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Abstract

Calibrating Gompertz in Reverse:
Mortality-adjusted (Biological) Ages around the World

This paper develops a statistical and methodological framework for inverting the Gompertz-
Makeham (GM) law of mortality for heterogenous populations in a manner consistent with
a compensation law of mortality (CLaM), to formally define a global mortality-adjusted
(biological) age. It implements and calibrates this framework using rates from the Human
Mortality Database (HMD) to illustrate its salience and applicability. Among other things,
this paper demonstrates that when properly benchmarked, the global mortality-adjusted
(biological) age of a 55-year-old Swedish male is 48, whereas a 55-year-old Russian male is
closer in age to 67. The motivation for this (new) framework for presenting age and relative
aging is that this metric could be used for pension and retirement policy. In a world of
growing mortality heterogeneity and the need for salient longevity metrics beyond simple
life expectancy, “biological age” might help capture the public’s attention and induce them
to take action, for example to work longer and retire later. Perhaps a mortality-adjusted
(biological) age could even be used to determine pension eligibility.
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1 Introduction and Motivation

The legacy of Benjamin Gompertz has withstood the test of time and Gompertz (1825) has

been cited with increasing frequency in the last few decades1. Despite its age and noted

empirical limitations, his eponymous law of mortality – which will soon be celebrating a

200th anniversary – is still widely used in the fields of demographics, biology, actuarial sci-

ence and even financial engineering. To his credit Benjamin Gompertz appears regularly

in the pages of Insurance: Mathematics and Economics. In particular, the ability to repre-

sent important actuarial expressions in closed form via the Gamma function has made the

Gompertz representation especially convenient and popular in the annuity literature. The

defining characteristic of the Gompertz law of mortality, when expressed in continuous time,

is the linear relationship between the log of natural mortality rates and (chronological) age

x. The natural law is written or expressed via the following parameterization:

Natural Mortality Rate = µx − λ = hegx = (1/b)e(x−m)/b).

In this expression, λ ≥ 0, which is subtracted from the total hazard rate µx >> λ, is a

non-age-dependent accidental death (a.k.a. Makeham constant) rate, and (h > 0, g > 0) or

alternatively (m > 0, b > 0) determine the slope and intercept of ln[µx− λ]. Using the more

common (m, b) formulation, the parameter m represents the modal value of the remaining

lifetime random variable Tx, and b represents a dispersion coefficient. Either way, the implicit

linearity assumption is empirically valid over adult ages across most countries around the

world. However, it does not fit or work very well at young (x < 30) ages, and the upper

bound is subject to some debate in the bio-demographic and medical literature. See Gavrilov

and Gavrilova (2014).

At the risk of jumping too far ahead, Table #1 [placed here] displays the best-fitting

Gompertz (and Makeham) parameters for the 37 countries listed and available in the Human

Mortality Database (HMD) at the time this analysis was conducted. Both sets of (h, g) and

(m, b) are displayed, and are in line with values used by researchers in a variety of published

papers in the actuarial literature, which will be discussed in the formal literature review.

1According to Google Scholar, no fewer than 100 papers published in IME over the last decade or so,
have assumed and/or cited a non-trivial Gompertz formulation in their analysis. In particular Gompertz
remains quite popular in (i.) the valuation of annuities, (ii.) retirement income strategies and (iii.) stochastic
mortality models. See for example: Angoshtari et al. (2016), Chen and Vigna (2017), Cohen and Young
(2016), Dahl (2004), Delong and Chen (2016), Deelstra et al. (2016), Donnelly et al. (2014), Donnelly et
a. (2013), Feng and Yi (2019), Fung et al. (2014), Gao et al. (2015), Haberman et al. (2011), Hainaut
(2016), Jevtic et al. (2013), Luciano et al. (2012), Luciano and Regis (2014), Melnikov and Romaniuk (2006),
Menoncin and Regis (2017), Meyricke and Sherris (2013), Moore (2009), Petrichev and Thorp (2008), Pitacco
(2004), Shapiro (2013), Su and Sherris (2012), Valdez et al. (2014), Villegas and Haberman (2014), Wang
(2009) and Willemse and Kaas (2007).
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It is obvious and quite evident (from Table #1) that although the Gompertz law itself

fits or works in all the listed countries, the best-fitting parameters are country dependent.

Some countries experience much higher mortality (for example m = 71.7 years for males in

Belarus), while other countries experience much lower mortality (for example m = 86.4 for

males in Australia.)

What is less known to scholars who may not specialize in this area is that upon closer

examination of the country-by-country parameter estimates, there is a negative relationship

between the estimated (log) initial natural mortality rate ln[h], and the estimated mortality

growth rate g. Countries with a relatively low initial natural mortality rate tend to have a

higher mortality growth rate and vice versa. The exact nature of this relationship – known

as the compensation law of mortality – will be made precise later in the paper, but can be

visualized in Figure #1 [placed here.] Countries with relatively low mortality rates are

represented by the top lines, and countries with relatively higher mortality are represented

by the bottom lines, all in log scale. One can then think of the (thick) middle line as

representing a global average (log) mortality rate. In fact, the relative difference in natural

mortality rates declines over (chronological) age, so that at some advanced age the differences

between mortality in different populations is minimal, but at middle ages the difference in

mortality rates – and perhaps true age – differs substantially across countries. This gets us

to the notion of a biological age which is distinct from chronological age.

1.1 A Mortality-adjusted Age

Researchers in a variety of medical fields are working on uncovering bio-markers of aging

which measure an individual’s true physiological age, also known as biological age. This sort

of information is used to generate more accurate forward-looking mortality rate projections

as well as distributions of future lifetimes; both of which are obviously better than a simple

period life expectancy. The age adjustment processes, which are similar to actuarial setbacks,

are a refined form of the underwriting process employed by life insurance companies for cen-

turies. What has received less attention in the insurance literature is how to map estimated

mortality rates into a consistent Mortality-adjusted biological age. This paper develops a

statistical and methodological framework for inverting the Gompertz-Makeham (GM) law

of mortality for heterogenous populations in a manner consistent with a compensation law

of mortality (CLaM) to formally define a global mortality-adjusted (biological) age.

The underlying two-stage process will soon be explained – but the end result is a simple

equation which maps an individual’s (chronological) age x, into a global mortality-adjusted

(biological) age ξ. The value might be higher than x (indicating poor relative health) or

lower than x (indicating better relative health).
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So, why bother doing this? On a behavioral level, this information might represent an

alternative way of explaining longevity metrics to a wider public who struggle with proba-

bilistic concepts.2 Indeed, informing a healthy 70-year-old that they face a 20% chance of

living to age 90 – and should therefore plan for this longevity risk – might not be as impact-

ful or salient as informing them they are really 55, biologically. This paper makes no claim

about the efficacy of presenting longevity risk information in (what this author believes is)

a more salient manner and leaves that task to other (future) researchers. Rather, this paper

is focused and concerned with methodology. Namely: Given a large set of local mortality

rates, how does one compute a global mortality-adjusted (biological) age? Now, to modern

practicing actuaries the underlying Gompertz model might appear as an archaic remnant of

an era prior to computers and spreadsheets. However, the Gompertz-Makeham law allows

for analytic tractability that greatly benefits the inversion process which is at the heart of

this paper.3

The remainder of this paper is organized as follows: The next section (#2) provides a

brief overview of what is commonly meant by biological age in the medical field, resulting

in two different philosophies or views. Section (#3) provides an overview of the statistical

and methodological framework proposed in this paper. Section (#4) gets into the details

and the role of the compensation law of mortality, introduced by Gavrilov and Gavrilova

(1991). Readers interested in the numerical values of global mortality-adjusted (biological)

ages around the world can skip ahead to section (#5) and the associated tables. Finally,

section (#6) concludes the paper and offers some suggestions for additional applications

within the context of heterogenous mortality and pension policy.

2 Biological Age: Defined and Explained

Generally speaking, there are two (very) different approaches for how to compute and mea-

sure (mortality-adjusted) biological age. The difference between the two methodologies or

viewpoints isn’t just a matter of computational technique, but is in fact motivated by one’s

background, discipline and field, as well as the intended usage of the number. Although

researchers themselves don’t use these terms, this papers labels the two approaches the “liv-

ing” (i.e. medical) methodology and the “dying” (i.e. actuarial) methodology. Stated quite

simply, in the former (living) approach the benchmark for measuring true biological age is

other people who are alive, and for the latter approach the benchmark is people who are

dead.

2See the work by Payne, et al. (2013), and their various references for more evidence on the difficulty
consumers face with basic probabilistic information, especially as it relates to retirement income planning.

