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Abstract: We prove that local projections (LPs) and Vector Autoregressions
(VARs) estimate the same impulse responses. This nonparametric result only
requires unrestricted lag structures. We discuss several implications: (i) LP
and VAR estimators are not conceptually separate procedures; instead, they
belong to a spectrum of dimension reduction techniques with common estimand
but different bias-variance properties. (ii) VAR-based structural estimation can
equivalently be performed using LPs, and vice versa. (iii) Structural estimation
with an instrument (proxy) can be carried out by ordering the instrument first
in a recursive VAR, even under non-invertibility. (iv) Linear VARs are as robust
to non-linearities as linear LPs.
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1 Introduction

Modern dynamic macroeconomics studies the propagation of structural shocks (Frisch, 1933;
Ramey, 2016). Central to this impulse-propagation paradigm are impulse response functions
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– the dynamic response of a macro aggregate to a structural shock. Following Sims (1980),
Bernanke (1986), and Blanchard &Watson (1986), Structural Vector Autoregression (SVAR)
analysis remains the most popular empirical approach to impulse response estimation. Over
the past decade, however, starting with Jordà (2005), local projections (LPs) have become
an increasingly widespread alternative econometric approach.

How should we choose between SVAR and LP estimators of impulse responses? Unfor-
tunately, so far there exists little theoretical guidance as to which method is preferable in
practice. Conventional wisdom holds that SVARs are more efficient, while LPs are more
robust to model misspecification. Examples of such statements are found in Jordà (2005, p.
162), in the literature reviews of Ramey (2016, p. 83) and Nakamura & Steinsson (2018, pp.
80–81), and in the textbook treatment of Kilian & Lütkepohl (2017, ch. 12.8).1 Stock &
Watson (2018, p. 944), however, caution that these remarks are not based on formal analysis
and call for further research. It is also widely believed that LPs invariably require a measure
of a “shock,” so that SVAR estimation is the only way to implement more exotic struc-
tural identification schemes such as long-run or sign restrictions.2 Finally, when applied to
the same empirical question, LP- and VAR-based approaches sometimes give substantively
different results (Ramey, 2016). Existing simulation studies on their relative merits reach
conflicting conclusions and disagree on implementation details (Meier, 2005; Kilian & Kim,
2011; Brugnolini, 2018; Nakamura & Steinsson, 2018; Choi & Chudik, 2019).

The central result of this paper is that linear local projections and VARs in fact estimate
the exact same impulse responses in population. Specifically, any LP impulse response func-
tion can be obtained through an appropriately ordered recursive VAR, and any (possibly
non-recursive) VAR impulse response function can be obtained through a LP with appro-
priate control variables. This result is nonparametric, in that it essentially only requires the
data to be weakly stationary and the lag structures in the two specifications to be unre-
stricted.3 Intuitively, a VAR model with sufficiently large lag length captures all covariance
properties of the data. Hence, iterated VAR(∞) forecasts coincide with direct LP forecasts.
Since impulse responses are just forecasts, LP and VAR impulse response estimands coincide
in population. Furthermore, we prove that if only a fixed number p of lags are included in
the LP and VAR, then the two impulse response estimands still agree out to horizon p (but

1In the online postscript to her handbook chapter, Ramey corrects the claim and restates the relationship
between LP and VAR estimands following the findings of this paper.

2See the reviews by Ramey (2016) and Kilian & Lütkepohl (2017, ch. 12.8).
3Although linear LP and VAR estimators may be viewed as “parametric” procedures, we do not assume

that the data generating process can be summarized by any finite-dimensional parametric model.
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not further), again without imposing any parametric assumptions on the data generating
process. In summary, if VAR and LP results differ in population or in sample, it is due to
extraneous restrictions on the lag structure.

The nonparametric equivalence of VAR and LP estimands has several implications for
structural estimation in applied macroeconometrics.

First, LP and VAR estimators are not conceptually different methods; instead, they
belong to a spectrum of linear projection techniques that share the same estimand but differ
in their finite-sample bias-variance properties. Standard LPs effectively provide no dimension
reduction, while conventional low-order VARs extrapolate shock propagation from the first
few autocorrelations of the data. The relative mean-square error of the two methods – and
of intermediate dimension reduction techniques, such as shrinkage – necessarily depends
on assumptions about the data generating process (DGP). VAR estimators are optimal
if the true DGP is exactly a finite-order VAR, but this is rarely the case in theory or
practice. The formal equivalence of LP and VAR impulse response estimation to direct and
iterated forecasting, respectively, means that applied researchers can look to the existing
forecasting literature for guidance on how to choose between the menu of available estimators
(Schorfheide, 2005; Marcellino et al., 2006; Pesaran et al., 2011).

Second, structural estimation with VARs can equally well be carried out using LPs, and
vice versa. Structural identification – which is a population concept – is logically distinct from
the choice of finite-sample dimension reduction technique. In particular, we show concretely
how various popular “SVAR” identification schemes – including recursive, long-run, and
sign identification – can just as easily be implemented using local projection techniques.
Ultimately, our results show that LP-based structural estimation can succeed if and only if
SVAR estimation can succeed.

Third, valid structural estimation with an instrument (IV, also known as a proxy variable)
can be carried out by ordering the IV first in a recursive VAR à la Ramey (2011). This is
because the LP-IV estimand of Stock & Watson (2018) can equivalently be obtained from a
recursive (i.e., Cholesky) VAR that contains the IV. Importantly, the “internal instrument”
strategy of ordering the IV first in a VAR yields valid impulse response estimates even if the
shock of interest is non-invertible, unlike the well-known “external instrument” SVAR-IV
approach (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013).4 In particular, this

4In contemporaneous work, Noh (2018) also recommends including the IV as an internal instrument in a
VAR; our result offers additional insights by drawing connections to LP-IV and to the general equivalence
between LPs and VARs.
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result goes through even if the IV is contaminated with measurement error that is unrelated
to the shock of interest.

Fourth, in population, linear local projections are exactly as “robust to non-linearities”
in the DGP as VARs. We show that their common estimand may be formally interpreted as
a best linear approximation to the underlying, perhaps non-linear, data generating process.

In summary, in addition to clarifying misconceptions in the literature about the LP and
VAR estimands, our results allow applied researchers to separate the choice of identification
scheme from the choice of estimation technique. Researchers who prefer the intuitive regres-
sion interpretation and generally low bias of the LP impulse response estimator can apply our
methods for imposing “SVAR” identifying restrictions such as short-run, long-run, and sign
restrictions. Researchers who instead prefer the explicit multivariate model and generally
low variance of the VAR estimator can apply our results on how to use instruments/proxies
without requiring invertible shocks, as in LP-IV.

Literature. While the existing literature has pointed out connections between LPs and
VARs, our contribution is to formally establish a nonparametric equivalence result and derive
implications for estimation efficiency and structural identification. Jordà (2005) and Kilian
& Lütkepohl (2017, Ch. 12.8) show that, under the assumption of a finite-order VAR model,
VAR impulse responses can be estimated consistently through LPs. In this context, Kilian
& Lütkepohl also discuss the relative efficiency of the two estimation methods and mention
the literature on direct versus iterated forecasts. In contrast, our equivalence result is non-
parametric, and we further demonstrate how structural VAR orderings map into particular
choices of LP control variables, and vice versa.5 Moreover, to our knowledge, our results on
long-run/sign identification, LP-IV, and best linear approximations have no obvious parallels
in the preceding literature.6

In this paper we focus exclusively on identification and point estimation of impulse re-
sponses. Plagborg-Møller & Wolf (2019) provide identification results for variance/historical
decompositions when an instrument/proxy is available. We do not consider questions related
to inference, and instead refer to the discussions in Jordà (2005), Kilian & Lütkepohl (2017),
and Stock & Watson (2018).

5Jordà et al. (2019) informally discuss the connection between control variables and recursive SVARs.
6Kilian & Lütkepohl (2017, Ch. 12.8) present alternative arguments for why it is a mistake to assert that

finite-order LPs are generally more “robust to model misspecification” than finite-order VAR estimators.
They do not appeal to the nonparametric equivalence of the LP and VAR estimands, however.
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Outline. Section 2 presents our core result on the population equivalence of local projec-
tions and VARs. Finite-sample estimation is discussed in Section 3, while Section 4 traces
out implications for structural estimation. We illustrate our equivalence results with a prac-
tical application to IV-based identification of monetary policy shocks in Section 5. Section 6
concludes with several recommendations for empirical practice. Some proofs are relegated
to Appendix A.

