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Abstract

We implement a Deep Neural Network (DNN) methodology for disentangling liquidity-
constrained and strategic default using a proprietary Trepp data set of commercial mort-
gages and motivate a model-agnostic interpretation of variable importance that is robust
(insensitive) to severe Financial Crisis (2008). We use 29 loan-specific, property-specific,
tranche-specific and deal-specific co-variates, 4 macro-economic variables, 2 indices for
approximately 200,000 loans over a period of 19 years from 1998 to 2016 on a monthly
basis. The non-linear activation function in the DNN captures the highly non-linear in-
teraction among co-variates, geographical cross-correlation and macro-economic factors
at state level beyond linear unobserved time-fixed and loan-fixed effect. We are able to
capture strategic delinquency from the Variable Importance table and Shapley values for
Deep Learning, e.g., Net Operating Income, Appraisal Reduction Amount, Prepayment
Penalty Clause, Balloon Payment, etc. co-contribute and interact in a highly non-linear
way to impact the endogenous choice of delinquency class compared to other more sta-
tistically significant variables such as Loan-to-Value. Further, we show that our results
on variable importance are robust to the Financial Crisis of 2008. There is a significant
increase in accuracy of predictions for the classes beyond 90 days of delinquency when
the Deep Learning Model is compared with Naive Bayes, Multinomial & Ordered Logis-
tic Regression, Support Vector Machine, Distributed Random Forest, Gradient Boosting
Machine, Deep Neural Network by gradually relaxing the specification structure, thereby
increasing flexibility. These findings have significant implications for CMBS investors,
Rating agencies, and Commercial Property Finance policymakers.
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1 Introduction

The residential real estate bubble from 2004 (emergence) to 2008 (burst) has attracted lot
of scholarly work and policy attention. Surprisingly, the commercial real estate price impact
(potential bubble) has been ignored, in comparison. Since the inception of securitization as
a means of financing commercial real estate (CRE) mortgages from 1998, the sophisticated
B-piece investors have been outbid beyond sustainable long-run fundamentals, over time (from
2004) by investors who ”originated to securitize”, thereby, resulting in decline in underwriting
standards in CRE (Levitin and Wachter (2012)).

The current outstanding balance of CMBS is almost a trillion dollars, but they are different
from RMBS with respect to delinquency behavior in several aspects, e.g., lack of standard-
ization of appraisals, underwriting criteria, legal documentation requirements, the mortgage
instrument, the security instrument and even credit risk rating standards. These borrowers are
not households, but savvy businessmen and hence their delinquency behavior is possibly much
more strategic/ P&L - oriented based on mortgage contractual features (prepayment penalty
clause, balloon payment indicator), macroeconomic conditions, supply and demand in the local
geography and financial constraints, such as Net Operating Income (NOI), emanating from
the unbalance in terms of the amount and time lag between cost of funding and income cash
flows.

Despite some overlap in mutli-familiy property type, Commercial and Residential Real Es-
tate (RRE) are markedly different markets and hence have attracted dissimilar government
(e.g., GSE) intervention. Non-recourse Residential and Commercial Real Estate has an im-
plicit put-option structure equivalent to repurchase of the loan with the value of the property
as the strike, wherein the borrower can satisfy the debt obligation by surrendering the prop-
erty to the lender. This is the primary reason why almost all of previous literature have
found Loan-to-Value (LTV) as the primary driver of default behavior (e.g. Ambrose and Jr.
(2012), Ambrose, Capone, and Deng (2001)). Since, RRE is both investible and consumable,
tax-deduction acts an incentive and the foreclosure and recourse laws act as disincentives for
strategic default for households. Although the individual Commercial Real Estate loans are
much bigger in size compared to their Residential counterpart, partially amortizing structure,
defeasance, yield maintainance clauses discourage refinancing and hence is exposed to strate-
gic default, where borrowers choose to stay in 90-120 days delinquency bucket for a while.

Commercial mortgages are used to finance income-producing properties. Therefore, a bor-
rower’s default decision depends on not only the asset value (i.e., borrower equity) but also the
property liquidity (i.e., property income). A rational borrower would not default when prop-
erty net cash flow is positive and is enough to service the scheduled debt obligation even if the
owner’s equity position is negative. To properly reflect a rational borrower’s default decision,
a model for commercial mortgages needs to include both property value and property income
as default triggers. Also, unlike residential mortgages that are typically fully amortizing, most
commercial mortgages are partially amortizing; that is, a balloon payment is due when the
mortgage matures. Typical commercial mortgages have a 7-12 year term and a 25-30 year
amortization schedule. Borrowers usually fund the balloon payment by refinancing the current
mortgage, which may be complicated at maturity due to higher interest rates or tighter under-
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writing standards even for a borrower in good standing.

The complexity of CMBS modeling is due to the simultaneous inclusion of four significant
risks: market, credit, prepayment (Christopoulos, Jarrow, and Yildirim (2008)) and liquid-
ity (Ambrose and Sanders (2003)). The cash flows to the underlying CMBS loan pools, the
cash flow allocation rules to the various bond tranches, the prepayment restrictions and the
prepayment penalties differ across the different CMBS trusts. The estimation of the relevant
parameters is itself a nontrivial problem, given the sparsity and the diversity of historical CMBS
data. The empirical mortgage literature identified a number of variables to predict commercial
mortgage credit and prepayment risk including creditworthiness and free cash flow of the entity,
current leverage ratio, loan age, interest rates, and CMBS indices (e.g. von Furstenberg and
George (1969), Curley and Guttentag (1974), Campbell and Dietrich (1983)). The commercial
mortgage performance is typically specified in a linear form in terms of these factors. The com-
mercial mortgage performance data, however, tell a different story. The presence of nonlinear
effects in Figure 5 obviates the need for a more general form but it is difficult to identify all
the factors and their mutual interactions. Instead of specifying a functional form for commer-
cial mortgage performance, we include all possible factors and let the data dictate the model,
which also allows for highly non-linear interaction terms between factors. Since, our data set
is nationally representative, the pooled model computes an estimate of aggregate default risk
in the commercial mortgages especially well for 2007-2009. Our estimation result provides a
ranking of individual commercial mortgages in terms of their delinquency behavior and can be
aggregated to a systemic measure of default risk in the commercial sector.

The sophisticated delinquency behavior of commercial mortgage borrowers is highly endoge-
nous and hence cannot be captured by the standard loan-specific and macroeconomic variables
in a linear specification. Rather than assume a single default trigger based on property value
(measured by contemporaneous loan-to-value, LTV), our model incorporates a second trigger
based on contemporaneous property income (NOI)1. We also explicitly consider balloon risk as
a second source of credit risk in commercial mortgages. Our findings reveal that the effect of a
property income along with prepayment penalty clause and balloon risk is significant to assess
total credit risk adequately.

To test the robustness and stability of our DNN, we present the Variable Importance Plots
of Predicted Default Rate from June 2006 to December 2008 with several features in Distributed
Random Forest (DRF) in Figure 8a, Gradient Boosting Machine (GBM) in Figure 8b and DNN
in Figure 8c, trained on data before June 2006 and motivate why we need a highly non-linear
model and also why we allow for high-dimensional interaction among the borrower-specific,
macroeconomic, spatial, vintage effects in the features. Time-to-Maturity, Geographical cross-
correlation, NOI, Appraisal Reduction, Bankruptcy Flag, Property Type, Non-Recoverability,
Appraised Value supercede Securitized LTV in the Variable Importance chart for DNN in Fig-
ure 8c. Morover, Balloon Payment supercedes LTV, corroborating the robustness of our DNN
model. DRF captures non-lineary of the covariates but still ranks LTV much above NOI and

1This is in line with Foote, Gerardi, Goette, and Willen (2009) studying that when equity is negative
but above a hreshold, default occurs with negative income shock. Our findings are consistent in the case of
Commercial Real Estate without imposing any model specification.
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other strategic variables in Figure 8a, even after tuning and bagging. GBM is a greedy algo-
rithm and hence finds more occurances of local minima for LTV and hence ranks LTV higher
than NOI in Figure 8b, even after boosting.2

We list the possible combinations of LTV and NOI that can disentangle Liquidity-constrained
and Strategic Default behavior in Figure 9. We use DNN and show that case (1) is liquidity-
constrained default in Figure 4b since there is no spread in terms of predictability of NOI.
The effect is verified by ensuring high LTV values in the Bivariate Heatmap in Figure 5b. In
fact, DNN algorithm can identify the threshold of NOI∗ in Figure 4b Case (2) is more inter-
esting since there is some spread in default predictability w.r.t NOI. We claim from Figure
4b, this is where strategic defaulters cannot be identified from non-strategic defaulters after
NOI > NOI∗. But, most likely a strategic defaulter would not default in Case (1) to have the
option to default in Case (2). This gives us a mechanism to identify the strategic defaulters
from non-strategic ones once the threshold is identified. Cases (3), (4), described in Figure 5b,
behave in a similar way since LTV is still very high. In fact, DNN shelps us identify LTV ∗,
NOI∗∗ in Figure 5b. Financial friction acts as a liquidity-constraint for non-strategic default-
ers. Strategic Defaulters are also in this cohort and NOI∗∗ determines (in Figure 5b) the cutoff
beyond which again the behavior of Strategic Defaulters from the Non-Strategic defaulters.
The heterogeneity occurs because of constraint on time or limited attention for Non-Strategic
Defaulters. Cases (5), (6) (in Figure 4a) are much more interesting and there is a whole host of
factors that we conider in DNN to identify the strategic defaulters and their incentives. Again,
DNN indicates a possible LTV ∗∗∗ & NOI∗∗∗ in the lower portion of Figure 5b.