3The inversion process would be more difficult with general mortality laws – see Richards (2019) for an
approach to modeling compensation laws with splines – but remains a possibility for future research.
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2.1 The Living Approach

In the medical arena, a researcher would gather data on a very large group of people at a

wide range of ages and collect samples of their saliva, blood, and urine, to extract various

physiological and molecular (DNA, RNA, etc.) variables. These measurements, which could

number in the hundreds, might range from red blood cell count, hemoglobin concentration,

and total cholesterol, to items such as fasting blood sugar levels, urine specific gravity,

triglycerides, or the average telomere length (or ATL), which for a while was the leading

biomarker for aging, and is associated with the work of Blackburn with Epel (2017).

These physiological and molecular variables might then be augmented by physical vari-

ables (i.e., more easily measured, not requiring a laboratory) such as hand grip strength,

visual perception, or even the number of missing teeth. Some researchers go so far as to

augment their dataset with social variables, such as number of friends on Facebook, or a

binary variable measuring whether they like to garden. The theory here is that anything

remotely associated with the characteristics of older people can be added as a data point for

measuring true age: See Ries and Pothig (1984), Dubina, Mints and Zhuk (1984), or more

recently Jylhava, Pederson and Hagg (2017.) Each one of the elements is coded as a numer-

ical score and every person in the sample is now associated with a vector of (for the sake

of argument) 200 numbers, including their gender. The most important number, however,

which one can visually imagine as being stored at the very beginning of this long vector, is

the individual’s chronological age. Here we denote the i’th person’s chronological age by the

symbol y(i), and the vector of physiological, molecular, physical and social characteristics

by x(j, i), where the index letter j ranges from 1 to 200.

The (usually medical) researcher would then generate a multivariate (usually linear) re-

gression of y(i), as the dependent variable, on x(j, i) (the independent variables) to obtain

the best-fitting function in the sense of least squares, etc. Variables that are not statistically

significant are discarded (e.g., Facebook friends) and the multivariate regression is estimated

again (and again) until the process converges on a small set of variables that relate (i.e., pre-

dict) the dependent variable, which is chronological age. The best-fitting regression equation

becomes the formula for biological age, while the individual errors in the regression are the

gaps between a person’s chronological age and their biological age.

The statistically significant coefficients in this regression are declared as relevant biomark-

ers of aging – and the sign of the coefficients (a.k.a. factors), would determine whether scoring

higher in those elements effectively makes one younger or older. Note this is not the approach

taken in the current paper, but is what many (if not most) medical researchers mean by the

term biological age. It’s worth noting that the first attempt at measuring biological age was

made by the mathematician Hugo Steinhaus in 1932, based on deteriorating eyesight.
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2.2 Methodological Concerns

Here lies the concern with the living approach, which is a non-mortality-based approach, to

determining age. The implied biological age is based on how similar one is to other people,

as opposed to directly estimating how long they are going to live or how soon they are likely

to die – which would be of interest to the insurance economist or mathematician concerned

with describing human longevity. Indeed, it’s implicitly assumed that older people are more

likely to die sooner, so the older the regression-measured biological age, the lower the life

expectancy. But, for the most part, mortality is not involved directly, nor does this approach

care about what is likely to kill the individual. The basic dataset is a cross section of live

people at different ages.

In some clinical studies, e.g. Jylhava et al. (2017), researchers track large groups of

people over time to examine if the older ones are more likely to die or if they did not live as

long as their identically-aged neighbors, but it’s an afterthought and obviously requires very

long periods of time (decades, really) to establish. So, while the above approach doesn’t

ignore death, its focus is mainly on keeping people alive and in “young” health.

In sum, most equations for biological age come down to locating people who are most

similar and, more importantly, is primarily concerned with predicting functional impairments

or the risk of chronic diseases. These researchers are interested in maximizing health span,

not necessarily lifespan, which is why death and mortality rates aren’t the focus of their

attention. There are other concerns with this approach, mostly related to the statistical

significance of regressions with multiple independent variables and data mining, as well as

concerns about linearity assumptions, etc4.

2.3 The Dying Approach

In contrast to the “living” methodology, the mortality-adjusted biological age approach is, as

the name suggests, based on people who have died and is concerned with something that is

much less complex than the multifaceted aspects of aging. Rather, it simply wants to better

predict calendar time until death, or what might be designated Tx, where x is chronological

age. This process begins by collecting data on mortality rates as a function of chronological

age plus other characteristics or elements. For example, these might include the number

of cigarettes the now-deceased smoked before they died, or their body mass index before

they died or their triglyceride level before they died. The “dying” approach for measuring

biological age also invokes a regression process, but the dependent variable, denoted by the

familiar qx, is a mortality rate, not a chronological age.

4See Dubina et al. (1984), Jackson et al. (2003), Jylhava et al. (2017) and Ries and Pothig (1984), for
more on this (conventional) approach to biological age estimation and their many references.
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In contrast to the living approach, chronological age is not the dependent variable, nor

is anyone trying to predict it directly. For example, the best-fitting regression equation for

mortality might be estimated to include a variable which is one minus the ratio of the average

length of telomeres in the body (in units of nucleotides) to the number 10,000 (for example)

in the year prior to death. If the average length of ones telomeres is 9,900 nucleotides,

then the forecast mortality rate is (1-99/100)=1% in that year, all else being equal. In

contrast, if the average length of the telomeres in your body is 8,000 nucleotides, the one-

year mortality rate would be 20%. Needless to say, given the censored nature of the data

(live people), there are natural biases that must be corrected, and so forth. Moreover, this is

a toy example, but the point is to focus directly on mortality rates in the estimation process.

In fact, within this approach, one might also include an individual’s wealth and income as

well, and the paper briefly touches upon this in section (#6), but it’s more common to focus

on (obvious) factors that affect mortality such as alcohol consumption, smoking, body mass

index, physical activity, quality of sleep, blood pressure, resting heart rate and perhaps even

how much time you spend walking in a given day. All these factors are segmented into groups

to determine whether they impact mortality rates conditional on age.

In this paper, the only differentiating factor considered is nationality, using data from

the human mortality database (HMD). Just as importantly, the computation of mortality-

adjusted (biological) age involves mapping from mortality rates to an assumed age. This is

precisely where the Gompertz-Makeham (GM) law of mortality is used. In particular, this

paper derives mortality-adjusted (biological) ages by inverting the GM expression, taking as

input both global and local mortality rates and then solving for the implied age ξ.

3 Conceptual Model: From Mortality Rates to an Age.

Every adult life in country i, i = 1, ..., N , obeys a GM law. The total hazard rate is:

µx[i] = λ[i] + h[i] eg[i]x, (1)

where x ≥ 0 denotes (chronological) age, g[i] ≥ 0, is the mortality growth rate, h[i] ≥ 0 is the

initial natural mortality rate, and λ[i] ≥ 0 is the accidental (non-age-related) hazard rate,

a.k.a. Makeham constant. As stated earlier, this implies that the log of the total hazard

rate minus the accidental date rate: ln[µx[i]−λ[i]], is a linear function of (chronological) age

x, with intercept ln[h[i]] and slope g[i]. Each country i is described by a set: (λ[i], h[i], g[i]),

which is unique5.

5Since both: h[i] and λ[i] tend to be very small numbers, that is, on the order of 10−5, most of the tables
and figures will display the natural log values.
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Moving on, let ξ denote a mortality-adjusted (biological) age, which is also assumed

(i.e., forced) to satisfy a GM-like relationship for the continuous total hazard rate. That

relationship is captured by the thick middle curve in Figure #1. Every person in country i,

at the chronological age of x, is assumed to have another “age” denoted by ξ, which may (or

may not) equal their chronological age x. The arrows in Figure #1 go from chronological

age to what this paper defines as the mortality-adjusted (biological) age. Formally, the ξ

will satisfy:

Λξ = Λ +HeGξ, (2)

where Λ ≥ 0, H > 0, and G ≥ 0 represent global GM parameters. The exact procedure by

which Λ, H,G are estimated from specific country values will be described later on, but for

now one can think of the global values as a weighted average of the vector of local values.

Again, see the middle line in Figure #1 for intuition. The averaging process, however, is not

linear if the procedure is to be consistent with the compensation law of mortality. Note also

that the average (or sum) of Gompertz random variables isn’t Gompertz, which is another

reason not to average h[i] values and set them equal to H.

To our main objective, the global mortality-adjusted (biological) age ξ := ξ(x, i) in

country i is obtained by equating hazard rates at (chronological) x and solving for the

implied ξ. Formally:

Λξ = µx[i]. (3)

Inverting the GM equation in terms of µ, will set and determine the global mortality-adjusted

(biological) age ξ. Equating (1) and (2) and dispensing with the [i] index on the local

λ[i], h[i], g[i] values, leads to:

ξ =
ln[λ− Λ + hegx]− ln[H]

G
. (4)

For the above expression to make sense, one must further impose a restriction that

λ−Λ + hegx > 0, which as long as x is large enough (remember: adult ages) shouldn’t pose

a problem. In some sense, equation (4) is the main equation in the paper and the remainder

is implementation. Equation (4) maps a (chronological) x, the country Gompertz-Makeham

parameters (λ, h, g) and the global Gompertz-Makeham parameters (Λ, H,G) into a global

mortality-adjusted (biological) age.