2 Equivalence between local projections and VARs

This section presents our core result: Local projections and VARs estimate the same impulse
response functions in population. First we establish that local projections are equivalent
with recursively identified VARs when the lag structure is unrestricted. Then we extend the
argument to (i) non-recursive identification and (ii) finite lag orders. Finally, we illustrate
the results graphically. Our analysis in this section is “reduced form” in that it does not
assume any specific underlying structural model; we merely work with linear projections of
stationary time series. We will discuss implications for structural identification in Section 4.

2.1 Main result

Suppose the researcher observes data wt = (r′t, xt, yt, q′t)′, where rt and qt are, respectively,
nr × 1 and nq × 1 vectors of time series, while xt and yt are scalar time series. We are
interested in the dynamic response of yt after an impulse in xt. The vector time series rt and
qt (which may each be empty) will serve as control variables. The distinction between them
relates to whether they appear as contemporaneous controls or not, as will become clear in
equations (1) and (2) below.

For now, we only make the following standard nonparametric regularity assumption.7

Assumption 1. The data {wt} are covariance stationary and purely non-deterministic, with
an everywhere nonsingular spectral density matrix and absolutely summable Wold decompo-
sition coefficients. To simplify notation, we proceed as if {wt} were a (strictly stationary)
jointly Gaussian vector time series.

In particular, we assume nothing about the underlying causal structure of the economy,
as this section is concerned solely with properties of linear projections. The Gaussianity

7The restriction to non-singular spectral density matrices rules out over-differenced data. We conjecture
that this restriction could be relaxed using the techniques in Almuzara & Marcet (2017).
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assumption is made purely for notational simplicity, as this allows us to write conditional
expectations instead of linear projections. If we drop the Gaussianity assumption, all calcu-
lations below hold with projections in place of conditional expectations.8

We will show that, in population, the following two approaches estimate the same impulse
response function of yt with respect to an innovation in xt.

1. Local projection. Consider for each h = 0, 1, 2, . . . the linear projection

yt+h = µh + βhxt + γ′hrt +
∞∑
`=1

δ′h,`wt−` + ξh,t, (1)

where ξh,t is the projection residual, and µh, βh, γh, δh,1, δh,2, . . . the projection coefficients.
The LP impulse response function of yt with respect to xt is given by {βh}h≥0. Notice
that the projection (1) controls for the contemporaneous value of rt but not of qt.

2. VAR. Consider the multivariate linear “VAR(∞)” projection

wt = c+
∞∑
`=1

A`wt−` + ut, (2)

where ut ≡ wt−E(wt | {wτ}−∞<τ<t) is the projection residual, and c, A1, A2, . . . the pro-
jection coefficients. Let Σu ≡ E(utu′t), and define the Cholesky decomposition Σu = BB′,
where B is lower triangular with positive diagonal entries. Consider the corresponding
recursive SVAR representation

A(L)wt = c+Bηt,

where A(L) ≡ I −∑∞`=1A`L
` and ηt ≡ B−1ut. Notice that rt is ordered first in the VAR,

while qt is ordered last. Define the lag polynomial

∞∑
`=0

C`L
` = C(L) ≡ A(L)−1.

The VAR impulse response function of yt with respect to an innovation in xt is given by
{θh}h≥0, where

θh ≡ Cnr+2,•,hB•,nr+1,

8Throughout we write any linear projection on the span of infinitely many variables as an infinite sum.
This is justified under Assumption 1, since we can invert the Wold representation to obtain a VAR(∞)
representation.
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since xt and yt are the (nr + 1)-th and (nr + 2)-th elements in wt. The notation Ci,•,h,
say, means the i-th row of matrix Ch, while B•,j is the j-th column of matrix B.

Note that our definitions of the LP and VAR estimands include infinitely many lags of wt in
the relevant projections. We consider the case of finitely many lags in Section 2.3, while all
finite-sample considerations are relegated to Section 3. Note also that we take the use of the
control variables rt and qt as given in this section, as controls are common in applied work.
We will discuss structural justifications for the use of controls in Section 4.

Although LP and VAR approaches are often viewed as conceptually distinct in the liter-
ature, they in fact estimate the same population impulse response function.

Proposition 1. Under Assumption 1, the LP and VAR impulse response functions are
equal, up to a constant of proportionality: θh =

√
E(x̃2

t ) × βh for all h = 0, 1, 2, . . . , where
x̃t ≡ xt − E(xt | rt, {wτ}−∞<τ<t).

That is, any LP impulse response function can equivalently be obtained as an appropriately
ordered recursive VAR impulse response function. Conversely, any recursive VAR impulse
response function can be obtained through a LP with appropriate control variables. We
comment on non-recursive identification schemes below. The constant of proportionality
in the proposition depends on neither the response horizon h nor on the response variable
yt. The reason for the presence of this constant of proportionality is that the implicit LP
innovation x̃t, after controlling for the other right-hand side variables, does not have variance
1. If we scale the innovation x̃t to have variance 1, or if we consider relative impulse responses
θh/θ0 (as further discussed below), the LP and VAR impulse response functions coincide.

The intuition behind the result is that a VAR(p) model with p→∞ is sufficiently flexible
that it perfectly captures all covariance properties of the data. Thus, iterated forecasts based
on the VAR coincide perfectly with direct forecasts E[wt+h | wt, wt−1, . . . ]. Although the
intuition for the equivalence is simple, its implications do not appear to have been generally
appreciated in the literature, as discussed in Section 1.

Proof. The proof of the proposition relies only on least-squares projection algebra. First
consider the LP estimand. By the Frisch-Waugh theorem, we have that

βh = Cov(yt+h, x̃t)
E(x̃2

t )
. (3)

For the VAR estimand, note that C(L) = A(L)−1 collects the coefficient matrices in the
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Wold decomposition

wt = χ+ C(L)ut = χ+
∞∑
`=0

C`Bηt, χ ≡ C(1)c.

As a result, the VAR impulse responses equal

θh = Cnr+2,•,hB•,nr+1 = Cov(yt+h, ηx,t), (4)

where we partition ηt = (η′r,t, ηx,t, ηy,t, η′q,t)′ the same way as wt = (r′t, xt, yt, q′t)′. By ut = Bηt

and the properties of the Cholesky decomposition, we have9

ηx,t = 1√
E(ũ2

x,t)
× ũx,t, (5)

where we partition ut = (u′r,t, ux,t, uy,t, u′q,t)′ and define10

ũx,t ≡ ux,t − E(ux,t | ur,t) = x̃t. (6)

From (4), (5), and (6) we conclude that

θh = Cov(yt+h, x̃t)√
E(x̃2

t )
,

and the proposition now follows by comparing with (3).

In conclusion, LPs and VARs offer two equivalent ways of arriving at the same population
parameter (3), up to a scale factor that does not depend on the horizon h. Our argument
was nonparametric and did not assume the validity of a specific structural model.

2.2 Extension: Non-recursive specifications

Our equivalence result extends straightforwardly to the case of non-recursively identified
VARs. Above we restricted attention to recursive identification schemes, as the VAR directly

9B is lower triangular, so the (nr + 1)-th equation in the system Bηt = ut is Bnr+1,1:nr
ηr,t +

Bnr+1,nr+1ηx,t = ux,t, with obvious notation. Since ηx,t and ηr,t are uncorrelated, we find Bnr+1,nr+1ηx,t =
ux,t − E(ux,t | ηr,t) = ux,t − E(ux,t | ur,t) = ũx,t. Expression (5) then follows from E(η2

x,t) = 1.
10Observe that ux,t − x̃t = E(xt | rt, {wτ}−∞<τ<t)− E(xt | {wτ}−∞<τ<t) = E(ux,t | rt, {wτ}−∞<τ<t) =

E(ux,t | ur,t, {wτ}−∞<τ<t) = E(ux,t | ur,t).
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contains a measure of the impulse xt. In a generic structural VAR identification scheme, the
impulse is some – not necessarily recursive – rotation of reduced-form forecasting residuals.
Thus, let us continue to consider the VAR (2), but now we shall study the propagation of
some rotation of the reduced-form forecasting residuals,

η̄t ≡ b′ut, (7)

where b is a vector of the same dimension as wt. Under Assumption 1, we can follow the
same steps as in Section 2.1 to establish that the VAR-implied impulse response at horizon
h of yt with respect to the innovation η̄t equals – up to scale – the coefficient β̄h of the linear
projection

yt+h = µ̄h + β̄h(b′wt) +
∞∑
`=1

δ̄′h,`wt−` + ξ̄h,t, (8)

where the coefficients are least-squares projection coefficients and the last term is the pro-
jection residual. Thus, any recursive or non-recursive SVAR(∞) identification procedure is
equivalent with a local projection (8) on a particular linear combination b′wt of the variables
in the VAR (and their lags). For recursive orderings, this reduces to Proposition 1.