One possible determinant of strategic default is the moral hazard, that is less time-varying,
but country-specific. Both consumer bankruptcy and commercial foreclosure (not necessarily
arising from corporate bankrutcy) Laws are lenient in USA. On top of this, since, the prob-
ability of default is priced in at origination of commercial loans, delinquency can be viewed
by corporate borrowers as insurance. Although, moral hazard is time-invariant, but the incen-
tive of a borrower for moral hazard needs to be triggered. We use several key covariates, e.g.,
Net Operating Income, Appraisal Reduction Amount, Prepayment Penalty Clause, Balloon
Payment at Maturity, Non-Recoverability, etc. to identify when moral hazard is triggered vis-
a-vis higher order non-linear interactions during severe stress in the Financial Crisis in Figure 5.

2We take a deeper dive and investigate LTV in the following way:

LTVt =
AOBt−1 +DSt +BT

MVt −ARt
(1)

where AOBt is the Outstanding Balance at time t-1 that is amortized , DSt is the scheduled payment due
for servicing the debt obligation at time t, BT is the Balloon Payment due at maturity, MVt is the Market
value of the property/properties at time t (which varies significantly with respect to macroeconomic conditions
and spatial/location context) for which the mortgage has been issued, ARt is the Appraisal Reduction at time t.

AOB remains consistent, since, prepaymant penalty clauses discourage voluntary curtailment/full prepayment.
SP obligations are not met both when the borrower is cash-constrained and also when the borrower chooses to
strategically default. Proximity to balloon payment at maturity further complicates the endogenous behavior
of the commercial borrowers towards maturity of the loan. The market value of a property is a function of
the macro-economic factors like state GDP, Unemployment Rate, geographical location, 2 Year and 10 Year
Treasury Rates. Until valuation is obtained, Appraisal Reduction Amount (ARA) may be calculated based on
the scheduled principal balance or some other formula as defined in the servicing agreement.
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Strategic defaults are de facto unobservable events. Although defaults are observed, one
cannot observe whether a default is strategic as strategic defaulters disguise themselves among
borrowers who cannot afford to pay. Bajari, Chu, and Park (2008) assess the likelihood of
strategic default by estimating a structural model of default that includes both cash flow con-
siderations and negative equity considerations. Guiso, Sapienza, and Zingales (2013) evaluate
the likelihood of strategic default by resorting to a quarterly survey of a representative sample
of U.S. households. By asking about a person’s willingness to default at different levels of nega-
tive equity in a survey, one can measure the effect of the shortfall in equity while keeping all the
other individual characteristics constant, including the level of wealth. Survey data provides an
opportunity to separate contagion effects from sorting effects, which is difficult to do with field
data. By asking questions about social and moral attitudes toward default, one can identify
whether the high propensity to default in areas where foreclosures are more frequent is due
to a clustering in those areas of individuals prone to default or to a contagion effect. Also,
survey data allows asking about other attitudes and perceptions of the respondents that are
not otherwise observable and that can be used to disentangle where certain effects, such as the
correlation between knowing somebody who defaulted strategically and willingness to default
strategically.

We motivate the highly strategic delinquency behavior of the savvy commercial borrowers/
business-owners from two different angles. We provide evidence from the Trepp data in Figure
1a that from 2012, the number of loans have remained flat but the outstanding balance of loans
have steadily increased until 2016. This could have serious implications. There can only be
two possibilities: if the same loans stay and there is no origination at all, and further if the
outstanding balance is increasing, it means there is serious delinquency in the loans and the
servicers are unable to secure the payment from the borrower and all these loans could poten-
tially become limbo loans.

Figure 1b furthers the narrative. From mid-2014, the age of the loans is decreasing and the
time-to-maturity is increasing. This could mean that from mid-2014, there are an equal number
of originations to the number of maturing loans. But the fact that the Outstanding Balance is
increasing in this entire period could only mean that the same loans are getting rolled over to
new contracts, when balloon payments are missed during maturity.

Figure 1c clearly shows that LTV (widely used in previous literature and used by most
banks/asset managers for credit risk calculations) is flat throughout the data horizon. The in-
terest rate is decreasing almost monotonically in the data and there seems to be no sensitivity
of LTV to interest rate. This means LTV is probably not the right way to think about credit
risk. It could also be that the commercial borrowers target LTV. They strategically make
payments towards their obligation so that the ratio of ”Book Value of Loan” and the ”Value of
the Property” remains relatively stable over time. It would make sense for them to do this as
banks/asset managers use LTV at origination as the primary determinant of creditworthiness
of the borrowers. Further, the Contemporaneous LTV (CLTV) is used to calculate LGD (Loss
given Default or 1-Recovery Rate). So, CLTV could also be targeted and there is no evidence
of voluntary deleveraging from the borrower inspite of widely changing macro-economic condi-
tions, e.g., interest rate.
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Figure 1d corroborates that the NOI monotonically increases in the data and the occupancy
is almost 100% in the entire data. So, there may be strategic saving of internal cash flow from
income producing properties. Because of the strictly increasing NOI level, the strategic domi-
nance of NOI over other factors can have disastrous aggregate macroeconomic consequences. To
capture this, we try different methodologies like vanilla models (Naive Bayes, Multinomial and
Ordered Logistic) and machine learning models (Distributed Random Forest, Gradient Boost-
ing) and finally Deep Learning and find that Deep Neural Network (DNN) is best positioned
to address the above issue and does capture NOI as the most significant strategic variable from
the Variable Importance (VI) tables of the models. This difference does not stem from sample
bias. This is the core reason for our choice of big data for training all the models. Also, Trepp is
the largest provider of CMBS data and hence the sample is representative of the entire market
and does not have any selection bias.

Our Deep Neural Network (DNN) methodology extends the scope of ”Frailty Model” 3.
DNN not only captures latent time-fixed macroeconomic effect but also loan specific idiosyn-
cratic effects beyond what has been captured in prior literature in Commercial Mortgages. We
include 31 variables from Trepp in our DNN model along with state-level macro variables like
unempoyment, GDP growth and 2Yr & 10 Yr treasury rates and recently created indices. These
35 variables capture the loan-specific unobserved effects and the macroeconomic variables proxy
for unobserved common latent variables. Morover, using the deep learning methodology, we can
capture the highly non-linear interaction among the covariates. The unbiasedness of the factor
loadings is not the objective here, the accuracy of prediction is. We conduct a horse racing
among all the models we test and we determine the best metric/visualization scheme to do that.

Furthermore, our deep learning model also captures non-linear effect of the covariates and
all possible variable interactions of any order existing in the data, which cannot be captured
by the extensions of models with linear specification, thereby eliminating the bias due to linear
model mis-specification in Figure ??.

Our findings yield important new insights into the interplay of borrower behavior, various
risk triggers and the macroeconomy. They significantly differ from the findings of Campbell
and Dietrich (1983), Cunningham and Capone (1990), Deng (1999), Elul, Souleles, Chomsisen-
gphet, Glennon, and Hunt (2010), Foote et al. (2009) and others. These prior studies highlight
loanlevel variables such as loan-to-value ratio, loan age, etc. as major predictors of borrower
behavior. The significance of loan-to-loan correlation due to the common exposure of borrow-
ers to geography, vintage and property types emphasizes the need for CMBS investors as well
as commercial mortgage lenders to diversify mortgage risk, beyond the conventional borrower
characteristics highlighted in the literature.

We test whether by adding macroeconomic variables, we can delve into the realm of omit-
ted variable bias found in all shedonic models. We extend the literature on hedonic models by

3Duffie (2009) created an MCMC methodology that updates the posterior distribution of unobserved risk
factors based on Bayes’ rule whenever defaults cluster at a given point in time. In the event forecasting literature,
such a dynamic unobserved covariate’s effect is termed ”frailty”. Yildirim (2008) also propose a mixture model
to disentangle the probability of long term survivorship and the timing of the default event.
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systematically different macro variables which are exogenous in the shedonic regression model
beyond the characteristics (used as covariates) and can explain a lot of the unobserved effects
Childs, Ott, and Riddiough (1996). Other than 2Yr Treasury Rate and State Unemployment
Rate, the macroeconomic variables do not directly affect the strategic delinquency behavior
and timing.

National interest rates, e.g., 2 Year and 10 Year Treasury rates impact occupancy of commer-
cial properties directly, as well as through state-level GDP. The unemployment is also captured
at the state level. The local State level Unemployment Rate in urban centers and occupancy of
lessees in commercial properties are highly correlated, because there lessees are the job-creators
locally. We claim that all of the above can be captured by NOI, since both occupancy and
unemployment rates affect the NOI from the property.

We normalize Net Operating Income (NOI) as a percentage in the pooled data for loans
and create histograms of relative frquency of the number of loans in different delinquency
classes with respect to the different percentiles of NOI. We see a sheavy support for the rela-
tive frequency across all the delinquency classes at the NOI percentages 5%-7%. We call them
dominant NOI buckets. We show the distribution of different delinquency classes with all the
NOI buckets including the dominant ones (see figure 2). The significant heterogeneity across
the delinquency classes and the highly non-linear effect of NOI towards the strategic choice of
the borrower to be in a specific delinquency class is not bourne out of this diagram.

Beyond the above dominant buckets, we see highly non-linear strategic behavior for com-
mercial mortgage borrowers to choose different delinquency classes for different buckets of NOI.
To visualize this, we zoom in and remove the dominant buckets and form the rescaled (without
dominant NOI bucket masses) relative frequency histogram across all delinquency classes. Fig-
ure 3 highlights the complex relationship that exists between the percentage of loans across the
different delinquency classes ”Within 30 Days”(W0 30D), ”30 Days to 60 Days”(W30 60D),
”60 Days to 90 Days”(W60 90D), ”90 Days to 120 Days”(W90 120D), ”Beyond 120 Days”
(B120D) and the buckets of net operating income (NOI) excluding the dominant NOI buckets,
which can be incentivized by the macro-economy. The sensitivity varies significantly in a highly
non-linear way in both magnitude and sign.

