How Auctions Amplify House-Price Fluctuations

Alina Arefeva*

October 2, 2019

Abstract

I develop a dynamic search model of the housing market in which prices, determined by auction, exhibit greater volatility than prices in the search and matching model with Nash bargaining from the literature. This helps solve the puzzle of excess volatility of house prices. The outcomes of the two models differ in hot markets when buyers’ house values are heterogenous. With Nash bargaining, a buyer who gets a house is chosen randomly among interested buyers, so prices are determined by the average house values. In auctions, competition among buyers drives up prices to the willingness to pay of the buyer with the highest value. In hot markets, the highest values fluctuate more than the average values, making the auction prices more volatile than the negotiated prices. This high volatility is constrained efficient in the sense that the equilibrium allocation decentralizes the solution of the social planner problem constrained by the search frictions.

Keywords: housing, real estate, volatility, search and matching, pricing, liquidity, Nash bargaining, auctions, bidding wars

JEL codes: E30, C78, D44, R21, E44, R31, D83

1 Introduction

House prices fluctuate between booms and busts, and are volatile relative to fundamentals, such as rents and income in the local housing market\(^1\). The top panel in Figure 1 shows the monthly house price growth in the Los Angeles Metropolitan Statistical Area from 1996 to 2016. The bottom panel of the same Figure 1 shows a simulation of the house price growth from the calibrated benchmark search model with Nash bargaining, currently employed in the literature. The benchmark model produces less volatility of the house prices than observed in the data.

My hypothesis is that the housing search model cannot explain this volatility, because the sales mechanism does not account for competition between buyers. Specifically, in the benchmark housing search model a seller is bargaining one-to-one with a randomly selected buyer to determine the house price. In reality, especially during booms, the seller is dealing with multiple buyers and sells to the highest bidder. I show that the volatility of the house prices is quantitatively higher if the model takes into account the competition between buyers.

The competition between buyers, often referred to as a bidding war, does happen in the housing markets in the US and other countries. In the US the seller puts the house on the market, and holds an open house, usually during the weekend. Then during the first weekdays of the next week buyers submit their offers, and the seller usually sells to the highest bidder. For example, the Boston Globe reviews the sale of the condo in Brookline, Massachusetts\(^2\), where “three hundred people came through the open house, 25 made offers, and the bidding war lasted eight rounds and four days”. So bidding wars actually occur in local housing markets.

Bidding wars are not only real phenomenon, they are also common, in particularly during the housing booms. The New York Times writes on August, 13, 1997, “Bidding wars are no longer uncommon, especially in affluent areas of northern New Jersey, Los Angeles, the San Francisco Bay area and Boston.”\(^3\) On June 10, 2015, Trulia echoes “those bidding wars - oh, those bidding wars... when inventory is low, those bidding wars can escalate into a kamikazelike battle with 17 other buyers...”\(^4\)

Bidding wars are common, but how often do they happen quantitatively? Han and Strange (2014) show that in the US the frequency of bidding wars rose to 30% in some markets between 1995 and 2005. The bidding wars continued to be frequent, as can be seen from Figure 2. Figure 2 plots the bidding wars index from the Redfin, a real estate brokerage firm in the US from 2009 to 2015. When a Redfin client places an offer on a house, Redfin records whether there was at least one competing offer. The graph shows the percentage of offers that faced competition from other buyers. On average half of the offers faced competition in the US. Similarly, in England there are multiple buyers making offers on the same house leading to de facto auctions, see Merlo and Ortalo-Magné (2004) and Merlo, Ortalo-Magné, and Rust (2015)\(^5\).

Hence, bidding wars are real, common and frequent. However, the literature has been focusing

\(^1\)See, for example, Davis and Heathcote (2005), Davis and Nieuwerburgh (2015), Piazzesi and Schneider (2016).

\(^2\)https://www.bostonglobe.com/business/2015/03/30/forget-location-location-location-some-realtors-have-new-mantra-bidding-war/3gI5wmpNnf82QMvpjN3lWJ/story.html.

\(^4\)http://www.trulia.com/blog/7-crazy-things-about-buying-in-a-sellers-market/

Figure 1: The house price growth in the data and in a simulation of the benchmark housing search model with Nash bargaining

Notes: The monthly data on the house prices comes from Zillow. Zillow applies the Henderson Moving Average filter and then STL filter to produce the seasonally adjusted series of the house price growth, see http://www.zillow.com/research/zhvi-methodology-6032/. The graph for the “Benchmark model” is the graph of simulations of the Nash bargaining model from Figure 6.
on the Nash bargaining price determination mechanism, where a seller bargains one-to-one with a randomly selected buyer. In practice, during the booms the buyers compete for the same house, and house is sold to the buyer with the highest offer. A natural way to model this sales mechanism is an auction model.\(^6\)

The auction model is not only a natural representation of this process, it also helps to explain high volatility of the house prices, observed in Figure 1a. When house prices are determined in an auction instead of Nash bargaining, house prices fluctuate more in response to the demand shocks generated by the influx of buyers. The influx of buyers provokes the competition between buyers. This competition is important for the volatility of the house prices due to the heterogeneity in the house values. With heterogeneous values, the method of choosing the buyer among the interested buyers becomes important for the quantitative properties of the model. In the benchmark model with Nash bargaining, the buyer is chosen randomly among all interested buyers. Then the average house values of buyers determine the house price. In the auction model the buyer is chosen by the maximum bid among all interested buyers, so the highest value, or more specifically the second highest value, determines the house prices. During housing booms, the highest values increase more than the average values, making the sales price more volatile.

\(^6\)Auctions is a popular way to sell distressed properties. The auctions of distressed properties, for example, foreclosure auctions, often are official and take standardized forms. The auction model can be applied directly in this case. However, the auction model also describes the non-foreclosure sales of houses where the bidding war between several buyers, for example, by means of escalation clauses, is an unofficial de-facto auction, portrayed in this paper.
To demonstrate this, I build a dynamic search model of the local housing market with auctions. Then I compare this model with the benchmark model with Nash bargaining. These models differ only in how the prices are determined. I calibrate the models based on the data from the Los Angeles Metropolitan Statistical area\(^7\), and show that the volatility in the auction model is higher than in the Nash bargaining model, and is similar to the volatility, observed in the data which is the main result of my paper. Then I solve the problem of the social planner constrained by the search frictions, and show that the auction model with directed search decentralizes the solution of the social planner problem. In this sense high volatility, produced by the auction model with directed search, is efficient.

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3 introduces the framework of the models and provides an example to highlight the differences of the benchmark model and the model with auctions. Section 4 compares the steady-states of these models, illustrates how the shocks are amplified in the auction model as compared to the Nash bargaining model, then calibrates the model to the data and finally discusses the quantitative results. Section 5 solves the problem of the social planner constrained by the search frictions, and shows the efficiency of the equilibrium in the auction model with directed search. Section 6 discusses how we can think about the results of the paper, and section 7 concludes.

2 Literature review

My paper aims to explain the volatility of house prices observed in the data, and contributes to several strands of literature on microstructure of housing markets, house price dynamics and applied theory.

The model in the paper builds on the growing literature of microstructure of housing markets that considers housing search and matching with bargaining and auctions. This literature is summarized by Han and Strange (2015), who observe that the literature on real-estate auctions, especially on the theoretical side, is sparse. My paper fills this gap by building a tractable dynamic model of the housing market with auctions and comparing this model with the prevalent housing search model with bargaining.

The theoretical approach in my paper is closes to that of Head, Lloyd-Ellis, and Sun (2014), Albrecht, Gautier, and Vroman (2016), and Smith (2019). Head, Lloyd-Ellis, and Sun (2014) consider a random search and matching model of the housing market with bargaining\(^8\). In addition to the bargaining model similar to that of Head, Lloyd-Ellis, and Sun (2014), I construct the auction models with random and directed search to show the importance of bidding wars in amplifying the house price volatility. Albrecht, Gautier, and Vroman (2016) build a static auction model with directed search to study the role of the asking price in the housing market.

\(^7\)The LA MSA is chosen as an example of the MSA with highly volatile house prices.

By contrast, my paper considers a dynamic auction model, and aims to isolate the qualitative and quantitative implications of the auction price-finding process against the Nash bargain for the house price dynamics. The dynamic framework in this paper makes it possible to take into account the option values of buying or selling the house later that propagate the housing market shocks, absent in the previous papers on housing auctions.

Similarly to this paper, Smith (2019) generates fluctuations between the hot and cold markets, but in the stock-matching model with competition between buyers who have homogenous home values. In the auction model in the next Section, buyers have heterogenous values, and hence bids. Because of this heterogeneity, the price determination – auctions versus Nash bargaining, matters for the level of the house price volatility. The auction model also allows the turnover of buyers into homeowners and then sellers, which makes the buyer’s bids dependent on the expected future resale value in addition their own utility from the house. This is new to models with competition between buyers such as Albrecht, Gautier, and Vroman (2016) and Smith (2019), and similar to the bargaining model in Head, Lloyd-Ellis, and Sun (2014) ⁹.

The literature on house price dynamics struggles to explain the observed house price volatility within a fully rational framework, even when it considers various amplification mechanisms, such as amplification of the income shocks through borrowing constraints ¹⁰, so it turns to extrapolative expectations, speculation and bubbles¹¹. Giglio, Maggiori, and Stroebehl (2016) tests the existence of housing bubble in the UK and Singapore, and finds no evidence of classic

⁹Mayer (1995) also considers the performance of negotiations versus auctions in the steady-state of the model with costless search and perfect matching technology. My paper adds the dynamics and search frictions to study the time-series volatility of house prices. Quan (2002) studies the endogenous choice of agents between the two separated housing markets in a static search model. In the first market the prices are determined in negotiations, and in the second – by auctions. I am not considering the endogenous choice between these two markets, but compare the house price volatility in the dynamic housing search model with bargaining and the dynamic housing auction model with auctions. Similarly, Genesove and Hansen (2014) compare the prices from negotiations and auctions in the dynamic setting both empirically and theoretically. This paper complements Genesove and Hansen (2014) paper in comparing the house prices from auctions and negotiations, but it explicitly considers the option value to buy and sell in the dynamic setting and incorporates search frictions to highlight importance of the ratio of buyers to sellers in intermediating large movements in transaction prices. Merlo, Ortalo-Magné, and Rust (2015) study the dynamic problem of the home seller who potentially can face multiple offers. In my paper I additionally model the bidding behavior of buyers as well as the process of price determination in an equilibrium model in the presence of search frictions. Han and Strange (2016) study the role of the asking price in a model where lower asking price attracts more buyers which produces bidding wars. In the model in the present study the seller chooses the reservation price, rather than the asking price. The reservation price differs conceptually from the asking price, since the seller never sells below the reservation price in the auction. In contrast, the seller can sell below the asking price in the data. However, lowering the reservation price has similar effect to that of Han and Strange (2016)’s of increasing the number of buyers who visit leading to bidding wars. Adams et al. (1992) study the choice of seller between the auctions and posted prices in a continuous-time search model. In their model the arrival of buyers is governed by the Poisson process with constant arrival rate. But, due to the continuous time, the probability of arrival of more than one buyer in their model is zero. Hence, the seller’s optimal strategy reduces to choosing the posted price and waiting for the first buyer willing to accept it. In my paper the probability of the arrival of several buyers is positive, allowing the seller to run an auction with more than one buyer. Moreover, this probability depends on the ratio of buyers to sellers through the search frictions. During the housing booms the ratio of buyers to sellers increases making houses more liquid which boosts prices.

rational bubbles even during the period of the recent boom-bust episode. My paper contributes to this literature by producing the house price volatility that arises endogenously in a model with rational expectations and no bubbles due to the bidding wars of buyers with heterogeneous valuations.

My paper is related to papers on the selling institutions and search frictions in labor, asset and retail markets. For instance, Julien, Kennes, and King (2000) examine the labor market in which employees auction their labor services to firms. They produce the wage dispersion in the steady-state equilibrium of the search model. My paper studies the housing market and the time-series dispersion of prices. In retail markets, Einav, Farronato, Levin, and Sundaresan (2018) look at the choice of sellers between auctions and posted prices in online markets. In the asset markets, many papers study the information percolation and information asymmetries in the dynamic over-the-counter markets with search (Duffie, Malamud, and Manso (2009), Glode and Opp (2016)) and double-auctions (Duffie, Malamud, and Manso (2014)), correspondingly. Hendershott and Madhavan (2015) study the choice between auctions and bilateral search in the OTC market. I add to this literature by comparing the quantitative performance of these two mechanisms within the search environment, albeit, in the housing market. The paper is also related to the theoretical literature on the choice of the selling institutions\footnote{For example, Wang (1993), Arnold and Lippman (1995), Bulow and Klemperer (2009).}. These papers usually compare auctions with sequential search. Here I compare auctions with very specific Nash bargaining, used in the housing search and matching literature.

In order to focus on the implications of the sales mechanism and make models tractable, I abstract from modeling the mortgage market, which is extensively studied in the housing literature, see, for example, Favilukis, Ludvigson, and Van Nieuwerburgh (2017) and Landvoigt (2017). The interaction of the search frictions and credit constraints is explored in Guren and McQuade (2013) and Hedlund (2015).

3 Models

In this section I describe three models of the local housing market that I am comparing: the Nash bargaining model, the auction model with random search, and the auction model with directed search. The models have the same building blocks, except for the way the prices are determined.

3.1 Elements Common to the Models

Time is discrete $t \in \{0, 1, \ldots\}$. There are infinitely-lived risk neutral agents, buyers, sellers, homeowners, and builders, who discount future at the common fixed discount factor β, and use rational perfect foresight expectations. There are two goods in the economy, consumption, taken as numeraire, and housing, and two markets corresponding to these goods. The consumption is frictionless, while the housing market has search frictions.

By going through the search process a buyer can purchase one house that provides a flow of housing services x. When the buyer searches for a house, she visits the house and finds out the value of flow services x. A visit includes both viewing photos and information online as well as visiting a property. The value of flow services x is distributed independently over buyers and
time13 with the cumulative density function $F(.)$, probability distribution function $f(x) > 0$ with weakly increasing hazard rate $f(x)/(1 - F(x))$14. Buyers rent at exogenous rental rate w until they buy and move in a house. The service flow from the rental housing is normalized to zero.

Both buyers and sellers decide whether to participate in the housing market. If they do, they have to pay fixed search cost, respectively, c^B and c^S per period15. This allows buyers and sellers to time their participation in the market.

Figure 3 shows how the models work in period t. Each period starts with \tilde{B}_t buyers and \tilde{S}_t sellers. They decide whether to actively search in the local housing market. If they decide to actively search, they pay search costs to participate, and become active buyers and sellers. The numbers of active buyers and active sellers are B_t and S_t, respectively. Active buyers and sellers search for each other in a local housing market, randomly meet, and determine the house price. The price determination mechanism is the only building block where the models are different. I describe the search frictions and price setting in the auction models and Nash bargaining model in Section 3.2. The search frictions and price determination influence the house prices16 p_t and sales $q_t = \pi_t S_t$17 through the probability of sale π_t.

Denote V^B_t, V^S_t the value function of a buyer and a seller in the beginning of the period before the decision of searching or not searching is made. Then they must satisfy the Bellman equations:

\begin{align*}
V^B_t &= \beta V^B_{t+1} + BS_t - w, \quad (1) \\
V^S_t &= \beta V^S_{t+1} + SS_t, \quad (2)
\end{align*}

where BS_t, SS_t are the buyer’s and seller’s surplus from participating in the market in period t. If an agent decides not to participate in the market, the surplus for that period is zero. If the agent participates, the surplus is determined when the buyers and sellers interact and depends on the search frictions and the price determination mechanism, e.g. Nash bargaining or auctions, discussed in Section 3.2.

13The case of affiliated values, potentially very important for owner-occupied housing, can be considered in future research after the basic model with independent values has been analyzed.

14Increasing hazard rate is sufficient for existence of solution to the seller’s problem.

15In the calibration the buyer’s search cost is zero. In the model it is nonzero for generality.

16The house prices p_t denotes the expected house price over the cross-section of transactions in period t.

17The quantity sold q_t is the product of the number of active sellers and the probability of sale, i.e. $q_t = \pi_t S_t$, by the law of large numbers.
If the buyer purchases the home, she becomes a homeowner. The total number of homeowners is H_t. A homeowner may experience three random shocks. First, with probability λ^0, the homeowner experiences shock that forces her to leave the city. In this case, she receives fixed utility V^0 from leaving the city and puts the house on the market as a seller. Second, with probability δ, the homeowner experiences a “fire” in which case she loses home. In this unfortunate event, the homeowner suffers a loss and becomes a buyer. This event is a proxy for depreciation in the model. The first two events are independent. If none of those two events have happened, the homeowner may be randomly separated from her home with probability λ^M due to the moving shock. In this case, the homeowner becomes a buyer and a seller in the model.

Let $V_t^H(x)$ be the value of being a homeowner with a home providing a service flow x, then
it must satisfy the following Bellman equation:

\[
V_t^H(x) = x + (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)\beta V_{t+1}^H + \delta(1 - \lambda^0)\beta V_{t+1}^B + \delta\lambda^0 V_0^B + \\
(1 - \delta)\lambda^0 \beta (V_0 + V_{t+1}^S) + (1 - \delta)(1 - \lambda^0)\lambda^M \beta (V_{t+1}^B + V_{t+1}^S)
\]

The homeowner gets per-period service flow \(x \) from living in the house. With probability \((1 - \lambda^0)(1 - \delta)(1 - \lambda^M)\), the homeowner experiences no separation shocks and gets the discounted value of being a homeowner the next period \(\beta V_{t+1}^H\). With probability \(\delta(1 - \lambda^0)\), the homeowner experiences loss of the home, but does not have to leave the city. In this case she becomes a buyer, and gets the discounted option value to buy the next period \(\beta V_{t+1}^B\). If the homeowner both loses the home and has to leave the city, which happens with probability \(\delta\lambda^0\), then she gets a discounted utility from leaving the city \(\beta V_0^B\). With probability \((1 - \delta)\lambda^0\), the homeowner does not experience a home loss and has to leave the city, she gets discounted outside utility \(V^0\) and option value to sell her home \(V_{t+1}^S\). Finally, with probability \((1 - \delta)(1 - \lambda^0)\lambda^M\), the homeowner has to move within the housing market, and becomes simultaneously the buyer and the seller in which case she gets the discounted option value to buy and sell tomorrow.

The agents are risk-neutral, so the value of being a homeowner can be represented as the present value of housing services \(\frac{x}{1 - \gamma}\) and time-varying component \(v_t^H\):

\[
V_t^H(x) = \frac{x}{1 - \gamma} + v_t^H
\]

(3)

where \(\gamma \equiv \beta(1 - \lambda^0)(1 - \lambda^M)(1 - \delta)\) is an effective discount rate that accounts for potential future separations from the home.