2.3 Extension: Finite lag length

Whereas our main equivalence result in Section 2.1 relied on infinite lag polynomials, we now
prove an equivalence result that holds when only finitely many lags are used. Specifically,
when p lags of the data are included in the VAR and as controls in the LP, the impulse
response estimands for the two methods agree out to horizon p, but generally not at higher
horizons. Importantly, this result is still entirely nonparametric, in the sense that we do not
impose that the true DGP is a finite-order VAR.

First, we define the finite-order LP and VAR estimands. We continue to impose the
nonparametric Assumption 1. Consider any lag length p and impulse response horizon h.

1. Local projection. The local projection impulse response estimand βh(p) is defined
as the coefficient on xt in a projection as in (1), except that the infinite sum is truncated
at lag p. Again, we interpret all coefficients and residuals as resulting from a least-
squares linear projection.

2. VAR. Consider a linear projection of the data vector wt onto p of its lags (and a
constant), i.e., the projection (2) except with the infinite sum truncated at lag p. Let
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A`(p), ` = 1, 2, . . . , p, and Σu(p) denote the corresponding projection coefficients and
residual variance. Define A(L; p) ≡ I −∑p

`=1A`(p) and the Cholesky decomposition
Σu(p) = B(p)B(p)′. Define also the inverse lag polynomial ∑∞`=0C`(p)L` = C(L; p) ≡
A(L; p)−1 consisting of the reduced-form impulse responses implied by A(L; p). Then
the VAR impulse response estimand at horizon h is defined as

θh(p) ≡ Cnr+2,•,h(p)B•,nr+1(p),

cf. the definition in Section 2.1 with p =∞.

Note that the VAR(p) model used to define the VAR estimand above is “misspecified,” in
the sense that the reduced-form residuals from the projection of wt on its first p lags are not
white noise in general.

We now state the equivalence result for finite p. The statement of the result is a simple
generalization of Proposition 1, which can be thought of as the case p =∞.

Proposition 2. Impose Assumption 1. Define x̃t(`) ≡ xt − E(xt | rt, {wτ}t−`≤τ<t) for all
` = 0, 1, 2, . . . . Let the nonnegative integers h, p satisfy h ≤ p. If x̃t(p) = x̃t(p − h), then
θh(p) =

√
E(x̃t(p)2)× βh(p).

Proof. Please see Appendix A.1.

Thus, under the conditions of the proposition, the population LP and VAR impulse response
estimands agree at all horizons h ≤ p, although generally not at horizons h > p. This finding
would not be surprising if the true DGP were assumed to be a finite-order VAR (as in Jordà,
2005, and Kilian & Lütkepohl, 2017, Ch. 12.8), but we allow for general covariance stationary
DGPs. The reason why the result still goes through is that a VAR(p) obtained through least-
squares projections perfectly captures the autocovariances of the data out to lag p (but not
further), and these are precisely what determine the LP estimand.11

Proposition 2 assumes x̃t(p) = x̃t(p − h) to obtain an exact result, but the conclusion
is likely to hold qualitatively under more general conditions. If xt is a direct measure of
a “shock” and thus uncorrelated with all past data, then x̃t(`) = xt for all ` ≥ 0, so the
conclusion of the proposition holds exactly. More generally, the LP estimand projects yt+h
onto x̃t(p) (and controls); thus, the projection depends on the first p+ h autocovariances of

11Baek & Lee (2019) prove a similar result for the related but distinct setting of single-equation Autore-
gressive Distributed Lag models with a white noise exogenous regressor.
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the data. The estimated VAR(p) generally does not precisely capture the autocovariances
of the data at lags p+ 1, . . . , p+ h, and so the LP and VAR potentially project on different
objects. However, at short horizons h� p, it will usually be the case in empirically relevant
DGPs that x̃t(p) ≈ x̃t(p − h), since it is typically only the first few lags of the data that is
useful for forecasting xt. In this case, the conclusion of Proposition 2 will hold approximately.
We provide an illustration in Section 2.4.

In conclusion, even if we use “too short” a lag length p, the LP and VAR impulse response
estimands only disagree at horizons longer than p. This is a comforting fact in applications
where the main questions of interest revolve around short-horizon impulse responses.

2.4 Graphical illustration

We finish the section by illustrating graphically the previous theoretical results. We do so
in the context of a particular data generating process: the structural macro model of Smets
& Wouters (2007). We abstract from sampling uncertainty and throughout assume that the
econometrician actually observes an infinite amount of data.12 Since this section is merely
intended to illustrate the properties of different projections, we do not comment on the
relation of the projection estimands to true structural model-implied impulse responses. We
formally discuss structural identification in Section 4.

The left panel of Figure 1 shows LP and VAR impulse response estimands of the response
of output to a government spending innovation. We assume the model’s government spending
innovation is directly observed by the econometrician, who additionally controls for lags of
output and government spending. This experiment is therefore similar in spirit to that of
Ramey (2011). As ensured by Proposition 1, the LP(∞) and VAR(∞) estimands – i.e., with
infinitely many lags as controls – agree at all horizons. Since by assumption the “impulse”
variable xt is a direct measure of the government spending innovation, we have x̃t(`) = xt

for all ` ≥ 0. Thus, any LP(p) estimand for finite p also agrees with the LP(∞) limit at all
horizons. Finally, we observe that the impulse responses implied by a VAR(4) exactly agree
with the true population projections up until horizon h = 4, as predicted by Proposition 2.

The right panel of Figure 1 shows LP and VAR impulse response estimands for the re-
sponse of output to an innovation in the nominal interest rate. Here the model’s innovation
is not directly observed by the econometrician, only the interest rate. The LP specifications

12We use the Dynare replication of Smets & Wouters (2007) kindly provided by Johannes Pfeifer. The code
is available at: https://sites.google.com/site/pfeiferecon/dynare. We truncate the model-implied
vector moving average representation at a large horizon (H = 350), and then invert to obtain a VAR(∞).
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Illustration: Population equivalence of VAR and LP estimands
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Figure 1: LP and VAR impulse response estimands in the structural model of Smets & Wouters
(2007). Left panel: response of output to a government spending innovation. Right panel: response
of output to an interest rate innovation. The horizontal line marks the horizon p after which the
finite-lag-length LP(p) and VAR(p) estimands diverge.

control for the contemporaneous value of output and inflation as well as lags of output, infla-
tion, and the nominal interest rate; as discussed, this set of control variables is equivalent to
ordering the interest rate last in the VAR. Thus, the experiment emulates the familiar mon-
etary policy shock identification analysis of Christiano et al. (2005), although we, at least for
the purposes of this section, interpret the projections purely in a reduced-form way. Again,
the LP(∞) and VAR(∞) estimands agree at all horizons. Now, however, the “impulse” x̃t(p)
upon which the different methods project is different. Hence, LP(p) and VAR(p) estimands
differ from each other, as well as from the population limit LP(∞)/VAR(∞) estimands. For-
mally, Proposition 2 only assures that the estimated impact impulse responses of LP(p) and
VAR(p) agree exactly. Nevertheless, and consistent with the intuition offered in Section 2.3,
all impulse response estimands are nearly identical until the truncation horizon p = 4.

3 Efficient estimation of impulse responses

This section discusses our equivalence result in the context of finite-sample estimation of
impulse responses. We first provide a sample analogue of our population equivalence result
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when the lag length is large. Then we discuss the bias-variance trade-off associated with
estimation of impulse response functions. While we maintain a reduced-form perspective in
this section, in Section 4 we will apply the insights to structural estimators.