There is a U-shaped choice between NOI buckets 37%-45%for the borrowers in the delin-
quency class W90 120D. This means that when a borrower is already beyond the default thresh-
old of 90 days, but less than the cutoff of 120 days, they are incentivized to stay there for a while
and time their future payments based on cash flow. Since these NOI bucktes are higher, the
borrowers make some profit from the income generated from the property, but they still stay at
the same delinquency classes and do not pay-off the earlier missed payments to come back to
the Current State (less than 30 days of delinquency). Similarly, the borrowers in delinquency
class B120D choose to be in lower NOI buckets in a non-linear way. This is because of the
lack of net cash flow income for them to be able to pay off the earlier missed payments. They
end up in a vicious cycle of making less money from the property and becoming worse off in
terms of their creditworthiness. We call them ”limbo” loans as these loans stay in this state
for a while before they are resolved. The sensitivity estimates generated by vanilla models can
misrepresent the influence of risk factors because of naive choice of linear specification. This can
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make it difficult to make economic conclusions from the borrower behavior. In our approach,
the relationship is entirely dictated by data, thereby minimizing model misspecification and
bias of the variable estimates.

Our data indicates that transitions between the Current loans to at most 90 days of
missed/late payment are in fact frequent, e.g., a meaningful number of loans enter foreclo-
sure but eventually return to current. Similarly, many loans are consistently behind payment
but do not ever enter foreclosure. We do not find any model that can correctly predict which
bucket of delinquency classes a loan belongs within 90 days.

We also add more broadly to the literature on neural networks. Several authors have used
shallow neural networks in other areas of financial economics. Bansal and Viswanathan (1993)
approximate the pricing kernel using a neural network. Hutchinson, Lo, and Poggio (1994)
pioneered the use of neural networks for nonparametric option pricing. Brown, Goetzmann,
and Kumar (1998) use neural networks to predict stock markets. Swanson and White (1997)
propose the use of neural networks for macroeconomic forecasting. Lee, White, and Granger
(1993) construct tests for neglected nonlinearities in time series models using neural networks.
Granger (1995) and Kuan and White (1994) study nonlinear or neural network modeling of
financial time series. Khandani, Kim, and Lo (2010b) and Butaru, Chen, Clark, Das, Lo,
and Siddique (2016) examine other machine learning models of financial default. Recent ap-
plications of deep learning in financial economics include Klabjan (2007) who model market
movements. Heaton, Polson, and Witte (2017) use deep learning for portfolio selection.

The remainder of the paper proceeds as follows. We provide details on the big data we use
in Section 3 and provide descriptive statistics and conduct some exploratory analysis to give
an idea of the trends in data. In Section 4, we motivate all Naive Bayes, Multinomial Logit,
Distributed Random Forest, Gradient Boosting Machine models and provide empirical results
and list the deficiencies in each of them. In Section A, we describe the Deep Learning (DNN)
Model and motivate how DNN can alleviate most of the issues in the earlier models. We also
point out the key findings of the paper in this section and how they differ from the literature.
In Section 7, we provide concluding remarks followed by references.

2 A Simple Theoretical Motivation

We provide a simple model framework to motivate that the ”Optimists” (or Strategic De-
faulters) would prefer to maintain a consistently higher LTV during the good portion of busi-
ness and economic cycle. They will then have the option to strategically default in the future.
Whereas, ”Pessimists” (Non-Strategic Defaulters) would prefer to continually reduce LTV, in
anticipation of different forces increasing LTV in the future and also to alleviate the conse-
quences of default in the event they are liquidity-constrained. This differential behavior across
the cohort of borrowers will price in their heterogenous beliefs (π) in the expectation of occu-
pancy of the property.

In residential market, while negative equity (whenever the value of the mortgage exceeds

8



the value of the property), in nonrecourse states, is a necessary condition for strategic default
Guiso, Sapienza, and Zingales (2009), it is not sufficient. Even in nonrecourse states, there
are frictions that make defaulting less appealing. Consider a borrower who at time t owns a
house worth At and faces a mortgage balloon payment equal to BT . From a purely financial
point of view the borrower will not default as long as At > BT . In the decision whether to
default strategically, however, there are considerations other than the financial gain or loss from
defaulting. For example, by not defaulting, a borrower enjoys the benefit of defaulting in dire
conditions in the future. The intertemporal substitution of default choice is co-determined by
timing of Appraisal Reduction, Non-recoverability as to whether the Master Servicer/Special
Servicer has ceased advancing (P&I and/or Servicing) for the related mortgage loan, etc. Also,
by defaulting she faces higher cost of borrowing in the future due to differential credit-rationing
by the lender, since lenders are generally NPV-neutral and default is a deadweight loss for
them. Let us define Kt as the net benefit (opportunity cost of cash) of not defaulting at t.
Then a rational borrower will not default if At −BT +Kt > 0.

If the commercial borrower does not have a balloon payment due, then her decision of
whether to default strategically is more complex, because she must trade off the decision to
default today with postponing the decision and possibly defaulting tomorrow. In addition, the
option to default tomorrow is conditional on the ability of the borrower to serve her mortgage
debt, which is highly correlated with the probability of occupancy and positive cash flow from
the lessee in the property. If the property is vacant or if the lessee does not pay up, the borrower
is likely to default next period and thus loses the value of the option. Let VT = AT −BT +KT

, where T is the day the balloon payment is due. Then the value Bajari et al. (2008) of not
defaulting at T-1 is:

VT−1 = AT−1 −mT−1 −BT +KT−1 + (1− πT−1)Emax(VT , 0) (2)

where A is the monetary value of the cashflow and the serviceflow enjoyed between time T
- 1 and T, m is the mortgage payment (scheduled and unscheduled) between T-1 and T, πT−1
is the probability of vacancy of the property (i.e., not having a lessee, and E is the expectation
operator. The value of not defaulting at a generic date t is then:

Vt = At −mt −BT +Kt + (1− πt)Emax(Vt+1, 0) (3)

From (1), the decision to default strategically at a generic time t can be described by the
following relationship

StrategicDefault = F (A−B,A,m, π,K) (4)

Analogous to Residential Real Estate borrowers, when the owner uses the property for her
own business instead of leasing it, the property serves the purpose of ”Consumption” instead of
”Investment”. So, the size of the property along with the owner’s firm’s productivity (equiva-
lently, cashflow from lessee) is no longer scalable in terms of default decision and has an upper
cap. This is further clouded by the fact that Recourse Laws are not strictly implemented in
most states. Bankruptcy Laws need to be fairly strong in a state to reinforce recourse laws.
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3 Data

We have monthly proprietary novel data set from January 1998 to September 2016 from Trepp,
the leading provider of analytics, information, and technology to the global CMBS, commercial
mortgage finance, and banking industries. Trepp is the largest commercially available database
containing detailed information on over 1,800 deals and more than 100,000 loans, which sup-
port close to $800 billion in securities. Deal coverage includes North American, European, and
Asian CMBS, as well as Commercial Real Estate backed CDOs.

For the initial review, we use data from 2007 to 2009 (36 months) for 91767 loans for model
fitting purposes, since going beyond this size requires access to GPU/Clouds, which we have
adapted now. Our final cleaned data has around 8.4 million observations of 35 covariates.

We include the variables used in previous CMBS literature, like An, Deng, and Gabriel
(2009), Ambrose and Sanders (2003) and preclude the following key loan-specific variables:
log(original balance), LTV, time of amortization, time to maturity, lockout, lockout expiration,
corporate bond credit spread Titman, Tompaidis, and Tsyplakov (2005), yield curve, mortgage-
treasury rate spread, region dummy, seasonal/quarter dummy, among others.

We finally decide to use loan-to-value (ltv), occupancy rate (occ), tranche loan-to-value, (se-
curltv), tranche weighted average cost (securwac), annualized gross rate (actrate), outstanding
scheduled principal balance at end of current period (obal), derived most recent net operating
income (noi), outstanding legal remaining outstanding principal balance reflecting defeasance
of the loan as of the determination date (balact), securitization balance of the loan predged
to the trust (face), most recent appraised value else securitization appraised value (appvalue),
total amount of principal and interest due (actpmt), regularly scheduled principal to be paid to
the trust (curschedprin), principal prepayments and prepayments (full or partial), discounted
payoffs, and/or other proceeds resulting from liquidation, condemnation, insurance settlements
(curunschedprin), interest basis of an adjustable rate loan (pmtbas), net proceeds received on
liquidation of loan (liqproceeds), expenses associated with the liquidation (liqexpense), dif-
ference between Net Proceeds (after Liquidation Expenses) and Current Beginning Scheduled
Balance (realizedloss), amount received from a borrower as a pay off a loan prior to the maturity
or anticipated repayment date (pppenalties) as the loan-specific variables. Age of the property
is include as a control in addition to the age of the loan. We add age2 as as a control variable
too to capture the non-linear relationship of aging of the loan with the delinquency classes.
We calculate ”time to maturity” to extract any strategic default behavior closer to the realized
maturity of the loans.

We use the loan vintage (to capture if origination and underwriting standards have an effect
on the delinquency class of the loans), 51 states in USA (msa, county, zip have severe missing
values, hence the identification comes at a state level), property type (we bucket thousands of
property types into 8 unique types), fixed/floating as dummy variables. We use ”Number of
Properties” (numprop) in a deal as a deal-specific variable.

We control for refinance pipeline and/or balloon payment by assigning a dummy if a loan is
within 3 months threshold to its original scheduled maturity date. We use MIT Commercial In-
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dex, National Council of Real Estate Investment Fiduciaries (NCREIF) regional property value
indices. Additionally, we include state-level quarterly GDP (converted to monthly), monthly
historical unemployment data by state and historical interest rates of different maturities.

The summary statistics for the cleaned data containing 9,617,333 observations of continuous
variables is provided in Table 1. ”One hot encoding” technique converts categorical variables
as binary vectors without any order.