The time-varying component of being a homeowner must satisfy the Bellman equation:

\[
v_t^H = \gamma v_{t+1}^H + \beta \lambda^0 V_0^B + \beta(1 - \lambda^0)(\delta + (1 - \delta)\lambda^M) V_{t+1}^B + \beta(1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M) V_{t+1}^S
\]

(4)

The homeowners who have to leave the city or find a new home add to supply of homes. There is also an endogenous supply\(^{18}\) of new homes from homebuilders. There is free entry into building, but not free exit. If an agent decides to become a homebuilder, she has to pay a fixed cost \(c^0\) of converting land into the land for residential use that has value \(V_t^N\). Then she becomes a home builder immediately, and can produce a home with probability \(\kappa\) the next period by incurring costs \(c^1 + c^2(\bar{N}_t + N_t)\) each period, where \(\bar{N}_t\) is the stock of builders from the previous period, \(N_t\) are new builders who entered in period \(t\), so \(\bar{N}_t + N_t\) is the total number of builders in the industry, and \(c^1\) and \(c^2\) are parameters of increasing marginal costs\(^{19}\). The option value to become a builder \(V_t^L\) is \(V_t^L = \max\{V_t^N - c^0, \beta V_{t+1}^L\}\), and because of free entry \(V_t^N \leq c^0\) and \(V_t^L = 0\). The value of being a builder \(V_t^N\) is a present value of being a home seller with probability \(\kappa\) the next period or having to wait additional period with probability \((1 - \kappa)\) net of the construction costs per period:

\[
V_t^N = \beta \kappa V_{t+1}^S + \beta(1 - \kappa) V_{t+1}^N - c(\bar{N}_t)
\]

\(^{18}\)The supply is assumed to be endogenous, because it has been shown to be an important determinant of volatility of house prices, see Glaeser, Gyourko, and Saiz (2008), Saiz (2010).

\(^{19}\)The marginal costs of supply homes are assumed to be linear and increasing following Glaeser, Gyourko, and Saiz (2008).
In equilibrium,

\[V_t^N = \min\{\beta \kappa V_{t+1}^S + \beta (1 - \kappa) V_{t+1}^N - (c^1 + c^2(\bar{N}_t + N_t)), c^0\} \]

(5)

If the value of being a builder is less than the fixed costs of entry \(\beta \kappa V_{t+1}^S + \beta (1 - \kappa) V_{t+1}^N - (c^1 + c^2(\bar{N}_t + N_t)) < c^0 \), then no new builders enter \(N_t = 0 \), and the stock of waiting homebuyers \(\bar{N}_t \) drops by \((1 - \kappa)\) each period. Otherwise, new builders enter until \(\beta \kappa V_{t+1}^S + \beta (1 - \kappa) V_{t+1}^N - (c^1 + c^2(\bar{N}_t + N_t)) = c^0 \) and the total number of builders is \(\bar{N}_t + N_t = (\beta \kappa V_{t+1}^S + \beta (1 - \kappa) V_{t+1}^N - c^0 - c^1)/c^2 \).

\[N_t = \max\{0, \frac{\beta \kappa V_{t+1}^S + \beta (1 - \kappa) V_{t+1}^N - c^0 - c^1}{c^2} - \bar{N}_t\} \]

(6)

The new buyers enter the market at the exogenous rate \(d_t \), for example, due to job relocation. I assume that the influx of buyers \(d_t \) is governed by \(AR(1) \) process with drift. The housing demand changes faster than the supply, so the driving force of fluctuations in the model are the demand shocks due to this exogenous influx of buyers.

The transition of the state of the economy from period \(t \) to \(t + 1 \) is summarized by five state variables: the number of buyers \(\bar{B}_t \), sellers \(\bar{S}_t \), number of waiting builders \(\bar{N}_t \), homeowners \(H_t \), and influx of buyers \(d_t \). The dynamics of the state \(S_t = (\bar{B}_t, \bar{S}_t, \bar{N}_t, H_t, d_t) \) is

\[\bar{B}_{t+1} = \bar{B}_t + d_t + (1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)H_t - q_t, \]

(7)

\[\bar{S}_{t+1} = \bar{S}_t + \kappa(\bar{N}_t + N_t) + (1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)H_t - q_t, \]

(8)

\[\bar{N}_t = (1 - \kappa)(\bar{N}_{t-1} + N_{t-1}) \]

(9)

\[H_{t+1} = (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)H_t + q_t, \]

(10)

\[d_t = \rho d_{t-1} + (1 - \rho)d_0 + \varepsilon_t, \]

(11)

where \(d_0 \) is the unconditional mean and \(\rho \) is the persistence parameter of the process for the influx of buyers \(d_t \) with shocks \(\varepsilon_t \sim iidN(0, \sigma^2) \).

In equation (7) the total number of buyers \(\bar{B}_t \) increases by the influx of buyers \(d_t \), new buyers from homeowners \((1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)H_t\), and decreases by the outflow, equal to the number of sales \(q_t = \pi_t S_t \). Similarly, equation (8) shows the dynamics of sellers, where the number of sellers increases through endogenous construction \(\kappa(\bar{N}_{t-1} + N_{t-1}) \), moving homeowners \((1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)H_t\), and decreases by the number of sold homes \(q_t \).

In this system, the search frictions and price determination process affect the dynamics of buyers and sellers through the probability of sale \(\pi_t \) and sales \(q_t \).

3.2 Search Frictions and Price Determination

In this section I discuss the microstructure of the local housing market, in particular, search frictions and price determination mechanism. In the benchmark housing search model the search is random, where each active buyer visits one randomly chosen active seller per period\(^{20}\). Then

\(^{20}\)The search process in the residential real estate market is asymmetric: a seller posts a house for sale, and buyers visit potentially suitable houses. The assumption about ability to visit one seller is not restrictive for the per period payoffs, since those are similar to the case when buyers are allowed to visit multiple sellers as in Albrecht, Gautier, and Vroman (2016). The question, model and results, however, differ from Albrecht, Gautier, and Vroman (2016), see Section 2.
the number of active buyers that visit each individual active seller is distributed with Poisson distribution21 with the mean that is equal to the ratio of active buyers to active sellers, $\theta_t = B_t/S_t$. This ratio is called tightness, with the interpretation that the tightness is high, the housing market is in boom, because there are many buyers per seller, and vice versa for the cold market.

In the benchmark housing search model, after the buyers arrive, the seller picks one buyer at random out of all buyers who visited him. The value x of the buyer becomes common knowledge, and then the price splits the joint surplus from the trade according to fixed weights equal to bargaining powers of the seller, α, and the buyer, $1 - \alpha$, where $\alpha \in (0, 1)$.

I am proposing two versions of the auction model. In the first version the search is random, similarly to the benchmark Nash bargaining model. However, after buyers have visited a seller, he runs an ascending bid auction with the reservation price among all buyers who visited him. The seller does not know the home values of buyers, and chooses and commits to the reservation price before the auction. The auction starts at this price, and the price increases until only one buyer is left. The buyer pays the price at which the auction stops, which is the maximum of the second highest bid and reservation price.

In the second version of the auction model the search is directed. In the directed search model with auctions the seller posts the reservation price \tilde{p}_t that starts the ascending auction. Active buyers observe the posted reservation prices and decide which seller to visit. The model is a directed search model because all buyers observe all posted prices and direct their search to the sellers who post attractive reservation price and where they expect little competition from other buyers.

To summarize, the auction and Nash bargaining models differ in terms of the informational structure, the rule for selecting the winning buyer and the division of the surplus for buyer and seller. The next section provides an example to illustrate these differences.

\textbf{Example}

The model is dynamic, and continuation values of the buyer, the seller and the homeowner are summarized by their value functions that are endogenously determined in the model from the Bellman equations (1), (2), (3), (4). However, I take the value functions of the buyer V_{t+1}^B, seller V_{t+1}^S, homeowner $V_{t+1}^H(x)$ exogenously in this example to illustrate the differences between the Nash bargaining model with random search, auction model with random search and auction model with directed search.

21The Poisson approximation can be motivated in two ways. First, if each active buyer is picking a seller at random, then the number of buyers that visit a particular seller is distributed binomially. When the number of sellers goes to infinity $S \to \infty$, holding the ratio of number of active number to sellers $\theta = B/S$ constant, by the Poisson limit theorem the distribution of active buyers that visit a particular seller is Poisson with the mean equal to the ratio of active buyers to active sellers.

For the second assumption assume that homes are equally spaced across a given area of a local housing market. Suppose that buyers search randomly, so as to be located across the area according to the uniformly-intensity spatial Poisson distribution. Each buyer visits the home nearest to his or her location. Then in the limit, as the number of active buyers and sellers goes to infinity, the total number of buyers visiting each home would be approximately distributed by Poisson, iid across homes, with a mean equal to the market-wide ratio θ of the number of buyers per number of active sellers. See, for example, Badderley, Barany, Schneider, and Weil (2007). I thank Darrell Duffie for pointing this out.
Table 1: The auction and Nash bargaining price determination examples with \(x \sim \text{Exponential} \)

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Seller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value to own (V_{t+1}^H(x))</td>
<td>Expected value to own (EV_{t+1}^H(x))</td>
</tr>
<tr>
<td>Value to wait (V_{t+1}^B)</td>
<td>Value to wait (V_{t+1}^S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auction with random search: sales price 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal bid (b_t(x) = V_{t+1}^H(x) - V_{t+1}^B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auction with directed search: sales price 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal bid (b_t(x) = V_{t+1}^H(x) - V_{t+1}^B)</td>
</tr>
</tbody>
</table>

Nash bargaining with power \(\alpha = 0.5 \): sales price 75

Joint surplus for buyer with average value = \(V_{t+1}^H(x_2) - V_{t+1}^B - V_{t+1}^S = 50 \)

Sale price = Value to wait for seller \(V_{t+1}^S + 0.5 \times \text{Joint surplus} = 75 \)

Table 1 shows the example of how prices are determined using the Nash bargaining model and the auction models. In this example an active seller, who has paid search costs, meets a random number of active buyers. This seller is lucky, and she is visited by three active buyers. All buyers and seller have an option to postpone the transaction till the next period. The seller can sell tomorrow, and she values this option at \(V_{t+1}^S = 50 \). Similarly, buyers can wait till tomorrow which allows them to buy a house tomorrow, which is summarized in the buyer’s value function \(V_{t+1}^B \) which is equal to 100 in this example.

When the buyers visit the house, they observe the benefits from living in this house \(x \) per period which give her the value of owning \(V_{t+1}^H(x) \) the house. To simplify calculations, assume the exponential distribution for \(x \). In this example, the present value of housing services are \(V_{t+1}^H(x_1) = 100 \) for the first buyer, \(V_{t+1}^H(x_2) = 200 \) for the second buyer, and \(V_{t+1}^H(x_3) = 300 \) for the third buyer.

First, consider the auction price determination with the random search. The present values from the house in the auction models are private valuations of buyers. Before the auction the seller does not observe the realization of \(x \), but he knows the distribution of \(x \) and can compute the expected present value of housing services, which is assumed to be \(EV_{t+1}^H(x) = 100 \). The seller decides on the optimal reservation price before the auction starts and commits to this price. If we assume that the housing services value \(x \) is distributed exponentially and solution for \(\tilde{x}_t \) is interior, then the optimal reservation is \(\tilde{p}_t = V_{t+1}^S + Ex/(1-\gamma) = 50+100 = 150 \) from Proposition 2. All sellers are homogenous, so all sellers post the same reservation price. The buyers formally do not observe the reservation price, but they can compute the optimal reservation price by solving the seller’s problem. Once the buyers have observed their values, the auction starts from the reservation price, and price increases until only one buyer is left standing.

What is the auction price here? To answer this question, I need to know the optimal drop-out prices, or bids, of buyers. This is a standard ascending bid auction with the dominant strategy to bid the value of the object. The value of the house is \(V_{t+1}^H(x) - V_{t+1}^B \), because if a buyer buys a house, he gets the value of being a homeowner, but loses the value function representing
the value of waiting and buying a house later. Hence, the dominant strategy is drop-out of the
auction when the price exceeds $b_t^*(x) = V_{t+1}^H(x) - V_{t+1}^B$.

The value function of the buyer appears in the bid because the buyer takes into account
the option value to search in the next period, which shades the bid by her option value to buy
tomorrow. This makes the bid endogenously rise during the booms. If market is currently in
the boom, the next period it will be in the boom with high probability because of the search
frictions. Hence, given the same realization of the value of being a homeowner $V_{t+1}^H(x)$, the bids
will be higher during the boom because of the low option value to buy in the next period.

The optimal drop-out prices, or in other words, maximum bids, $b_t^*(x)$ for the three buyers
are 0, 100, 200, respectively. The third buyer wins the auction, and she pays the price at which
the auction stopped. Here, the drop-out prices of the first and second buyers are lower than
the reservation price, so that the auction stops at the reservation price, so the house is sold for 150.

Now consider the auction price determination with the directed search. The process differs
from the random search, described in the previous paragraphs, by the way that the seller deter-
mines the reservation price and how buyers arrive to the seller. The seller starts by posting the
reservation price in the ascending bid auction. The buyers then observe all the reservation prices,
and decide which seller to visit. Hence, if the seller hikes up the reservation price as compared to
other sellers, she loses buyers. This drives the reservation price down the competitive level, i.e.
$p_t = V_{t+1}^S = 50$, eliminating the monopoly distortion in the auction model with random search,
see discussion of the constrained social optimum allocation in Section 5. In this example, the
auction starts at 50, and the second buyer drops out at 100. Hence, the third buyer is the winner,
and she pays the second highest drop-out price, 100, which is the sales price in the auction model
with directed search.

Finally, consider the benchmark housing search model with Nash bargaining. In the Nash
bargaining the seller selects one buyer at random to negotiate with. In our example, the seller
can potentially choose any buyer with equal probability, so that the sales price reflects the
average values. In the example, assume that the seller randomly picked the second buyer. Once
the seller picks the buyer, the realization of the value of being a homeowner $V_{t+1}^H(x)$ become
common knowledge, and they compute the joint surplus from the trade to determine the sales
price. The joint surplus from the trade is the difference of what they gain from the deal, which
is the value of being a homeowner $V_{t+1}^H(x)$, and what they will lose from the deal, which is the
buyer’s and seller’s continuation values, V_{t+1}^B and V_{t+1}^S. The joint surplus in our example is then
$V_{t+1}^H(x_2) - V_{t+1}^B - V_{t+1}^S = 200 - 100 - 50 = 50$. This joint surplus is then split according the the
bargaining weights of the seller, α, and the buyer, $(1 - \alpha)$. In this example I use $\alpha = 0.5$. Then
the Nash bargaining price is $\hat{p}_t = V_{t+1}^S + \alpha(V_{t+1}^H(x_2) - V_{t+1}^B - V_{t+1}^S) = 50 + 0.5 \times 50 = 75$, so the
seller is compensated for his option value to sell and gets half of the joint surplus from the deal.

3.3 Price determination by Nash bargaining

In this section I close the Nash bargaining model by writing down explicitly the pricing mechanism
and dynamics of the value functions of the buyer and the seller.

\footnote{The shading of the bids due to the option value of participating in the future auctions has been recently
discussed in the context of the online auctions, see Zeithammer (2006), Ingster (2009), Said (2011), Said (2012),
Backus and Lewis (2012), Hendricks, Onur, and Wiseman (2012), Hopenlyan and Saeedi (2015), Coey, Larsen,
and Platt (2016)
In the beginning of period t the problem of each buyer and seller is to decide whether to participate in the local housing market, and if they do, they have to pay search costs. The agents can time their participation in the market depending on the current market conditions. After the participation decisions has been made, the Nash bargaining model prescribes how the active buyers and sellers meet and how the price is determined.

The first component of the Nash bargaining model is the meeting technology. In the models I assume that the number of active buyers that visit the seller is distributed by Poisson distribution with the mean, equal to the ratio of buyers to sellers $\theta_t = B_t/S_t$. In the Nash bargaining model the seller picks one buyer out of all who visited him at random, hence the probability of a meeting is $1 - \exp(-\theta_t)$. To produce this meeting technology, I use the urn-ball meeting function $M(B_t, S_t) = S_t(1 - (1 - B_t/S_t)^{B_t})$, which gives the number of meetings M from the number of active buyers B_t and sellers S_t. This number of meetings occurs if buyers reach out to sellers and, if the seller gets more than one buyer, he selects the buyer at random. If the number of buyers and sellers is large, the meeting function can be well approximated by $M(B_t, S_t) = S_t(1 - \exp(-B_t/S_t)) = S_t(1 - \exp(-\theta_t))$

The probability of meeting a buyer to a seller is $q^s(\theta_t) = 1 - \exp(-\theta_t)$, which is the same as the probability of a seller meeting at least one buyer in the auction model, which is $P($seller meets exactly one buyer$) = 1 - \exp(-\theta_t)$. For the buyer, the probability of meeting a seller in the Nash bargaining model is then $q^b(\theta_t) = q^s(\theta_t)/\theta_t = (1 - \exp(-\theta_t))/\theta_t$.

In the Nash bargaining model, the price is determined using the Nash bargaining solution where the seller and buyer meet and bargain over the price. Following the standard search model Genesove and Han (2012), the transaction only occurs if the joint surplus $V_{t+1}(x) - V_{t+1}^B - V_{t+1}^S = \frac{x}{\gamma} + v_{t+1}^B - V_{t+1}^B - V_{t+1}^S$ from the sale is positive. In the models I assume that the buyer and seller sign an agreement in period t, but the settlement, transfer of the house and payment occur in period $t+1$ to simplify notation. Because of this timing assumption, the present value of housing services and the value functions of buyer and seller tomorrow are of the same time period, $t+1$, in the expression for the joint surplus. The sale will occur only if the joint surplus is positive, that is if the realized value of the housing services x is higher than the threshold value, denoted \bar{x}, i.e. $x \geq \bar{x}$. To simplify the notation, I introduce the variable \hat{x}_t that collects all the time-varying option values that are lost or gained as a result of the transaction:

$$\hat{x}_t \equiv (1 - \gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H)$$

(12)

Then from $\bar{x}_t/(1 - \gamma) + v_{t+1}^H - V_{t+1}^B - V_{t+1}^S = 0$ we find $\bar{x}_t = \hat{x}_t$. The threshold value \bar{x}_t is the value of buying a house for the marginal buyer with value of housing services \bar{x}_t. The marginal buyer is he who is just indifferent between buying or not buying this house, and this buyer prices the house.

Similarly, the probability of buying for the buyer is $\pi(\bar{x}_t, \theta_t)/\theta_t$, where $\pi(\bar{x}_t, \theta_t) = (1 - \exp(-\theta_t))(1 - F(\bar{x}_t))$ is the overall probability of sale. If the sale occurs, the transaction house price is then $\hat{p}_t = V_{t+1}^S + \alpha(V_{t+1}^H - V_{t+1}^B - V_{t+1}^S)$.

$\hat{p}_t = V_{t+1}^S + \alpha(V_{t+1}^H - V_{t+1}^B - V_{t+1}^S)$

$\hat{p}_t - V_{t+1}^S = \alpha(V_{t+1}^H - V_{t+1}^B - \hat{p}_t) + \alpha(V_{t+1}^H - V_{t+1}^B - \hat{p}_t)$.