To obtain some intuition for equation (4), assume that in a particular country i, and

within the Gompertzian age range, the Makeham constant λ[i] = Λ, which is the global

Makeham parameter. (In general we will not make that assumption.) In that case, equation

(4) can be expressed as:

ξ =

(
ln[h/H]

G

)
+
( g
G

)
x. (5)
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Intuitively, one can see from equation (5) how the global mortality-adjusted (biological) age

ξ, collapses to chronological age x when the country-specific initial natural mortality rate is

equal to the global average value and the local mortality growth rate is equal to the global

average value. Equation (5) also indicates that when g = G and the mortality growth rates

are equal, but h 6= H, the global mortality-adjusted (biological) age ξ is a linear shift (a.k.a.

the popular age set-back) of the chronological age x, by: ln[h/H]/G years. The age set-back

approach is common in actuarial practice to model sub-standard or healthy lives, but is

technically inconsistent with the compensation law of mortality.

Before moving on to estimation and implementation, here is a simple numerical value

from equation (5) to further develop the intuition. Assume that in Mauritius the value of

h[i], which is the natural mortality rate at age zero, is estimated to be: 15 × 10−5 and the

corresponding value of g[i] is estimated at: 0.06, that is a 6% mortality growth rate. Recall

once again that high values of h are associated with lower values of g, and vice versa. So, in

the same spirit, assume for this example that the global average values are: H = 1 × 10−5

and G = 0.09, both of which are completely fictitious at this point. Under these values, a

chronological x = 65 year-old in Mauritius, according to equation (5), has a global mortality-

adjusted (biological) age of: ξ = 73.4. One would thus conclude that they are older than

their chronological age.

3.1 In sum: Two Regressions and an Inversion

1. The process starts with vectors of country-specific decrements qx[i], obtained from

period mortality tables. They are converted to continuous total hazard rates µx[i] in

a manner consistent with the Gompertz-Makeham law, since µx 6= qx.

2. Standard linear regression techniques are used to estimate the local Gompertz-Makeham

parameters (λ[i], h[i], g[i]) for each one of the i countries.

3. With the N parameters, a second phase regression is implemented to estimate the

global (i.e., average) values of: Λ, H,G, in a manner consistent with the compensation

law.

4. Global mortality-adjusted (biological) ages are computed using equation (4) at various

ages using the country-specific: (λ[i], h[i], g[i]), and particular values of Λ, H,G.

Before moving on to explain each one of the steps in detail, here is a brief recap of the

mortality terminology. The model is formulated in continuous time, where the total hazard

rate µx[i], at chronological age x, in country i, is the sum of the accidental (Makeham death)

rate λ[i] and the natural age-dependent mortality (Gompertz) rate h[i]eg[i]x.
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The country-specific parameter h[i] is the initial (age zero) natural mortality rate, and

g[i] is the country-specific mortality growth rate. To be very clear, despite the term initial,

h[i] is not the infant mortality rate in country i. (The first 30 years of life don’t obey the

Gompertz law.) Rather, h[i] is a hypothetical value that assumes the GM regime extends to

age zero. In Figure #1 it is the point at which the various country-lines hit the y-axis, if

the x-axis is extended leftwards to zero. On the other side, the natural (Gompertz) portion

plateaus at chronological age x∗, which is a fixed global parameter, at a value of λ.

4 The Detailed Procedure

4.1 Step One: Estimating Country GM Parameters

Each country is identified and summarized by 3 local plus 2 global = 5 total parameters.

They are: {h[i], λ[i], g[i], x∗, λ∗}, where i = 1, ..., N , is the number of countries. Again, h[i],

represents the initial natural mortality rate for country i, and the second parameter is the

accidental (Makeham) death rate term λ[i]. Indeed, some countries are estimated to have

(very) high accidental death rates (e.g., males in Russia, in Table #1a) and other countries

have negligible (estimated) accidental death rate (e.g., males in Israel, in Table #1b). The

third term which differentiates one country from another is g[i], which is the corresponding

mortality growth rate (MGR) during the Gompertzian range of life x < x∗. For those more

familiar with the (m, b) representation of the GM law, it’s the country-specific value of the

inverse of the dispersion parameter g = 1/b.

The fourth parameter is global (i.e., not country-specific) and is denoted by x∗. This is

the critical age at which the Gompertzian regime ends, and is also known as the species-

specific lifespan, per Gavrilov and Gavrilova (1991). In Figure #1, it is pictured as the

chronological age (approximately x = 105) at which the disparate (log) rates intersect and

plateau to a constant. This critical parameter will also be estimated from the collection of

country rates.

Finally, the (log) natural rates plateau at a fifth and final estimated parameter value: λ∗.

If and when individuals (ever) reach that very advanced rate, they face a constant hazard rate

(which is country dependent) and therefore an exponentially distributed remaining lifetime

from that point onward. Technically speaking, it’s very important to note that although

ln[µx[i] − λ[i]], which in Figure #1 is the y-axis, plateaus at a value of λ∗, the individual

country-specific total hazard rates will equal: λ[i] + λ∗, after age x∗.
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The total hazard rate µx, will obey the following relationship:

µx[i]− λ[i] =

{
h[i]eg[i]x x < x∗

λ∗ x ≥ x∗.
(6)

Empirically, the plateau mortality rate: λ∗ >> λ[i] and the corresponding age x∗, is a global

constant, as per the strict version of the compensation law of mortality. Nevertheless, it’s

worth emphasizing that equation (6) is quite general, as it’s conceivable x∗ →∞, and there

is no (finite) mortality plateau. Rearranging, the GM model can be expressed as:

Qx︷ ︸︸ ︷
ln(µx[i] − λ[i]) =

C0︷ ︸︸ ︷
lnh[i] +

C1︷︸︸︷
g[i] x, ∀x < x∗, (7)

which is the standard linear representation of (log) total hazard minus accidental death rates

for all ages within the GM regime. A deliberate choice is made to use the capital Qx, on top

of the brace, and not the natural log of the one-year death rate ln[qx], because qx and µx

are obviously not the same quantity. Although the two numbers are close for small values

of qx, in continuous time the total hazard rates can (obviously) exceed the value of one6.

For greater accuracy, recall that qx, at any given chronological age x, is related to the total

hazard rate µx, via:

1− qx = e−
∫ x+1
x µydy. (8)

Now, when µx = λ, is constant (i.e., h = 0), the survival rate to any time t is e−λt, and then

qx = 1 − e−λ, for any one year. In this (simplistic, clearly non-Gompertz) case, the µx is

synonymous with a continuously compounded mortality rate and qx is the effective annual

(one-year) death rate. In the full Gompertz-Makeham (h > 0) case, equation (8) leads to

the following relationship between qx and the model parameters (λ, h, g):

− ln[1− qx] = λ+ hegx (eg − 1) /g (9)

Note that by definition: − ln[1 − qx] > λ ≥ 0, so one can subtract the accidental death

(Makeham) rate λ from both sides of the above expression, take logs (again) and obtain

a linear relationship between the (transformed value of the) one-year decrement qx and

chronological age x. The relationship can be written explicitly for each of the groups as:

z︷ ︸︸ ︷
ln

(
ln

(
1

1− qx[i]

)
− λ[i]

)
=

K0︷ ︸︸ ︷
ln[h[i]] + ln[(eg[i] − 1)/g[i]] +

K1︷︸︸︷
g[i] x. (10)

6Most published estimates of C0 and C1 in the economic literature on mortality heterogeneity, such as
Chetty et al. (2016), or Milligan and Schirle (2018), simply use ln[qx] on the left-hand side of the above
regression, and without subtracting a Makeham term.
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The new constants (K0, K1) are defined for convenience and suggest the proper regression

methodology for calibrating GM parameter values of λ, h, g from one-year decrement rates qx.

To be very clear though, ln[ln[(1− q)−1]] ≈ ln[q] for small values of q, so the approximation

(that some researchers employ, in treating qx and µx as the same) is justified. But, one does

introduce errors when λ[i] 6= 0 and/or when qx[i] >> 0. At the very least, if one insists on

using equation (7) instead of equation (10) to estimate Gompertz-Makeham parameters, it’s

more accurate to use ln[q] + q/2 as the dependent variable to match the first two terms of

the Taylor series expansion7. For now, this leads to the GM regression equation:

zi,j = K0 + K1xj + εi,j, (11)

where xj is a vector of ages, for example x1 = 35, x2 = 36, x3 = 37, etc., and the zi,j are

computed from the one-year mortality decrements qx in country i. Equation (11) embeds

an implicit assumption that the error terms εi,j, are independent across chronological age x

and across countries i. See Figure #2 [placed here] for a graphic visualization of the full

data used in this phase.