4 Parametric Models and Empirical Results

Our empirical results are based on models harnessing the unprecedented size of our sample
set and the heterogeneity in the incentives of default and beliefs we investigate. The models
calculate the accuracy of prediction for 7 different delinquency states starting from Curren-
t/Performing classes W0 30D which includes ”loans with payments not received but still in
grace period or not yet due”, Late/Non-Performing classes W30 60D, W60 90D which in-
cludes loans with ”Late Payment beyond 30-days but less than 60 days, beyond 60-days but
less than 90-days, Default state W90 120D ((within 90 to 120 days of delinquency), Liquida-
tion Proceedings & Final Resolution state B120D (beyond 120 days of delinquency), combined
together as ”limbo” loans. We try further states in the PrfMatBal (Performing, Mature and
Balloon Payment due) and NPrfMatBal (Non-Performing, Mature and Balloon Payment due)
classes to capture the incentives delay in resolution for foreclosed loans to REO/prepaid. Our
deep learning model for commercial mortgage state probabilities is a nonlinear extension of
the multinomial/ordered logistic regression model in Figure ??. It can be naively viewed as
a recursive formulation of logistic regression of nonlinear transformations of the explanatory
variables.

We implement Naive Bayes, Multinomial (with Lasso and Ridge regularization) & Ordered
Logit, parallelize Random Forest and implement adaptive gradient boosting after bagging and
finally implement a Deep Recurrent Neural network and compare the prediction on different
mortgage states on the holdout sample.

A Naive Bayes classifier estimates the conditional a-posterior probabilities of a categorical
variable given independent covariates using the Bayes rule. The assumption of independence
of the covariates is key to the success of the Naive Bayes classifier. We see that W0 30D,
W30 60D & W60 90D classes have less mis-classification in Table 4 error than other mod-
els, since the assumption of independence among the co-variates holds until a loan is in these
classes. But this analysis is still kept in the paper to motivate why we eventually need deep
learning as a means of avoiding this strong assumption of independence among the covariates. 4

4For classification, ROC curve analysis is conducted on each predictor. For two class problems, a series of
cutoffs is applied to the predictor data to predict the class. The sensitivity and specificity are computed for each
cutoff and the ROC curve is computed. The trapezoidal rule is used to compute the area under the ROC curve.
This area is used as the measure of variable importance. For multi-class outcomes, the problem is decomposed
into all pair-wise problems. For a specific class, the maximum area under the curve across the relevant pair-wise
AUC’s is used as the variable importance measure.
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Ordered Logit exploits the natural order of delinquency classes and computes transition
probabilities in that order. Ordered Logit does not allow all the back transitions shown in the
above Finite State Automaton5 of the loan delinquency classes. Multinomial Logit assumes
Independence of Irrelevant Alternatives (IIA), which is not true in this situation as we will
see in the next section. Suppose, hypothetically, there are two choices given to a borrower to
be either within 30 days of delinquency or between 90 days and 120 days of delin-
quency. Clearly, the borrower would like to stick with the first choice, as the second choice
classifies him/her in the default category and is detrimental for her creditworthiness from a
lender’s perspective. Now suppose, one more choice for being in 30 days to 60 days of
delinquency is given to the borrower, s/he may choose to rather be in this new state instead
of less than 30 days of delinquency and may strategically miss one payment if there is a great
investment opportunity for him/her in that one month horizon. In fact, none of the models
(except Naive Bayes) can distinguish these three classes (W0 30D, W30 60D & W60 90D)
and considers all of them as Current Loans in Table 4.

The borrower can undertake this decision as she/she is already some days in delinquency
and she/she wouldn’t mind going to the next bucket until she/she falls in the bucket for 90
days to 120 days of delinquency. In this situation, the borrower’s creditworthiness doesn’t
change that much from a lender’s perspective. hence, the odds for being in the ”less than
30 days delinquency” to being in the classes of 90 days to 120 days of delinquency
will change drastically in the presence of this new choice of being in 30 days to 60 days
of delinquency. hence the IIA assumption is clearly violated. The following Finite State
Automaton details all possible transitions so that the above arguments can be visualized.6

The different delinquency classes will seriously affect the default behavior of the loans, e.g.,
simply having a cutoff for default would imply that we are assuming that loans ”Within 30

5

Current 30DPD 60DPD 90DPD 120DPD

6In a Multinomial Logit Model, log-odds of each delinquency state with respect to the ”Current” state
assumes a linear specification. The odds that a loan has a delinquency classes j as opposed to the baseline,
depending only on individual loan-specific covariates is defined as:

Pr(Yi = j|Zi = z)

Pr(Yi = 0|Zi = z)
= exp(Z

′
γj) (5)
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days delinquency”, ”Between 30 days and 60 days delinquency” and ”Between 60 days and 90
days delinquency” have the same default risk. We motivate why this assumption is not true.
If this were to be true, that a borrower would only pay off just before 90 days delinquency in
order to avoid default and facing derogatory consequences. The fact that the above three buck-
ets represent different defauly risk categories implies that the borrower’s default behavior will
change when she/she is between 30 days and 60 days of delinquency compared to the situation
when all the above three categories are bucketed together as ”Non-Default”.

In this Table 4 the row labels are the predicted classes and the column labels are the
actual classes. As is evident from the Sensivity and Error , the Multinomial Logistic Model can
correctly classify the Current or ”W0 30D” really well, but the Specificity is really low, i.e., the
model cannot classify the loans that are not in ”W0 30D” correctly vis-a-vis the ”W0 30D”
class. Also the error rates for the classes ”W30 60D”, ”W60 90D” are 100% which means
the model cannot identify any those classes correctly. Similarly, the classes ”W90 120D” and
”B120D” are also identified very poorly the Multinomial Logistic Model. In fact, some of the
risks (Current Note Rate, LTV, Unemployment Rate, etc.) are misrepresented in Multinomial
Logit, e.g., if local Unemployment increases, the Current Commercial Loan Default should
increase (Table 2). Lasso and Ridge does not improve the performance of Multinomial Logit
in Table 4.7

Pr(Yi = j|Zi = z) =
exp(Z

′
γj)

1 +
∑J

l=1 exp(Z
′γl)

(6)

Pr(Yi = j|Zi = z) =
1

1 +
∑J

l=1 exp(Z
′γl)

(7)

the choice Yi takes on non-negative, un-ordered integer values Yi ∈ {0, 1, ..., J}
Multinomial logistic regression does not assume normality, linearity, or homoskedasticity; it has a well-behaved

likelihood function, a special case of conditional logit.
A more powerful alternative to multinomial logistic regression is discriminant function analysis which requires

these assumptions are met. Multinomial logistic regression also assumes non-perfect separation.
The Independence of Irrelevant Alternatives (IIA) assumption inherent in Multinomial Logit Model implies

that adding or deleting alternative outcome categories does not affect the odds among the remaining outcomes.

Pr(Yi = j|Yi ∈ {j, l}) =
Pr(Yi = j)

Pr(Yi = j) + Pr(Yi = l)
=

exp(X
′

ijγ)

exp(X
′
ijγ) + exp(X

′
ilγ)

(8)

This can be tested by the Hausman-McFadden test. There are alternative modeling methods, such as
alternative-specific multinomial probit model, or nested logit model to relax the IIA assumption.

7The random effects approach (BLP methodology) of multiple unobserved choice characteristics to avoid
IIA is attractive, substantively and computationally, compared to the nested logit or unrestricted multinomial
probit models.

The more accurate our model, the more we can trust the importance measures and other interpretations.
Measuring linear model goodness-of-fit is typically a matter of residual analysis. (A residual is the difference
between predicted and expected outcomes). The problem is that residual analysis does not always tell us when
the model is biased. Also the marginal effect of features towards classifying the response set does not have a
clear interpretation in terms of sensitivity and directionality. We list the co-efficients of Multinomial Logit for
the sake of completeness. (Table 2)
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5 Vanilla Machine Learning Models & Empirical Results

5.1 Distributed Random Forest

The confusion matrices of the delinquency classes for in-sample/training set are calculated for
the entire data in Table 3 and also subsample in Table 3 until the December, 2006 for stress
testing the robustness for Out-of Sample Prediction during the Financial crisis in Figure 8 As
is evident from the Error in Table 4, the Distributed Random Forest Model can correctly
classify the Current or ”W0 30D” completely in Figure ??. Also the error rates for the
classes ”W30 60D”, ”W60 90D” are 98% which means the model cannot identify any those
classes correctly but better than Multinomial Logit Model. Similarly, the classes ”W90 120D”
and ”B120D” are also identified very poorly but better than the Multinomial Logistic Model.8

As is evident from the Out-of-Sample Errors in Table 4, the Distributed Random Forest
Model can correctly classify the Current or ”W0 30D” completely. here the column labels

8Recursive partitioning, a critical data mining tool, shelps in exploring the stucture of a data set, while
developing easy to visualize decision rules for predicting a categorical (classification tree) or continuous
(regression tree) outcome. This section briefly describes CART modeling, conditional inference trees, and
random forests.

Random Forests are developed by aggregating decision trees and can be used for both classification and
regression. Each tree is a weak learner created from bootstrapping from subset of rows and columns. More
trees will reduce the variance.It alleviates the issue of overfitting, can handle a large number of features. It
shelps with feature selection based on importance. It is user-friendly with two parameters: number of trees
(default 500) and variables randomly selected as candidates at each split,

√
ntree for classification and ntree/3

for regression.

1. Draw ntree bootstrap samples.

2. For each bootstrapped sample, grow un-pruned tree by choosing the best split based on a random sample
of mtry predictors at each node.

3. Predict new data using majority votes for classification and average for regression based on ntree trees.

For each bootstrap iteration and related tree, prediction error using data not in bootstrap sample, namely,
”Out Of Bag Error” is estimated.

R’s randomForest splits based on the Gini criterion and H2O trees are split based on reduction in Squared
Error (even for classification). H2O also uses histograms for splitting and can handle splitting on categorical
variables without dummy (or one-hot) encoding. Also, R’s randomForest builds really deep trees, resulting in
pure leaf nodes, leading to constant increments in prediction and ties and hence relatively lower AUC.The trees
in H2O’s random forest aren’t quite as deep and therefore aren’t as pure, allowing for predictions that have
some more granularity to them and that can be better sorted for a better AUC score.