$\alpha(V_{t+1}^H - V_{t+1}^B - \hat{p}_t) + \alpha(V_{t+1}^H - V_{t+1}^B - \hat{p}_t)$

23 The buyer’s surplus is $bs_t = \beta(V_{t+1}^H(x) - V_{t+1}^B - \hat{p}_t)$, the seller’s surplus is $ss_t = \beta(\hat{p}_t - V_{t+1}^S)$, and the price maximizes the weighted product of the surpluses $ss_t^\alpha bs_t^{1-\alpha}$, the first order condition is $ss_t = \alpha(bs_t + ss_t)$ or $\hat{p}_t - V_{t+1}^S = \alpha(V_{t+1}^H(x) - V_{t+1}^B - \hat{p}_t + \hat{p}_t - V_{t+1}^S)$.

15
If I take the expectation of the house prices \(\hat{p}_t \) over all cross-section of transactions in a period, expected price can be computed as

\[
p_t = E[\hat{p}_t | \text{Sale}] = E[\hat{p}_t | x \geq \tilde{x}_t] = V_{t+1}^S + \alpha \left(\frac{E[x|x \geq \tilde{x}_t]}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B - V_{t+1}^S \right),
\]

(13)

Then the expected house prices within the Nash bargaining model are

\[
p_t = V_{t+1}^S + \frac{\alpha}{1 - \gamma}(E[x|x \geq \tilde{x}_t] - \hat{x}_t)
\]

Given the search and price-setting process, the buyer’s and seller’s surplus and the expected house prices are given by Proposition 1. The expected buyer’s surplus is the buyer’s share \((1 - \alpha)\) of the expected joint surplus, conditional on the success of the transaction: \(\beta \frac{\pi_t}{\theta_t} E[V_{t+1}^H(x) - V_{t+1}^B - V_{t+1}^S] \geq 0 = \frac{1}{1 - \gamma} (E[x|x \geq \tilde{x}_t] - \hat{x}_t) \) net of the buyer search costs \(c^B \), where \(\pi_t/\theta_t \) is the probability of buying in period \(t \). Similarly for the seller. If the buyer (seller) expects positive expected gain from participating in the market, \(\beta \frac{\pi_t}{\theta_t} (E[x|x \geq \tilde{x}_t] - \hat{x}_t) - c^B \geq 0 \), then she participates in the market, and visa versa. Hence, in equilibrium, their surpluses are given by Proposition 1. Sale happens only if a seller participates, i.e. when \(SS_t = \beta \frac{\pi_t}{1 - \gamma} (E[x|x \geq \tilde{x}_t] - \hat{x}_t) - c^S > 0 \), in which case the expected house prices is related to the seller’s surplus as

\[
p_t = V_{t+1}^S + \alpha \left(\frac{E[x|x \geq \tilde{x}_t]}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B - V_{t+1}^S \right) = V_{t+1}^S + (SS_t + c^S)/(\beta \pi_t).
\]

Proposition 1. In the equilibrium of the Nash bargaining model with random search the buyer’s surplus \(BS_t \), the seller’s surplus \(SS_t \), the threshold value of services \(\bar{x} \), the expected prices \(p_t \), the probability of sale \(\pi_t \) satisfy

\[
BS_t = (\beta \frac{1 - \alpha}{1 - \gamma} \theta_t) (E[x|x \geq \tilde{x}_t] - \hat{x}_t) - c^B, \quad (14)
\]

\[
SS_t = (\beta \frac{\alpha \pi_t}{1 - \gamma} (E[x|x \geq \tilde{x}_t] - \hat{x}_t) - c^S), \quad (15)
\]

\[
\tilde{x}_t = \hat{x}_t, \quad (16)
\]

\[
p_t = V_{t+1}^S + \frac{c^S}{\beta \pi_t}, \quad (17)
\]

\[
\pi_t = (1 - \exp(-\theta_t))(1 - F(\tilde{x}_t)), \quad (18)
\]

where \(\hat{x}_t \equiv (1 - \gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H) \). The dynamics of the value functions \(V_t^B, V_t^S, v_t^H, V_t^N \), the number of new builders \(N_t \), the state \((B_t, \bar{S}_t, N_t, H_t, d_t)\) dynamics are given by equations (1), (2),(4), (5), (6), (7)-(11).

3.4 Price determination by auctions with random search

This section explains how the price is determined in the auction model with random search and closes the model by endogenizing the value functions of the buyer and seller. The search process starts in the same way as in the Nash bargaining model, that is each buyer and seller decide whether to incur search costs and participate in the local housing market. If they do, they become active buyers and sellers. Then each active buyer visits one active seller. When a buyer
visits a seller, she draws a match-specific value of housing services x. From this point on, the auction process differs from the Nash bargaining process. The value of the house for buyer is private information that is unobservable for the seller. Let N be a random variable representing the number of active buyers that have visited the seller. As mentioned earlier, $N \sim \text{Poisson}(\theta)$. If the seller has no visiting buyers, then $N = 0$, the seller keeps the house with an option to sell it the next period. If there is at least one buyer, $N \geq 1$, the seller runs the ascending bid auction with the reservation price \tilde{p}. The seller chooses the reservation price before observing how many buyers will visit and commits to the chosen price. The buyer does not observe the reservation price before the auction. During the auction if all buyers dropped out at the reservation price, the seller keeps the house. Otherwise, the price increases until only one buyer is left. This buyer gets the house and pays the price at which the auction stopped.

In the auction model the problem of the buyer and seller is to decide whether to be active or not, similarly to the Nash bargaining model. However, in addition to this decision each buyer decides on the optimal drop-out price $b_t(x)$, and seller decides on the optimal reservation price \tilde{p}_t. As it has been discussed in Section 3.2, the optimal drop-out price of the buyer with value x is $b_t(x) = V^H_{t+1}(x) - V^B_{t+1} = x/(1 - \gamma) + v^H_{t+1} - V^B_{t+1}$. The optimal reservation price \tilde{p}_t can be derived using the parallel between the seller’s problem in the auction and the monopolist problem, as in Bulow and Roberts (1989). The optimal reservation price equilizes the marginal revenue from a buyer and the marginal costs of serving this buyer. The marginal costs of serving the buyer is foregoing the option value to sell tomorrow V^S_{t+1}. The marginal revenue from a buyer is the virtual value $v(b) = b - \frac{1-G(b)}{g(b)}$, where b is the value of the object and $G(.)$ and $g(.)$ are the cdf and pdf of the value, i.e. the bid $b = V^H_{t+1}(x) - V^B_{t+1} = x/(1 - \gamma) + v^H_{t+1} - V^B_{t+1}$. In this model the marginal revenue is $v_t(x) = \frac{x}{1 - \gamma} + v^H_{t+1} - V^B_{t+1} - \frac{1-F(x)}{(1-\gamma)f(x)}$. The threshold value of housing services \bar{x}_t solves $v_t(\bar{x}_t) = \frac{x}{1 - \gamma} + v^H_{t+1} - V^B_{t+1} - \frac{1-F(\bar{x}_t)}{(1-\gamma)f(\bar{x}_t)} = V^S_{t+1}$, equation (26) in Proposition 2. For example, for the exponential distribution of x from Section 3.2, the threshold value is $\bar{x}_t = E[x] + \hat{x}_t$, where $\hat{x}_t \equiv (1 - \gamma)(V^B_{t+1} + V^S_{t+1} - v^H_{t+1})$. The corresponding optimal reservation price is $\tilde{p}_t = b_t(\bar{x}_t) = \frac{x}{1 - \gamma} + v^H_{t+1} - V^B_{t+1}$, where \bar{x}_t is restricted to $\chi_t = \max\{x_{\min}, \min\{x_{\max}, \bar{x}_t\}\}$ because it does not make sense for the seller in the auction model with random search, who is the monopolist, to lower the reservation price below the minimum bid of the buyer. The marginal buyer in the auction model with random search has the value of housing services \bar{x}_t that solves $\bar{x}_t - \frac{1-F(\bar{x}_t)}{f(\bar{x}_t)} = \hat{x}_t$ (in which case $\bar{x}_t \in [x_{\min}, x_{\max}]$ and $\chi_t = \bar{x}_t$), which differs from the threshold value of housing services in the Nash bargaining model $\bar{x}_t = \hat{x}_t$. Given the same value functions of the buyer and seller, the marginal buyer values the house more in the auction model, which will be reflected in higher house prices.

Another way to look at this difference is to compare the reservation prices of the seller in the auction and Nash bargaining models. In the auction model with random search, the reservation price is $\tilde{p}_t = V^S_{t+1} + \frac{1-F(\bar{x}_t)}{(1-\gamma)f(\bar{x}_t)}$, while in the Nash bargaining model it is V^S_{t+1}, since the seller is forced to sell the house as long as the surplus from the trade is positive even if it is optimal to wait. Higher reservation price in the auction model with random search reflects the monopoly behavior of the seller due to costly search of buyers as well as the ability to commit to the

\footnotesize
24If the seller cannot commit to the reservation price, then he has incentives to revise the price after an unsuccessful auction, driving the price down to the competitive level as in the auction model with directed search, see Section 3.5.

25As in the Diamond’s (1971) paradox despite the competition between sellers, the existence of the search costs
reservation price. In a random search model, once a buyer has paid search costs and has visited a seller, the seller becomes a local monopolist. If the seller is forced to compete with other sellers by allowing buyers to direct their search to seller with certain reservation price, then the optimal reservation price will be V_{t+1}^S, see Section 3.5 for the auction model with directed search. If the seller could not commit to the reservation price, he has an incentive to sell as long as a buyer offers anything higher than his continuation value V_{t+1}^S.

Due to the dynamic nature of the model, the bids and reservation prices depend on the value functions of buyers, sellers and homeowners, and are all jointly determined in the equilibrium, and depend on how the buyer’s and seller’s surpluses are formed. The buyer’s surplus is the buyer’s expected payoff from participating in the housing market search this period. If the buyer with value of housing services x participates, the probability that she has the highest value is $\exp(-\theta_t(1 - F(x)))$. The surplus from buying a house is the difference between the value of the object $b_t(x)$ and the marginal revenue $v_t(x)$.

Hence, the ex-ante expected surplus of the buyer is

$$\beta \int_{\chi_t}^{x_{\text{max}}} (b_t(x) - v_t(x)) e^{-\theta_t(1-F(x))} f(x) dx = \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t)) dx$$

where $\pi(\bar{x}_t, \theta_t) = 1 - e^{-\theta_t(1 - F(\bar{x}_t))}$ is the probability of sale and $\chi_t = \max\{x_{\text{min}}, \min\{x_{\text{max}}, \bar{x}_t\}\}$ is the threshold value \bar{x}_t bounded by the support of the distribution of x.

The seller sets the threshold value of housing services \bar{x}_t above or at the minimal value x_{min} in the random search model because there is no benefit in lowering the reservation price below the minimal bid. In this case, buyers get additional surplus of $(\frac{\beta}{1 - \gamma}(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_t - \bar{x}_t)$, so that a general expression for their total surplus is

$$BS_t = (\frac{\beta}{1 - \gamma}(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_t - \bar{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t)) dx - c_t^B)^+,$$

where buyers participate if the expression in the brackets is non-negative, and do not participate otherwise.

of observing the price charged by the seller, the seller is able charge the monopoly price. The Coase (1972) conjecture that the monopolist selling a durable good to buyers over time has to set competitive price due to competition with his future self does not apply here, because the seller is facing a different pool of buyers every period, and buyers with high values cannot hang on to this particular seller until the seller changes its pricing. In the directed search model, buyers can costlessly observe all reservation prices before visiting the seller, and the seller has to set the reservation price at the competitive level avoiding the Diamond paradox.

26 The probability that the buyer has the highest valuation is the expectation over the number of buyers who visited this seller N of the probability to be the highest bidder, $E_N F^{N-1}(x) = \exp(-\theta_t(1 - F(x)))$, where $N \sim \text{Poisson}(\theta_t)$ is the number of active buyers per active seller.

27 See Bulow and Roberts (1989) and Bulow and Klemperer (2009). Bulow and Klemperer (2009) compare the efficiency and optimality of the auctions and sequential mechanism with endogenous seller entry which is similar to this paper. The search model with Nash bargaining is different from the sequential mechanism discussed in their paper, because the buyers are selected randomly upon entry rather than based on their bids (and hence house values). This paper quantifies the differences in the standard Nash bargaining model with search and the auction models with search.

28 However, in the auction model with directed search, lowering \bar{x}_t below x_{min} can potentially bring extra buyers, see Section 3.5.
The option value of the seller is determined similarly. The ex-ante expected surplus of the seller is the difference of the marginal revenue \(v_t(x) \) and the marginal costs \(V_t^{S} \) for all the cases when the transaction happens \(x \geq \bar{x}_t \) for each buyer, multiplied by the expected number of buyers \(\theta_t \):

\[
\beta \theta_t \int_{\bar{x}_t}^{\bar{x}_{\text{max}}} (v_t(x) - V_t^{S}) e^{-\theta_t(1-F(x))} f(x) dx
\]

Rearranging\(^{29}\) and taking the search costs into account gives the seller’s surplus:

\[
SS_t = \left(\frac{\beta}{1-\gamma} (\bar{x}_t - \bar{x}_t) \pi(\bar{x}_t, \theta_t) + \frac{\beta}{1-\gamma} \int_{\bar{x}_t}^{\bar{x}_{\text{max}}} \left(\pi(x, \theta_t) - \theta_t(1-F(x)) (1 - \pi(x, \theta_t)) \right) dx - c^S \right) \text{+}, \quad (19)
\]

where the seller participates only if the expected payoff from participation is at least as large as the search costs, and holds off from the markets which earns her zero otherwise.

The sales price in the auction is either the reservation price \(\bar{p}_t \) or the drop-out price, which is the second-highest bid \(b(2)_t \),

\[
p_t = \frac{E_N[\bar{p}_t P(\text{Sale at } \bar{p}_t) + Eb(2)_t P(\text{Sale at } b(2)_t)]}{P(\text{Sale})} = \bar{p}_t + \frac{1}{1-\beta} \int_{\bar{x}_t}^{\bar{x}_{\text{max}}} \frac{\pi(x, \theta_t) - \theta_t(1-F(x)) (1 - \pi(x, \theta_t))}{\bar{p}_t} dx = \frac{V_t^{S} + SS_t + c^S}{\beta \pi_t}
\]

where \(\pi_t = 1 - e^{-\theta_t(1-F(\bar{x}_t))} \) is the probability of sale. The proof for the price equation is provided in Appendix A.1.

If the distribution of \(x \) is shifted exponential\(^{30}\) with standard deviation \(\sigma_x \) and expectation \(\mu_x \) and in the equilibrium the threshold value \(\bar{x}_t > x_{\text{min}} = \mu_x - \sigma_x \), then the expected revenue of the seller is \(\frac{\sigma_x}{1-\gamma} \varphi(\theta_t(1-F(\bar{x}_t))) \), where \(\varphi(\theta_t(1-F(\bar{x}_t))) = \int_{0}^{1} \frac{(1-F(x))}{\theta_t} e^{-1} dt \) where \(\int_{0}^{1} \frac{1-e^{-1}}{t} dt \) is the Euler integral\(^{31}\). The function \(\varphi(z) \) is increasing and concave in the adjusted tightness\(^{32}\) \(z \).

The expected revenue of the seller depends on the adjusted tightness \(z_t = \theta_t(1-F(\bar{x}_t)) \) which is the ratio of “serious” buyers out of all active buyers per seller. These buyers are “serious” in the sense that they are willing to pay higher than the reservation price \(\bar{p}_t \), because their value \(x \) is higher than the threshold value \(\bar{x}_t \) of the marginal buyer. The adjusted tightness \(z_t \), as compared to the tightness \(\theta_t \), takes into account that the house values are heterogeneous and not each

\(^{29}\) Using the definition of the marginal revenue/virtual value, \(v(x) = \frac{x}{1-\gamma} + V_t^{H} - V_t^{B} - \frac{1-F(x)}{(1-\gamma)} f(x) \), then denoting \(\bar{x}_t \equiv (1-\gamma)(V_t^{B} + V_t^{S} - V_t^{H}) \) and taking integral - \(\int_{\bar{x}_t}^{\bar{x}_{\text{max}}} (x - \bar{x}_t) d(1 - e^{-\theta_t(1-F(x))}) \) by parts will give of the seller’s surplus.

\(^{30}\) Shifted exponential cdf: \(F(x) = (1 - e^{-\frac{(x+\mu_x-\sigma_x)}{\sigma_x}}) \mathbb{I}_{(x \geq \mu_x - \sigma_x)} \), pdf \(f(x) = \frac{1}{\sigma_x} e^{-\frac{(x+\mu_x-\sigma_x)}{\sigma_x}} \mathbb{I}_{(x \geq \mu_x - \sigma_x)} = \frac{1}{\sigma_x} \left(1 - F(x) \right) \).

\(^{31}\) The general formula for the expected house prices for the exponentially distributed \(x \) is \(p = V^{S} + \frac{\varphi(\theta_t(1-F(\bar{x}_t)))}{\pi_t} (\bar{x} - Ex - (1-\beta)(V^{B} + V^{S})) \) where the last term drops out as long as \(\bar{x} > 0 \) in an equilibrium of the auction model with random search.

\(^{32}\) See Figure 8a in Appendix B.
buyer-seller pair is a good match. Similarly, the expression $e^{-\theta_t(1-F(\bar{x}_t))}$ is the probability that there are zero serious buyers who showed up at the open house, and hence $\pi_t = 1 - e^{-\theta_t(1-F(\bar{x}_t))}$ is the probability of sale. Given the revenue function $\varphi(.)$, the expected price for the exponential distribution simplifies to

$$p_t = V_{t+1}^S + \frac{\sigma_x}{1-\gamma} \frac{\varphi(\theta_t(1-F(\bar{x}_t)))}{\pi_t} \tag{21}$$

where the ratio $\varphi(z_t)/\pi(z_t)$ is increasing in the adjusted tightness z_t, see Figure 8b in Appendix B.

Proposition 2. In the equilibrium of the auction model with random search the seller’s surplus SS_t, the buyer’s surplus BS_t, the threshold value of services \bar{x}_t, the reservation price \tilde{p}_t, the expected house prices p_t, the probability of sale π_t satisfy

$$SS_t = \left(\frac{\beta}{1-\gamma} \pi(\bar{x}_t, \theta_t)(\chi_t - \hat{x}_t) + \frac{\beta}{1-\gamma} \int_{\chi_t}^{\chi_{\text{max}}} [\pi(x, \theta_t) - \theta_t(1 - \pi(x, \theta_t))(1 - F(x))] dx - c^S \right)^+, \tag{22}$$

$$BS_t = \left(\frac{\beta}{1-\gamma} (1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_t - \bar{x}_t) + \frac{\beta}{1-\gamma} \int_{\chi_t}^{\chi_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t)) dx - c^B \right)^+, \tag{23}$$

$$\bar{x}_t - \frac{1}{f(\bar{x}_t)} = \hat{x}_t, \tag{24}$$

$$\tilde{p}_t = \frac{\chi_t}{1-\gamma} + v_{t+1}^H - V_{t+1}^B \tag{25}$$

$$p_t = V_{t+1}^S + \frac{SS_t + c^S}{\pi_t}, \tag{26}$$

$$\pi_t = 1 - \exp(-\theta_t(1-F(\bar{x}_t))), \tag{27}$$

where $\chi_t = \max\{x_{\text{min}}, \min\{x_{\text{max}}, \bar{x}_t\}\}$, $\chi_t = \bar{x}_t$ for random search, $\hat{x}_t \equiv (1-\gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H)$. The dynamics of the value functions $V_t^B, V_t^S, v_t^H, V_t^N$, the number of new builders N_t, the state $(\tilde{B}_t, \tilde{S}_t, N_t, H_t, d_t)$ dynamics are given by equations (1), (2), (4), (5), (6), (7)-(11).