Note that to properly estimate the accidental (Makeham) death rate λ[i], in each country

i, an iterative procedure was used. Initially, λ[i] is assumed to be zero and a basic canonical

regression is estimated, per equation (10). The value of λ[i] is gradually increased by units

of 10−5, and iterated (i.e., searched for) until the GM regression error is minimized. The

upper bound (in the search for) λ[i], is µ[i], since the accidental death rate can’t be higher

than the total death rate over the GM region.

Minutiae and details aside, once the unique and group-specific values for λ[i] are located,

the associated regression formulated in equation (11) leads to the best-fitting intercept and

slope parameters K̃0 and K̃1. More importantly, based on equation (10), the unbiased

estimates for the GM parameters for each one of the groups, is:

g[i] = K̃1,

ln[h[i]] = K̃0 − ln[(eK̃1 − 1)/K̃1],

h[i] = K̃1e
K̃0

(
eK̃1 − 1

)−1

(12)

These are (i.) the natural mortality growth rate, (ii.) the log initial natural mortality rate,

and (iii.) the natural initial mortality rate at age zero, for each i. This process is referred

to as the first phase regression, although in reality each group-set of h[i], g[i] values requires

multiple regressions until the error-minimizing value of λ[i] is located.

7Please refer to the recent work by Tai and Noymer (2018) for a full and proper discussion of the many
and diverse methods that can be used to estimate Gompertz parameters from one-year decrements, and in
particular the approach that minimizes root mean square (RMS) errors for life expectancy estimates.
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As noted in the introduction to the paper, researchers in actuarial finance (and in par-

ticular the annuity literature) might be more accustomed to the probabilistic formulation

of the Gompertz-Makeham law in terms of the modal value m and dispersion coefficient b

of the remaining lifetime random variable. Using that formulation, the total hazard rate µx

is expressed as: λ + (1/b)e(x−m)/b. So, the conversion from estimates of (h, g) to estimates

of (m, b) would be via b = 1/g and m = (ln[g] − ln[h])/g. Either way, both the (h, g) and

(m, b) parameter estimates are displayed in Tables #1a, #1b, for all available countries in

the Human Mortality Database.

Now, in theory, one could stop (the estimation procedure) here and compute arithmetic

or geometric (or some other harmonic) average global value for Λ, H,G and then use those

with the individual values of λ[i], h[i], g[i] to compute mortality-adjusted (biological) ages

via equation (4). However, this would very critically ignore the fact that (i.) the sum of

Gompertz variates isn’t Gompertz, and more importantly would be inconsistent with (ii.)

the compensation law of mortality which forces a strict relationship between h and g. The

expression for global mortality-adjusted (biological) ages described in the next section will

account for both.

4.2 Step Two: Including CLaM

The weak form of the compensation law of mortality states that groups with relatively higher

initial mortality hazard rates: h[i] > h[j], experience relatively lower mortality growth rates

g[i] < g[j], and vice versa. In other words, the CLaM posits a formal analytic relationship

between h[i] and g[i], denoted by ~h(g), within a range of: gmin ≤ g ≤ gmax. In some sense,

while the classical Gompertz law allows for two degrees of freedom – the slope and intercept

of the log hazard line – the CLaM stipulates that once the slope is known, the intercept

is pre-determined. There is only one (real) degree of freedom in mortality, a fact which

has recently been pointed out and leveraged by Richards (2019) in the context of fitting

the Gompertz law using Hermite splines. To be clear though, the weak-form CLaM (only)

stipulates that: ∂~h(g)/∂g < 0, if one thinks of h as a function of g. In contrast to the weak

form, a strong-form CLaM begins at the very end of the lifecycle by postulating that the

natural mortality plateau is identical for all sub-groups. This actually places much tighter

restrictions on the function ~h(g), and by equation (6) implies:

L := ln(λ∗) = ln~h(g) + gx∗. (13)
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The L is introduced as a convenient intercept constant. Rearranging equation (13) leads to

a linear representation for the function: ln~h(g), and can be expressed as:

ln~h(g) = L − x∗ g, (14)

In what follows, ln~h(g) is referred to as the CLaM line mapping a specific initial mortality

growth rate g to a corresponding log natural mortality rate ln~h(g). Exponentiating equation

(14), the initial natural mortality rate: ~h(g) can be expressed as: ~h(g) = eL−x
∗g, which at

g = 0 recovers the mortality plateau: λ∗ = ~h(0). Either way, it follows that under the strong

compensation law of mortality, one can rewrite the total hazard rate µx, from equation (6)

as:

~µx(g)[i] =

{
λ[i] + λ∗eg(x−x

∗) x < x∗

λ[i] + λ∗ x ≥ x∗,
(15)

which could also (if needed) be expressed8 in terms of (m, b). The new function ~µx(g)[i],

which at first might seem cumbersome and unnecessary is meant to remind readers of a

number of implicit assumptions from this point onward. First, under a strict CLaM the

initial natural mortality rate is driven and dictated (only) by the mortality growth rate: that

is the one and only degree of mortality freedom per country, other than the accidental death

(Makeham-constant) rate λ[i]. Second, although the natural mortality rate plateaus at a

global value of λ∗, the country-specific total plateau must also account for the accidental rate

λ[i], which is why both are added together in the lower branch of equation (15). Procedurally,

and from this point onward, only the N country-specific values of {lnh[i], λ, g[i]}, are needed.

These are used to estimate the (intercept) L, and (slope) x∗ via a second phase regression.

As per equation (14), the relationship is:

wj︷ ︸︸ ︷
lnh[i] =

C0︷︸︸︷
L +

C1︷ ︸︸ ︷
(−x∗) g[i] + εj, (16)

where the error terms εj, are distinct from the error terms in equation (10).

8Recall that under the (m, b) formulation of the Gompertz-Makeham law, h = (1/b)e−m/b and g = 1/b,
when the total hazard rate is modeled as: µx = hegx. So, a linear relationship between ln[h] = L− x∗g, per
the compensation law of mortality, also forces a relationship between m and b, although obviously not linear.
Fixing b, together with the global parameters (L, x∗), induces a value for m. Technically, after substitution
and isolating: m = x∗ − b(L + ln[b]). So, if one assumes the easy to remember values: x∗ = 100, and:
L = −1, both of which are empirically reasonable per table (#2), then the modal value of the Gompertz
distribution is forced to be: m = 100− b(ln[b]− 1). Thus, for example, in a country (or population) where
b = 11 then m = 84.62, but if b = 9 then m = 89.2. A greater b induces a lower value of m and vice versa.
Finally, since the expected remaining lifetime at birth under a Gompertz model is: E[T0] = m− bγ, where
γ ≈ 0.577, is Euler’s constant, we obtain the rather intriguing expression E[T0] = x∗− b(L+ ln[b] + γ) under
the compensation law. Estimate or pick the dispersion coefficient b (or the approximate standard deviation
πb/
√

6 at birth) and the mean lifetime follows, assuming of course that (L, x∗) are globally determined.
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The second phase regression simply can’t be merged with the first phase regression used to

estimate the original GM parameters in equation (10), because of the need to (i.) iteratively

estimate and then (ii) subtract the country-specific accidental death rates λ[i]. Also, the

first regression generates the: lnh[i], λ[i] and g[i] values in Table #1a and #1b, which might

be of independent use and interest to researchers who use this law for pricing annuities or

modeling retirement strategies, as cited in footnote #1.

Moving on, Table #2 [placed here] displays the estimated values using the individual

GM parameters, which effectively test for the presence of a strong CLaM in the data. Indeed,

the relationship between: lnh[i] and g[i] is linear with R2 values of 85% (females) and 98%

(males), providing support for a strong version CLaM for the N = 37 countries. Finally,

the estimated L = ln(λ∗), reveals or locates the natural mortality rate once the plateau is

reached. The slope (−x∗) is the age at which it is achieved, a.k.a. the species specific lifespan.

See Figure #3 [placed here] for a visual indication of the strong negative relationship

between the two variables on a country-by-country basis.

4.3 Stage Three: Baseline Population Rates

We now have a set of diverse GM parameters as well as (one, global pair) (λ∗, x∗). Back to the

computation of mortality-adjusted (biological) age: the next step is to compute population

averages Λ, H,G values, to then invert the GM equation and map one-year decrements into

biological ages, as per equation (4). By this point in the narrative it should be clear that

one can’t average both the individual h[i] and the individual g[i] values estimated in phase

one. Once again, there is only one degree of freedom according to the CLaM. Rather, the

suggested and proposed way to obtain the required global GM parameters is to locate the

implied h[i] in a manner consistent with CLaM for that country’s particular natural mortality

growth rate g[i]. Accordingly, the next step is to average the mortality growth rates g[i], to

arrive at global value of G and then use the CLaM line to obtain an implied H.