CART models an outcome yi for an instance i as:

yi = f(xi) =

M∑
m=1

cmIxi ∈ Rm (9)

where each observation xi belongs to exactly one subset Rm, cm is the mean of all training observations in
Rm.

The estimation procedure takes a feature and computes the cut-off point that minimizes the Gini index of the
class distribution of y, making the consequent subsets as different as possible. The algorithm is repeated until
a stopping criterion is reached. Tree-based methods are invariant to monotonic feature transformations and
can handle both continuous and categorical variables. A tree of depth L can capture L-1 interactions, making
interpretations straightforward, providing counterfactuals. However, they are not so good at handling linear
relationships, as the use of the step function in splitting is inherently non-linear.
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are the predicted classes and the row labels are the actual classes.Also the error rates for the
classes ”W30 60D”, ”W60 90D” are 100% which means the model cannot identify any those
classes any better than Multinomial Logit Model. Similarly, the classes ”W90 120D” and
”B120D” are also identified very poorly but better than the Multinomial Logistic Model Out-
of-Sample. The Out-of-sample predictions worsen during the Financial Crisis. 9

5.2 Gradient Boosting Machine (GBM)

As is evident from the In-Sample Errors in Table 4, the Gradient Boosting Machine can
correctly classify the Current or ”W0 30D” completely. Also the error rates for the classes
”W30 60D”, ”W60 90D” are almost 100% which means the model cannot identify those
classes any better than Multinomial Logit Model. Similarly, the classes ”W90 120D” and
”B120D” are also identified very poorly but better than the Multinomial Logistic Model In-
Sample in Figure 3. We also attach the Variable Importance for GBM during the using data
before Financial Crisis in Figure 8

Here the column labels are the predicted classes and the row labels are the actual classes.
The out-of-sample predictions for GBM perform as good as Deep Learning in our preliminary
analysis. This method uses the same approach as a single tree, but sums the importances over
each boosting iteration (see the gbm package vignette).10

9Along with training a model that classifies accurately in a hold-out sample, one needs to be able to interpret
the model results. Feature importance is the most useful interpretation tool (such as the coefficients of linear
models), to identify important features. Most random Forest (RF) implementations also provide measures of
feature importance via permutation importance. Permutation importance is obtained by observing the effect
on model accuracy of randomly shuffling each predictor variable. This technique is broadly-applicable because
it doesn’t rely on internal model parameters even while using Lasso or Ridge regularization in the presence of
highly correlated features.

For each tree, the prediction accuracy on the out-of-bag portion of the data is recorded. Then the same is
done after permuting each predictor variable. The difference between the two accuracies are then averaged over
all trees, and normalized by the standard error. If the standard error is equal to 0 for a variable, the division
is not done. here is the Variable Importance table ?? for the Random Forest Model Khandani, Kim, and Lo
(2010a). The Variable Importance for Out-of-Sample predictions during the Financial Crisis in Figure 8 give
similar results.

10GBM ? forms an ensemble Kuncheva (2003) of weak prediction models in a stage-wise fashion and is
generalized by allowing an arbitrary differentiable loss function. Boosting trees increases their accuracy, but
decreases speed and user interpretability. The gradient boosting method generalizes tree boosting to minimize
these drawbacks.

At each step m, 1 ≤ m ≤ M of gradient boosting, an estiamtor hm is computed from the residuals of the
previous model predictions. Friedman (2001) proposed regularization by shrinkage:

Fm(x) = Fm−1(x) + νγmhm(x) (10)

where hm(x) represents a weak learner of fixed depth, γm is the step length and ν is the learning rate or
the shrinkage factor. XGBoost Chen and Guestrin (2016) is a faster and more accurate implementation of the
Gradient Boosting algorithm Chen, Lundberg, and Lee (2018).
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6 DNN for disentangling Delinquency Incentives

Deep Learning is a form of machine learning with multiple layers that learns multiple levels
of representations for different levels of abstraction Sirignano, Sadhwani, and Giesecke (2016).
It captures associations and discovers regularities within sets of patterns; it is suited for high
volume, high dimensional data. It performs well when the relationships are dynamic or non-
linear in Figure 5, when the standard regression models perform very poorly. No assumptions
on normality, linearity, variable independence are needed.

We use a multi-layer feedforward DNN, trained with stochastic gradient descent using back-
propogation. Each compute node trains a copy of the global model parameters on its local data
with asynchronous multi-threading and contributes periodically to the global model via model
averaging across the DNN. We tune both and Optimizer and Model-specific Hyperparameters
in Section A.2. We use SMOTE technique to reduce class imbalance. In Section A.3, we use
Variable Importance to compare the most significant marginal contributions of the features in
Section A.4 and plan to test Shapley values in Section A.7.

6.1 Model Results

As is clear from the similar counts of the loans of different categories in the in-sample confusion
matrix in Table 3, we have undersampled the W0 30D class/Current Loans to alleviate the
class imbalance problem. The Out-of-Sample predictions across different delinquency classes
are as good as GBM in Table 4.

The accuracy of predictions change dramatically, if NOI is taken out. We also conduct a
robustness check by leaving out each of the strategic variables from the DNN model. When
year and month fixed effects are taken out in Figure 7, NOI loses its importance significantly!
This clearly indicates that NOI is not a statistically significant variable by itself. It is used
strategically by borrowers when clustering of macro-economic events happen and when NOI is
taken out, the constraint variable like prepayment penalty clause and voluntary prepayment
variable like current unscheduled pricinpal payment show up higher in the variable importance
in Table 4 than LTV. Similarly, when Prepayment Penalties are taken out of the list of vari-
ables. When Balloon Payment constraints are taken out of the list of variables.

For neural networks, two popular methods for constructing Variable Importance (VI) scores
are the Garson algorithm, later modified by Goh (1995), and the Olden algorithm Olden, Joy,
and Death (2004). For both algorithms, the basis of these importance scores is the network’s
connection weights. The Garson algorithm determines VI by identifying all weighted connec-
tions between the nodes of interest. Olden’s algorithm, on the other hand, uses the product of
the raw connection weights between each input and output neuron and sums the product across
all hidden neurons. This has been shown to outperform the Garson method in various simula-
tions. For DNNs, a similar method due to Gedeon (1997) considers the weights connecting the
input features to the first two hidden layers (for simplicity and speed); but this method can be
slow for large networks. For Deep Learning, there is no impact of scaling, because the numbers
were already scaled. hence, the relative importance is the same as the absolute importance in
Figure 7.
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Model-agnostic interpredibility separates interpretation from the model. Compared to
model-specific approaches, model-agnostic VI methods are more flexible (since they can be
applied to any supervised learning algorithm). We intend to further investigate model-agnostic
methods for quantifying global feature importance using three different approaches: 1) PDPs,
2) ICE curves, and 3) permutation Greenwell, McCarthy, Boehmke, and Liu (2018).

As is clear from the preliminary analysis, the Net Operating Income (NOI), the Prepayment
Penalty clause and the Balloon Payment triger are significantly high in the variable importance
table 4. NOI is even higher than LTV as found in the VI tables for other previous models.
This provides evidence on how these three less statistically significant features contribute much
more towards the classification, via highly non-trivial and non-linear interactions with more
statistically significant variables.

Net Operating Income (NOI), a key indicator for an investment property’s financial stand-
ing, is the income generated by an investment property after subtracting the operating expenses
and vacancy losses but before principal and interest payments, capital expenditures, deprecia-
tion, and amortization. NOI calculation involves the following key variables. Potential Rental
Income assumes zero vacancy or could be based on a rental market analysis. Vacancy losses
represent the loss of income due to tenants vacating the property and/or tenants defaulting on
their lease payments. Total Operating Expenses on an Investment Property could include Prop-
erty Taxes, Rental Property Insurance, Property Management Fees, Maintenance and Repairs,
Miscellaneous Expenses, etc. Debt service, depreciation, leasing commissions, tenant improve-
ments, repairs to wear and tear, income taxes, and mortgage interest expenses are not included
in the calculation of net operating income. This is because NOI is unique to the property itself
and does not include other expenses that are specific to the investor/borrower in Table 4.

Some of the calculations that rely on NOI include Cap Rate (property’s potential rate of
return), ROI, Debt Coverage Ratio, Cash Return on Investment. The use of NOI provides an
overview of a property’s ongoing operating revenue. NOI analysis can be manipulated since
a property owner can choose to accelerate or defer certain expenses. The NOI of a property
is not always constant, it can change depending on how the property is managed. Because
other expenses are not considered in NOI (e.g., interest expense, debt service, income taxes,
capital expenditures), the actual cash flow that a property can generate may differ after all
these other expenses are paid. If projected rents are used to calculate NOI, it can throw off the
net operating income formula if these rents differ from market rents.

Our Deep Learning Variable Importance table in Figure 7 shows that NOI is the key en-
dogenous feature for understanding strategic delinquency behavior of the commercial mortgage
borrowers. We intend to further investigate how prepayment penalty clause and indicator for
balloon payments co-determine the strategic delinquency behavior along with the NOI using
Shapley values by capturing the marginal contributions.
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6.2 Future Work: Robust Causality via Irreversibility

We focus now on the feedforward part of our DNN. For the activation function of ”ReLU With
Dropout”, the aggregation is done in the following way:

X(i+1) = a(WX(i) + bi) (11)

The Loss Function for such a recursive mechanism of applying Logistic Classification can be
described as a Cross-Entropy between neighboring layers. Since the same transition function is
used between the layers, maximizing the cross entropy between layers amounts to minimizing
loss function. This is the essence through which parameter sharing is exceuted in DNN. We
prove that this parameter sharing actually increases cross-entropy thereby increasing the accu-
racy of the predictions in an ”Irreversible Way”.