We have discussed how the buyers and sellers make decisions in the auction model with random search, and are ready to define a symmetric dominant strategy perfect foresight equilibrium.

Definition 1. For given values of the initial state $S_0 = (\tilde{B}_0, \tilde{S}_0, N_0, H_0, d_0)$, a discrete-time perfect foresight stationary equilibrium is a set of time-invariant value functions $V_t^B = V^B(S_t)$ for a buyer, $V_t^S = V^S(S_t)$ for a seller, $V_t^H(x) = V^H(x, S_t)$ for a homeowner, $V_t^N = V^N(S_t)$ for a builder, and a set of policy functions $b_t(x) = b(x, S_t)$ for a buyer and $\tilde{p}_t = \tilde{p}(S_t)$ for a seller, an influx of new builders $N(S_t)$ and a law of motion $S_{t+1} = \Gamma(S_t)$ such that

1. the value functions $V_t^B, V_t^S, V_t^H(x), V_t^N$ satisfy the Bellman equations,
2. buyers follow the weakly dominant strategy \(b_t(x) \),
3. sellers choose the optimal reservation price \(\bar{p}_t \),
4. free entry for new builders condition (6) holds,
5. the law of motion for the state in (7)-(11) is consistent with the individual behavior,
6. transversality conditions hold: \(\lim_{t \to \infty} \beta^t V_t^a \), is finite for buyers \(a = B \), sellers \(a = S \), homeowners \(a = H \) and builders \(a = N \), correspondingly.

The definition of an equilibrium in the Nash bargaining model is similar, but drops the requirement on the buyers choosing the optimal bidding strategy and sellers setting the optimal reservation price. The definition of an equilibrium the auction model with directed search additionally requires the buyers to optimally select the seller to visit, which is discussed in the next subsection.

3.5 Price determination by auction with directed search

In this section I consider the model in which the home sales prices are set in the process of directed search with auction. In the auction model with directed search each active seller posts a reservation price \(\bar{p}_t \) that starts the ascending bid auction. Active buyers observe the posted reservation prices of all sellers and decide which seller to visit.

Buyer’s problem

Consider a buyer, who has an opportunity to search tomorrow which gives him expected utility \(V_t^{B1} \). She decides whether to be active or not in the beginning of period \(t \). If the buyer decides to be active by paying search costs, she can visit one submarket with the reservation price \(\bar{p}(\bar{x}_t) \). In each submarket with the reservation price \(\bar{p}_t = \bar{p}(\bar{x}_t) \), or equivalently with the threshold value \(\bar{x}_t \), the ratio of active buyers per active sellers is \(\theta(\bar{x}_t) \). Then the surplus of the buyer in a submarket \(\bar{x}_t \) is \(BS_t = (1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_{1t} - \bar{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_{1t}}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t))dx - e^B \), see Section 3.4. Once a buyer visits the seller, she gets a realization of the value of housing services \(x \), and participates in the auction. When a buyer searches for a seller, in equilibrium she is indifferent between a submarket \(\bar{x}_1 \) and \(\bar{x}_2 \) if the expected surplus from buying a house is the same in these two submarkets, i.e.

\[
(1 - \pi(\bar{x}_{1t}, \theta_t))(1 - F(\bar{x}_{1t}))(\chi_{1t} - \bar{x}_{1t}) + \int_{\chi_{1t}}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t))dx =
\]

\[
(1 - \pi(\bar{x}_{2t}, \theta_t))(1 - F(\bar{x}_{2t}))(\chi_{2t} - \bar{x}_{2t}) + \int_{\chi_{2t}}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t))dx
\]

(30)

where equation (30) implicitly defines the equilibrium tightness \(\theta(\bar{x}_t) \) with the slope

\[
\theta'(\bar{x}_t) = -\frac{(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))}{(1 - F(\bar{x}_t))^2(1 - \pi(\bar{x}_t, \theta_t))(\chi_{1t} - \bar{x}_t) + \int_{\chi_{1t}}^{x_{\text{max}}} (1 - F(x))^2(1 - \pi(x, \theta_t))dx}
\]

(31)
The interaction of the buyer and the seller after the meeting occurred is the same as in the random search model of Section 3.4.

Seller’s problem

An active seller has an option value to sell tomorrow \(V_{t+1}^S \), and he is deciding on the optimal reservation price \(\bar{p}_t \) to post. Each reservation price \(\bar{p}_t = \bar{p}(\bar{x}_t) = b^* (\bar{x}_t) = \frac{\bar{x}_t}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B \) corresponds to the threshold value of housing services \(\bar{x}_t \) even when \(\bar{x}_t \) is outside of the range of \(x \), so we can think of the seller choosing the threshold \(\bar{x}_t \) directly. For each \(\bar{x}_t \), the number of active buyers that he can expect to visit is distributed by Poisson with expectation \(\theta(\bar{x}_t) \). Appendix A.2 shows that the expected payoff of the seller from the auction is

\[
SS_t = (\beta \frac{\chi_t - \bar{x}_t}{1 - \gamma} [\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))]) - \beta \frac{\bar{x}_t - \bar{x}_t}{1 - \gamma} \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)) + \\
\frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))] dx - c^S.
\]

(32)

This surplus allows for any reservation value \(\bar{x}_t \). If the reservation value is restricted to the range of values of \(x \), \(\bar{x}_t \in [x_{\min}, x_{\max}] \), as in the auction model with random search, then \(\chi_t = \max\{x_{\min}, \min\{x_{\max}, \bar{x}_t\}\} = \bar{x}_t \), and the expression simplifies to the seller’s surplus in (20).

Maximizing the seller surplus (32) with respect to the reservation value \(\bar{x}_t \), taking into account that the tightness \(\theta(\bar{x}_t) \) depends on \(\bar{x}_t \) through (31), see Appendix A.2, gives

\[
\bar{x}_t = \hat{x}_t = (1 - \gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H)
\]

\[
\bar{p}_t = V_{t+1}^S
\]

The seller sets the reservation price at the competitive level due to the endogenous search of buyers. Otherwise, the Bellman equations for the value functions of buyers and sellers as well as the expected house price are the same to the auction model in the random search, and are summarized in Proposition 3.

Proposition 3. In the equilibrium of the auction model with directed search the seller’s surplus \(SS_t \), the buyer’s surplus \(BS_t \), the threshold value of services \(\bar{x}_t \), the reservation price \(\bar{p}_t \), the expected house prices \(p_t \), the probability of sale \(\pi_t \) satisfy
\[SS_t = \left(\frac{\beta \chi_t - \hat{x}_t}{1 - \gamma} \right) \left[\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t)) \right] + \]
\[+ \frac{\beta}{1 - \gamma} \int_{x_t}^{x_{\text{max}}} \left[\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t)) \right] dx - c^S, \]
\[BS_t = \left(\frac{\beta}{1 - \gamma} \right) (1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_t - \bar{x}_t) + \]
\[+ \frac{\beta}{1 - \gamma} \int_{x_t}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t)) dx - c^B, \]
\[\bar{x}_t = \bar{x}_t, \]
\[\bar{p}_t = V_{t+1}^S, \]
\[p_t = V_{t+1}^S + \frac{SS_t + c^S}{\beta \pi_t}, \]
\[\pi_t = 1 - \exp(-\theta_t(1 - F(\bar{x}_t))), \]

where \(\chi_t = \max\{x_{\text{min}}, \min\{x_{\text{max}}, \bar{x}_t\}\}, \hat{x}_t \equiv (1 - \gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H). \)

The properties of the equilibrium of the auction models with random and directed search, however, are different due to the nature of search. The seller in the auction model with directed search is competing with other sellers for interested buyers by luring them with lower reservation price, or in other words, with lower \(\bar{x}_t \). For example, for the exponential distribution of housing services \(x \) and \(\bar{x}_t \in [x_{\text{min}}, x_{\text{max}}] \), the expected prices are

\[p_t = V_{t+1}^S + \frac{\sigma_x}{1 - \gamma} \frac{\varphi(\theta_t(1 - F(\bar{x}_t))) - \pi_t}{\pi_t} \]

As compared to the auction model with random search in equation (21), is the addition \(-\pi_t\) term in the numerator of second term. This term appears because of the competition between sellers. Because of the competition between seller, the equilibrium allocation of the auction model with the directed search solves the problem of the social planner constrained by the search frictions, see Section 5.

In the next Section I compare these models and provide the intuition on why the auction models, with random and directed search, produce higher volatility than the Nash bargaining model.

4 Comparison of the Nash bargaining and auction models

In the previous section I have discussed the dynamic search models of the local housing market, the Nash bargaining model, prevalent in the housing literature, and the auction models, that I am proposing. This section compares the equilibrium outcomes of these models. First, in Sections 4.1 and 4.2 I illustrate how the main housing market variables are determined and differ in the steady-states of the models if I use the same parameter values for these models and the housing
services are distributed exponentially. I find that the house prices are higher, there are more houses on the market, and the houses stay longer in the Nash bargaining model as compared to the auction model with random search.

Second, in Section 4.3 I illustrate how the shocks to the influx of buyer can be amplified in the auction model. Lastly, in Section 4.4 I calibrate the models to match the moments from the data to the model, solve them numerically and compare their quantitative performance. The numerical solution is done for three distributions of the value of housing services x: exponential, normal and uniform. The exponential distribution is used as a primary example throughout the paper including this section because it has constant hazard rate which simplifies many expressions. All these distributions have non-decreasing hazard rates that satisfy the requirement from Section 3.1. In Section 4.5 I demonstrate that the house price growth is more volatile in the auction models than in the Nash bargaining model, and are closer to the volatility of the house prices observed in the data.

4.1 The steady state equilibrium

In order to illustrate the determination of the steady state equilibrium in the auction models, I consider the auction model with directed search33, and assume that the steady-state value of the threshold value \bar{x}^* is within the range of $f(x)$, i.e. $\bar{x}^* \in [x_{\min}, x_{\max}]$. This restriction on the parameters holds in the calibration, and simplifies the system of equations. The system of steady-state equilibrium equations reduces to the system in (\bar{x}, θ):

\[
(1 - \beta)V^{S*} = \left(\frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{max}} \frac{\pi(x, \theta) - \theta(1 - F(x))(1 - \pi(x, \theta))}{(1 - \beta)} dx - c^S \right) \tag{FE}
\]

\[
\bar{x} = (1 - \beta(1 - \lambda^0))(\frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{max}} (1 - F(x))(1 - \pi(x, \theta)) dx - c^B - w) + \frac{1}{1 - \beta}
\]

\[
+ (1 - \beta(1 - \delta))V^{S*} - \beta \lambda^0 V^0 \tag{PS}
\]

where the steady-state value of the option value to sell $V^{S*} = \frac{1}{\beta \kappa} \left((1 - (1 - \beta)(1 - \kappa))c^0 + c^1 + \frac{c^2 6d^2}{\kappa^2 \theta} \right)$. Equation (FE) is the requirement on the option value to sell to be equal to the marginal cost of entering the market for the builder and is called the Free Entry condition (FE), and the equation (PS) is the equation on the optimal threshold value of the seller $\bar{x} = (1 - \gamma)(V^S + V^B - v^H)$, called the Price Setting (PS) equation.

33In the auction model with random search the free entry condition is the same as in the auction model with directed search, and the price setting condition behaves similarly to the price setting condition in the auction model with directed search, because the inverse of the hazard rate $(1 - F(x))/f(x)$ is decreasing in x. The illustration for the Nash bargaining is standard, see Pissarides (2000)
Figure 4: The free entry and price setting conditions for the steady state of the auction model with directed search

Figure 4 show the free entry and price setting conditions in the \((\theta, \bar{x})\) axis. The free entry condition is increasing, because for higher levels of tightness \(\theta\), the threshold value of housing services \(\bar{x}\) has to be higher to decrease the probability of sale which keeps the option value to sell tied to the marginal costs of entry. The price setting is decreasing because for higher levels of tightness \(\theta\), the threshold value of housing services has to be lower to keep the buyers interested in buying at the low price despite low probability of buying. Appendix A.3 proves that the positive slope of (FE) and negative slope of (PS).

The curvature of the lines depends on the distribution. For example, for the exponential distribution the FE line is concave and the PS line is concave for small levels of tightness \(\theta\) and convex for high levels of tightness \(\theta\), so Figure 4 plots these lines schematically around the steady state. When the influx of buyers \(d\) rises, both lines shifts to the right which increases the steady state tightness. The effect on the steady state threshold \(\bar{x}\) depends on the relative magnitude of these shifts. The transitional dynamics of the system is addressed in Section 4.5 where I show that the auction models produce higher volatility than the standard Nash bargaining model.

4.2 Comparison of the steady states

To illustrate how the mechanisms can produce different predictions, I consider the case when the housing services \(x\) are distributed exponentially, and the threshold value in the steady-state is above the minimum value for \(x\) according to the distribution: \(\bar{x}^* > x_{\text{min}}\) holds\(^{34}\).

Proposition 4 (Comparison of the steady-states in the Nash bargaining and auction model with random search). If \(\bar{x}^* > x_{\text{min}}\), the housing services \(x\) are distributed exponentially with the probability distribution function \(f(x) = \frac{1}{\sigma_x} \exp(-\frac{x + \sigma_x - \mu_x}{\sigma_x}) I_{\{x \geq \mu_x - \sigma_x\}}\), and the parameters are the

\(^{34}\)This condition is satisfied for all models for the calibrated parameter values in Section 4.4
same across models, then in the auction model with random search as compared to the Nash bargaining model

1. the expected prices \(p \) are higher,
2. the number of houses for sale \(S \) is greater,
3. the probability of house sale \(\pi \) is lower and the time on the market for sellers \(T^S \) is higher,
4. the sales \(q \), the option value to sell \(V^S \), the number of homeowners \(H \) and builders \(N_0 + N \) are the same.

Proof. See Appendix A.4. \(\square \)

The result on the higher house prices in the auction model with random search as compared to the Nash bargaining model is intuitive, and is similar to the static result in Bulow and Klemperer (1996). The seller acts as a monopolist and maximizes the expected revenue by manipulating the reservation price that influences the final sales price. Because the seller prices the houses so high, he has to stay on the market for longer and enjoy lower probability of sale similarly to how the monopolist hikes up the prices by decreasing the production. The pool of houses for sale is bigger since the sellers are sitting on the market and waiting for the high value buyer to show up. The sales, the option value to sell, the number of builders, and the number of homeowners are the same because the number of buyers and sellers have to be stabilized by selling exactly as many houses as the number of buyers or sellers enters the market. In Section 5 I consider the social planner problem constrained by the same search frictions as in the auction models, and find that the auction model with random search is inefficient due to the local monopoly of the seller.

Proposition 5 (Comparison of the steady-states in the auction model with random search and the auction model with directed search). If \(\bar{x}^r > x_{\min} \), the housing services \(x \) are distributed exponentially with the probability distribution function \(f(x) = \frac{1}{\sigma_x} \exp\left(-\frac{x + \sigma_x - \mu_x}{\sigma_x}\right) \mathbb{1}_{\{x \geq \mu_x - \sigma_x\}} \), and the parameters are the same across models, then in the auction model with random search as compared to the auction model with directed search

1. the adjusted tightness \(z = \theta(1 - F(\bar{x})) \) is lower,
2. the threshold value \(\bar{x} \) is higher,
3. the probability of house sale \(\pi \) is lower and the time on the market for sellers \(T^S \) is higher,
4. the number of houses on the market \(S \) is bigger,
5. the sales \(q \), the option value to sell \(V^S \), the number of homeowners \(H \) and builders \(N_0 + N \) are the same.

Proof. See Appendix A.4. \(\square \)
4.3 Amplification of shocks in the auction models

The intuition of the amplification of shocks in the auction models as compared to the Nash bargaining models can be gained from solving the arbitrage equations for the price forward taking as given the expected path of the probability of sale \(\{\pi_t\}_{t=0}^{\infty} \) for each model. To illustrate how expected prices depend on the probability of sale, assume that the value of housing services \(x \) is distributed exponentially with cdf \(F(x) = (1 - e^{\frac{x - \mu_x - \sigma_x}{\sigma_x}}) I_{\{x \geq \mu_x - \sigma_x\}} \), \(\bar{x}_t > \mu_x - \sigma_x \) \(\forall t \) for simplicity, and that the seller actively searches in the market and has positive probability of sale and positive expected surplus from being active. Then the price in the Nash bargaining is given by

\[
p_t = V_{t+1}^S + \frac{\alpha}{1 - \gamma} \frac{\sigma_x}{1 - \gamma}
\]

where the option value to sell \(V_{t+1}^S \) evolves according to

\[
V_{t+1}^S = \beta V_{t+2}^S + \alpha \beta \pi_{t+1} \frac{\sigma_x}{1 - \gamma} - c^S.
\]

(41)

Solving equation (41) forward gives the solution for the price in the Nash bargaining

\[
p_t = \alpha \frac{\sigma_x}{1 - \gamma} \sum_{i=1}^{\infty} \beta^i \pi_{t+i} + \alpha \frac{\sigma_x}{1 - \gamma} - \frac{c^S}{1 - \beta}.
\]

(NB)

In the auction model with random search, the price setting and the dynamics of the option value to sell are

\[
p_t = V_{t+1}^S + \frac{\varphi_t}{\pi_t} \frac{\sigma_x}{1 - \gamma},
\]

\[
V_{t+1}^S = \beta V_{t+2}^S + \beta \varphi_{t+1} \frac{\sigma_x}{1 - \gamma} - c^S,
\]

where \(\varphi_t = \varphi(\theta_t(1 - F(\bar{x}_t))) = \int_0^{\theta_t(1 - F(\bar{x}_t))} \frac{1 - e^{-t}}{t} dt \), \(\int_0^{\theta_t(1 - F(\bar{x}_t))} \frac{1 - e^{-t}}{t} dt \) is the Euler integral, and \(z_t = \theta_t(1 - F(\bar{x}_t)) \) is the adjusted tightness. Since \(\pi_t = 1 - \exp(z_t) \), we can say that \(\varphi_t = \int_0^{\log(1 - \pi_t)} \frac{1 - e^{-t}}{t} dt \) which is an increasing convex function in \(\pi_t \).