3.1 Sample equivalence

In addition to being identical conceptually and in population, we show in the Online Appendix
that local projection and VAR impulse response estimators are nearly identical in sample
when large lag lengths are used in the regression specifications. Formally, let β̂h(p) and
θ̂h(p) denote the least-squares estimators of the LP and VAR specifications (1)–(2) if we
include p lags of the data in the VAR and on the right-hand side of the local projection.
Under standard nonparametric regularity conditions, the sample analogue of the population
equivalence result in Section 2.1 holds: There exists a constant of proportionality κ̂ such
that, at any fixed horizon h, the distance |θ̂h(p) − κ̂β̂h(p)| tends to zero in probability
asymptotically, provided that the lag length p tends to infinity with the sample size at an
appropriate rate. We relegate the details of this result to the Online Appendix.13

3.2 Bias-variance trade-off

Empirically relevant short sample sizes force researchers to economize on the number of
lags, and the relative accuracy of LP and VAR estimators with a small/moderate number of
lags invariably depends on the underlying data generating process (DGP). This is perfectly
analogous to the choice between “direct” and “iterated” predictions in multi-step forecasting
(Marcellino et al., 2006; Pesaran et al., 2011). Schorfheide (2005) proves that the mean-
square error ranking of LP (i.e., direct) and VAR (i.e., iterated) forecasts depends on how
large in magnitude the partial autocorrelations of the DGP are at lags longer than the lag
length used for estimation.14 Hence, although Meier (2005), Kilian & Kim (2011), and
Choi & Chudik (2019) exhibit simulation evidence that VAR estimators (or other iterated
estimators) outperform the LP estimator, this conclusion must necessarily depend on the
choice of DGP. Indeed, Brugnolini (2018) and Nakamura & Steinsson (2018) exhibit DGPs
where the LP estimator instead outperforms VARs.

The forecasting literature has generally found that LP (direct) methods tend to have
relatively low bias, whereas VAR (iterated) methods have relatively low variance. The

13The appendix is available at: http://scholar.princeton.edu/mikkelpm/lp_var
14See also Chevillon (2007), McElroy (2015), and references therein.
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trade-off is most relevant at longer response horizons, as shown by our finite-p equivalence
result in Proposition 2. The VAR(p) model extrapolates long-horizon impulse responses from
the autocovariances at lags 0, 1, . . . , p, and thus may potentially be substantially biased if
p is not very large. For the same reason, though, VAR(p) estimators tend to deliver much
smaller estimation variance than LPs at long horizons. Hansen (2010, 2016), Pesaran et al.
(2011), and Kilian & Lütkepohl (2017, ch. 2.6) discuss methods for choosing the lag length
p for VAR and LP estimators in a way that is informed by the bias-variance trade-off.

More generally, effective finite-sample estimation of impulse responses involves an un-
avoidable bias-variance trade-off, and many dimension reduction or penalization approaches
may be sensible depending on the application. Bayesian VARs reduce effective dimensional-
ity by imposing priors on longer-lag coefficients, e.g., through a Minnesota prior (Giannone
et al., 2015); model averaging across restricted and unrestricted VARs has similar effects
(Hansen, 2016). Dimension reduction can also be achieved through penalized local projection
(Plagborg-Møller, 2016, Ch. 3; Barnichon & Brownlees, 2019) or by shrinking unrestricted
local projections towards low-order VAR estimates (Miranda-Agrippino & Ricco, 2018b). Al-
ternatively, impulse response estimation could be based on plugging a shrinkage/regularized
autocovariance function estimate into the explicit formula (3) for the LP/VAR estimand.

We believe that the different estimation methods in the literature are best viewed as
sharing the same large-sample estimand but lying along a spectrum of small-sample bias-
variance choices. Low-order VAR(p) models only have a conceptually special status insofar
as we think the finite-p assumption is literally true, which is typically not the case. In
general, the relative accuracy of the methods depends on smoothness/sparsity properties
of the autocovariance function of the data. From the point of view of point estimation,
no single method dominates for all empirically relevant data DGPs. In principle, standard
VAR model diagnostic checks or pseudo-out-of-sample forecast performance can be used
as a means to select between impulse response estimators. However, we recommend that
researchers compare results from different methods, since any disparities may indicate that
further thought about the DGP and/or the shrinkage procedure is warranted.

To summarize: Guided by the previously cited forecasting literature, the choice of es-
timation method should depend on (i) the researcher’s preferences over bias and variance
and on (ii) features of the DGP. In contrast, in the next section we argue that the choice of
structural identification scheme should not determine the choice between LPs and VARs (or
other dimension reduction techniques).
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4 Structural identification of impulse responses

We now show that our result on the equivalence of LP and VAR impulse response functions
has important implications for structural identification. We have seen that LP and VAR
methods only differ to the extent that they represent different approaches to finite-sample
dimensionality reduction. The problem of structural identification is a population concept
and is thus logically distinct from that of dimensionality reduction. In this section we apply
our equivalence result to popular SVAR and local projection identification schemes – includ-
ing short-run restrictions, long-run restrictions, sign restrictions, and external instruments –
and we discuss how to think about non-linear models.

4.1 Structural model

To discuss structural identification, we now impose a linear but otherwise general semipara-
metric Structural Vector Moving Average (SVMA) model. This model does not restrict
the linear transmission mechanism of shocks to observed variables (we address non-linear
models in Section 4.4). SVMA models have been analyzed by Stock & Watson (2018),
Plagborg-Møller & Wolf (2019), and many others. The class of SVMA models encompasses
all discrete-time, linearized DSGE models as well as all stationary SVAR models.

Assumption 2. The data {wt} are driven by an nε-dimensional vector εt = (ε1,t, . . . , εnε,t)′

of exogenous structural shocks,

wt = µ+ Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (9)

where µ ∈ Rnw×1, Θ` ∈ Rnw×nε, and L is the lag operator. {Θ`}` is assumed to be absolutely
summable, and Θ(x) has full row rank for all complex scalars x on the unit circle. For
notational simplicity, we further assume normality of the shocks:

εt
i.i.d.∼ N(0, Inε). (10)

Under these assumptions wt is a nonsingular, strictly stationary jointly Gaussian time series,
consistent with Assumption 1 in Section 2. The (i, j) element Θi,j,` of the nw × nε moving
average coefficient matrix Θ` is the impulse response of variable i to shock j at horizon `.

The researcher is interested in the propagation of the structural shock ε1,t to the observed
macro aggregate yt. Since yt is the (nr + 2)-th element in wt, the parameters of interest
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are Θnr+2,1,h, h = 0, 1, 2, . . . . In line with applied work, we also consider relative impulse
responses Θnr+2,1,h/Θnr+1,1,0. This may be interpreted as the response in yt+h caused by a
shock ε1,t of a magnitude that raises xt by one unit on impact.

4.2 Implementing “SVAR” identification using LPs

In this subsection we show that LP methods are as applicable as VAR methods when im-
plementing common identification schemes. Our main result in Section 2.1 implies that
LP-based causal estimation can succeed if and only if SVAR-based estimation can succeed.
We will exhibit several concrete and easily implementable examples of this equivalence.

Identification under invertibility. Standard SVAR analysis assumes (partial) in-
vertibility – that is, the ability to recover the structural shock of interest, ε1,t, as a function
of only current and past macro aggregates:

ε1,t ∈ span ({wτ}−∞<τ≤t) . (11)

A given SVAR identification scheme then identifies as the candidate structural shock a
particular linear combination of the Wold forecast errors:

ε̃1,t ≡ b′ut, (12)

where the chosen identification scheme gives the vector b as a function of the reduced-form
VAR parameters (A(L),Σu), or equivalently the Wold decomposition parameters (C(L),Σu).
Under invertibility, there must exist a vector b such that ε̃1,t = ε1,t, so SVAR identification
can in principle succeed (Fernández-Villaverde et al., 2007; Wolf, 2019).

We now illustrate through three examples that common SVAR identification schemes are
equally as simple to implement using LP methods. We first consider a standard recursive
scheme covered by our benchmark analysis in Section 2.1. The second and third examples
involve long-run and sign restrictions and require the general equivalence result of Section 2.2.