4.4 Stage Four: Computing Biological Age

The global mortality-adjusted (biological) age: ξ(x, i), of someone whose (chronological) age

is x in country i, is constructed by equating mortality hazard rates per equation (3). With

the CLaM in place, we proceed by assuming that the total hazard rate is classified entirely by

the country-specific mortality growth rate g and the country-specific accidental death rate

λ, so there is no need to explicitly include the initial natural mortality rate h. In particular,

the definition of the global mortality-adjusted (biological) age from equation (3), can now

be written as:

~µξ(G,Λ) = ~µx(g[i], λ[i]). (17)
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To be clear, the only parameters required at this point are the mortality growth rate g[i],

the accidental death (Makeham-constant) rate λ[i], and the respective global averages G,

and Λ, as well as the global plateau age x∗ and natural plateau mortality rate λ∗. As to the

global averages, they are defined arithmetically:

G =
1

N

N∑
i=1

g[i] (18)

Λ =
1

N

N∑
i=1

λ[i],

which will be discussed in section (5.1). For now, referring back to the formulation expressed

in equation (15), the next step is to eliminate some redundant terms. Recall that the equation

for ξ is designed to equate total hazard rates, so:

Λ + λ∗eG(ξ−x∗) = λ[i] + λ∗eg[i](x−x
∗), x ≤ x∗ (19)

The objective now is to isolate the biological age ξ as a function of the (estimated) country-

specific and global parameters. After dividing both sides of the above equation by λ∗ > 0,

the relevant equality can be re-written as:(
Λ− λ[i]

λ∗

)
= eg[i](x−x

∗) − eG(ξ−x∗). (20)

In words, if the global total hazard rate at (biological) age ξ is equal to the local total hazard

rate at age x, then the relationship between ξ and x, per equation (20), must satisfy:

eg[i]x+(G−g[i])x∗ −
(

Λ− λ[i]

λ∗

)
eGx

∗
= eGξ.

This expression is valid as long as the left-hand side is positive which (it is, and) will be

justified in a moment. This then leads to the following expression for ξ as a function of x,

and the key parameters:

ξ = x∗ +
1

G
ln

[
eg[i](x−x

∗) −
(

Λ− λ[i]

λ∗

)]
. (21)

This expression only makes sense, or is properly defined, if the quantity: (Λ − λ[i])/(λ∗)

is smaller than eg[i](x−x
∗). If not, the argument within the logarithm becomes negative.

But, considering that Λ and λ[i] are on the order of 10−5, and eg[i](x−x
∗) is many multiples

greater, in practice this is a non-issue, especially over the adult-age (x ≥ 35) range. In fact,

(Λ− λ[i])/(λ∗) itself is very close to zero.
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Effectively, we are done. Equation (21) is the proper formula for ξ. It maps a local

chronological age x, in country i, into a global mortality-adjusted (biological) age ξ. There

are no approximations or assumptions made at this point, other than the (i.) Gompertz-

Makeham law, and (ii.) the compensation law of mortality.

However, we can push this further by exploiting the relatively small (or near zero) value

of the constant within the logarithm: (Λ−λ[i])/(λ∗), in equation (21). It’s possible to create

a restricted and more compact version of equation (21), similar to the one presented at the

very beginning of this section. Namely, ξ can be approximated by:

ξ ≈ x∗ +
g[i]

G
(x− x∗) = x− κ[i](x∗ − x), (22)

where the newly defined constant: κ[i] = (g[i]/G) − 1, is the relative aging rate. Although

this is an approximation, the loss or error from ignoring (Λ − λ[i])/(λ∗) is on the order of

a few months. Under the approximation, the global mortality-adjusted (biological) age is

expressed (only) as a function of (1.) the relative aging rate κ, and (2.) the species-specific

lifespan x∗. And, if the mortality growth rate g[i] = G, which is the global average rate,

then the global mortality-adjusted (biological) age is equal to chronological age. All of these

are (expected and) consistent with intuition.

Here is a numerical example using the approximate expression for ξ, in (22). Assume

the mortality plateau occurs at age: x∗ = 110, chronological age is: x = 50, the natural

mortality growth rate in country i is: g[i] = 10%, the global average mortality growth rate is:

G = 9%, in which case the relative aging rate is: κi = 11.11% = 1/9. For these parameters,

the estimated global mortality-adjusted (biological) age is: ξ = 50 − (110 − 50)/9 = 431
3
.

This individual mortality-adjusted (biological) age is 6.66 years less than their chronological

age. Again, there is no need or mention of the initial natural (or terminal) mortality rate,

which is embedded inside x∗.

Now, it’s an open empirical question as to what happens after the species-specific lifespan

x∗, and whether the (log) curve is constant in Figure #1 after age x∗. But, as modeled, it’s

assumed that from that age onward the the total hazard rate is constant, which once again

implies that conditional lifetimes are exponentially distributed after they reach a chrono-

logical (and biological) age of x∗. The framework assumes no crossover in log-mortality

rates.9

Focusing once again on the approximate (and intuitive) expression in equation (22), all

else being equal, a larger value of x∗ lowers the global mortality-adjusted (biological) age ξ,

and the same is true for larger values of κ[i].

9To this point, it is noted that Cairns et al. (2019) write in relation to the compensation law of mortality
that “...we have not found any evidence that groups cross over, even at very high ages...”
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Indeed, it’s worth emphasizing that when the value of κ[i] > 0, aging for that group

(i.e., country) is faster than average (g[i] > G), and yet mortality-adjusted (biological) ages,

ξ are lower than chronological age, x. This might seem odd at first, but is driven by the

compensation law of mortality which underlies equation (22). Note that a value of g[i] > G,

is associated (under CLaM) with an initial natural mortality rate: ~h(g[i]) < ~h(G), where
~h(.) is expressed as a function of the group’s mortality growth rate. Stated graphically, this

person is on a lower curve within Figure #1, so they are deemed to be younger. All else

being equal, an individual with a lower global mortality-adjusted (biological) age, which

means they have a lower-than-global-average total hazard rate, ages faster.

A final convenient item to remind readers is that (when using the approximate expression)

the link between chronological age x and global mortality-adjusted (biological) age ξ doesn’t

require explicit knowledge of the current total hazard rate µx[i], or the country-specific

decrement qx[i]. That information is embedded (implicitly) in the parameters: x∗, κ[i]. Of

course, the exact expression for ξ in equation (21) would require knowing the value of the

accidental death rates λ[i] relative to the plateau value λ∗.

To summarize, assuming a compensation law within the estimation procedure is not only

realistic and consistent with current theories of aging, per Gavrilov and Gavrilova (1991), but

also reduces the number of individual parameters required to estimate mortality-adjusted

(biological) age.

5 Estimates: Biological Ages Around the World

Table #3 [placed here] displays numerical results from the methodology described in the

prior section, using period mortality rates (between chronological ages x = 35 to x = 95)

for N = 37 countries from the human mortality database (HMD) in the year 2011, the most

recent year for which the largest and most complete country data is available. Each of the

37 decrement vectors qx[i] were used to iteratively estimate the best fitting (h[i], λ[i], g[i])

values for males and females separately. Those results were displayed and discussed in Table

#1a and Table #1b, noted earlier. Note that the R-squares values (and all other summary

statistics for goodness of fit) are not reported within Table #1, mainly because those values

were all above 95%. The (very) good fit of the Gompertz-Makeham law of mortality on

a country-by-country basis over the (chronological) age range [35, 95] is well known in the

demographic or actuarial literature, as per Tai and Noimer (2018). Log mortality rates are

nearly linear in the range x = 35 to x = 95.

With the first stage regression numbers in hand in Table #1, the next step is to estimate

the second phase regression – separately for males and females – to obtain the best fitting

compensating law of mortality line combining the mortality rates of these 37 countries.
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The estimated (second phase) regression line is displayed in Figure #3, and the parameter

estimates are presented in Table #2. In particular, the estimated male plateauing age was

x∗ ≈ 98 and the female plateauing age was x∗ ≈ 96. The standard error for those point

estimates was approximately 2 years for males and 6 years for females. Likewise, although

the R-squared values were quite high (98.5%) for males, they were much lower (86%) for

females. Practically speaking, it’s entirely plausible the mortality plateau occurs much later

in life, perhaps even at the age of 110 (or perhaps there is no plateau at all.) Indeed, this is

still an open question in the bio-demographic and actuarial literature and arguably outside

the scope of this article. See Barbi et al. (2018) for (much) more on this. Either way, the

(+2 standard errors) upper and (-2 standard errors) lower bounds for x∗, which are required

for equation (22) and equation (21), are used in Figure #4 [placed here], to provide a

graphical range for the global mortality-adjusted (biological) ages.