The forward solution for the prices in the auction model with random search is

\[
p_t = \sum_{i=1}^{\infty} \beta^i \varphi_{t+i} \frac{\sigma_x}{1 - \gamma} + \frac{\varphi_t}{\pi_t} \frac{\sigma_x}{1 - \gamma} - \frac{c^S}{1 - \beta}.
\]

(RA)

Similarly, for the auction model with directed search

\[
p_t = V_{t+1}^S + \frac{\varphi_t - \pi_t}{\pi_t} \frac{\sigma_x}{1 - \gamma},
\]

\[
V_{t+1}^S = \beta V_{t+2}^S + \beta (\varphi_{t+1} - \pi_{t+1}) \frac{\sigma_x}{1 - \gamma},
\]

\[
35\text{See Lemma 3 in Appendix B.}
\]
and the forward solution for the prices is

\[p_t = \sum_{i=1}^{\infty} \beta^i (\varphi_{t+i} - \pi_{t+i}) \frac{\sigma_x}{1 - \gamma} + \left(\frac{\varphi_t}{\pi_t} - 1 \right) \frac{\sigma_x}{1 - \gamma} - \frac{c^S}{1 - \beta}. \]

(\text{DA})

The dependence of the house prices on the expected probability of sale is similar to the dependence of the stock prices on the expected dividends. The change in the expected probability of sale induces change in the house prices. The magnitude of this influence is determined by the slope \(\partial p_t/\partial \pi_{t+i} \) from the price setting mechanisms in (NB), (RA), (DA). In the next paragraphs I discuss how \(\partial p_t/\partial \pi_{t+1} \) and \(\partial p_t/\partial \pi_t \) looks like to gain the intuition on the amplification mechanism of the auction model.

First, consider how prices \(p_t \) depend on the probability of sale in period \(t+i \) for \(i \geq 1 \). Figure 5a shows the dependence of prices \(p_t \) in each of the models on the probability to sell in the next period \(\pi_{t+1} \) from the forward solutions for prices (NB), (RA) and (DA) with all other variables at the steady-state level and calibrated parameter values from Section 4.4. Specifically, the plot shows \(p_t = \alpha \frac{\sigma_x}{1 - \gamma} \beta \pi_{t+1} + \alpha \frac{\sigma_x}{1 - \gamma} \beta^2 \pi^* \frac{1}{1 - \beta} + \frac{\alpha \sigma_x}{1 - \gamma} \beta^2 \pi^* \frac{1}{1 - \beta} + \frac{\alpha \sigma_x}{1 - \gamma} \beta^2 \pi^* \frac{1}{1 - \beta} \) for the Nash bargaining, \(p_t = \beta \varphi_{t+1} \frac{\sigma_x}{1 - \gamma} + \beta^2 \pi^* \frac{1}{1 - \beta} \) for the auction model with random search, and \(p_t = \beta (\varphi_{t+1} - \pi_{t+1}) \frac{\sigma_x}{1 - \gamma} + \frac{\beta^2 (\pi^* - \pi^*)}{1 - \beta} \frac{1}{1 - \beta} \) for the auction model with directed search.

Figure 5: Expected house price as a function of the probability of sale in \(t+1 \) and as a function of the probability of sale in \(t \) keeping the probabilities of sales in the other periods at the steady-state level: for the Nash bargaining model with random search from equation (NB), auction model with random search from (RA) and auction model with directed search from (DA).

![Diagram](image)

(a) \(p_t \) as a function of \(\pi_{t+1} \)

(b) \(p_t \) as a function of \(\pi_t \)

All the models intersect at the steady-state value of the probability of sale \(\pi^* = 0.67 \) to fit the time on the market of 1.5 months targeted in the calibration. Outside of the steady-state, prices increase linearly with the probability of sale \(\pi_{t+1} \) in the Nash bargaining model. In the auction models, prices increase more than linearly, exponentially, as the probability of sale rises. Because
buyers can get the extreme realizations of the house values, and the prices reflect these extreme values in the sales prices, the house prices can shoot up significantly in the auction models as opposed to the Nash bargaining. In the Nash bargaining the increase of prices is limited even during the housing booms because the probability of sale is below one. Hence, based on this graph, given the volatility of the probability of sale, the volatility of the prices is expected to be the highest in the auction model with directed search, and higher in the auction model with random search than in the Nash bargaining model, which is shown in the Section 4.5 based on the numerical simulations.

Second, consider the comparison $\partial p_t / \partial \pi_{t+i}$ across models for $i = 0$, i.e. $\partial p_t / \partial \pi_{t}$, which is similar to the first case of $i > 0$. Figure 5b depicts the dependance of prices p_t in each of the models on the probability to sell π_t. The plot shows $p_t = \alpha \frac{\sigma_\pi}{1-\gamma} \frac{\beta_\pi}{1-\gamma} + \frac{\sigma}{\pi_t} \frac{\sigma_\pi}{1-\gamma} - \frac{\epsilon^S}{1-\beta}$ for the Nash bargaining, $p_t = \frac{\beta_\pi \sigma_\pi}{1-\beta} \frac{\sigma_\pi}{1-\gamma} + \frac{\sigma_\pi}{\pi_t} \frac{\sigma_\pi}{1-\gamma} - \frac{\epsilon^S}{1-\beta}$ for the auction model with random search, and $p_t = \frac{\beta_\pi \sigma_\pi}{1-\beta} \frac{\sigma_\pi}{1-\gamma} + (\frac{\sigma_\pi}{\pi_t} - 1) \frac{\sigma_\pi}{1-\gamma} - \frac{\epsilon^S}{1-\beta}$ for the auction model with directed search.

In the Nash bargaining, prices do not depend on the contemporaneous probability of sale π_t so the graph is flat with respect to π_t, whereas in the auction models prices are convex in the probability of sale π_t. This probability influences the prices through the term φ_t/π_t that is an increasing and convex function of π_t, see lemma 4 in Appendix B. The functions for the auction model with the random search and directed search coincide because they both depend on the same term φ_t/π_t, and other parameters are calibrated so that the prices coincide in the steady-state. So there is no difference in how these two models react to contemporaneous probability of sale due to calibration, but the auction models react differently to future probabilities of sale π_{t+i}, $\forall i \geq 1$. In terms of comparison with the Nash bargaining, the auction models react more to the current market conditions relative to the Nash bargaining model, because prices in the Nash bargaining model does not react to the current market conditions, and in the auction models prices are convex in the current probability of sale.

To sum up, the auction model with directed search is the most sensitive to the changes in the probability of sale and the Nash bargaining model is the least sensitive. All models can be calibrated to be in any state of the market, – hot or cold. But if the Nash bargaining model is calibrated to the cold market, it has trouble producing enough variation in the prices to capture hot markets, and vice versa. In the auction models, prices vary significantly with the state of the market, and produce more variation in prices that generates higher volatility.

4.4 Calibration

In this section I calibrate the three models from Section 3 by matching the moments from the model and the data, and solve these models to study the fluctuations of house prices over time.

The strategy of the moments matching calibration is the following. First, set the basic parameters to be equal to the same basic values for all models. These basic parameters include the discount factor β, the initial value of the influx of buyers d and the rent w, the fraction of homebuilders, who deliver homes, each period, κ, the probabilities to receive separation shocks requiring a homeowner to leave the city λ^0, to buy a new house due to depreciation of previous home δ, to move internally to a different home within the same metro area λ^M, the cost to convert land to land suited for residential construction c^0, and the buyer’s search costs c^B. Then choose
the remaining parameters36 so that the steady of each model fits the housing market statistics. The Nash bargaining model has one additional parameter, – the bargaining power of a seller α. It is set to equal bargaining weights between a buyer and a seller, following the literature.

The crucial parameter for studying house prices is the dispersion of house values σ_x^2. Section 4.3 shows that it directly impacts the level of the house price index. To highlight the comparison of the mechanisms rather than the comparison between fitted dispersion of values σ_x, this parameter is calibrated to the same value between models. In particular, the value of σ_x is selected to fit the average house prices in the Nash bargaining model to equal to the average prices in the data given the baseline value of the seller’s search costs of $10,000$ per month. Then in the auction models, the same value of σ_x is used but the search costs of the seller have to adjust to generate the same level of house prices. We know from Section 4.1 that if parameters of the models are the same, the models generate different moments such as prices and time on the market. Hence, parameters have to differ between the models to fit the same moments.

The data moments are computed from the house prices in the Los Angeles MSA. The level of analysis is set to the MSA level, since the MSA is a natural housing market because residents commute inside MSA for work. Moreover, the house prices swing between booms and busts and are volatile in the Los Angeles MSA which is used as an example to calibrate the values of rents, prices, sales and time on the market for buyers and sellers.

The values for calibrated parameters are shown in Table 2. The period in the model is taken to be a month. The annual discount factor is set to 6% annually (Burnside, Eichenbaum, and Rebelo (2016)). The calibrated rent w and influx of buyers d are calibrated using the mean of monthly seasonally adjusted real rent and sales for 2010:M2-2015:M537, correspondingly, from Zillow.com in Los Angeles MSA. In the steady state the influx of buyers d has to be equal to sales q, adjusted by the separation rates $\lambda^0, \lambda^M, \delta$38, to keep the number of buyers constant, so the average sales are used to calibrate the influx of buyers. The probability of internal move λ_M is set to 3% annually (around estimates of Piazzesi, Schneider, and Stroebel (2019)), and probability of moving within the market λ^0 is set to match the overall turnover of 8% annually39 (Dieleman, Clark, and Deurloo (2000)).

Malpezzi, Ozanne, and Thibodeau (1987) estimates of annual depreciation vary from 0.43% to 0.93% across 59 metro areas with Los Angeles MSA estimates between 0.3% and 0.7% depending

36Parameters of the marginal costs of builders c^1, c^2, utility V^0 that a homeowner, who leave the city, gets, seller’s search costs c^S, the expected value of the homeowner’s housing services μ_x

37The sales series from Zillow.com starts in 2010:M2. Longer series are available for the rent and price, but the series are picked to represent the same period.

38$d = \lambda^0 q / (1 - (1 - \lambda^0)(1 - \delta)(1 - \lambda^M))$, see the steady-state calculations in Appendix A.4

39What happens with the volatility when the turnover increases? To answer this question, I have tried different experiments with changing targeted turnover from 8% to 4% and 10%. Lowering the value of targeted turnover from 8% to 4% (10%) increases (decreases) volatility of prices. One possible explanation for this could be that in the markets with a lot of turnover, resale value is a bigger share of the house price relative to the idiosyncratic component of house value, which dampens volatility due to the idiosyncratic variation in house values. However, it is difficult to judge whether this argument is valid, because, when the targeted turnover changes, in addition to directly changing the probability of moving out of the city λ^0, it also affects other parameters, $\sigma_x, c^S, c^1, c^2, Ex, V^0$. This happens because they are selected to match given moments for prices, time on the market, and elasticity of housing supply, given the values of λ^0 and $\beta, w, d_0, \alpha, \lambda^M, \delta, \kappa, \sigma^H$. Since shift in each individual parameter could potentially change the quantitative effect, higher volatility could be due to change in the turnover or in those other parameters. I thank John Leahy for this question inspired by the discussion House and Ozdenoren (2008) of the idiosyncratic versus resale value in prices of durable goods.
on the age of the home. More recent estimates of Harding, Rosenthal, and Sirmans (2007) and
Syed and De Haan (2017) are 0.75% and 0.52-0.58%. I use 0.6% for calibrating δ which falls
within these estimates. The expected time to build a home of 6 month\footnote{Survey of Construction, buildings with 1 unit built for sale, start to completion: \url{https://www.census.gov/construction/nrc/pdf/avg_starttocomp.pdf} and \url{https://www.census.gov/construction/nrc/lengthoftime.html}} pins down κ parameter.

Parameter c^0 shows the sunk costs associated with preparing land for residential construction
such as obtaining permits and land development. This cost c^0 is calibrated to $50,000, but this
choice does not affect the simulated dynamics of prices\footnote{For example, if I decrease c^0 to $25,000$ or increase to $75,000$, the main results in Figure 6 and Table ?? stay the same: see Tables 8, 10, 9, 11 and Figures 11, 12 in Appendix D}. The intuition behind this neutrality result is that the simulated economy never faces negative demand shocks large enough to make the builders regret that they have entered the market and born sunk cost c^0, in which case there
is a perfect substitution between parameters c^0 and c^1, so increasing c^0 decreases the calibrated
value of c^1, leaving the simulated dynamics unaffected. Finally, the buyer’s search costs c^B are
calibrated to zero, since the buyer’s search costs are negligible as compared to the sellers costs
of marketing and putting the house on sale.

Table 2 shows the calibrated parameter values for the exponential distribution of the housing
services x. To parametrize the distribution, I consider the exponential cdf $F(x) = 1 - \exp(-\frac{x + \sigma_x - \mu_x}{\sigma_x} \{x \geq \mu_x - \sigma_x\})$ for the distribution of the value of housing services x as the leading example, where μ_x, σ_x are the expectation and the standard deviation of x, correspondingly. I also
consider the normal distribution $x \sim N(\mu_x, \sigma^2_x)$, and the uniform distribution $x \sim U[x_{\min}, x_{\max}]$ with $\mu_x = (x_{\max} - x_{\min})/2$ and $\sigma_x = (x_{\max} - x_{\min})/\sqrt{12}$. Parameters of distribution, the expectation μ_x and the standard deviation σ_x are calibrated together with other parameters to match the data moments. Tables 4 and 6 in Appendix C show calibrated parameter values for the normal and uniform distributions, correspondingly.

The utility that a homeowner gets upon leaving the city, V^0, is calibrated to the steady-state
value of being a buyer V^B. The logic behind this calibration is that the homeowner moves
to another identical city and starts over as a buyer. The remaining parameters, that is the
parameter of distribution μ_x, the parameters of the marginal costs of entry of sellers c^1, c^2, the
seller’s search costs are jointly calibrated to match mean prices the $450,000, the time on the
market for sellers of one and a half months $T^S = 1.5$, time on the market for a buyer of three
months, $T^B = 3$, the elasticity of housing supply $\varepsilon^H_p = 0.63$ (Saiz (2010)). The standard
deviation and autocorrelation of process for the inflow of buyers d_t is selected to fit the volatility
of house prices for at least one of the models. Since the volatility of the auction model with
random search is the highest on average across simulations, the standard deviation has been
selected to fit this model. The crucial part is that volatility of the auction models is higher than
that of the bargaining model.
Table 2: Moments-matching calibration for exponential distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>RA</th>
<th>DA</th>
<th>NB</th>
<th>Targeted moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor, annual</td>
<td>β</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>6% annual return</td>
</tr>
<tr>
<td>rent, monthly, $1,000</td>
<td>w</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mean real rent</td>
</tr>
<tr>
<td>inflow of buyers, monthly, 1,000</td>
<td>d_0</td>
<td>4.76</td>
<td>4.76</td>
<td>4.76</td>
<td>mean sales</td>
</tr>
<tr>
<td>bargaining power of seller</td>
<td>α</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>equal bargaining power</td>
</tr>
<tr>
<td>prob internal move, annual</td>
<td>λ^M</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>Piazzesi, Schneider, Stroebeel (2019)</td>
</tr>
<tr>
<td>prob leave city, annual</td>
<td>λ^B</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>turnover rate 8%</td>
</tr>
<tr>
<td>prob depreciate, annual</td>
<td>δ</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>annual depreciation 0.6%</td>
</tr>
<tr>
<td>prob deliver, monthly</td>
<td>κ</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>6 month construction</td>
</tr>
<tr>
<td>fixed land cost, $1,000</td>
<td>c^0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>land development costs</td>
</tr>
<tr>
<td>buyer’s search costs, monthly, $</td>
<td>c^B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fit $\tilde{\sigma}_{\text{Data}}$</td>
</tr>
<tr>
<td>standard deviation of d_t</td>
<td>σ_d</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>fit $\tilde{\sigma}_{\text{Data}}$</td>
</tr>
<tr>
<td>autocorrelation of d_t, annual</td>
<td>ρ</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>costless search</td>
</tr>
<tr>
<td>std x, $1,000$</td>
<td>σ_x</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>jointly calibrated</td>
</tr>
<tr>
<td>seller’s search costs, monthly,</td>
<td>c^S</td>
<td>29.38</td>
<td>4.75</td>
<td>10.00</td>
<td>to match</td>
</tr>
<tr>
<td>$1,000</td>
<td>c^1</td>
<td>-60.23</td>
<td>-54.12</td>
<td>-55.42</td>
<td>$c^H^S = 0.63,$</td>
</tr>
<tr>
<td>level of marginal costs, $1,000</td>
<td>c^2</td>
<td>36.74</td>
<td>36.74</td>
<td>36.74</td>
<td>$V^0 = V^B, p = 450K,$</td>
</tr>
<tr>
<td>angle of marginal costs, $1,000</td>
<td>c^3</td>
<td>13.15</td>
<td>12.89</td>
<td>6.89</td>
<td>$T^B = 3, T^S = 1.5$</td>
</tr>
<tr>
<td>mean services x, Ex, $1,000$</td>
<td>Ex</td>
<td>1988</td>
<td>1988</td>
<td>799</td>
<td>in LA MSA, Zillow.</td>
</tr>
<tr>
<td>utility leave city, $1,000</td>
<td>V^0</td>
<td>1988</td>
<td>1988</td>
<td>799</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns RA/DA and Nash bargaining model in column NB. Each model is individually calibrated to match the same moments, observed in the data. The distribution of housing service flow x is exponential. See Section 4.4 for details.

4.5 Quantitative results

In this section I compare the volatilities, generated by the Nash bargaining model and the auction models, in response to the shocks of the inflow of buyers d_t, with the moments in the data. The data comes from monthly Zillow house price index for Los Angeles MSA from 1996:M4 to 2015:M6. To compare the moments from the data and models, each model is simulated 100 times to produce a time-series of $T = 231$ months (to match the length of data), and the average moments from these experiments are reported in Tables 3 in the text, 5, 7 in Appendix C for the exponential, normal and uniform distributions, respectively. All simulations start from the steady-state of the corresponding model. Zillow applies the Henderson filter to the raw data and then uses a seasonal-trend decomposition (STL) procedure to remove seasonality42. I apply the same filter to the simulated data.

Figures 6 in the text and 9, 10 in Appendix C illustrate simulations of the house price growth for each other model in response to the same series of shocks for exponential, normal and uniform distribution of values x. Visually the volatility of the home prices in the auction models is higher than in the Nash bargaining models, and it is confirmed by the average moments from the experiments in Tables 3 in the text and Tables 5, 7 in Appendix C. This is the main quantitative

42Zillow ZHVI methodology: http://www.zillow.com/research/zhvi-methodology-6032/
result of the paper. Figure 7 shows side by side Figure 1a from Introduction and Figure 6 with the simulations of the auction and Nash bargaining models. The auction models are more volatile than the Nash bargaining model, and come closer to matching the house price volatility observed in the data.