Example 1 (Recursive identification). Christiano et al. (2005) identify monetary policy
shocks through a recursive ordering. They assume that their observed data {wt} follow
an invertible SVMA model, i.e. the condition (11) holds for all shocks in the system (9).
They then additionally impose a temporal ordering on the set of variables wt: Output,
consumption, investment, wages, productivity, and the price deflator do not respond within
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the period to changes in the policy rate (Federal Funds Rate), which itself in turn does
not react within the period to changes in profits and money growth. In the notation of
Section 2.1, the assumed ordering corresponds to the Federal Funds Rate as the impulse
variable xt, all aggregates ordered before the Federal Funds Rate as the controls rt, and
all other variables collected in the vector qt. Christiano et al. implement their structural
analysis through the recursive VAR (2). By our main result, they could have equivalently
estimated the regression (1) and collected the regression coefficients {βh}h≥0. The population
estimand would have been the same, but in finite samples the mean-square error ranking of
the two estimators is ambiguous, as discussed in Section 3.

Example 2 (Long-run identification). Blanchard & Quah (1989) identify the effects of
demand and supply shocks using long-run restrictions in a bivariate system. Let gdpt and
unr t denote log real GDP (in levels) and the unemployment rate, respectively. Then ∆gdpt ≡
gdpt−gdpt−1 is log GDP growth. Blanchard & Quah impose that wt ≡ (∆gdpt, unr t)′ follows
the SVMA model in Assumption 2 with nε = 2 shocks, where the first shock is a supply
shock, the second shock a demand shock, and both shocks are invertible, cf. (11). They then
additionally impose the identifying restriction that the long-run effect of the demand shock
on the level of output is zero, i.e., ∑∞`=0 Θ1,2,` = 0.

While Blanchard & Quah impose their long-run restriction on a SVAR model to estimate
impulse responses, the extended equivalence result in Section 2.2 implies that the same
restriction can be equivalently implemented using an LP approach. To see how, consider,
for a large horizon H, the “long difference” projection

gdpt+H − gdpt−1 = µ̃H + β̃′Hwt +
∞∑
`=1

δ̃′H,`wt−` + ξ̃H,t. (13)

Intuitively, this projection uncovers the linear combination of the data that best explains
long-run movements in GDP. By assumption, such explanatory power can only come from
the supply shock. Thus, to estimate impulse responses with respect to the supply shock, we
can run the local projection (8) with b = β̃H and with yt given by the response variable of
interest (either ∆gdpt or unr t). Indeed, we show formally in Appendix A.2 that, as H →∞,
this procedure correctly identifies the impulse responses Θi,1,h with respect to the supply
shock, up to a constant scale factor. In this way, relative impulse responses Θi,1,h/Θ1,1,0

are correctly identified.15 To estimate relative impulse responses Θi,2,h/Θ1,2,0 to the demand

15Absolute impulse responses can be identified by rescaling the identified shock so it has variance 1.
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shock, the researcher can choose any vector b̃ such that b̃′b = 0, and then implement the
local projection (8) with b̃ in lieu of b.

In finite samples, the mean-square error performance of the proposed procedure relative
to the conventional SVAR(p) approach of Blanchard & Quah (1989) will depend on the
tuning parameters H and p, and on whether the low-frequency properties of the data are well
approximated by a low-order VAR model.16 For researchers who prioritize bias over variance,
the LP approach to long-run restrictions has the advantage that it does not extrapolate long-
run impulse responses from short-run autocorrelations, as a VAR does.

Example 3 (Sign identification). Uhlig (2005) set-identifies the effects of monetary policy
shocks by sign-restricting impulse responses. For concreteness, suppose we are interested in
the impulse response of yt (say, real GDP growth) to a monetary shock at horizon h. As
before, assume that the full set of observed data {wt} follows an SVMA system (9) where
all shocks are invertible. As a very simple example of sign restrictions, we may impose the
identifying restriction that the scalar variable rt (say, the nominal interest rate) responds
positively to a monetary shock at all horizons s = 0, 1, . . . , H̄.

The traditional SVAR approach to sign identification proceeds as follows. By invertibility,
the monetary shock ε1,t is related to the Wold forecast errors ut through ε1,t = ν ′ut, where
ν ∈ Rnw is an unknown vector. If we knew ν, the structural impulse responses of any
variable wi,t to ε1,t could be obtained as the linear combination ν of the reduced-form impulse
responses of wi,t from a VAR in wt. To impose the sign restrictions, we search over all possible
vectors ν such that (i) the rt impulse responses are positive at all horizons s = 0, 1, . . . , H̄
and (ii) the impact rt impulse response is normalized to 1 (other normalizations are also
possible). Once we have determined the set of possible ν’s, we can then use the VAR to
compute the corresponding set of possible impulse responses of yt with respect to ν ′ut.

By the logic in Section 2.2, we can alternatively impose sign restrictions using an LP
approach. We simply estimate the reduced-form impulse responses using LPs instead of a
VAR. Consider the coefficient vector β̌h obtained from the projection

yt+h = µ̌h + β̌′hwt +
∞∑
`=1

δ̌′h,`wt−` + ξ̌h,t.

The above LP yields the reduced-form impulse responses β̌h of yt to the Wold forecast errors

16Christiano et al. (2006) and Mertens (2012) make the related point that SVAR-based long-run identifi-
cation need not rely on the VAR-implied long-run variance matrix. Alternative nonparametric estimators of
the latter may have attractive bias-variance properties, depending on the true DGP.
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ut. Exactly as in the VAR approach, we now seek the linear combination ν ′β̌h that equals
the structural impulse response to the monetary shock ε1,t = ν ′ut. To find the set of ν’s
consistent with the sign restrictions, the natural analogue of the VAR approach is as follows.
For each horizon s = 0, 1, . . . , H̄, store the coefficient vector β̈s from the projection

rt+s = µ̈s + β̈′swt +
∞∑
`=1

δ̈′s,`wt−` + ξ̈s,t.

The coefficients β̈s measure the reduced-form impulse responses of rt to ut, so sign restrictions
on the structural impulse responses of rt amount to linear inequality restrictions on these
coefficients. Consequently, the largest possible response of yt+h to a monetary shock that
raises rt by one unit on impact can be obtained as the solution to the linear program17

sup
ν∈Rnw

ν ′β̌h subject to β̈′0ν = 1,

β̈′sν ≥ 0, s = 1, . . . , H̄.

To compute the smallest possible impulse response, replace the supremum with an infimum.18

In population, this LP-based procedure recovers exactly the same identified set as analogous
sign restrictions in an SVAR. It is straight-forward to implement more complicated identifi-
cation schemes by adding additional equality or inequality constraints of the above type.

These three examples demonstrate that invertibility-based identification need not be
thought of as “SVAR identification,” contrary to standard practice in textbooks and parts
of the literature. As a matter of identification (i.e., in population), the two methods succeed
or fail together. Ideally, researchers ought to decide on the identification scheme separately
from how they decide on the finite-sample dimension reduction technique. The former choice
should be based on economic theory. The latter choice should be based on the researcher’s
preferences over bias and variance as well as on features of the DGP, as discussed in Section 3.

Beyond invertibility. If the invertibility assumption (11) is violated, then identifi-
cation strategies that erroneously assume invertibility – independent of whether they are

17To consider impulse responses to a one-standard-deviation monetary shock, replace the equality con-
straint in the linear program by the constraint ν′Var(ut)−1ν = 1. The resulting linear-quadratic program
with inequality constraints is similar to those in Gafarov et al. (2018) and Giacomini & Kitagawa (2018).

18We focus on computing the bounds of the identified set. An alternative approach is to sample from the
identified set, as is commonly done in the Bayesian SVAR literature (Rubio-Ramírez et al., 2010).
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implemented using VARs, LPs, or any other dimensionality reduction technique – will not
measure the true impulse responses.19 Instead, these methods will measure the impulse re-
sponses to a white noise disturbance that is a linear combination of current and lagged true
structural shocks:

ε̃1,t = ϑ(L)εt. (14)

The properties of the lag polynomial ϑ(L) are characterized in detail in Fernández-Villaverde
et al. (2007) and Wolf (2019). Combining (9) and (14), we see that, in general, both LP
and VAR impulse response estimands are linear combinations of contemporaneous and lagged
true impulse responses. Thus, projection on a given identified impulse ε̃1,t correctly identifies
impulse response functions (up to scale) if and only if ε̃1,t affects the response variable yt only
through the contemporaneous true structural shock ε1,t. Trivially, this is the case if ε̃1,t is a
function only of ε1,t (the invertible case); less obviously, the same is also true if ε̃1,t is only
contaminated by shocks that do not directly affect the response variable yt.20 Instrumental
variable identification, discussed next, is the leading example of this second case.