For example, an x = 55-year-old Russian male has a biological age ξ = 64.5, whereas a

x = 55-year-old Swedish male has a biological age of ξ = 47.9, which is a gap of almost 18

years between the youngest and oldest in Table #3. Using the same equation for females

with a unique g[i] and higher x∗, the largest gap at age x = 55, is between the Greek whose

biological age is ξ = 52.2 and the Ukrainian whose global mortality-adjusted (biological) age

is ξ = 62.3. The gap for females is (only) ten years. This (lower dispersion in age) is due to

the fact that the range of mortality growth rates g[i] themselves, isn’t as wide. Notice also

that as one increases the chronological age from x = 55 to x = 70 and then x = 85, the gap

between the highest and lowest mortality-adjusted (biological) age shrinks to zero across the

different countries. This, effectively, is the compensation law of mortality in action, as the

one-year mortality decrements qx[i] are converging as well.

Figure #4 (mentioned earlier) goes beyond point estimates and displays a range of global

mortality-adjusted (biological) ages for each country, based on the (above-noted) upper and

lower bounds for x∗. It should be clear from the figure that as we move away from the mean

age of x = 55, and the associated mortality growth rate g[i], the spread increases. More

precisely, the variable ξlow represents a global mortality-adjusted (biological) age in which

two standard errors are added to the point estimate of the plateau age x∗, and ξhigh is defined

similarly but with two standard deviations removed.

5.1 Further Discussion of Assumptions

This paper, and the advocated framework, made a number of simplifying (and perhaps even

ad hoc) assumptions which at this juncture are worth clarifying and defending. First and

foremost, much of what motivates many of the the assumptions made was convenience plus

a healthy respect and admiration for the history of the Gompertz law.

18
 Electronic copy available at: https://ssrn.com/abstract=3481182 



Now certainly, the Gompertz law of mortality might be one of the oldest, simplest and

best-known laws of mortality, but it certainly isn’t the only one. One could imagine im-

plementing the same inversion with Perks (1932), Beard (1959), Weibull or logistic-based

Vaupel-Kannisto models, perhaps as a follow-up. And yet, it’s worth noting that Gavrilov

and Gavrilova (2014) claim: “It was found that for all studied HMD birth cohorts, the

Gompertz model demonstrated better fit of mortality data than the Kannisto model in the

studied age interval.” With all of that in mind, Table #4 [goes here] and Figure #5 [goes

here] offer a historical view of the Gompertz-Makeham model to get a sense of how the

estimated parameters have evolved over the last 50 years.

Indeed, aggregate mortality has been improving and the global Λ, G parameters do change

over time and are not universal constants. Along the same lines, the Λ, G values were

computed via a simple arithmetic average, although they could certainly have been weighted

by population size, population wealth or even geographic country size. Another alternative

would have been to match life expectancy E[Tx] = E[Tξ] instead of hazard rates, or perhaps

use (inverted) phase-type laws, similar to Lin and Liu (2017) or Govuron et al. (2018). All

these alternatives are equally valid, but equally questionable.

On a related note this paper is silent on the issue of forward-looking stochastic mortality,

and how mortality-adjusted (biological) ages evolve over time, as per Lee-Carter for example.

Rather, the current framework focuses on measuring biological age at a single point in time,

as opposed to forecasting how it evolves over time and whether or not it’s stochastic. As

such, this paper is consistent with – and in fact can be used to calibrate parameters – in the

work by Huang, et al. (2017), where mortality is assumed to evolve according to a Brownian

Bridge. In particular, the estimates provided in this paper for (ages) x∗ and (rates) λ∗, can

be used to pin down the ends-points of the bridge.

6 Conclusion

This paper leverages the compensation law of mortality and the Gompertz-Makeham model

to develop an expression for global mortality-adjusted (biological) ages. That is the main

equation (21) in the paper. In its approximate form, equation (22) is a function of only:

(1.) the local-relative-to-global mortality growth rate and (2.) the global plateauing age,

which is the series-specific lifespan. This number is the (hypothesized) age at which all of

natural mortality curves converge to a constant. The equation for global-mortality adjusted

(biological) age was then calibrated to (adult) one-year mortality decrements in 37 countries

from the Human Mortality Database (circa 2011) using a two-phase regression methodology.

Using this approach, the data indicate that at chronological age 55, the so-called gap between

high-mortality and low-mortality countries is as high as 18 years.
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6.1 Behavioral Policy Implications and Uses

It’s important to note – with an eye towards future research – that the identical methodology

could be applied to heterogenous groups within a country or population, for example mor-

tality rates based on income, wealth, race or education. Recall that all that is really needed

to properly use the equation (22) is a relative mortality growth rate κ and a series-specific

lifespan x∗. The rest is algebra10.

Now, one could just as easily use the same mortality rates to compare period life ex-

pectancy values between high-mortality and low-mortality countries and arrive at similarly

large gaps between the two extremes. In fact, the Organization for Economic Co-operation

and Development (OECD) regularly publishes these reports comparing (more generally)

quality of life across different countries and regions. However, one could argue that there

are behavioral (a.k.a. psychological) reasons and benefits to anchoring on global mortality-

adjusted (biological) ages versus life expectancy, since (simply put) these numbers are more

memorable. In fact, by expressing the relevant integrals in terms of the Incomplete Gamma

function, one can prove that the gap in global mortality-adjusted (biological) ages, for two

individuals who share the same (chronological) age but are on opposite sides of G, will

actually be larger than the gap in life expectancy.

For example, imagine we have (only) two countries, or even two groups, with mortality

growth rates gP = 8% and gR = 12% respectively. Perhaps the former group is of low income

(and poor health) while the latter has higher income (and better health). Assuming a species-

specific lifespan of x∗ = 100, an average mortality growth rate of 10% and a mortality plateau

λ∗ = e−1, we can say the following: Integrating the survival probability from age 65 to age

100, the life expectancy at age x = 65 for all members of group P is: E[T65(0.08)] = 15.8

years. For members of group R the equivalent number is: E[T65(0.12)] = 22.3 years, and the

population life expectancy would be E[T65(0.10)] = 19.3 years. So, the life expectancy gap

between the two sub-groups is approximately 22.3−15.8 = 6.5 years at age 65. To compare,

the global mortality-adjusted (biological) age of the 65 year-old in group P is 72, versus 58

for group R, according to equation (22). That is a gap of 14 years and is much more salient.

Arguably, notifying a 65-year-old that their (true) biological age is 58 is more impactful

and might help them take action, such as delaying retirement. Compare this – again, with

a behavioral framework in mind – to informing said person that their life expectancy is

actually 22 years, versus the population average of 19, and they should therefore wait to

draw their pension. Will it be as effective as informing them they are much younger than

their (chronological) age?

10Employing the main equation for mortality-adjusted biological age with Gompertz coefficients by income
percentile in the US, as reported by Chetty et. al. (2016), results in a gap of almost 20 years. See Milevsky
(2019) for a discussion of mortality heterogeneity and CLaM in the context of longevity risk pooling.
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This definition of mortality-adjusted (biological) age opens the door to discussions around

retirement policy that are geared towards demographic parameters. On a policy level perhaps

retirement age should be based on biological age – which is a proxy for life expectancy –

versus chronological age. This would obviously be controversial,11 goes well beyond the

technical scope of this article and might just be too far ahead of its time. Needless to say,

the formal (scientific) definition of biological age has yet to be settled and some might argue

that it never will be resolved. At the very least then, as we get close to celebrating the 200

year anniversary of the publication of the work of Benjamin Gompertz, this paper offers yet

another application of his timeless model. He was the first to teach the world how to map

(chronological) age into hazard rates, but this paper argues the same idea can be used in

the other direction, to convert hazard rates into (biological) age.