Figure 6: The volatility of the simulated prices in the auction models is higher than in the Nash bargaining model, example of exponential distribution

![Graph showing price volatility](image)

Notes: This graph shows an example of simulated monthly series of the house price growth in percent from the auction model with random search in dashed red line, from the auction model with directed search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line. In each model the housing market is subject to the same series of shocks, fixed with the seed. The housing services x are exponential distributed, $x \sim F(x) = (1 - \exp(-\frac{x + \mu_x - \mu}{\sigma_x}))1\{x \geq \mu_x - \sigma_x\}$, where μ_x, σ_x are calibrated to fit the data moments, see text.
Figure 7: The house price growth from the data and from the simulation in the models

(a) Los Angeles MSA data
(b) Models

Notes: This figure shows the house price growth in panel (a) and the simulation of the auction model with random search, auction model with directed search, the Nash bargaining with random search in panel (b). In each model the distribution of house values \(x \sim F(x) = (1 - \exp(-\frac{x - \mu x}{\sigma x})) \mathbb{I}_{\{x \geq \mu x - \sigma x\}} \), and each model is hit by the same series of shocks. The line “data” shows the house price growth from Zillow Los Angeles MSA.

Table 3 also reports the autocorrelations of the house prices on the monthly, quarterly and annual frequencies in the models and the data. The autocorrelation of the house prices in the data within these frequencies is a puzzling feature of the housing market (see Guren (2018) for a summary). As can be seen from the Table, all models generate autocorrelation of the house prices, overshooting for the monthly and quarterly moments and undershooting for the annual moments. The auction models produce smaller autocorrelation relative to the Nash bargaining model. This prediction is consistent with the finding by Genesove and Hansen (2014) for Australia, who show that the auction prices generate less momentum than the negotiated prices.
Table 3: The auction house prices are more volatile in the auction models as compared to the benchmark Nash bargaining model, example of exponential distribution

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>RA</th>
<th>DA/SP</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\Delta \log p}$ monthly</td>
<td>0.0160</td>
<td>0.0160</td>
<td>0.0138</td>
<td>0.0090</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ monthly</td>
<td>0.5814</td>
<td>0.8147</td>
<td>0.7712</td>
<td>0.8428</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, last</td>
<td>0.0388</td>
<td>0.0438</td>
<td>0.0377</td>
<td>0.0251</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, last</td>
<td>0.3830</td>
<td>0.5418</td>
<td>0.4774</td>
<td>0.5951</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, average</td>
<td>0.0370</td>
<td>0.0417</td>
<td>0.0358</td>
<td>0.0241</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, average</td>
<td>0.4221</td>
<td>0.6298</td>
<td>0.5765</td>
<td>0.6694</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, last</td>
<td>0.1026</td>
<td>0.1330</td>
<td>0.1157</td>
<td>0.0796</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ annual, last</td>
<td>0.6662</td>
<td>0.1491</td>
<td>0.1540</td>
<td>0.2471</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, average</td>
<td>0.1016</td>
<td>0.1185</td>
<td>0.1037</td>
<td>0.0714</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$, annual, average</td>
<td>0.7225</td>
<td>0.2721</td>
<td>0.2728</td>
<td>0.3549</td>
</tr>
</tbody>
</table>

Notes: This table shows the moments based on Zillow house price growth data in column Data, average moments from 1,000 simulations of the auction model with random and directed search in column RA and DA/SP, correspondingly, and random Nash bargaining model in column NB. The SP name of the column refers to the social planner solution that can be decentralized by the auction model with directed search. $\sigma_{\Delta \log p}$ and $\rho_{\Delta \log p}$ stand for standard deviation and autocorrelation of the change in log prices. The distribution of values x is exponential $F(x) = (1 - \exp(-x/\sigma_x/\mu_x))I_{\{x\geq \mu_x - \sigma_x\}}$. I have applied the Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly and annual series from the monthly data. The quarterly series that are computed as change in the log prices at the last month in the quarter referred to as “last”, or the average change in the log prices referred to as “average”. Similarly, for the annual series.

5 Constrained Socially Optimal Allocation

The literature\(^43\) on competing mechanisms established that if the seller meets several buyers at a time, the weakly preferred mechanism for the seller is the second-price auction. Section 1 argues that in housing markets the seller is frequently visited by several buyers and the seller is using the sales mechanism that is essentially the second price auction with the reservation price. Section 4.5 shows that if this sales mechanism is built into the search and matching model, the quantitative predictions of the model differ substantially from the frequently employed Nash bargaining model.

What is the socially efficient level of house price volatility? This section tackles this questions through the lens of the search theory. The standard random search models usually are not constrained efficient, except for the knife-edge case in which the Hosios (1990) condition holds. In the random search model with auctions from the first part of the paper the seller runs an optimal auction that may not be socially efficient in the presence of the search frictions. In contrast, a well-known result from the literature on the directed search in the labor market

\(^{43}\)McAfee (1993), Peters (1997)
(Moen (1997), Shimer (1996)) is that allowing the sellers to compete for buyers, – by posting the trading mechanism – eliminates the inefficiencies that are present in the random search models.

However, these results may fail to extend if a more general setting is considered. For example, Guerrieri (2008) shows that the equilibrium in the dynamic directed search model of the labor market is not efficient once the workers have private information, unless the economy starts from the steady-state\(^4\). However, the private information coupled with the free entry of the sellers leaves the efficiency results intact in the static model of the housing search with auctions, as demonstrated by Albrecht, Gautier, and Vroman (2014). In this section I extend this result to a dynamic setting by building a dynamic equilibrium model of directed search with auctions and shows that it delivers the socially efficient allocation, constrained by search frictions.

This result is shown in several steps. I start with the framework of Section 3 to find the socially efficient allocation, constrained by the search frictions with many-to-one matches, and show that the equilibrium allocation in the random search auction model from Section 3.4 is not constrained efficient. The reason for the failure of efficiency is a monopoly behavior of seller in the optimal auction. The monopoly arises when the buyer randomly visits a seller without knowing the expected terms of the trade. The seller then becomes a monopolist, because if the buyer fails to transact with the current seller, the buyer has to wait till the next period and go through the search frictions, which is costly. If the sellers are allowed to advertise and commit to the terms of the trade beforehand and the buyers - to direct their search to sellers after observing the promised trading mechanism as in the auction model with directed search, I demonstrate that the equilibrium model of directed search decentralizes the constrained efficient allocation.

The constrained social optimum allocation is a solution of a social planner problem, constrained by the search frictions. In particular, given the current state of the economy \(S_t = (\bar{B}_t, \bar{S}_t, N_t, H_t, d_t)\), the social planner decides how many new builders \(N_t\) enter the market, how many buyers \(B_t\) and sellers \(S_t\) are active out of the pool of all buyers \(\bar{B}_t\) and sellers \(\bar{S}_t\). Then previous homeowners are separated from their homes, and, due to the search frictions, each active buyer is sent to an active seller according to the same Poisson process as in the decentralized auction and Nash bargaining models. Upon meeting a seller, a buyer draws a realization of the match-specific value of housing services \(x\). After observing these realizations, the social planner must decide whether to distribute a house from the active seller today or wait till tomorrow, and, if the house is distributed, which buyer gets the house.

The efficient distribution of the house prescribes the house to be awarded to the highest value buyer. Given that, the question is whether to distribute the house to the highest value buyer this period or keep the house and potentially distribute it the next period. Since the values for a house are independently and identically distributed over time and over buyers, the solution is be characterized by the threshold value of housing services \(x_t\), such that if the highest draw \(x\) of housing services exceeds \(x_t\), the house is distributed. The threshold \(x_t\) is determined endogenously and can vary over time.

Hence, the social planner chooses a sequence of number of new builders, number of active sellers and active buyers, the threshold value for distributing a house \(\{N_t, S_t, B_t, x_t\}_{t=0}^{\infty}\), given the initial state \(S_0 = (\bar{B}_0, \bar{S}_0, N_0, H_0, d_0)\), to maximize the present discounted flow of housing services from distributed house which includes the outside value \(V^0\) that separated homeowners

\(^4\)Geromichalos (2012) shows that when the seller has several goods to sell and capacity constrains the efficiency of the directed search can also break down.
get upon leaving the city.

\[
\begin{align*}
\max_{\{N_t, S_t, B_t, \tilde{x}_t, B_t, \tilde{S}_t, H_t\}} & \sum_{t=0}^{\infty} \beta^t [S_t \pi(\chi_t, \theta_t) \frac{\beta E[x(1)\mid x(1) \geq \chi_t]}{1 - \gamma} + \\
& + \beta \lambda^0 V^0 H_t - w \tilde{B}_t - c^S S_t - c^B B_t - c^0 N_t - c^1 (\tilde{N}_t + N_t) - c_2 (\tilde{N}_t + N_t)^2] \\
\tilde{B}_{t+1} &= \tilde{B}_t + d_t + (1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)H_t - S_t \pi(\chi_t, \theta_t) \\
\tilde{S}_{t+1} &= \tilde{S}_t + \kappa(\tilde{N}_t + N_t) + (1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)H_t - S_t \pi(\chi_t, \theta_t) \\
H_{t+1} &= (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)H_t + S_t \pi(\chi_t, \theta_t) \\
N_{t+1} &= (1 - \kappa)(\tilde{N}_t + N_t) \\
d_{t+1} &= \rho d_t + (1 - \rho)d_0 + \varepsilon_{t+1} \\
0 &\leq S_t \leq \tilde{S}_t, 0 \leq B_t \leq \tilde{B}_t, N_t \geq 0, \text{ and } \tilde{B}_0 > 0, \tilde{S}_0 > 0, \tilde{N}_0 > 0, d_0 \text{ given}
\end{align*}
\]

where \(\chi_t = \max\{x_{\min}, \min\{\tilde{x}_t, x_{\max}\}\} \) and \(S_t \pi(\chi_t, \theta_t)\) is the number of distributed homes, and \(E[x(1)\mid x(1) \geq \chi_t]\) is the expectation of the highest value of housing services, conditional on value exceeding the threshold \(\chi_t\). The expectation in \(E[x(1)\mid x(1) \geq \chi_t]\) is taken both over the number visitors \(N\) of the house and over the realized values \(x\) of those visitors.

Denote the value function of the social planner in the beginning of period \(t\) by \(\Omega_t\). Let \(V^S_t = \frac{\partial \Omega_t}{\partial S_t}, V^B_t = \frac{\partial \Omega_t}{\partial B_t}, V^N_t = \frac{\partial \Omega_t}{\partial N_t}, \nu^H_t = \frac{\partial \Omega_t}{\partial H_t}\) be the increase in the social welfare function \(\Omega_t\), produced by adding a seller to the stock of sellers \(\tilde{S}_t\), a buyer to the stock of buyers \(\tilde{B}_t\), a builder to the stock of builders \(\tilde{N}_t\), a homeowner to the stock of homeowners \(\tilde{H}_t\). Then the proposition 6 summarizes the optimality conditions for the social planner.

Proposition 6. The option value to add a seller \(V^S_t\), the option value to add a buyer \(V^B_t\), the option value to add a builder \(V^N_t\), and the option value to add a homeowner \(\nu^H_t\), the threshold value of housing services to distribute the house \(\tilde{x}_t\), the probability of transfer \(\pi_t\) and the number
of transfers \(q_t \), that solve the social planner problem, satisfy

\[
V_t^S = \beta V_{t+1}^S + \mu_t^S,
\]

\[
\mu_t^S = \left(\frac{\beta X_t - \bar{x}_t}{1 - \gamma} \right)(\pi(\bar{x}_t, \theta_t) - \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (\pi(x, \theta_t) - \theta_t(1 - \pi(x, \theta_t))(1 - F(x)))dx - c^S +
\]

\[
V_t^B = \beta V_{t+1}^B - w + \mu_t^B
\]

\[
\mu_t^B = \left(\frac{\beta}{1 - \gamma} \right)(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\chi_t - \bar{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (1 - \pi(x, \theta_t))(1 - F(x))dx - c^B +
\]

\[
V_t^N = \min \{ \beta \kappa V_{t+1}^S + \beta(1 - \kappa) V_{t+1}^N - (c^1 + c^2(\bar{N}_t + N_t)), c^0 \},
\]

\[
v_t^H = \gamma v_{t+1}^H + \beta \lambda^0 V^0 + \beta(1 - \lambda^0) (\delta + (1 - \delta)\lambda^M) V_{t+1}^B + \beta(1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M) V_{t+1}^S,
\]

\[\bar{x}_t = \bar{x}_t, \text{ where } \bar{x}_t \equiv (1 - \gamma)(V_{t+1}^B + V_{t+1}^S - v_{t+1}^H),\]

\[
\pi_t = 1 - \exp(-\theta_t(1 - F(\bar{x}_t))),
\]

\[
q_t = S_t \sigma(\bar{x}_t, \theta_t).
\]

where \(\mu_t^S \) is the Lagrange multiplier for restriction \(S_t \leq \bar{S}_t \), \(\mu_t^B \) is the Lagrange multiplier for restriction \(B_t \leq \bar{B}_t \), \(\chi_t = \max \{ x_{\text{min}}, \min \{ x_{\text{max}}, \bar{x}_t \} \} \).

Proof. See Appendix A.5. \(\square \)

Corollary 6.1. The auction model with directed search decentralized the solution of the social planner problem constrained by the search frictions.

The comparison of the dynamics of the buyer’s and seller’s value functions from Proposition 1, 2 and 6 suggests that generally the Nash bargaining with random search and auction models with random search are not socially efficient. The Nash bargaining model with random search is not constrained efficient because the search frictions in the social planner problem allow for many-to-one matches while the search frictions in the standard Nash bargaining model do not.

To gain intuition on why the auction model with random search is not socially efficient, compare the steady-states of the auction model with random search and social planner solution for the exponential distribution.

The models disagree on how the tightness \(\theta \) and the threshold value for the housing services \(\bar{x} \) are determined. Specifically, in the auction model with random search the tightness and the threshold value of housing services are found as the solution of a pair of equations

\[
\varphi(\theta(1 - F(\bar{x}))) = \frac{1 - \gamma}{\beta \sigma_x}((1 - \beta) V^{S*} + c^S)
\]

\[
\bar{x} = \sigma_x + \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \left[\frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}, \theta)}{\theta} - c^B - w \right] + (1 - \beta(1 - \delta)) V^{S*} - \beta \lambda^0 V^0
\]
while the social planner would solve

\[
\varphi(\theta(1 - F(\bar{x}))) - \pi(\bar{x}, \theta) = \frac{1 - \gamma}{\beta \sigma_x}((1 - \beta)V^s + c^s)
\]

(44)

\[
\bar{x} = \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \left[\frac{\gamma}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}, \theta)}{\theta} - c^B \right] - w + (1 - \beta(1 - \delta))V^s - \beta \lambda^0 V^0
\]

(45)

to determine \(\theta \) and \(\bar{x} \). In the social planner the first equation for the tightness given \(\bar{x} \) has an extra \(-\pi(\bar{x}, \theta)\) term. This term represents the monopoly distortion. The social planner chooses higher adjusted tightness \(z = \theta(1 - F(\bar{x})) \) than the adjusted tightness that emerges in the equilibrium of the auction model, which follows from equations (42) and (44). Because the adjusted tightness is lower in the auction model, the probability of sale \(\pi(\bar{x}, \theta) = 1 - \exp(-z) \) is also lower.

The expression for the threshold value in the auction model has additional \(\sigma_x \) term, making the threshold value in the auction model higher as compared to the socially efficient allocation. This comparison is not immediate, because the equations include other endogenously determined variables, but can be proved, see Appendix A.4 for the proof of part 2 of Proposition 5. Higher threshold value \(\bar{x} \) in the auction model is a consequence of the static inefficiency of the optimal auction. The seller in the auction model behaves as a monopolist, which leads to higher prices, and hence higher threshold value \(\bar{x} \) for distributing the house. This static inefficiency in the auction model has dynamic consequences. Because the seller has higher threshold value \(\bar{x} \), he keeps the house on the market longer as compared to what the social planner would choose. In other words, the seller suboptimally chooses to exercise this option value to sell too late. Board (2007) finds a similar prediction, although in a different setup.

6 Discussion

What have we learned so far? The choice of the price determination mechanism is important for qualitative and quantitative properties of house prices. Bidding wars between buyers in auctions produce more volatile house prices than the benchmark Nash bargaining model, which is closer to the data. If search in auctions is directed, then an equilibrium allocation in the auction model decentralizes the solution of the social planner problem, constrained by search frictions. Hence, high volatility in the auction model with directed search in this sense is efficient.

There are many other ways to interpret these results. First, there are competing mechanisms for selling houses. The seller or society can choose among these mechanisms. The model in the paper shows the differences in the outcomes depending on the type of mechanism employed in the dynamic search environment.

Second, the models can be used to study the time-series properties of house prices in a local housing market. One way to accomplish this is to study similar houses sold via auctions and via bargaining. Then the models are informative on the time-series properties of prices determined in auctions and bargaining. In the time series we observe fluctuations between booms and busts. One can argue that houses can be sold using auctions during booms and using bargaining during busts. However, both booms and busts can be captured by the auction model. During the booms, inflow of many buyers spurs bidding wars, described by auctions, and during the busts, the auction model works as the price posting. The seller posts the reservation price, and if a buyer with high enough valuation visits the seller, the seller sells at the reservation price to this
buyer. In this case the auction model behaves similar to the bargaining model in which the seller makes take-or-leave it offer without knowing the valuation of the buyer.

Third, the models can quantify differences in the housing market statistics in the cross-section of local housing markets, for example, across neighborhoods, cities, or metro areas. Some markets can have higher incidence of auctions due to attractive local amenities, for instance great schools, or short supply due to geographical or zoning restrictions (Saiz (2010)). In these cases the auction model can be applied to both types of markets. In hot markets, such as Palo Alto, CA, the model can be calibrated to have higher ratio of buyers to seller, as compared to the cold markets, such as Detroit, MI, with lower ratio of buyer to sellers.

Another way to think about the price determination mechanism is to use bargaining for standardized houses and auctions for unique houses. But both types of houses can potentially attract multiple interested buyers, and auctions is a useful way of modeling the price formation in these situations. If a house is sold through bargaining and multiple buyers arrive, then it is possible to apply models of multilateral bargaining, in which the outside option in the current negotiation is the payoff from bargaining with the next interested buyer. Using models of multilateral bargaining allows to account for the competition between buyers, which is the main idea of the paper. Technically, it is easier to use auctions to model this process of competition between buyers.