4.3 Identification and estimation with instruments

Instruments (also known as proxy variables) are popular in semi-structural analysis. We here
use our main result in Section 2 to show that the influential Local Projection Instrumental
Variable estimation procedure is equivalent to estimating a VAR with the instrument ordered
first. This is true irrespective of the underlying structural model.

An instrumental variable (IV) is defined as an observed variable zt that is contempora-
neously correlated only with the shock of interest ε1,t, but not with other shocks that affect
the macro aggregate yt of interest (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn,
2013).21 More precisely, given Assumption 2, the IV exclusion restrictions are that

Cov(zt, εj,s | {zτ , wτ}−∞<τ<t) 6= 0 if and only if both j = 1 and t = s. (15)

19Several recent papers have demonstrated how to perform valid semi-structural identification without
assuming invertibility, cf. the references in Plagborg-Møller & Wolf (2019). Often such methods rely on LP
or VAR techniques to compute relevant linear projections, without interpreting the VAR disturbances (i.e.,
Wold innovations) as linear combinations of the contemporaneous true shocks.

20In particular, this means that neither invertibility nor recoverability (as defined in Plagborg-Møller &
Wolf, 2019) are necessary for successful semi-structural inference on impulse response functions.

21We focus on the case of a single IV. If multiple IVs for the same shock are available, Plagborg-Møller &
Wolf (2019) show that (i) the model is testable, and (ii) all the identifying power of the IVs is preserved by
collapsing them to a certain (single) linear combination.
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Stock & Watson (2018, p. 926) refer to this assumption as “LP-IV⊥,” and it is routinely
made in theoretical and applied work, as reviewed by Ramey (2016) and Stock & Watson
(2018). The assumption requires that, once we control for all lagged data, the instrument is
not contaminated by other structural shocks or by lags of the shock of interest.

Without loss of generality, we can use projection notation to phrase the IV exclusion
restrictions (15) as follows.

Assumption 3.

zt = cz +
∞∑
`=1

(Ψ`zt−` + Λ`wt−`) + αε1,t + vt, (16)

where α 6= 0, cz,Ψ` ∈ R, Λ` ∈ R1×nw , vt i.i.d.∼ N(0, σ2
v), and vt is independent of εt at all

leads and lags. The lag polynomial 1 −∑∞`=1 Ψ`L
` is assumed to have all roots outside the

unit circle, and {Λ`}` is absolutely summable.

Crucially, the assumption allows the IV to be contaminated by the independent measurement
error vt. In some applications, we may know by construction of the IV that the lag coefficients
Ψ` and Λ` are all zero (so zt satisfies assumption “LP-IV” of Stock & Watson, 2018, p. 924,
without controls); obviously, such additional information will not present any difficulties for
any of the arguments that follow.

The Local Projection Instrumental Variable (LP-IV) approach estimates the impulse
responses to the first shock using a two-stage least squares version of LP. Loosely, Mertens
(2015), Jordà et al. (2015, 2019), Leduc & Wilson (2017), Ramey & Zubairy (2018), and
Stock & Watson (2018) propose to estimate the LP equation (1) using zt as an IV for xt.
To describe the two-stage least-squares estimand in detail, define Wt ≡ (zt, w′t)′ and consider
the “reduced-form” IV projection

yt+h = µRF ,h + βRF ,hzt +
∞∑
`=1

δ′RF ,h,`Wt−` + ξRF ,h,t (17)

for any h ≥ 0. Consider also the “first-stage” IV projection22

xt = µFS + βFSzt +
∞∑
`=1

δ′FS ,`Wt−` + ξFS ,t. (18)

Notice that the first stage does not depend on the horizon h. As in standard cross-sectional
two-stage least-squares estimation, the LP-IV estimand is then given by the ratio βLPIV ,h ≡

22As always, the coefficients and residuals in (17)–(18) should be interpreted as linear projections.
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βRF ,h/βFS of reduced-form to first-stage coefficients (e.g. Angrist & Pischke, 2009, p. 122).23

Stock & Watson (2018) show that, under Assumptions 2 and 3, the LP-IV estimand
βLPIV ,h correctly identifies the relative impulse response Θnr+2,1,h/Θnr+1,1,0. Importantly,
this holds whether or not the shock of interest ε1,t is invertible in the sense of equation (11).

We now use our main result from Section 2.1 to show that the LP-IV impulse responses
can equivalently be estimated from a recursive VAR that orders the IV first. As in Section 2,
this result is nonparametric and assumes nothing about the underlying structural model or
about the IV zt.

Corollary 1. Let Assumption 1 hold for the expanded data vector Wt ≡ (zt, w′t)′ in place of
wt. Assume also that βFS 6= 0, cf. (18). Consider a recursively ordered SVAR(∞) in the
variables (zt, w′t)′, where the instrument is ordered first (the ordering of the other variables
does not matter). Let θ̃y,h be the SVAR-implied impulse response at horizon h of yt with
respect to the first shock. Let θ̃x,0 be the SVAR-implied impact impulse response of xt with
respect to the first shock.

Then θ̃y,h/θ̃x,0 = βLPIV ,h.

Proof. Let z̃t ≡ αε1,t + vt and a ≡
√
E(z̃2

t ) =
√
α2 + σ2

v . Proposition 1 states that θ̃y,h =
a× βRF ,h for all h, and θ̃x,0 = a× βFS . The claim follows.

This nonparametric result implies that, given the structural Assumptions 2 and 3, valid
identification of relative structural impulse responses can equivalently be achieved through
LP-IV or through an “internal instrument” recursive SVAR with the IV ordered first.24

Importantly, under Assumptions 2 and 3, these equivalent estimation strategies are valid
even when the shock of interest ε1,t is not invertible (Stock & Watson, 2018). Intuitively,
although adding the IV zt to the VAR does not render the shock ε1,t invertible, the only
reason that the shock may be non-invertible with respect to the expanded information set
{zτ , wτ}−∞<τ≤t is the presence of the measurement error vt in the IV equation (16).25 But this
independent measurement error merely leads to attenuation bias in the estimated impulse

23In the over-identified case with multiple IVs, the IV estimand can no longer be written as this simple
ratio; we focus on a single IV as in most of the applied literature.

24Plagborg-Møller & Wolf (2019) show that point identification of absolute impulse responses – and thus
variance decompositions – can be achieved under a further recoverability assumption that is mathematically
and substantively weaker than assuming invertibility.

25Note that, even though Assumption 3 allows zt to be correlated with lags of wt, non-invertibility of ε1,t
is entirely consistent with Theorem 1 of Stock & Watson (2018). That theorem states that if the shock is
non-invertible, then it is possible to construct an example of an IV žt satisfying E(žtεj,t) = 0 for all j 6= 1
and E(žtεj,t−` | {wτ}τ<t) 6= 0 for some j and ` ≥ 1 (so žt does not satisfy Assumption 3).
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responses, and the bias (in percentage terms) is the same at all response horizons and for all
response variables. Thus, it does not contaminate estimation of relative impulse responses.

IV identification is therefore an example of a setting where SVAR analysis works even
though invertibility fails (including the partial invertibility notion of Forni et al., 2019, and
Miranda-Agrippino & Ricco, 2018a). The “internal instrument” recursive SVAR(∞) pro-
cedure estimates the right relative impulse responses despite the fact that no invertible
structural VAR model generally exists under our assumptions. Our result implies that it is
valid to include an externally identified shock in a SVAR even if the shock is measured with
(independent) error, as long as the noisily measured shock is ordered first.26

Unlike the non-invertibility-robust procedure of ordering the IV first in a VAR, the pop-
ular SVAR-IV (also known as proxy-SVAR) procedure (Stock, 2008; Stock & Watson, 2012;
Mertens & Ravn, 2013) is only valid under invertibility. This procedure uses an SVAR to
identify the shock of interest as

ε̃1,t ≡
1√

Var(z̃†t )
× z̃†t ,

where z̃†t is computed as a linear combination of the reduced-form residuals ut from a VAR
in wt alone (i.e., excluding the IV from the VAR):

z̃†t ≡ E(z̃t | ut) = E(z̃t | {wτ}−∞<τ≤t).