11See the paper by Stevens (2017) for a survey and discussion of the various ways to adjust retirement
ages for increases in longevity and life expectancy, and the work of Shoven and Goda (2008).
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Table # 1a

Gompertz-Makeham Parameters Around the World: MALE

Country lnh[i] µ0 = h+ λ Makeham: λ g[i] µ55[i] m b

1. Australia −11.854 66.8× 10−5 66.0× 10−5 11.19% 0.440% 86.37 8.94
2. Austria −10.769 3.3× 10−5 1.0× 10−5 10.08% 0.596% 84.08 9.92
3. Belarus −7.746 50.4× 10−5 4.0× 10−5 7.12% 2.335% 71.68 14.04
4. Belgium −10.900 29.0× 10−5 27.0× 10−5 10.28% 0.610% 83.92 9.73
5. Canada −11.292 37.4× 10−5 36.0× 10−5 10.53% 0.490% 85.85 9.50
6. Croatia −10.156 5.3× 10−5 1.0× 10−5 9.75% 0.914% 80.29 10.26
7. Czechia −10.258 4.9× 10−5 1.0× 10−5 9.81% 0.855% 80.88 10.19
8. Denmark −10.835 16.2× 10−5 14.0× 10−5 10.25% 0.626% 83.50 9.76
9. Estonia −9.045 13.8× 10−5 1.0× 10−5 8.33% 1.256% 78.72 12.00
10. Finland −10.594 36.8× 10−5 34.0× 10−5 9.91% 0.679% 83.57 10.09
11. France −10.378 35.4× 10−5 32.0× 10−5 9.44% 0.647% 84.92 10.59
12. Germany −10.731 3.4× 10−5 1.0× 10−5 10.10% 0.625% 83.57 9.90
13. Greece −10.485 17.1× 10−5 14.0× 10−5 9.67% 0.643% 84.26 10.34
14. Hungary −9.421 9.9× 10−5 1.0× 10−5 8.98% 1.239% 78.07 11.13
15. Ireland −11.291 39.4× 10−5 38.0× 10−5 10.67% 0.529% 84.87 9.37
16. Israel −11.038 2.8× 10−5 1.0× 10−5 10.19% 0.486% 85.88 9.81
17. Italy −11.647 23.0× 10−5 22.0× 10−5 11.06% 0.450% 85.39 9.04
18. Japan −11.282 39.4× 10−5 38.0× 10−5 10.55% 0.502% 85.60 9.48
19. Korea −10.803 37.3× 10−5 35.0× 10−5 10.19% 0.647% 83.59 9.81
20. Latvia −8.517 22.6× 10−5 1.0× 10−5 7.86% 1.635% 75.98 12.72
21. Lithuania −8.143 32.3× 10−5 1.0× 10−5 7.34% 1.772% 75.37 13.63
22. Luxembourg −11.334 2.3× 10−5 1.0× 10−5 10.83% 0.517% 84.11 9.23
23. Netherlands −11.628 18.0× 10−5 17.0× 10−5 11.12% 0.468% 84.83 8.99
24. New Zealand −11.542 49.1× 10−5 48.0× 10−5 10.88% 0.478% 85.68 9.19
25. Norway −11.566 33.1× 10−5 32.0× 10−5 11.01% 0.484% 85.00 9.08
26. Poland −9.198 12.0× 10−5 1.0× 10−5 8.48% 1.172% 79.34 11.79
27. Portugal −10.377 42.4× 10−5 39.0× 10−5 9.62% 0.721% 83.50 10.39
28. Russia −8.246 315.3× 10−5 287.0× 10−5 7.62% 2.158% 74.43 13.12
29. Slovakia −9.593 8.5× 10−5 1.0× 10−5 9.10% 1.117% 79.06 10.99
30. Slovenia −10.559 3.9× 10−5 1.0× 10−5 10.02% 0.712% 82.40 9.98
31. Spain −10.827 3.2× 10−5 1.0× 10−5 10.04% 0.551% 84.92 9.96
32. Sweden −11.898 25.8× 10−5 25.0× 10−5 11.40% 0.427% 85.34 8.77
33. Switzerland −11.721 25.9× 10−5 25.0× 10−5 11.07% 0.424% 86.02 9.04
34. Taiwan −9.849 97.8× 10−5 92.0× 10−5 8.89% 0.859% 83.56 11.25
35. U.K. −11.386 64.3× 10−5 63.0× 10−5 10.73% 0.525% 85.30 9.32
36. U.S.A. −10.275 65.8× 10−5 62.0× 10−5 9.42% 0.735% 84.01 10.62
37. Ukraine −8.616 223.6× 10−5 204.0× 10−5 8.12% 1.914% 75.18 12.31
Average: − 10.427 41.0× 10−5 34.3× 10−5 9.77% 0.844% 82.41 10.39

Source: Human Mortality Database, Period 2011
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Table # 1b

Gompertz-Makeham Parameters Around the World: FEMALE

Country lnh[i] µ0 = h+ λ Makeham: λ g[i] µ55[i] m b

1. Australia −12.349 31.5× 10−5 31.0× 10−5 11.29% 0.273% 90.04 8.85
2. Austria −11.952 4.7× 10−5 4.0× 10−5 10.99% 0.308% 88.65 9.10
3. Belarus −10.797 76.3× 10−5 74.0× 10−5 10.21% 0.695% 83.44 9.80
4. Belgium −11.620 15.0× 10−5 14.0× 10−5 10.60% 0.355% 88.43 9.43
5. Canada −11.773 18.9× 10−5 18.0× 10−5 10.64% 0.317% 89.56 9.40
6. Croatia −11.784 1.9× 10−5 1.0× 10−5 11.25% 0.416% 85.34 8.89
7. Czechia −12.009 19.7× 10−5 19.0× 10−5 11.44% 0.388% 86.01 8.74
8. Denmark −11.608 2.0× 10−5 1.0× 10−5 10.75% 0.376% 87.21 9.30
9. Estonia −11.132 18.6× 10−5 17.0× 10−5 10.20% 0.460% 86.75 9.80
10. Finland −11.860 9.8× 10−5 9.0× 10−5 10.84% 0.315% 88.90 9.22
11. France −11.614 22.0× 10−5 21.0× 10−5 10.25% 0.302% 91.08 9.75
12. Germany −11.898 11.8× 10−5 11.0× 10−5 11.00% 0.332% 88.12 9.09
13. Greece −12.594 24.4× 10−5 24.0× 10−5 11.78% 0.272% 88.77 8.49
14. Hungary −10.812 3.2× 10−5 1.0× 10−5 10.14% 0.590% 84.06 9.86
15. Ireland −11.725 8.9× 10−5 8.0× 10−5 10.75% 0.342% 88.29 9.30
16. Israel −12.494 23.4× 10−5 23.0× 10−5 11.64% 0.277% 88.84 8.59
17. Italy −12.478 15.4× 10−5 15.0× 10−5 11.49% 0.252% 89.80 8.71
18. Japan −12.344 38.5× 10−5 38.0× 10−5 11.00% 0.245% 92.12 9.09
19. Korea −13.266 47.2× 10−5 47.0× 10−5 12.46% 0.233% 89.77 8.03
20. Latvia −10.646 20.6× 10−5 18.0× 10−5 9.86% 0.612% 84.51 10.15
21. Lithuania −10.649 43.6× 10−5 41.0× 10−5 9.74% 0.597% 85.39 10.26
22. Luxembourg −11.877 1.8× 10−5 1.0× 10−5 10.92% 0.316% 88.47 9.16
23. Netherlands −11.700 12.9× 10−5 12.0× 10−5 10.73% 0.350% 88.22 9.32
24. New Zealand −12.079 33.6× 10−5 33.0× 10−5 11.17% 0.329% 88.48 8.95
25. Norway −12.006 5.7× 10−5 5.0× 10−5 11.05% 0.303% 88.68 9.05
26. Poland −11.280 10.4× 10−5 9.0× 10−5 10.45% 0.449% 86.31 9.57
27. Portugal −12.249 27.5× 10−5 27.0× 10−5 11.31% 0.297% 89.00 8.84
28. Russia −11.156 160.6× 10−5 159.0× 10−5 10.65% 0.714% 83.74 9.39
29. Slovakia −11.560 10.1× 10−5 9.0× 10−5 11.00% 0.460% 85.04 9.09
30. Slovenia −11.683 1.9× 10−5 1.0× 10−5 10.73% 0.345% 88.07 9.32
31. Spain −12.362 17.5× 10−5 17.0× 10−5 11.24% 0.248% 90.57 8.90
32. Sweden −12.377 11.5× 10−5 11.0× 10−5 11.51% 0.276% 88.79 8.69
33. Switzerland −12.233 6.5× 10−5 6.0× 10−5 11.15% 0.256% 90.05 8.97
34. Taiwan −12.051 40.7× 10−5 40.0× 10−5 11.15% 0.341% 88.40 8.97
35. U.K. −11.861 29.8× 10−5 29.0× 10−5 10.90% 0.345% 88.48 9.17
36. U.S.A. −11.063 41.7× 10−5 40.0× 10−5 9.97% 0.457% 87.83 10.03
37. Ukraine −11.460 129.2× 10−5 128.0× 10−5 11.12% 0.662% 83.29 8.99
Average: −11.795 27.0× 10−5 26.0× 10−5 10.90% 0.381% 87.80 9.20

Source: Human Mortality Database, Period 2011
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Table #2:
Compensation Law Regression Line Around the World

Variable MALE FEMALE
Coeff. Std.Er t-val. Coeff. Std.Er t-val.