The auction model can be extended in several dimensions to accommodate other important aspects of the housing market. In the current setup the house values are private and independent, however, common values are potentially important in the housing market. If one buyer has high value for a particular house, that probably means that other buyer also has high value. The current setup can be applied to a homogenous set of houses or a segment of a local housing market where differences between houses are idiosyncratic. If the common values are used instead of private values, then the details of the auction protocol matter for the seller’s revenue and house prices, because the revenue equivalence theorem might not apply. In this case a researcher has to make a judgement call on what is the appropriate auction format.\footnote{The English ascending auction is used frequently in housing markets, which can be a starting point.} The auction model can also be extended to accommodate the risk-averse agents and budget constraints, in which case the model may lose tractability, but allow to understand the bidding pattern of risk-averse buyers who are pre-approved to borrow up to a certain limit. Finally, the model can be used for structural estimation to recover the distribution of house values to inform housing policies.\footnote{For instance, given the distribution of house values, what is the welfare cost and benefit of mortgage interest rate deduction.}

7 Conclusion

Auctions are widely employed in housing markets. In hot markets sellers are confronted with multiple interested buyers and run informal auctions, inviting bids and rebids until a single buyer remains. In some cases, notably in Australia, UK, New Zealand, Singapore\footnote{See Maher (1989), Lusht (1996), Genesove and Hansen (2014) for Australia, Dotzour, Moorhead, and Winkler (1998) for New Zealand, Merlo and Ortalo-Magné (2004), Merlo, Ortalo-Magné, and Rust (2015) for UK, Chow, Hafalir, and Yavas (2015) for Singapore} and in US for foreclosed properties\footnote{Mayer (1998), Quan (1994)}, the auctions take standardized forms. This paper studies the role of
auctions in housing markets, comparing a model with auctions to the standard model, where only one-on-one bargaining determines prices.

During the booms each seller attracts multiple buyers, an auction is highly effective at selecting the buyer with the highest valuation. Optimal selection results in higher prices for the seller in the auction model. In contrast, in the Nash bargaining model a seller picks one of many interested buyers at random and negotiate only with that buyer. This price-finding process is not optimal for the seller, because the randomly selected buyer is probably not the buyer who places the highest value on the house, so prices are lower. During the busts it is common for only a single buyer to be interested in a house, so the seller picks a reservation price and the buyer decides whether to buy at that price or not.

There are alternative price-finding processes that arise in the housing market that are beyond the scope of this paper, but deserve further attention from researchers. First, other auction formats may be used to sell houses. If the buyers are risk neutral and their values are independently and identically distributed over time and over bidder, then, by the revenue equivalence, the expected revenue for the seller is the same. But studying housing auctions with affiliated and correlated over time housing valuations and risk-averse buyers could impact the implications of the search model. Second, in cold markets, where many houses are available to a buyer without competition from other buyers, the buyer effectively runs an auction by considering the prices of the suitable houses that are currently on the market and picking the lowest one. Third, another alternative-price finding process is alternating-offer bargaining. In setting where one-on-one bargaining occurs, it takes the alternating-offer form. Not only this process is seen in the real world, its game-theoretic foundations are stronger than the Nash bargain and proved to change the implications of the job search model (Hall and Milgrom (2008)). Finally, auctions and bargaining can be combined. In the housing market, the seller first picks the buyer with the highest valuation and bargaining with this buyer one-on-one. In used-car auctions, it is common for the winning bid to fall short of the seller’s hidden reserve price. In that case, the winning bidder and the seller engage in bargaining to see if the seller will agree to a price below the earlier reserve or the buyer will agree to a price above his winning bid (Larsen (2015)).

This paper focuses on the price-finding and is stripped down in other respects. It makes no claim to do justice to all the complexities of the housing market. Rather, it points out that the model used for price-finding has important consequences for the volatility and responsiveness of the house prices to exogenous shocks. The amplification of the housing market shocks in the auction model as compared to the Nash bargain model comes from the heterogeneity in the house values and rule for selecting the winning buyer. In the Nash bargaining, the buyer is chosen randomly so the sales price is determined by the average house values. In the auction models the buyer is chosen as the highest bidder so the sales price is determined by the second highest value. During the booms, when there are many buyers, the highest values increase significantly as compared to the average values which contributes to the higher volatility of the house prices, helping to resolve the puzzle of the excess volatility of the prices in the housing markets.

References

A Proofs

A.1 Proof of Proposition 2

Proof of Proposition 2. Consider a seller who listed a house at date t for an auction with the reservation price \bar{p}_t, or equivalently, the reservation value \bar{x}_t. Then expected sales price is

$$p_t = \frac{E_N[\bar{p}_tP(\text{Sale at } \bar{p}_t|N) + E[b_{(2)}|\text{Sale at } b_{(2)}, N]P(\text{Sale at } b_{(2)}|N)]}{P(\text{Sale})}$$

where N is the number of buyers who visited the seller.

The probability of sale is the probability that none of N buyers has placed a value higher than the reservation value \bar{x}_t:

$$P(\text{Sale}) = E_N(1 - F(\bar{x}_t)^N) = 1 - e^{-\theta t} \sum_{N=0}^{\infty} \frac{(\theta F(\bar{x}_t))^N}{N!} = 1 - e^{-\theta t} e^{\theta t F(\bar{x}_t)} = 1 - e^{-\theta t (1 - F(\bar{x}_t))} \equiv \pi(\bar{x}_t, \theta t).$$

The seller makes a sale at the reservation price \bar{p}_t (reservation value \bar{x}_t) if one and only one buyer can bid above the reservation price. This probability, given the number of buyer, N, who visited the seller, is

$$P(\text{Sale at } \bar{p}_t|N) = NF(\bar{x}_t)^{N-1}(1 - F(\bar{x}_t)) \mathbb{1}_{N \geq 1},$$

$$P(\text{Sale at } \bar{p}_t) = E_N P(\text{Sale at } \bar{p}_t|N) = E_N[NF(\bar{x}_t)^{N-1}(1 - F(\bar{x}_t))]| = e^{-\theta t} \sum_{N=1}^{\infty} \frac{\theta t^N F(\bar{x}_t)^{N-1}}{N!} (1 - F(\bar{x}_t)) =$$

$$= \theta t e^{-\theta t} (1 - F(\bar{x}_t)) \sum_{N=1}^{\infty} \frac{(\theta t F(\bar{x}_t))^{N-1}}{(N - 1)!} = \theta t e^{-\theta t} (1 - F(\bar{x}_t)) e^{\theta t F(\bar{x}_t)} =$$

$$= \theta t (1 - F(\bar{x}_t)) e^{-\theta t (1 - F(\bar{x}_t))} = \theta t (1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta)).$$
The probability that the seller sells at the second highest bid is

\[P(\text{Sell at } b_{(2)}) = 1 - P(\text{not sell at all with reservation value } \bar{x}) - P(\text{sell at reservation value } \bar{x}) =
\]
\[= 1 - (1 - \pi(\bar{x}, \theta)) - \theta(1 - \pi(\bar{x}, \theta))(1 - F(\bar{x})) = \pi(\bar{x}, \theta) - \theta(1 - \pi(\bar{x}, \theta))(1 - F(\bar{x})). \]

To derive an expression for \(E[b_{(2)}|\text{Sale at } b_{(2)}, N] \), consider the cdf of the second order statistic of values, given the number of buyers \(N \):

\[
P(x_{(2)} \leq x|N) = \sum_{i=N-1}^{N} \binom{N}{i} F(x)^i(1 - F(x))^{N-i} \mathbb{1}_{N \geq 2} =
\]
\[
= \left[\left(\frac{N}{N-1} \right) F(x)^{N-1}(1 - F(x)) + \binom{N}{N} F(x)^N \right] \mathbb{1}_{N \geq 2} = \left[NF(x)^{N-1}(1 - F(x)) + F(x)^N \right] \mathbb{1}_{N \geq 2}
\]

The pdf of the second order statistic of values, given the number of buyers \(N \), is

\[
f_{x_{(2)}}(x|N) = \frac{\partial}{\partial x} \left[NF(x)^{N-1}(1 - F(x)) + F(x)^N \right] \mathbb{1}_{N \geq 2} = \left[N(N-1)F(x)^{N-2}(1 - F(x))f(x) -
\right.
\]
\[
- NF(x)^{N-1}f(x) + NF(x)^{N-1}f(x) \right] \mathbb{1}_{N \geq 2} = \left[N(N-1)F(x)^{N-2}(1 - F(x))f(x) \right] \mathbb{1}_{N \geq 2}.
\]
Taking the expectation over \(N \), I get the unconditional pdf of the second order statistic is

\[
f_{x(2)}(x) = E_N[f_{x(2)}(x|N)] = e^{-\theta} \sum_{N=2}^{\infty} \frac{\theta_{t}^N N(N-1)F^{N-2}(1-F(x))f(x)}{N!} = e^{-\theta} (1-F(x))f(x) \sum_{N=2}^{\infty} \frac{\theta_{t}^N F^{N-2}}{(N-2)!} \]

\[
= e^{-\theta} (1-F(x))f(x) e^{-\theta} (1-F(x))f(x)e^{\theta F(x)} = \theta_{t}^2 f(x)(1-F(x))e^{-\theta_t(1-F(x))} = \theta_{t}^2 f(x)(1-F(x))(1-\pi(x, \theta_t)),
\]

which is related to the probability to sell at the second highest value as:

\[
f_{x(2)}(x) = \theta_{t}^2 f(x)(1-F(x))(1-\pi(x, \theta_t)) = -\frac{\partial P(\text{Sell at } x(2))}{\partial x} = -\partial(\pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)))
\]

Then the expectation of the second order statistic of bids \(b(x) = \frac{x}{1-\gamma} + \nu_{t+1} - V_{t+1}^B \) is

\[
E[b_{(2)} | \text{Sale at } b_{(2)}] = \frac{1}{1-\gamma} \int_{\chi_t}^{x_{\text{max}}} f_{x(2)}(x) \frac{\text{Sale at } b_{(2)}}{P(\text{Sale at } b_{(2)})} \, dx + \nu_{t+1} - V_{t+1}^B
\]

and

\[
E[b_{(2)} | \text{Sale at } b_{(2)}] P(\text{Sale at } b_{(2)}) = \frac{1}{1-\gamma} \int_{\chi_t}^{x_{\text{max}}} f_{x(2)}(x) \, dx + \nu_{t+1} - V_{t+1}^B P(\text{Sale at } b_{(2)}) = \frac{1}{1-\gamma} \int_{\chi_t}^{x_{\text{max}}} f_{x(2)}(x) \, dx + \nu_{t+1} - V_{t+1}^B [\pi(\bar{x}_t, \theta) - \theta(1-\pi(\bar{x}_t, \theta))(1-F(\bar{x}_t))].
\]

Then apply the integration by part to the first term to get:

\[
\int_{\chi_t}^{x_{\text{max}}} x f_{x(2)}(x) \, dx = \int_{\chi_t}^{x_{\text{max}}} x \left[\frac{\partial}{\partial x} \pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx = \int_{\chi_t}^{x_{\text{max}}} x \left[\frac{\partial}{\partial x} \pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx
\]

\[
= \int_{\chi_t}^{x_{\text{max}}} x \left[\frac{\partial}{\partial x} \pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx =\int_{\chi_t}^{x_{\text{max}}} \left[\pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx = \chi_t \left[\pi(\bar{x}_t, \theta_t) - \theta_t(1-F(\bar{x}_t))(1-\pi(\bar{x}_t, \theta_t)) \right] + \int_{\chi_t}^{x_{\text{max}}} \left[\pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx
\]

Hence,

\[
E[b_{(2)} | \text{Sale at } b_{(2)}] P(\text{Sale at } b_{(2)}) = \frac{1}{1-\gamma} \chi_t \left[\pi(\bar{x}_t, \theta_t) - \theta_t(1-F(\bar{x}_t))(1-\pi(\bar{x}_t, \theta_t)) \right] + \int_{\chi_t}^{x_{\text{max}}} \left[\pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx + \nu_{t+1} - V_{t+1}^B [\pi(\bar{x}_t, \theta) - \theta(1-\pi(\bar{x}_t, \theta))(1-F(\bar{x}_t))]
\]

\[
= \bar{\nu}_t [\pi(\bar{x}_t, \theta_t) - \theta_t(1-F(\bar{x}_t))(1-\pi(\bar{x}_t, \theta_t))] + \frac{1}{1-\gamma} \int_{\chi_t}^{x_{\text{max}}} \left[\pi(x, \theta_t) - \theta_t(1-F(x))(1-\pi(x, \theta_t)) \right] \, dx
\]

50
The numerator of the price equation is

$$E_N[\bar{p}_t P(\text{Sale at } \bar{p}_t|N) + E[b_{(2)}|\text{Sale at } b_{(2)}, N]P(\text{Sale at } b_{(2)}|N)] =$$

$$= \bar{p}_t \theta_t (1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t)) + \bar{p}_t \pi(\bar{x}_t, \theta_t) - \theta_t (1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] +$$

$$+ \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx =$$

$$= \bar{p}_t \pi(\bar{x}_t, \theta_t) + \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx$$

The price equation is then

$$p_t = \frac{\bar{p}_t \pi(\bar{x}_t, \theta_t) + \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx}{\pi(\bar{x}_t, \theta_t)} =$$

$$= \bar{p}_t + \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx$$

where $\bar{p}_t = \frac{\chi_t}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B$.

The connection between the price and the seller’s surplus is the following. Since

$$SS_t = \left(\frac{\beta}{1 - \gamma}\pi(\bar{x}_t, \theta_t)(\chi_t - \bar{x}_t) + \right.$$

$$+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - \pi(x, \theta_t))(1 - F(x))] dx - c^S)^+$$

$$p_t = \frac{\chi_t}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B + \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx$$

and since p_t is defined iff $SS_t > 0$, i.e sales prices exist only if sellers list their houses, so

$$p_t = V_{t+1}^S - V_{t+1}^S + \frac{\chi_t}{1 - \gamma} + v_{t+1}^H - V_{t+1}^B + \frac{1}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx$$

$$= V_{t+1}^S + \frac{\beta \pi(\bar{x}_t, \theta_t)[\chi_t - \bar{x}_t]}{\beta(1 - \gamma) \pi_t} + \frac{1}{1 - \gamma} \frac{\int_{\chi_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t (1 - F(x))(1 - \pi(x, \theta_t))] dx}{\pi(\bar{x}_t, \theta_t)}$$

$$= V_{t+1}^S + \frac{SS_t + c^S}{\beta \pi_t}.$$

The relationship between the prices and seller’s surplus:

$$p_t = V_{t+1}^S + \frac{SS_t + c^S}{\beta \pi_t}$$
A.2 The seller’s Bellman equation from the primitives

The right-hand side of the Bellman equation for the seller, without accounting for the search costs c^S, is

$$
\beta(1 - P(\text{Sale}))V^S_{t+1} + \beta P(\text{Sale at } \bar{p}_t)\bar{p}_t + \beta P(\text{Sale at } b_{(2)})E[b_{(2)}|\text{Sale at } b_{(2)}] = \\
= \beta(1 - \pi(\bar{x}_t, \theta_t))V^S_{t+1} + \beta \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))\bar{p}_t + \beta P(\text{Sale at } b_{(2)})E[b_{(2)}|\text{Sale at } b_{(2)}],
$$

where $P(\text{Sale}) = \pi(\bar{x}_t, \theta_t), P(\text{Sale at } \bar{p}_t) = \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))$, and $P(\text{Sale at } b_{(2)})E[b_{(2)}|\text{Sale at } b_{(2)}] = \bar{p}_t[\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] + \frac{1}{\beta} \int_{\chi_t}^{x_{\max}}[\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))]dx$ from Appendix A.1. The right-hand side of the Bellman equation is then

$$
\beta(1 - \pi(\bar{x}_t, \theta_t))V^S_{t+1} + \beta \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))\bar{p}_t + \\
+ \beta \left(\frac{\chi_t}{1 - \gamma} + v^H_{t+1} - V^B_{t+1} \right) [\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] + \\
+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))]dx
$$

Let $\bar{p}_t = \frac{\bar{x}_t}{1 - \gamma} + v^H_{t+1} - V^B_{t+1}$, where \bar{x}_t could be out of bounds $[x_{\min}, x_{\max}]$ if this is required (in random auctions optimal reservation value is within these bounds while it could be out of bounds in directed auctions). Then the right hand side of this equation is

$$
\beta V^S_{t+1} - \beta \pi(\bar{x}_t, \theta_t) V^S_{t+1} + \beta \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t))(\frac{\bar{x}_t}{1 - \gamma} + v^H_{t+1} - V^B_{t+1}) + \\
+ \beta \left(\frac{\chi_t}{1 - \gamma} + v^H_{t+1} - V^B_{t+1} \right) [\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] + \\
+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))]dx.
$$

Then adding and substracting $\beta \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))V^S_{t+1}$, rearranging, using notation $\hat{x}_t = (1 - \gamma)(V^B_{t+1} + V^S_{t+1} - v^H_{t+1})$, gives

$$
\beta V^S_{t+1} - \beta \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)) \frac{\hat{x}_t - \bar{x}_t}{1 - \gamma} + \\
+ \beta \left(\frac{\chi_t}{1 - \gamma} - \frac{\hat{x}_t}{1 - \gamma} \right) [\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] + \\
+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))]dx.
$$

So the most general expression for the seller’s surplus before the seller optimally selected the reservation value \hat{x}_t is

$$
SS_t = (\beta \frac{\chi_t - \hat{x}_t}{1 - \gamma} [\pi(\bar{x}_t, \theta_t) - \theta_t(1 - F(\bar{x}_t))(1 - \pi(\bar{x}_t, \theta_t))] - \beta \frac{\bar{x}_t - \hat{x}_t}{1 - \gamma} \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)) + \\
+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(1 - \pi(x, \theta_t))]dx - c^S.
$$

52
In the auction model with random search \(\chi_t = \bar{x}_t \in [x_{\text{min}}, x_{\text{max}}] \), then the expression simplifies to

\[
SS_t = \left(\frac{\beta}{1 - \gamma} \bar{x}_t \pi(\bar{x}_t, \theta_t) + \right) + \frac{\beta}{1 - \gamma} \int_{\bar{x}_t}^{x_{\text{max}}} [\pi(x, \theta_t) - \theta_t(1 - F(x))(-\pi(x, \theta_t))] dx - c^S^+
\]

as in Section 3.4.

A.3 The steady state equilibrium: positive slope of the free-entry condition and negative slope of the price setting condition in \((\bar{x}, \theta)\) axis

Two curves in \((\bar{x}, \theta)\) determine the steady state equilibrium:

1. Free entry condition:

\[
FE(\bar{x}, \theta) = -(1 - \beta)V^S + \left(\frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{\text{max}}} [\pi(x, \theta) - \theta(1 - F(x))(-\pi(x, \theta))] dx - c^S \right)
\]

2. Price setting:

\[
PS(\bar{x}, \theta) = -\bar{x} + (1 - \beta(1 - \lambda^0)) \left[\frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))(-\pi(x, \theta)) dx - c^B \right] + w + (1 - \beta(1 - \delta))V^S - \beta\lambda^0V^0
\]

The slope of free entry:

\[
\frac{\partial FE}{\partial \bar{x}} = -\frac{\beta}{1 - \gamma} [\pi(\bar{x}, \theta) - \theta(1 - F(\bar{x}))(-\pi(\bar{x}, \theta))]
\]

\[
\frac{\partial FE}{\partial \theta} = \frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))(-\pi(x, \theta)) dx
\]

\[
\frac{\partial \bar{x}}{\partial \theta} |_{FE} = -\frac{\partial FE}{\partial \theta} = -\frac{\beta}{1 - \gamma} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))(-\pi(x, \theta)) dx
\]

\[
= \theta \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))(-\pi(x, \theta)) dx > 0
\]

where the denominator \([\pi(\bar{x}, \theta) - \theta(1 - F(\bar{x}))(-\pi(\bar{x}, \theta))]\) is positive because \(\pi(x, \theta)\) is concave in \(\theta\) so \(\pi(x, \theta) \geq \theta \frac{\partial \pi(x, \theta)}{\partial \theta} = \theta(1 - F(x))(-\pi(x, \theta))\).