If Assumptions 2 and 3 and the invertibility condition (11) hold, then SVAR-IV is valid. In
fact, in this case SVAR-IV removes any attenuation bias, thus correctly identifying absolute
(not just relative) impulse responses.27 However, in the general non-invertible case, SVAR-
IV mis-identifies the shock as ε̃1,t 6= ε1,t.28 Plagborg-Møller & Wolf (2019, Appendix B.4)
characterize the bias of SVAR-IV under non-invertibility and show that the invertibility
assumption can be tested using the IV.

To summarize, the relative impulse responses obtained from the LP-IV procedure of Stock

26Romer & Romer (2004) and Barakchian & Crowe (2013) include an externally identified monetary shock
in a SVAR, but they order it last, which assumes additional exclusion restrictions. Kilian (2006), Ramey
(2011), Miranda-Agrippino (2017), and Jarociński & Karadi (2019), among others, mention the strategy of
ordering an IV first in a SVAR, but these papers do not consider the non-invertible case.

27Consistent with our analytical results, Carriero et al. (2015) observe in a calibrated simulation study that,
under invertibility, SVAR-IV correctly identifies absolute impulse response functions, while direct projections
on the IV suffer from attenuation bias.

28The VARX approach of Paul (2018) is equivalent with SVAR-IV under Assumption 1.
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& Watson (2018) are nonparametrically identical to the relative impulse responses from a
recursive SVAR with the IV ordered first (an “internal instrument” approach). Assuming an
SVMA model and the IV exclusion restrictions, these procedures correctly identify relative
structural impulse responses, irrespective of the invertibility of the shock of interest. This
allows researchers to exploit VAR estimation techniques – with their associated bias-variance
properties discussed in Section 3 – while relying on the same invertibility-robust identifying
restrictions as the popular two-stage least squares implementation of LP-IV. In contrast, the
SVAR-IV procedure of Stock & Watson (2012) and Mertens & Ravn (2013) (an “external
instrument” approach) requires invertibility.29

4.4 Estimands in non-linear models

Our main result in Section 2.1 implies that linear local projections are exactly as “robust to
non-linearities” as VAR methods, in population. We now show that the common LP/VAR
estimand can be given a mathematically well-defined “best linear approximation” interpre-
tation when the true underlying structural DGP is in fact non-linear.

Assume that the underlying structural DGP has the nonparametric causal structure

wt = g(εt, εt−1, εt−2, . . . ), (19)

where g(·) is any non-linear function that yields a well-defined covariance stationary process
{wt}, and {εt} is an nε-dimensional i.i.d. process with Cov(εt) = Inε . The number of
structural shocks εt may exceed the number of variables in wt.

We show formally in Appendix A.3 that we can represent the process (19) as the linear
Structural Vector Moving Average model

wt = µ∗ +
∞∑
`=0

Θ∗`εt−` +
∞∑
`=0

Ψ∗`ζt−`,

where ζt is an nw-dimensional white noise process that is uncorrelated at all leads and
lags with the structural shocks εt. The argument exploits the Wold decomposition of the
residual of wt after projecting on the structural shocks. Hence, the linear SVMA model (9)
in Assumption 2 should not be thought of as restrictive, provided we do not restrict the

29SVAR-IV does have one advantage over LP-IV (and thus also over the “internal instruments” VAR
approach): Provided the shock is invertible, SVAR-IV does not require zt to only be correlated with lagged
shocks through observed lagged variables as in Assumption 3, cf. Stock & Watson (2018, sec. 2.1).
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number of “shocks” relative to the number of variables.
The linear SVMA impulse responses Θ∗` corresponding to the structural shocks εt have a

“best linear approximation” interpretation. Specifically,

(Θ∗0,Θ∗1, . . . ) ∈ argmin
(Θ̃0,Θ̃1,... )

E
[(
g(εt, εt−1, . . . )−

∑∞
`=0 Θ̃`εt−`

)2
]
. (20)

Thus, if a second-moment LP/VAR identification scheme is known to correctly identify the
impulse responses in a linear SVMA model (9), and there is doubt about whether the true
underlying DGP is in fact linear, the population estimand of the identification procedure
can be given a formal “best linear approximation” interpretation. This is analogous to the
“best linear predictor” property of Ordinary Least Squares in cross-sectional regression. In
contrast, identification approaches that depart from standard linear projections – such as
identification through higher moments or through heteroskedasticity – may not have a clear
interpretation under functional form misspecification.

Of course, in some applications, the non-linearities of the true underlying DGP may be of
interest per se. In such cases, non-linear VAR or LP estimators can be applied, for example
by adding interaction or polynomial terms, regime switching, stochastic volatility, etc. Such
issues are outside the scope of this paper, which deals exclusively with linear estimators.

5 Empirical application

We finally illustrate our theoretical equivalence results by empirically estimating the dynamic
response of corporate bond spreads to a monetary policy shock. We adopt the specification
of Gertler & Karadi (2015), who, using high-frequency financial data, obtain an external
instrument for monetary policy shocks.30 Because of possible non-invertibility (Ramey, 2016;
Plagborg-Møller & Wolf, 2019), we do not consider the external SVAR-IV estimator, but
instead implement direct projections on the IV through (i) local projections and (ii) an
“internal instrument” recursive VAR, following the logic of Corollary 1. In both cases, our
vector of macro control variables exactly follows Gertler & Karadi (2015); it includes output
growth (log growth rate of industrial production), inflation (log growth rate of CPI inflation),

30The external IV zt is constructed from changes in 3-month-ahead futures prices written on the Federal
Funds Rate, where the changes are measured over short time windows around Federal Open Market Com-
mittee monetary policy announcement times. See Gertler & Karadi (2015) for details on the construction of
the IV and a discussion of the exclusion restriction.
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Response of bond spread to monetary shock: VAR and LP estimates
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Figure 2: Estimated impulse response function of the Excess Bond Premium to a monetary policy
shock, normalized to increase the 1-year bond rate by 100 basis points on impact. Left panel: lag
length p = 4. Right panel: p = 12. The horizontal line marks the horizon p after which the VAR(p)
and LP(p) estimates may diverge substantially.

the 1-year government bond rate, and the Excess Bond Premium of Gilchrist & Zakrajšek
(2012) as a measure of the non-default-related corporate bond spread. The data is monthly
and spans January 1990 to June 2012.31

Figure 2 shows that LP-IV and “internal instrument” VAR impulse response estimates
agree at short horizons, but diverge at longer horizons, consistent with Proposition 2. The
figure shows point estimates of the response of the Excess Bond Premium to the monetary
policy shock, for different projection techniques and different lag lengths. For all specifica-
tions, the Excess Bond Premium initially increases after a contractionary monetary policy
shock, consistent with the results in Gertler & Karadi (2015). The left panel shows results for
LP(4) and VAR(4) estimates. Up until horizon h = 4, the estimated impulse responses are
closely aligned. At longer horizons, the iterated VAR structure enforces a smooth return to
0, while direct local projections give more erratic impulse responses. The right panel shows
an analogous picture for LP(12) and VAR(12) estimates: The estimated impulse responses
agree closely until horizon h = 12, but they diverge at longer horizons.

These results provide a concrete empirical illustration of our earlier claim that LP and

31The data were retrieved from: https://www.aeaweb.org/articles?id=10.1257/mac.20130329

26

https://www.aeaweb.org/articles?id=10.1257/mac.20130329


VAR estimates are closely tied together at short horizons, not just in population but also in
sample. The larger the lag length used for estimation, the more impulse response horizons
will exhibit agreement between LP and VAR estimates. As this exercise is merely meant to
illustrate our theoretical results, we refrain from conducting formal statistical tests of the
relative finite-sample efficiency of the different estimation methods.

6 Conclusion

We demonstrated a general nonparametric equivalence of local projection and VAR impulse
response function estimands. This result has several implications for empirical practice:

1. VAR and local projection estimators of impulse responses should not be regarded as
conceptually distinct methods – in population, they estimate the same thing, as long
as we control flexibly for lagged data.

2. Efficient finite-sample estimation requires navigating a bias-variance trade-off. Low-
order VAR and local projection estimators resolve this trade-off differently, and several
other recently proposed methods also lie on the continuum of possible dimension re-
duction or regularization approaches. Neither low-order VARs nor low-order local
projections should be treated as having special status generally.

3. The bias-variance trade-off is equivalent to the well-known trade-off between direct and
iterated forecasts. Thus, the finite-sample mean-square error ranking of different im-
pulse response estimation methods depends on smoothness/sparsity properties of the
autocovariance function of the data. The forecasting literature offers extensive guid-
ance on the bias-variance trade-off (see references in Section 3). No single estimation
method dominates for all empirically relevant data generating processes.