Since the support of the probability distributions, or in other words, the number of neu-
rons with activation values varies across the different layers, the definition of Kullback-Leibler
Divergence or Relative Entropy needs to be generalized. In order to calculate relative entropy
between distributions with different support, a new formulation which is independent of the
cardinality of the support set is required. We intend to develop that on a separate paper.

But for motivation, we calculate the absolute Shannon Entropy for each layer of the Deep
Neural Network and show that is almost constant across the layers. This confirms that no
information has been lost in the process, but a better abstraction has been obtained from the
coarse representation from the input variables. We relate the above phenomenon to ”reducing
the number of counterfactuals” between neighboring layers in the DNN. This irreversible trans-
formation defines a new and more robust form of ”Causality” by reductio ad absurdum.

7 Conclusion

Using DNN, non-linearities of dependence of the response and interactions among features can
be captured, without specifying the relationships apriori. The Variable Importance chart/di-
agram is different for different algorithms, e.g., Distributed Random Forest, Gradient Boost-
ing Machine, Deep Learning. Net Operating Income, Prepayment Penalty Clause, Appraisal
Reduction, Non-Recoverability, Bankruptcy Flag, Liquidity Proceeds, Liquidity Expense and
Balloon Payment Indicator co-determine the strategic delinquency behavior of a commercial
mortgage borrower. Surprisingly, Loan-to-Value is unable to capture this Strategic behavior
and is not even statistically significant during Financial Crisis. Hyperparameter Tuning during
the implementation of DNN is still an art and not a science. We intend to point out some heuris-
tics/empirical relationships among the hyperparameters, both for optimization and the model
itself. The classification of critical delinquency states of systems when the agent decisions are
endogenous while the data is highly unbalanced across states can only be captured through deep
learning. We intend to explore the heterogeneity of these Liquidity-constrained and Strategic
Defaulters in a more theoretical way in future work, which is line with Geanakoplos (2010),
that Optimists are price setters. This could have pricing implications too. Eventually, our goal
is to create a Measure of Causality for Deep Learning Models in the near future.
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(a) Number of Loans vs. Outstanding Loan Balance (b) Number of Loans vs. Age and Time to Maturity

(c) Number of Loans vs. Interest Rate and LTV (d) Number of Loans vs. NOI and Occupancy

Figure 1: Motivating Diagrams of NOI, LTV

23



Figure 2: Distribution of Delinquency classes Vs NOI including dominant buckets

Figure 3: Distribution of Delinquency Classes Vs NOI excluding dominant buckets
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(a) Default Rate Vs Net Operating Income (b) Default Rate Vs Loan-to-Value

(c) Default Rate Vs Prepayment Penalties (d) Default Rate Vs Current Note Rate

(e) Default Rate Vs Appraisal Reduction Amount (f) Default Rate Vs Occupancy Rate

(g) Default Rate Vs Time to Maturity (h) Default Rate Vs Age of Loan

Figure 4: Partial Dependence Plots for Predicted Default Rate
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(a) Default Rate Vs NOI & Occupancy Rate (b) Default Rate Vs NOI & LTV

(c) Default Rate Vs NOI & Time to Maturity (d) Default Rate Vs Time to Maturity & LTV

(e) Default Rate Vs Age & LTV (f) Default Rate Vs NOI & Age

(g) Default Rate Vs GDP & LTV (h) Default Rate Vs NOI & GDP

Figure 5: Bivariate Heatmaps
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(a) Variable Importance: Lasso (b) Variable Importance: Ridge (c) Variable Importance: Ordinal

(d) Variable Importance: DRF (e) Variable Importance: GBM (f) Variable Importance: DNN

Figure 6: Variable Importance
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(a) VI without NOI

(b) VI without Year Month

(c) VI without PrePayPen

(d) VI without Balloon Payment

(e) VI without Occupancy
(f) VI without Appraisal Reduc

Figure 7: Variable Importance Leaving One Out
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(a) VI in 2008: DRF (b) VI in 2008: GBM
(c) VI in 2008: DNN

Figure 8: Variable Importance during Financial Crisis

A Deep Learning Model for CMBS

The purpose for a deep learning model is bourne out of the need to have transparency and
accountability Albanesi and Vamossy (2019). By the very nature of the deep learning model,
we do not have to add interaction terms in the specification of the model, especially in the
case of high dimensional data. The sequential layers embody highly non-linear and non-trivial
interaction among the variables and capture several latent fundamental features in the process.
The causal interpretation of the covariates both in default Kvamme, Sellereite, Aas, and Sjursen
(2018) and prepayment calculations have not been explored in details. The broader impact
could be traced out by improved allocation of credit and aid in policy design (macroprudential,
bankruptcy, foreclosure, etc.).

With the provision of enough hidden units, a neural network can mimic continuous functions
on closed and bounded sets really well Hornik (1991), vis-a-vis the product and division of
relevant features and their interactions. The advantage of more layers (as opposed to simply
adding more units to existing layers) is that the later layers learn features of greater complexity
by utilizing features of the lower layers as their inputs. Deep neural networks 10, with three or
more hidden layers, need exponentially fewer units than shallow networks or logistic regressions
with basis functions; see Montufar, Pascanu, Cho, and Bengio (2014) and Goodfellow, Bengio,
and Courville (2016).

A.1 Dynamic Deep Neural Network

Recurrent Neural Networks (henceforth referred to as RNN) are neural networks that are pref-
ered to Convolutional Neural Networks (CNN) for the purpose of processing sequential data
x(1), ..., x(τ) of variable length. Parameter sharing enables the extension of multilayer percep-
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Figure 9: Interaction of LTV and NOI
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Table 1: Summary Statistics

Statistic N Min Pctl(25) Median Mean Pctl(75) Max

beginbal 9,617,333 0 1,838,146 4,036,697 7,882,727 9,100,000 99,990,043
orig bal 9,617,333 0 1.92e+06 4.10e+06 9.31e+06 9.14e+06 1.68e+09
rate 9,617,333 0 6 6 6 7 9
Scheduled principal 9,617,333 0 1,060 4,235 15,665 9,838 430,000,000
Unscheduled principal 9,617,333 0 0 0 5.03e+04 0 1.50e+09
balance actual 9,617,333 0 1774511 3980981 7797502 9009824 99999000
payment 9,617,333 0 1.50e+04 2.86e+04 6.59e+04 5.78e+04 6.75e+08
pppenalties 9,617,333 0 0 0 420 0 29,477,125
liqproceeds 9,617,333 0 0 0 1.79e+04 0 2.56e+09
realizedloss 9,617,333 0 0 0 5.26e+03 0 2.04e+08
liqexpense 9,617,333 0 0 0 3.20e+03 0 1.06e+09
numprop 9,617,333 1 1 1 1 1 225
Appraisal Reduc 9,617,333 0 0 0 1.32e+05 0 3.91e+08
SecurLTV 9,617,333 0 63 71 67 76 150
Face 9,617,333 0 6 6 6 7 9
NOI 9,617,333 0 2.68e+05 5.27e+05 1.22e+06 1.10e+06 1.09e+09
LTV 9,617,333 0 63 71 69 77 150
AppValue 9,617,333 1.62e+03 3.46e+06 6.80e+06 1.74e+07 1.45e+07 4.81e+10
OccRate 9,617,333 0.0 0.89 0.96 0.92 1.0 1.4
Basis 9,617,333 0.0 2.0 2.0 1.7 2.0 4.0
Unemp 9,617,333 0.019 0.049 0.061 0.066 0.080 0.154
GDP 9,617,333 0 0.0008 0.0016 0.0013 0.0048 0.0174
2YrTr 9,617,333 0.002 0.006 0.010 0.019 0.031 0.061
10YrTr 9,617,333 0.015 0.024 0.036 0.034 0.043 0.063
NAREIT 9,617,333 -0.45 -0.05 0.01 -0.01 0.04 0.38
MIT.Liq 9,617,333 0.017 0.022 0.036 0.025 0.105 0.184
time to maturity 9,617,333 0 35 66 80 100 765
age 9,617,333 0 31 60 63 90 409
age2 9,617,333 0 961 3600 5393 8100 167281
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Table 2: Co-efficients of Multinomial Logistic Regression

names W0 30D W30 60D W60 90D W90 120D PrfMatBal NPrfMatBal B120D
1 Intercept -24.83 -230.36 -223.45 -319.34 591.88 -170.20 272.02
2 State -0 0.69 0.30 0.99 -2.12 -0.76 -0.08