Intercept (L) -0.851 0.193 -4.413 -1.289 0.705 -1.828
Slope: (−x∗) -97.964 1.960 -49.987 -96.360 6.459 -14.919

Adj. R2 98.58% 86.02%
Range: g[i] (7.12%, 11.40%) (9.74%, 12.46%)

Average: g[i] G = 9.77%% G = 10.90%%
Plateau (+/-): λ∗ (0.321, 0.547) (0.176, 0.477)

Countries N = 37 N = 37

Note: These are the results from regressing the (male and female) Gompertz-Makeham (log)
mortality intercepts lnh[i] on the mortality growth rates g[i], from the Human Mortality
Database (HMD) for period mortality in 2011. This is the second phase regression. See
also the paper by Tarkov et al. (2017) for a detailed and recent discussion of the analytic
relationship between g and lnh, and in particular its connection to the so-called Strehler-
Mildvan correlation.

28
 Electronic copy available at: https://ssrn.com/abstract=3481182 



Table # 3

Mortality-Adjusted Biological Ages (ξ) Around the World

MALE FEMALE

Country x = 55 x = 70 x = 85 x = 55 x = 70 x = 85

1. Australia 48.79 65.96 83.12 53.52 69.06 84.59

2. Austria 53.66 69.13 84.60 54.66 69.79 84.91

3. Belarus 66.67 77.59 88.52 57.64 71.69 85.73

4. Belgium 52.80 68.57 84.33 56.14 70.72 85.31

5. Canada 51.67 67.84 84.00 55.98 70.63 85.27

6. Croatia 55.11 70.07 85.03 53.69 69.16 84.64

7. Czechia 54.83 69.89 84.95 52.96 68.70 84.44

8. Denmark 52.93 68.65 84.37 55.56 70.36 85.15

9. Estonia 61.34 74.12 86.91 57.66 71.70 85.73

10. Finland 54.40 69.61 84.82 55.23 70.15 85.06

11. France 56.46 70.95 85.44 57.47 71.57 85.68

12. Germany 53.58 69.08 84.57 54.64 69.77 84.90

13. Greece 55.46 70.30 85.14 51.68 67.88 84.09

14. Hungary 58.49 72.27 86.05 57.89 71.84 85.79

15. Ireland 51.08 67.45 83.82 55.57 70.36 85.16

16. Israel 53.16 68.80 84.44 52.19 68.21 84.23

17. Italy 49.35 66.32 83.30 52.79 68.59 84.39

18. Japan 51.58 67.78 83.97 54.62 69.75 84.89

19. Korea 53.17 68.81 84.45 49.10 66.24 83.38

20. Latvia 63.40 75.47 87.54 58.97 72.53 86.09

21. Lithuania 65.71 76.97 88.23 59.40 72.80 86.21

22. Luxembourg 50.36 66.98 83.60 54.93 69.95 84.98

23. Netherlands 49.10 66.16 83.22 55.64 70.41 85.18

24. New Zealand 50.13 66.83 83.53 53.97 69.34 84.72

25. Norway 49.56 66.46 83.36 54.42 69.63 84.84

26. Poland 60.67 73.69 86.71 56.71 71.09 85.47

27. Portugal 55.66 70.43 85.20 53.44 69.00 84.57
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28. Russia 64.47 76.16 87.86 55.97 70.62 85.27

29. Slovakia 57.96 71.92 85.89 54.64 69.77 84.90

30. Slovenia 53.91 69.29 84.67 55.65 70.41 85.18

31. Spain 53.82 69.23 84.64 53.74 69.19 84.65

32. Sweden 47.87 65.36 82.85 52.71 68.54 84.37

33. Switzerland 49.32 66.30 83.29 54.06 69.40 84.74

34. Taiwan 58.89 72.53 86.17 54.06 69.40 84.74

35. U.K. 50.79 67.26 83.73 55.01 70.01 85.00

36. U.S.A. 56.57 71.02 85.47 58.53 72.25 85.97

37. Ukraine 62.27 74.73 87.19 54.17 69.47 84.77

Average: 55.00 70.00 85.00 55.00 70.00 85.00

Source: Human Mortality Database, Period 2011
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Table # 4

The Canonical Gompertz Regression: Historical Coefficients

Modal Value m Dispersion b

Year MALE FEMALE MALE FEMALE

1945 76.60 ±1.98 79.89 ±1.08 10.45 ±1.05 9.77 ±0.87

1948 76.97 ±2.04 80.76 ±0.86 10.95 ±0.78 9.78 ±0.57

1951 76.58 ±2.17 80.38 ±0.90 10.54 ±0.83 9.44 ±0.53

1954 77.33 ±1.67 81.18 ±0.73 10.49 ±0.64 9.47 ±0.51

1957 77.03 ±1.69 81.29 ±0.76 10.48 ±0.60 9.33 ±0.49

1960 77.38 ±1.54 81.74 ±0.73 10.37 ±0.67 9.18 ±0.49

1963 77.08 ±1.48 81.76 ±0.75 10.37 ±0.62 9.19 ±0.47

1966 77.30 ±1.53 82.26 ±0.87 10.53 ±0.59 9.24 ±0.48

1969 77.20 ±1.55 82.34 ±0.94 10.60 ±0.57 9.41 ±0.50

1972 77.71 ±1.32 83.03 ±0.80 10.61 ±0.54 9.34 ±0.54

1975 77.93 ±1.23 83.51 ±0.86 10.55 ±0.55 9.39 ±0.58

1978 78.43 ±1.06 84.18 ±0.87 10.55 ±0.51 9.31 ±0.66

1981 78.92 ±0.97 84.60 ±0.87 10.42 ±0.49 9.32 ±0.62

1984 79.50 ±0.96 85.16 ±0.88 10.35 ±0.47 9.34 ±0.56

1987 80.03 ±0.86 85.55 ±0.88 10.27 ±0.41 9.30 ±0.56

1990 80.57 ±0.92 85.85 ±0.99 9.99 ±0.39 9.15 ±0.60

1993 81.08 ±1.06 86.13 ±1.17 9.76 ±0.35 9.06 ±0.51

1996 81.70 ±1.05 86.65 ±1.10 9.67 ±0.46 9.08 ±0.52

1999 82.12 ±0.99 86.92 ±1.12 9.56 ±0.50 9.06 ±0.42

2002 82.77 ±0.99 87.32 ±1.17 9.54 ±0.52 9.06 ±0.40

2005 83.47 ±1.02 88.04 ±1.10 9.55 ±0.59 9.11 ±0.40

2008 84.08 ±0.99 88.49 ±1.07 9.59 ±0.64 9.13 ±0.40

2011 84.83 ±0.94 89.11 ±1.06 9.59 ±0.63 9.18 ±0.38

Source: Human Mortality Database, Period 1945-2011, 17 Countries

Note: The phase one procedure was applied to historical period mortality decrement data
from the HMD, resulting in the following estimates for global (m, b) parameters. Notice that
the mortality dispersion b is consistently larger for males versus females, and vice versa for
the mortality growth rate g = 1/b. Over the years, m has increased as b has declined.
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Figure 1: Visualizing Gompertz and the Compensation Law of Mortality

Note: The compensation law of mortality in its strong form implies that (log) mortality
rates increase linearly and then converge to a constant mortality plateau. This leads to a
linear and negative relationship between the (initial natural mortality) intercept: lnh[i], and
the (mortality growth rate) slope: g[i], in a Gompertz regression of log mortality rate on
(chronological) age. The thick line in the center is based on the average g[i], and used to
map or convert (chronological) age into a global mortality-adjusted (biological) age.
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Figure 2: One-year Mortality Decrement Rates Around the World

Note: Raw one-year decrement qx data used in the first phase regression, from 37 coun-
tries (male and female) in the Human Mortality Database. University of California, Berke-
ley (USA), and Max Planck Institute for Demographic Research (Germany). Available at
www.mortality.org or www.humanmortality.de (original data downloaded on 15/Dec/2018).
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Figure 3: Growth Rates g, vs. (log) Initial Natural Mortality Rates ln[h], around the World

Note: There is a negative relationship between the mortality growth rate g[i] in a given
country, and the (log) of initial natural mortality rate ln[h[i]]. This is consistent with the
compensation law of mortality, central to the procedure used to compute mortality-adjusted
(biological) ages. The estimated slope and intercept values are displayed in Table #2.
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Figure 4: Range of Global Mortality-adjusted (biological) Ages at (chronological) Age 55.

Note: The lower values for mortality-adjusted (biological) age ξlow and upper value ξhigh are
based on the (exact) equation (21). However, the point estimates of x∗ = 97.96 for males
and x∗ = 96.36 for females, are replaced with plus or minus two standard errors, which
are 1.96 years (male) and 6.46 years (female) respectively, as estimated in the second phase
regression (and displayed in Table #2.)
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Figure 5: Estimated Gompertz Parameters and their Range over Time

Note: This figure displays the historical Gompertz parameters using the (m, b) formulation,
based on the regression methodology described in the paper as phase #1, across 17 countries
from which historical data is available (to 1945) in the Human Mortality Database. The
shaded regions capture (+/-) two standards errors, listed in Table #4.
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