4. At short impulse response horizons, the various estimation methods are likely to ap-
proximately agree, but at longer horizons the bias-variance trade-off is unavoidable.
A VAR estimator with large lag length will give similar results as a local projection,
except at very long horizons.

5. It is a useful diagnostic to check if different estimation methods reach similar con-
clusions. If estimated impulse responses from VARs and local projections differ sub-
stantially at longer horizons, it must mean that the sample partial autocorrelations
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at long lags are not small. This possibly calls into question the validity of the VAR
approximation to the distribution of the data, depending on the standard errors.

6. Structural identification is logically distinct from the dimension reduction choices that
must be made for estimation purposes. It may be counterproductive to follow stan-
dard practice in assuming a finite-order SVAR model whenever the discussion turns
to structural identification, as this conflates the population identification analysis and
the dimension reduction technique of using a low-order VAR estimator.

7. Any structural estimation method that works for SVARs can be implemented with local
projections, and vice versa. For example, if a paper already relies on local projections
for parts of the analysis, then an additional sign restriction identification exercise, say,
can also be implemented in a local projection fashion.

8. If an instrument/proxy for the shock of interest is available, structural impulse re-
sponses can be consistently estimated by ordering the instrument first in a recursive
VAR (an “internal instrument” approach), even if the shock of interest is non-invertible.
In contrast, the popular SVAR-IV estimator (an “external instrument” approach) is
only consistent under invertibility.

9. Linear local projections are exactly as “robust to non-linearities” in the underlying
data generating process as linear VARs.

We stress that this paper has focused entirely on identification and estimation of impulse
responses using linear methods. Identification of other objects, such as variance/historical
decompositions, is more involved, as shown in Plagborg-Møller & Wolf (2019).

Our work points to several promising areas for future research. First, it would be use-
ful to adapt the results in the present paper to non-linear estimators, such as regressions
with interactions or polynomial terms. Second, future research could consider data with
near-unit roots or cointegration. Third, we only discussed the population properties of IV
estimators, and thus ignored weak IV issues. Fourth, it would be interesting to generalize
our LP-IV equivalence result to settings with multiple instruments/proxies. Finally, we have
deliberately avoided questions related to inference.
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A Appendix

A.1 Equivalence result with finite lag length

We here prove Proposition 2 from Section 2.3. We proceed mostly as in the proof of Propo-
sition 1. As a first step, the Frisch-Waugh theorem implies that

βh(p) = Cov(yt+h, x̃t(p))
E(x̃t(p)2) . (21)

We now introduce the notation Covp(·, ·), which denotes covariances of the data {wt} as
implied by the (counterfactual) stationary “fitted” SVAR(p) model

A(L; p)wt = B(p)η̄t, η̄t ∼WN (0, I), (22)

i.e., where η̄t is truly white noise (unlike the residuals from the VAR(p) projection on the
actual data). For example Covp(yt, xt−1) denotes the covariance of yt and xt−1 that would
obtain if wt = (r′t, xt, yt, q′t)′ were generated by the model (22) with parameters A(L; p) and
B(p) obtained from the projection on the actual data, as defined in Section 2.3. We similarly
define any covariances that involve η̄t. Note that stationarity of the VAR model (22) follows
from Brockwell & Davis (1991, Remark 2, pp. 424–425).

It follows from the argument in Brockwell & Davis (1991, p. 240) that Covp(wt, wt−h) =
Cov(wt, wt−h) for all h ≤ p (see also Brockwell & Davis, 1991, Remark 2, pp. 424–425 for the
multivariate generalization of the key step in the argument). In words, the autocovariances
implied by the “fitted” SVAR(p) model (22) agree with the autocovariances of the actual
data out to lag p, although generally not after lag p.

Under the counterfactual model (22), we have the moving average representation wt =
C(L; p)B(p)η̄t, and thus

θh(p) = Cnr+2,•,h(p)B•,nr+1(p) = Covp(yt+h, η̄x,t), (23)

where η̄x,t is the (nr + 1)-th element of η̄t. Since B(p) is lower triangular by definition, it is
straight-forward to show from (22) that

Bnr+1,nr+1(p)η̄x,t = xt−Ep(xt | rt, {wτ}t−p≤τ<t) = xt−E(xt | rt, {wτ}t−p≤τ<t) = x̃t(p), (24)

where Ep(· | ·) denotes linear projection under the inner product Covp(·, ·), the second
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equality follows from the above-mentioned equivalence of Covp(·, ·) and Cov(·, ·) out to lag
p, and the last equality follows by definition. Since Covp(η̄x,t, η̄x,t) = 1, equation (24) implies

Bnr+1,nr+1(p)2 = Covp(x̃t(p), x̃t(p)) = E(x̃t(p)2),

where the last equality again uses the equivalence of Covp(·, ·) and Cov(·, ·) out to lag p.
Putting together (23), (24), and the above equation, we have shown that

θh(p) = 1√
E(x̃t(p)2)

× Covp(yt+h, x̃t(p)).

Under the stated assumption that x̃t(p) = x̃t(p − h), the covariance on the right-hand side
above depends only on autocovariances of the data wt at lags ` = 0, 1, 2, . . . , p. Hence, we
can again appeal to the equivalence of Covp(·, ·) with the covariance function of the actual
data, and the expression (21) yields the desired conclusion.

A.2 Long-run identification using local projections

Here we show that the LP-based long-run identification approach in Example 2 is valid.
Define the Wold innovations ut ≡ wt − E(wt | {wτ}−∞<τ<t) and Wold decomposition

wt = χ+ C(L)ut, C(L) ≡ I2 +
∞∑
`=1

C`L
`. (25)

Since both structural shocks are assumed to be invertible, there exists a 2×2 matrix B such
that εt = But. Comparing (9) and (25), we then have Θ(1)B = C(1). Let e1 ≡ (1, 0)′. Note
that the Blanchard & Quah assumption e′1Θ(1) = (Θ1,1(1), 0) implies

e′1C(1) = e′1Θ(1)B = Θ1,1(1)e′1B,

and therefore
e′1C(1)ut = Θ1,1(1)× e′1But = Θ1,1(1)× ε1,t.

By the result in Section 2.2, the claim in Example 2 follows if we show that

lim
H→∞

β̃′H = e′1C(1). (26)
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Define Σu ≡ Var(ut). Applying the Frisch-Waugh theorem to the projection (13), and using
w1,t = ∆gdpt, we find

β̃′H = Cov(gdpt+H − gdpt−1, ut)Σ−1
u = Cov

(
H∑
`=0

w1,t+`, ut

)
Σ−1
u =

H∑
`=0

Cov(w1,t+`, ut)Σ−1
u .

(27)
On the other hand, the Wold decomposition (25) implies (recall that ut is white noise)

∞∑
`=0

Cov(wt+`, ut)Σ−1
u =

∞∑
`=0

C` = C(1). (28)

Comparing (27) and (28), we get the desired result (26).

A.3 Best linear approximation under non-linearity

Here we give the technical details behind the “best linear approximation” interpretation of
a non-linear model, cf. Section 4.4. Assume the nonparametric model (19), and that {wt}
is covariance stationary and purely nondeterministic. Let the linear projection of wt on
the orthonormal basis (εt, εt−1, εt−2, . . . ) be denoted ∑∞

`=0 Θ∗`εt−`, with projection residual
vt. Assume vt is either identically zero or purely non-deterministic. Then it has a Wold
decomposition

vt = µ∗ +
∞∑
`=0

Ψ∗`ζt−`,

where {ζt} is nw-dimensional white noise with Cov(ζt) = Inw . Since vt is a function of
{ετ}τ≤t, and {εt} is i.i.d., we have Cov(εt+`, vt) = 0nε×nw for all ` ≥ 1. Moreover, since vt is
a residual from a projection onto {ετ}τ≤t, we also have Cov(εt+`, vt) = 0nε×nw for all ` ≤ 0.
By the Wold decomposition theorem, ζt lies in the closed linear span of {vτ}τ≤t, so we must
have Cov(εt+`, ζt) = 0nε×nw for all ` ∈ Z. Finally, the best linear approximation property
(20) is a standard consequence of linear projection. We have thus verified all claims made
in Section 4.4.
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