52 PropType -0.39 0.65 -0.12 0.61 0.55 0.62 0.49
60 MatType 0.23 -4.82 -2.87 -3.79 7.32 -57.90 -6.62
61 Balloon 0.33 -5.39 -3.48 -4.05 5.79 -53.02 -5.83
62 NonRecov -1.59 -0.94 -0.75 0.69 -3.13 0.53 0.43
63 BnkrptcyFlg -0.15 0.02 0.19 1.10 -0.78 -1.88 -0.09
64 BeginBal -3.39 -2.13 -3.27 1.56 -0.67 -8.03 5.99
65 Obal -1.18 21.62 19.06 -41.82 18.39 -7.16 -115.35
66 Rate -17.31 29.77 29.74 34 -27.34 8.05 32.65
67 SchedPrin 134.71 153.33 54.63 89.44 156.85 173.07 41.50
68 Payment 44.44 -361.30 -6.64 -37.43 24.03 -1.95 57.25
69 UnschdPrin 45.46 -133.66 70.57 -47.70 57.08 -71.93 -172.29
70 PrePayPen 11.65 -253.05 -103.59 -61.27 -44.45 -370.52 16.91
71 ActBalance 2.25 0.94 2.73 -2.03 -0.28 8.07 -4.28
72 Liqprcds -75.90 76.39 35.06 131.46 8.39 179.17 165.38
73 Liqexp 448.71 -1139.31 -2653.88 -518.47 -124.37 -1035.34 72.08
74 RlzdLoss 69.41 26.56 -48.44 -42.75 39.97 -43.45 -58.66
75 NumProp -2.03 3.72 4.96 16.78 5.49 4.55 -23.82
76 AprslRed -101.36 8.64 11.74 66.68 -20.31 49.31 87.47
77 SecurLTV 5.65 5.77 5.39 3.49 3.20 3.68 -4.19
78 NOI 159.73 -7.38 -39.41 27.03 124.60 -77.96 -149.62
79 LTV -6.55 -3.10 -2.39 0.03 -3.56 -2.21 0.77
80 AppValue -2.27 3.02 4.01 7.02 -201.11 11.14 9.66
81 OccRate 0.42 -3.10 -3.55 -3.51 -1.27 -2.28 -2.84
82 Basis -7.14 -2.13 -1.89 0.28 19.61 48.04 5.77
84 Age -6.55 -5.95 -4.29 -4.77 -2.70 6.02 8.03
85 Age2 16.16 0.62 -2.87 -1.52 12.32 -10.49 -8.52
86 Unemp -1.93 17.51 21.77 18.87 25.90 21.55 -12.23
87 GDP -0.84 0.75 0.27 3.30 8.21 2.35 -6.66
88 2YrTr 4.89 -7.05 -9.52 -34.94 -5.31 -50.57 -3.23
89 10YrTr 10.94 18.14 18.82 37.29 -20.60 7.96 15.26
90 NAREIT 0.10 0.13 0.32 0.20 0.02 0.41 0.17
91 MIT.Liq 0.29 -0.12 -0.35 -0.31 0.27 -0.34 3.71
92 TimeToMat 4.69 4.63 4.43 4.57 -101.20 -140.81 2.91
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Figure 10: Deep Neural Network
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Table 3: Cross-Validation Training Errors of Models across Delinquency Classes

Ord Mult Lasso Ridge DRF GBM DL
W0 30D 0.01 0.01 0.01 0.01 0.01 0.01 0.0

W30 60D 0.61 1 1 1 0.98 1 1
W60 90D 0.63 1 1 1 0.98 1 1

W90 120D 0.36 0.48 0.48 0.47 0.21 0.27 0.21
PrfMatBal 1 1 1 1 0.76 0.84 0.78

NPrfMatBal 1 0.67 0.7 0.74 0.16 0.12 0.12
B120D 1 0.8 0.87 0.83 0.22 0.21 0.2
Totals 0.03 0.02 0.02 0.02 0.01 0.01 0.01

Table 4: Out-of-Sample Test Errors of Models across Delinquency Classes

Ord Multi Lasso Ridge DRF GBM DL
W0 30D 0.01 0.01 0.01 0.01 0.01 0.01 0.01

W30 60D 0.89 1 1 1 1 1 1
W60 90D 0.59 1 1 1 1 1 1

W90 120D 0.2 0.37 0.37 0.37 0.14 0.15 0.17
PrfMatBal 0.98 1 1 1 0.97 0.96 0.95

NPrfMatBal 1 0.42 0.42 0.47 0.19 0.13 0.13
B120D 1 1 1 1 0.07 0.08 0.07
Totals 0.98 0.03 0.03 0.03 0.03 0.03 0.03

trons (MLP) to RNNs. Using a time dependent parameter, sequence lengths not seen during
training cannot be generalized. Nor can we translate the statistical robustness across different
sequence lengths and also across time. Each member of the output is computed uniformly by
the same update methodology applied to previous outputs, which results in parameter sharing
vis-a-vis a very deep computational graph.

A computational Graph is a visualization for comprehending the unfolding of a recursive or
recurrent computation, corresponding to a sequence of events, allowing for parameter sharing.

Figure 11: An recurrent network with no inputs

We consider a specification as in Goodfellow et al. (2016):

h(t) = g(t)(x(t), x(t−1), x(t−2), ..., x(2), x(1)) (12)
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Here, h(.) represents the hidden layers, which are lossy summaries. Depending on the train-
ing criterion, the summary will keep certain aspects of the past more accurately than others.
The extreme case is when one can recover the input sequence from h(t), e.g., in autoencoder
frameworks. g(t) needs the entire history (x(t), x(t−1), x(t−2), ..., x(2), x(1)) as input to produce the
current state.

The recursive specification described below has two distinct advantages:

h(t) = f(h(t−1), x(t); θ) (13)

1. Whatever be the sequence length, the learned model has the same input size, because
it is specified in terms of transition between consecutive states, rather than in terms of
variable-length history of states.

2. The same transition function f(.) can be used with the same parameters at every time
step.

Learning a single shared parameter model is the key to generalizing to sequence lengths not
in the training set. This facilitates the estimation with way less training examples than 0ther
methods not using parameter sharing.

Under certain regularity conditions, the estimators are consistent and also asymptotically
normal (see Hornik, Stinchcombe, and White (1989), Sussmann (1992) and Albertini and Sontag
(1993) where they study the identifiability). One can regularize DNN using optimal hyper-
parameter tuning via cross-validation and ”drop out” some sample values to reduce overfitting
Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).

Deep Neural Networks (DNN) 11 have an extensive set of current applications like: System
identification and control (e.g., vehicle control, trajectory prediction, etc.), Game-playing and
decision making (e.g., chess, poker, etc.), Pattern and sequence recognition (e.g., radar systems,
face identification, signal classification, speech/image recognition, etc.), Medial diagnosis and
finance (e.g., automated trading systems, cancer diagnosis, etc.).

A.2 Hyperparameter Tuning and Grid Search

Hyper-parameter tuning with Random Grid Search (RGS) tests different combinations of hyper-
parameters to find the optimal choice based on accuracy, without overfitting.

Hyperparameters can be divided into 2 categories:

• Optimizer hyperparameters

• Model Specific hyperparameters

There are several different Optimizer hyperparameters, e.g., a lower Learning rate
will require a much longer time/epochs to reach the ideal state, whereas higher learning rate
would overshoot the ideal state and the algorithm might not converge. The learning rate has
to shepherd all of the parameters each with its own error curve. Error curves are not clean
u-shapes. they have more complex shapes with local minima. Mini-batch size has an effect
on the resource requirements of the training process (smaller leads to better fit, larger can
speed up and generalize better). While the computational boost incentivizes us to increase the
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minibatch size, this practical algorithmic benefit incentivizes us to actually make it smaller.
Number of Epochs should be chosen based on the Validation Error. The manual way is to
train the model as long as validation error keeps decreasing. There’s a technique called Early
Stopping to determine when to stop training the model.

Similarly, there are several different Model hyperparameters. Neural Networks are uni-
versal function approximator. Number of hidden units represents the required capacity to
learn function. Another sheuristics involving the first hidden layer is that setting the number
of hidden units larger than the number of inputs has been observed to give better results in
number of tasks. Non-Linear Activation Functions could be Sigmoid, Hyperbolic Tangent,
MaxOut, Leaky Recitified Liear Unit etc. ”WithDropout” specification implies a random
subset of the network is trained and the weights of all sub-networks are averaged. It works
together with the parameter hidden dropout ratios, which controls the amount of layer neu-
rons that are randomly dropped for each hidden layer. Hidden dropout ratios are useful for
preventing overfitting on learned features. As to the number of layers, 3 layer Neural Net will
generally outperform a 2 layer one. But going even deeper rarely shelps much more. Nesterov
accelerated gradient includes an adaptive learning rate smoothing factor (to avoid divisions
by zero and allow progress), adaptive learning rate time decay factor (similarity to prior up-
dates), etc. Hidden layers are the most important hyper-parameter to set for deep neural
networks, as they specify how many hidden layers and how many nodes per hidden layer the
model should learn. L1 penalty lets only strong weights survive and L2 penalty prevents any
single weight from getting too big. Rho is similar to prior weight updates) and Epsilon pre-
vents getting stuck in local optima. Early stopping metric is a stopping criterion (tolerance
and rounds).

A.3 Class Imbalance Problem

Most classifiers are unable to distinguish minor classes Kuncheva (2003) and are sheavily in-
fluenced by major classes, e.g., the conditional probability of minor classes are underestimated
in a logistic regression King and Zeng (2001), Tree based classifiers, and KNN yield high recall
but low sensitivity when the data set is extremely unbalanced Daelemans, Goethals, and Morik
(2008). There are a plethora of techniques to balance the data, e.g., oversampling, under-
sampling and Synthetic Minority Oversampling Technique (SMOTE) proposed by Chawla,
Bowyer, Hall, and Kegelmeyer (2002). Oversampling methods replicate the observations from
the minority class to balance the data. However, adding the same observation to the original
data causes overfitting, where the training accuracy is high but forecast accuracy over testing
data is low. Conversely, the under-sampling methods remove the majority of classes to balance
data. Obviously, removing observations causes the training data to lose useful information
pertaining to the majority class. SMOTE finds random points within nearest neighbors of each
minor observation and by boosting methods generates new minor observations. Since the new
data are not the same as the existing data the overfitting problem won’t be an issue anymore,
and we won’t loose the information as much as with the under-sampling methods. For these
reasons, this study considers the SMOTE function to balance the data.

A.4 Variable Importance

Random forests and gradient boosted decision trees can naturally quantify the importance
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or relative influence of each feature. Other algorithms like naive Bayes classifiers and support
vector machines are not capable of doing so and model-free approaches are generally used to
measure each predictor’s importance.

It is often beneficial (from an accuracy standpoint) to train and tune multiple state-of-the
art predictive models (e.g., multiple RFs, GBMs, and deep learning NNs (DNNs)) and then
combine them into an ensemble called a super learner through a process called model stacking.
Even if the base learners can provide there own measures of variable importance, there is no
logical way to combine them to form an overall score for the super learner.

