂′2N,MLC(2G′N −G′NG′N ) = 0.

Transposing both sides, taking the vec, and solving for vec(B̂2N,MLC) gives

vec(B̂2N,MLC) =
(

(Σfe2 f
e
2
⊗IN )−(f̄ e2 f̄ e′2 ⊗(2GN−GNGN ))

)−1
vec
(
Σhfe2

−(2GN−GNGN )h̄eN f̄ e′2

)
.

We need to show that a solution for B̂2N,MLC exists. This requires one to establish that

the matrix
(

(Σfe2 f
e
2
⊗ IN ) − (f̄ e2 f̄ e′2 ⊗ (2GN −GNGN ))

)
is invertible. This matrix can be

written as(
(Σfe2 f

e
2
⊗IN )−(f̄ e2 f̄ e′2 ⊗(2GN−GNGN ))

)
=
(

((Σfe2 f
e
2
−f̄ e2 f̄ e′2 )⊗IN )+(f̄ e2 f̄ e′2 ⊗(IN−(2GN−GNGN )))

)
.

The first matrix on the right hand side is non-singular. One then just needs to show that

the second matrix is positive semi-definitive. This follows because, IN − (2GN −GNGN ) =

(IN −GN )(IN −GN ), and we show below that (IN −GN ) is positive semi-definite.

IN −GN = IN −
1

(κ̂+ 1)
IN − (

κ̂

1 + κ̂
)DN (D′NΣ−1

N DN )−1D′NΣ−1
N
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= (
κ̂

1 + κ̂
)(IN −DN (D′NΣ−1

N DN )−1D′NΣ−1
N )

= (
κ̂

1 + κ̂
)ΣN (Σ−1

N −Σ−1
N DN (D′NΣ−1

N DN )−1D′NΣ−1
N )

= (
κ̂

1 + κ̂
)ΣNΣ

−1/2
N (IN −Σ

−1/2
N DN (D′NΣ−1

N DN )−1D′NΣ
−1/2
N )Σ

−1/2
N .

The right-hand side is the product of positive-definite matrices, namely ΣN and Σ
−1/2
N ,

and of the matrix IN − Σ
−1/2
N DN (D′NΣ−1

N DN )−1D′NΣ
−1/2
N , which is a projection matrix

orthogonal to Σ
−1/2
N DN , and therefore, positive semidefinite.

Therefore, plugging B̂2N,MLC into λ̂MLC and âN,MLC , one obtains that

λ̂MLC = λ̂(DN ,CN ), âN,MLC = âN (DN ,CN ) and κ̂ = κ̂(DN ,CN ).

Substituting them, together with B̂2N,MLC, into L(θ)−κ(a′NΣ−1
N aN − δ), gives the concen-

trated likelihood function, which is a function of only DN and CN which will be maximized

numerically, providing DN,MLC and CN,MLC.

Suppose now that κ̂ = 0 holds, and recall that in this case the MLC is indicated by θ̂.

One can clearly obtain a unique solution for (DN , IN )
( λ

âN

)
= DNλ + âN . However, to

solve for λ and âN separately, one needs to invert the matrix

( D′NΣ−1
N

IN

)
(DN , IN ) =

( D′NΣ−1
N DN D′NΣ−1

N

DN IN

)
,

which is not possible because it is of dimension (N + K) × (N + K) but of rank N , as

the left-hand side shows that it is obtained from the product of two matrices of dimension

(N+K)×N . All the other parameters are identified separately, and their expressions follow

from differentiating L(θ) and solving the resulting first-order conditions. For instance, the

formula for B̂2N follow by setting GN = IN into (E7).

The constrained estimator α̂N,MLC turns out to be precisely the ridge estimator for

αN , unless κ̂ = 0, in which case the OLS estimator is re-obtained. Besides α̂N,MLC, the

estimators of B̂2N,MLC and Σ̂N,MLC are also functions of κ̂ because of the APT constraint, in

contrast to Ê(ft)MLC and Ω̂MLC, which are simply the sample mean and sample covariance

of ft because the APT constraint does not affect the distribution of the observed factors ft.
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F P-values for Weighted Sum of Squared Pricing Errors

Define the pricing errors:

e(m) = E(mtXt)− p.

When the SDF depends on a vector of parameters θ, mt(θ̂) the estimated SDF with esti-

mated pricing errors ê = T−1
∑T

t=1mt(θ̂)Xt − p. By the Delta method:

√
T ê→d N(0, Ve) where Ve =

∂e

∂θ′
Vθ
∂e′

∂θ
and

∂e

∂θ′
= E(Xt+1

∂mt+1(θ)

∂θ′
).

Consider three different metrics (with some abuse of notation since HJ is the squared

Hansen-Jagannathan first-distance multiplied by T ):

HJ = T ê′(X ′X/T )−1ê,

SS = T ê′ê,

J = T ê′V̂ −1
e ê.

Theorem F.1 (Pricing errors). For a N × 1 vector of standard normal random variable z,

and a sequence of iid χ2
1i chi-squared random variable with 1 degree of freedom, as T →∞,

HJ →d z
′Ahjz =

N∑
i=1

λhj,iχ
2
1i,

SS →d z
′ASSz =

N∑
i=1

λss,iχ
2
1i,

J →d z
′z = χ2

N

where

λhj,1, · · · , λhj,N are the eigenvalues of Ahj = V
1
2
e (EXtX

′
t)
−1V

1
2
e ,

λss,1, · · · , λss,N are the eigenvalues of Ass = Ve,

Proof. Follows from Jagannathan and Wang (1996, Thm. 3).
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