Decision trees probably offer the most natural model-based approach to quantifying the
importance of each feature. In a binary decision tree, at each node t, a single predictor is
used to partition the data into two homogeneous groups. The chosen predictor is the one that
maximizes some measure of improvement bit . The relative importance of predictor x is the
sum of the squared improvements over all internal nodes of the tree for which x was chosen as
the partitioning variable; see Breiman, Friedman, Olshen, and Stone (1984) for details. This
idea also extends to ensembles of decision trees, such as RFs and GBMs. In ensembles, the im-
provement score for each predictor is averaged across all the trees in the ensemble. Fortunately,
due to the stabilizing effect of averaging, the improvement-based variable importance metric is
often more reliable in large ensembles (see James, Witten, Hastie, and Tibshirani (2013), Pg.
368). RFs offer an additional method for computing variable importance scores. The idea is to
use the leftover out-of-bag (OOB) data to construct validation-set errors for each tree. Then,
each predictor is randomly shuffled in the OOB data and the error is computed again. The
idea is that if variable x is important, then the validation error will go up when x is perturbed
in the OOB data. The difference in the two errors is recorded for the OOB data then averaged
across all trees in the forest.

In multiple linear regression, the absolute value of the t-statistic is commonly used as a
measure of variable importance. The same idea also extends to generalized linear models
(GLMs). Multivariate adaptive regression splines (MARS), which were introduced in Friedman
(1991), is an automatic regression technique which can be seen as a generalization of multiple
linear regression and generalized linear models. In the MARS algorithm, the contribution (or
variable importance score) for each predictor is determined using a generalized cross-validation
(GCV) statistic.

For NNs, two popular methods for constructing variable importance scores are the Garson
algorithm (Garson (1991)), later modified by Goh (1995), and the Olden algorithm (Olden et al.
(2004)). For both algorithms, the basis of these importance scores is the network’s connection
weights. The Garson algorithm determines variable importance by identifying all weighted
connections between the nodes of interest. Olden’s algorithm, on the other hand, uses the
product of the raw connection weights between each input and output neuron and sums the
product across all hidden neurons. This has been shown to outperform the Garson method in
various simulations. For DNNs, a similar method due to Gedeon (1997) considers the weights
connecting the input features to the first two hidden layers (for simplicity and speed); but this
method can be slow for large networks.

A.5 Filter-based approaches to variable importance

Filter-based approaches, which are described in Kuhn and Johnson (2013), do not make use of
the fitted model to measure variable importance. They also do not take into account the other
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predictors in the model. For regression problems, a popular approach to measuring the variable
importance of a numeric predictor x is to first fit a flexible nonparametric model between x
and the target Y ; for example, the locally-weighted polynomial regression (LOWESS) method
developed by Cleveland (1979). From this fit, a pseudo-R2 measure can be obtained from the
resulting residuals and used as a measure of variable importance. For categorical predictors, a
different method based on standard statistical tests (e.g., t-tests and ANOVAs) is employed;
see Kuhn and Johnson (2013) for details.
For classification problems, an area under the ROC curve (AUC) statistic can be used to
quantify predictor importance. The AUC statistic is computed by using the predictor x as
input to the ROC curve. If x can reasonably separate the classes of Y , that is a clear indicator
that x is an important predictor (in terms of class separation) and this is captured in the
corresponding AUC statistic. For problems with more than two classes, extensions of the ROC
curve or a one-vs-all approach can be used.

A.6 Partial dependence plots

Harrison and Rubinfeld (1978) analyzed a data set containing suburban Boston housing
data from the 1970 census. They sought a housing value equation using an assortment of
features; see Table IV of Harrison and Rubinfeld (1978) for a description of each variable. The
usual regression assumptions, such as normality, linearity, and constant variance, were clearly
violated, but through an exhausting series of transformations, significance testing, and grid
searches, they were able to build a model which fit the data reasonably well (R2 = 0.81). Their
prediction equation is given in Equation (1). This equation makes interpreting the model easier.
For example, the average number of rooms per dwelling (RM) is included in the model as a
quadratic term with a positive coefficient. This means that there is a monotonic increasing
relationship between RM and the predicted median home value, but larger values of RM have
a greater impact.

To help understand the estimated functional relationship between each predictor and the
outcome of interest in a fitted model, we can construct PDPs. PDPs are particularly effective
at shelping to explain the output from ”black box” models, such as RFs and SVMs. Not only
do PDPs visually convey the relationship between low cardinality subsets of the feature set
(usually 1-3) and the response (while accounting for the average effect of the other predictors
in the model), they can also be used to rank and score the predictors in terms of their relative
influence on the predicted outcome, as will be demonstrated in this paper.

Let x = {x1, x2, ..., xp} represent the predictors in a model whose prediction function is

f̂(x). If we partition x into an interest set, zs, and its complement, zc = x\zs, then the ”partial
dependence” of the response on zs is defined as:

fs(zs) = E[f̂(zs, zc)] =

∫
f̂(zs, zc)pc(zc)dzc (14)

where pc(zc) is the marginal probability density of zc : pc(zc) =
∫
p(x)dzs. The above

equation can be estimated from a set of training data by:

f̄s(zs) =
1

n

n∑
i=1

f̂(zs, zi,c) (15)
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where zi,c (i = 1, 2, ..., n) are the values of zc that occur in the training sample; that is, we
average out the effects of all the other predictors in the model.
Constructing a PDP in practice is rather straightforward. To simplify, let zs = x1 be the pre-
dictor variable of interest with unique values {x11, x12, ..., x1k}. The partial dependence of the
response on x1 can be constructed as follows:

Input: the unique predictor values x11, x12, ..., x1k;
Output: the estimated partial dependence values f̄1(x11), f̄1(x12), ..., f̄1(x1k).
for i ∈ 1, 2, ..., k do
(1) copy the training data and replace the original values of x1 with the constant x1i;
(2) compute the vector of predicted values from the modified copy of the training data;
(3) compute the average prediction to obtain f̄1(x1i).
end
The PDP for x1 is obtained by plotting the pairs {x1i, f̄1(x1i)} for i = 1, 2, ..., k.

Algorithm 1: A simple algorithm for constructing the partial dependence of the response
on a single predictor x1.

Algorithm 1 can be computationally expensive since it involves k passes over the training
records. Fortunately, it is embarrassingly parallel and computing partial dependence functions
for each predictor can be done rather quickly on a machine with a multi-core processor. For
large data sets, it may be worthwhile to reduce the grid size by using specific quantiles for each
predictor, rather than all the unique values. For example, the partial dependence function can
be approximated very quickly by using the deciles of the unique predictor values. The exception
is classification and regression trees based on single variable splits which can make use of the
efficient weighted tree traversal method described in ?.

While PDPs are an invaluable tool in understanding the relationships uncovered by complex
nonparametric models, they can be misleading in the presence of substantial interaction effects
Goldstein and Coco (2015). To overcome this issue, Goldstein et al. introduced the concept of
individual conditional expectation (ICE) curves. ICE curves display the estimated relationship
between the response and a predictor of interest for each observation; in other words, skipping
step 1 (c) in Algorithm 1. Consequently, the PDP for a predictor of interest can be obtained by
averaging the corresponding ICE curves across all observations. Although ICE curves provide
a refinement over traditional PDPs in the presence of substantial interaction effects, in Section
3.2, we show how to use partial dependence functions to evaluate the strength of potential
interaction effects.

A.7 Interpretation and Feature Relevance

Borrower or obligor behavior is a high-dimensional function of the loan, tranche, deal, index
and macroeconomic co-variates over time. We want to investigate how different covariates, both
macroeconomic and idiosyncratic, interact to cause a state transition. We measure second order
interaction between variables, however, this cross-derivative can, of course, be generalized to
higher order interactions. We implement this using LIME (Local Interpretable Model Agnostic
Explanations).

Explainable Artificial Intelligence (XAI) is now a legal mandate in regulated sectors such
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as banking, insurance, etc. XAI is critical in ensuring that there are no age, gender, race,
disabilities or sexual orientation biases in decisions dictated by regulations such as the European
General Data Protection Regulation (GDPR) and the Fair Credit Report Act (FCRA).

SHapley Additive exPlanations (SHAP) criterion is a game theory concept : it is a method
for assigning payouts to players in a coalition/co-operative game proportional to their marginal
contribution towards the total payout in a fair way based on the Llyod Shapley’s axioms.

1. Symmetry: Agents i and j are interchangable relative to the payoff function if they
always contribute the same amount to every coalition of the other agents.

2. Dummy Players: Agent i is a dummy player if she/she contributes nothing to any
coalition. Dummy players should receive no payoff.

3. Additivity: For the same agent i, we can divide the payoff of two games separately as if
both games are played simultaneously.

Shapleyvalueij for feature j and instance i is how much the feature value xij contributed
towards prediction for instance i compared to baseline prediction for dataset. The baseline
prediction is the median model output over training dataset. So, Shapley value is the average
marginal contribution of a feature value over all possible combinations of instances and it
identifies main drivers of default risk for each individual borrower. The idea can be related to
Variance Inflation Factor (VIF) used a in a regression context to rule out irrelevant features
from a set of of regression on individual regressors.

We use a unified framework for interpreting predictions, SHAP (SHapley Additive exPlana-
tions). SHAP Lundberg and Lee (2017) assigns each feature an importance value for a particular
prediction. Its novel components include: (1) the identification of a new class of additive feature
importance measures, and (2) theoretical results showing there is a unique solution in this class
with a set of desirable properties. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based on insights
from this unification, we present new methods that show improved computational performance
and/or better consistency with human intuition than previous approaches.

Figure 12: Shapley Value Interpretability

This method involves all feature subsets except a feature i, S ⊆ F \ {i}, where F is the
set of all features. Shapley Value of a feature is the marginal impact of including that feature.
Since, the effect of withholding a feature involves all possible subsets of other features, Shapley
Value is the weighted average:

φi =
∑

S⊆F\{i}

| S |!(| F | − | S | −1)!

| F |!
[fS∪i(xS∪i)− fS(xS)] (16)
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