The slope of price setting:
\[\frac{\partial PS}{\partial \bar{x}} = -[1 + \frac{\beta (1- \beta (1- \lambda^0))}{(1- \beta)(1- \gamma)} (1 - F(\bar{x})(1 - \pi(\bar{x}, \theta))] \]
\[\frac{\partial PS}{\partial \theta} = -\frac{\beta (1- \beta (1- \lambda^0))}{(1- \beta)(1- \gamma)} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))^2 (1 - \pi(x, \theta)) dx \]
\[\frac{\partial \bar{x}}{\partial \theta}|_{PS} = - \frac{\frac{\beta (1- \beta (1- \lambda^0))}{(1- \beta)(1- \gamma)} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))^2 (1 - \pi(x, \theta)) dx}{1 + \frac{\beta (1- \beta (1- \lambda^0))}{(1- \beta)(1- \gamma)} (1 - F(\bar{x})(1 - \pi(\bar{x}, \theta))] \]
\[= - \frac{\beta (1- \beta (1- \lambda^0))}{(1- \beta)(1- \gamma)} \int_{\bar{x}}^{x_{\text{max}}} (1 - F(x))^2 (1 - \pi(x, \theta)) dx < 0 \]

A.4 Proof of Propositions 4 and 5

The number of homeowners and builder, the number of sales and the option value to sell

First, prove part 4 of Proposition 4 that the sales \(q \), the option value to sell \(V^S \), the number of homeowners \(H \) and builders \(\bar{N}_0 + N \) are the same in all models. I will use the equations for the dynamics of the number of buyers, the number of homeowners, the number of builders, and the Bellman equation for the option value to become a builder that are common to all models. Summing equations (7) and (10) in the steady-state gives the steady-state number of homeowners of \(H = \frac{d}{\lambda^0} \), and the number of sales \(q = (1 - (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)) \frac{d}{\lambda^0} \) from (10). The total number of builders from the dynamic equation for the number of sellers (8) is \(\bar{N}_0 + N = \frac{\delta d}{\kappa \lambda^0} \). From the dynamic equation for the value of becoming a builder \(V^N \) in equation (5), if \(\beta \kappa V^S + \beta (1 - \kappa) V^N - (c^1 + c^2(\bar{N} + N)) > c^0 \), then new builders will continue to enter which decreases \(V^N \) towards \(c^0 \). They will enter until \(\beta \kappa V^S + \beta (1 - \kappa) V^N - (c^1 + c^2(\bar{N} + N)) = c^0 \). Hence, in the steady-state:

\[V^N = \beta \kappa V^S + \beta (1 - \kappa) V^N - (c^1 + c^2(\bar{N} + N)) = c^0 \] \[(46) \]

The steady-state value of the option value to sell from (46) is

\[V^S = \frac{1}{\beta \kappa} [(1 - \beta (1 - \kappa))c^0 + c^1 + c^2 \frac{\delta d}{\kappa \lambda^0}] \] \[(47) \]

Sufficient condition to compare the house prices, the number of active sellers, the probability to sell, and the time on the market

The steady-state value of \(v^H \) depends on the steady-state values of \(V^S \) and \(V^B \) through the Bellman equation for \(v^H \) as

\[v^H = \frac{\beta}{1 - \gamma} [(1 - \lambda^0)(\delta + (1 - \delta)\lambda^M) V^B + \lambda^0 V^0 + (1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M) V^S] \]

54
After plugging this into the definition of \hat{x}, we can eliminate v^H, and \hat{x} is then

$$\hat{x} = (1 - \beta(1 - \lambda^0))V^B + (1 - \beta(1 - \delta))V^S - \beta \lambda^0 V^0$$ \hspace{1cm} (48)$$

where V^S is at the steady-state value from (47), and the option value to buy $V^B = \frac{BS}{1 - \beta} - \frac{w}{1 - \beta}$ depends on (\hat{x}, θ) through the buyer’s surplus. This surplus depends on the price-determination process. Equation (48) is referred to as the price-setting equation in Section 4.1.

To simplify the comparison of the models, I assume that in the steady state of all models the threshold value of housing services \bar{x}^* is above the minimum of the range of the probability distribution function $f(x)$ of x, i.e. $\bar{x}^* > x_{\min}$. Since $\bar{x} \geq \hat{x}$ in all models, the sufficient condition for $\bar{x} = x_{\min} = \mu_x - \sigma_x$ is $\hat{x} \geq x_{\min} = \mu_x - \sigma_x$. The buyer’s surplus is non-negative in all models $BS \geq 0$, so the sufficient condition for $\hat{x} \geq \mu_x - \sigma_x$ from equation (48) is

$$(1 - \beta(1 - \delta))V^{S*} - \frac{(1 - \beta(1 - \lambda^0))w}{(1 - \beta)} - \beta \lambda^0 V^0 \geq \mu_x - \sigma_x$$ \hspace{1cm} (49)$$

Assume (49) is satisfied, then $\hat{x} > x_{\min} = \mu_x - \sigma_x$ and $\bar{x} = \hat{x} > \mu_x - \sigma_x$ in the auction model with directed search and in the Nash bargaining model.

What about the auction models with random search? Equation for \hat{x} is the same and $BS \geq 0$, so the same condition is sufficient for $\hat{x} > x_{\min} = \mu_x - \sigma_x$. In the auction model with random search this means that $\bar{x} = \frac{1 - F(\bar{x})}{f(\bar{x})} + \hat{x} = \sigma_x + \hat{x} > \sigma_x + \mu_x - \sigma_x = \mu_x$, and in the auction model with directed search $\bar{x} = \hat{x} > \mu_x - \sigma_x$.

The house prices

If (49) is satisfied, then then $\bar{x} > x_{\min}$ and thus $\chi = \bar{x}$, and $E[x|x \geq \bar{x}] = \max\{\bar{x}, \mu_x - \sigma_x\} + \sigma_x = \bar{x} + \sigma_x$. The seller’s surpluses and the house prices in the Nash bargaining and the auction model with random search, given the exponential distribution of values, are

$$SS^{NB} = \frac{\beta \alpha \sigma_x}{1 - \gamma} \pi^{NB} - c^S$$

$$SS^{RA} = \frac{\beta \sigma_x}{1 - \gamma} \varphi^{RA} - c^S$$

$$SS^{DA} = \frac{\beta \sigma_x}{1 - \gamma} (\varphi^{DA} - \pi^{DA}) - c^S$$

$$p^{NB} = V^{S*} + \alpha \frac{\sigma_x}{1 - \gamma}$$

$$p^{RA} = V^{S*} + \frac{\sigma_x}{1 - \gamma} \frac{\varphi^{RA}}{\pi^{RA}}$$

$$p^{DA} = V^{S*} + \frac{\sigma_x}{1 - \gamma} \frac{\varphi^{RA}}{\pi^{RA} - 1}$$ \hspace{1cm} (50)$$

Since $\frac{\varphi(z)}{\pi(z)} > 1$ for any $z > 0$ by lemma 2 in Appendix B. And further $\frac{\hat{z}}{\pi} > 1 \geq \alpha$, $p^{RA} > p^{NB}$.

The probabilities of sale and the time on the market
Since $V^{S*} > 0$, and the seller’s surpluses must be the same in the steady-state:

$$\alpha\pi^{NB} = \varphi^{RA} = \varphi^{DA} - \pi^{DA}$$

Moreover, since $\pi^{NB} \geq \alpha\pi^{NB}$ and $\varphi^{RA} \geq \pi^{RA}$, the probabilities of sale can be compared as

$$\pi^{NB} \geq \alpha\pi^{NB} = \varphi^{RA} \geq \pi^{RA}$$

To compare the auction model with random search and directed search, notice that

$$\varphi^{RA} = \varphi^{DA} - \pi^{DA} < \varphi^{DA}$$
$$\varphi^{RA} < \varphi^{DA}$$
$$z^{RA} < z^{DA}$$

It immediately follows that $\pi^{RA} < \pi^{DA}$ because $\pi(z) = 1 - e^{-z}$ is increasing in z.

The times on the market for a seller are inverse of the probabilities to sell, so they are related in the opposite directions.

The number of active sellers

The number of active sellers is $S = \frac{q^*}{\pi}$, then

$$S^{RA} = \min\{S_0, \frac{q^*}{\pi^{RA}}\} \geq S^{NB} = \min\{S_0, \frac{q^*}{\pi^{NB}}\}$$

$$S^{RA} = \min\{S_0, \frac{q^*}{\pi^{RA}}\} \geq S^{DA} = \min\{S_0, \frac{q^*}{\pi^{DA}}\}$$

The threshold value in the auction model with random search and directed search

In the auction model with random search the price-setting equation for the threshold value \bar{x}^{RA} is

$$\bar{x}^{RA} = \sigma_x + \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \left[\left(\frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}^{RA}, \theta^{RA})}{\theta^{RA}} - c^B \right) - w \right] + (1 - \beta(1 - \delta)) V^{S*} - \beta \lambda^0 V^0$$

and in the auction model with directed search it is

$$\bar{x}^{DA} = \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \left[\left(\frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}^{DA}, \theta^{DA})}{\theta^{DA}} - c^B \right) - w \right] + (1 - \beta(1 - \delta)) V^{S*} - \beta \lambda^0 V^0$$

The difference between them is

$$\bar{x}^{RA} - \bar{x}^{DA} = \sigma_x + \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}^{RA}, \theta^{RA})}{\theta^{RA}(1 - F(\bar{x}^{RA}))} (1 - F(\bar{x}^{RA})) -$$

$$- \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(\bar{x}^{DA}, \theta^{DA})}{\theta^{DA}(1 - F(\bar{x}^{DA}))} (1 - F(\bar{x}^{DA})),$$

where the buyer’s surpluses are multiplied and divided by $(1 - F(\bar{x}))$ to get the adjusted tightness $z = \theta(1 - F(\bar{x}))$.

56
Notice that the function $\pi(z)/z$ is decreasing\(^49\) in z, hence $\pi(z^{RA})/z^{RA} > \pi(z^{DA})/z^{DA}$. Now prove that $\bar{x}^{DA} < \bar{x}^{RA}$ by contradiction. Assume that $\bar{x}^{DA} > \bar{x}^{RA}$, and thus $F(\bar{x}^{DA}) > F(\bar{x}^{RA})$ (or $1 - F(\bar{x}^{DA}) < 1 - F(\bar{x}^{RA})$), then

$$\bar{x}^{RA} - \bar{x}^{DA} = \sigma_x + \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(z^{RA})}{z^{RA}} (1 - F(\bar{x}^{RA})) -$$

$$- \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(z^{DA})}{z^{DA}} (1 - F(\bar{x}^{DA})) < 0$$

Because $\sigma_x > 0$, it has to be

$$\frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(z^{RA})}{z^{RA}} (1 - F(\bar{x}^{RA})) - \frac{(1 - \beta(1 - \lambda^0))}{1 - \beta} \frac{\beta}{1 - \gamma} \frac{\sigma_x \pi(z^{DA})}{z^{DA}} (1 - F(\bar{x}^{DA})) < 0$$

$$\frac{\pi(z^{RA})}{z^{RA}} (1 - F(\bar{x}^{RA})) < \frac{\pi(z^{DA})}{z^{DA}} (1 - F(\bar{x}^{DA}))$$

Using that $1 - F(\bar{x}^{DA}) < 1 - F(\bar{x}^{RA})$

$$\frac{\pi(z^{RA})}{z^{RA}} (1 - F(\bar{x}^{RA})) < \frac{\pi(z^{DA})}{z^{DA}} (1 - F(\bar{x}^{RA})) < \frac{\pi(z^{DA})}{z^{DA}} (1 - F(\bar{x}^{DA}))$$

we get

$$\frac{\pi(z^{RA})}{z^{RA}} < \frac{\pi(z^{DA})}{z^{DA}}$$

contradicting the previous finding that $\pi(z^{RA})/z^{RA} > \pi(z^{DA})/z^{DA}$. Hence, $\bar{x}^{DA} < \bar{x}^{RA}$.

A.5 Proof of Proposition 6

Before the proof of Proposition 6 is discussed, it is helpful to calculate the conditional expectation of the maximum value of housing services in lemma 1:

Lemma 1. Assume the hazard rate $\lambda(x) = f(x)/(1 - F(x))$ is weakly increasing, then the expectation of the maximum value of the housing services, conditional on this value exceeding the threshold \bar{x}_t, is $E[x_{(1)}|x_{(1)} \geq \chi_t] = \chi_t + \frac{\int_{x_t}^{x_{(1)}} \pi(x, \theta_t) dx}{\pi(x_t, \theta_t)}$

Proof. The expectation of the maximum value of the housing services, conditional on this value exceeding the threshold χ_t, is

$$E[x_{(1)}|x_{(1)} \geq \chi_t] = \frac{E_{N \geq 1} \int_{x_t}^{x_{(1)}} x dF^N(x)}{P(N \geq 1 \text{ and } x_{(1)} \geq \chi_t)} = \frac{E_{N \geq 1} \int_{x_t}^{x_{(1)}} x NF(x)^{N-1} f(x) dx}{\pi(\bar{x}_t, \theta_t)}$$

\(^{49}\) $(\pi(z)/z)_{z} = \frac{\pi'(z)z - \pi(z)}{z^2} = \frac{e^{-z}z - (1 - e^{-z})}{z^2} = \frac{e^{-z}(z+1)-1}{z^2} < 0$
where the denominator, from Appendix A.1, is

\[P(N \geq 1 \text{ and } x_{(1)t} \geq \chi_t) = P(\text{Sale}_t) = \pi(\bar{x}_t, \theta_t) \]

and the numerator can be simplified by using Fubini theorem to interchange the integration and expectation:

\[
E_{N \geq 1} \int_{\chi_t}^{x_{\text{max}}} xNF(x)^{N-1}f(x)dx = \int_{\chi_t}^{x_{\text{max}}} xE_{N \geq 1}NF(x)^{N-1}f(x)dx
\]

\[
E_N[NF(x)^{N-1}|N \geq 1] = e^{-\theta} \sum_{n=0}^{\infty} \frac{n^{\theta}F(x)^{n-1}}{P(N \geq 1)} P(N \geq 1)
\]

\[
= \theta e^{-\theta} \sum_{n=1}^{\infty} \frac{(\theta F(x))^{n-1}}{(n-1)!} = \theta e^{-\theta} e^{\theta F(x)} = \theta e^{-\theta(1-F(x))}
\]

Combining those, we need to find

\[
E[x_{(1)t}|x_{(1)t} \geq \bar{x}_t] = \frac{\int_{\chi_t}^{x_{\text{max}}} x\theta_t e^{-\theta_t(1-F(x))}f(x)dx}{\pi(\bar{x}_t, \theta_t)} = \frac{\int_{\chi_t}^{x_{\text{max}}} x\theta_t(1 - \pi(x, \theta_t))f(x)dx}{\pi(\bar{x}_t, \theta_t)}
\]

where \(\partial \pi(x, \theta_t)/\partial x = -\theta_t f(x)(1 - \pi(x, \theta_t))\). The integral in the numerator can be further written down as

\[
\int_{\chi_t}^{x_{\text{max}}} x\theta_t e^{-\theta_t(1-F(x))}f(x)dx = -\int_{\chi_t}^{x_{\text{max}}} x \frac{\partial \pi(x, \theta_t)}{\partial x} dx
\]

Taking the integral by parts:

\[
-\int_{\chi_t}^{x_{\text{max}}} x \frac{\partial \pi(x, \theta_t)}{\partial x} dx = (-1)[x\pi(x, \theta_t)]_{\chi_t}^{x_{\text{max}}} - \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t)dx =
\]

\[
= \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t)dx - x\pi(x, \theta_t)|_{\chi_t}^{x_{\text{max}}}
\]

where \(\lim_{x \to x_{\text{max}}} x\pi(x, \theta_t) = \lim_{x \to x_{\text{max}}} x(1 - \exp(-\theta_t(1 - F(x))))\).

If \(x_{\text{max}}\) is finite, then this limit is zero:

\[
\lim_{x \to x_{\text{max}}} x\pi(x, \theta_t) = x_{\text{max}}(1 - e^{-\theta_t(1-F(x))}) = x_{\text{max}}(1 - e^{-\theta_t \times 0}) = 0
\]

If \(x_{\text{max}} = \infty\), we use the L'Hopital rule and weakly increasing hazard rate \(\lambda(x)\) to show that this limit is still zero:

\[
\lim_{x \to \infty} x\pi(x, \theta_t) = \lim_{x \to \infty} \frac{x}{1 - \exp(-\theta_t(1 - F(x)))} = \lim_{x \to \infty} \frac{1}{\theta_t f(x) \exp(-\theta_t(1 - F(x)))}
\]

\[
= \lim_{x \to \infty} (1 - \exp(-\theta_t(1 - F(x))))^2 = \lim_{x \to \infty} \frac{(1 - \exp(-\theta_t(1 - F(x))))}{\theta_t \lambda(x)} = 0
\]

58
Thus, the integral is
\[
- \int_{\chi_t}^{x_{\text{max}}} x \frac{\partial \pi(x, \theta_t)}{\partial x} \, dx = \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx - x\pi(x, \theta_t)|_{x_{\text{max}}} = \]
\[
= \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx - (0 - \chi_t\pi(x, \theta_t)) = \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx + \chi_t\pi(x, \theta_t)
\]
Finally, the expectation of the maximum value the housing services, conditional on this value exceeding the threshold χ_t, is
\[
E[x_{(1)t} | x_{(1)t} \geq \bar{x}_t] = \frac{\int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx + \chi_t\pi(x, \theta_t)}{\pi(x, \theta_t)} = \chi_t + \frac{\int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx}{\pi(x, \theta_t)}
\]
Now we are ready for the proof of Proposition 6.

Proof of Proposition 6. The first term in the social planner problem can be rewritten as
\[
S_t E[x_{(1)t} | x_{(1)t} \geq \bar{x}_t] = S_t \pi(x, \theta_t)\chi_t + S_t \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx
\]
Then the recursive formulation of the social planner problem is
\[
\Omega_t(B_t, S_t, \bar{N}_t, H_t) = \max_{(S_t, B_t, N_t, \bar{x}_t)} \left[\beta \frac{S_t \pi(x, \theta_t)\chi_t + S_t \int_{\chi_t}^{x_{\text{max}}} \pi(x, \theta_t) \, dx}{1-\gamma} + \beta \lambda^0 V^0 H_t - w \bar{B}_t - c^S S_t - c^B B_t - c^0 N_t - c^1 (\bar{N}_t + N_t)^2 + \mu_t^B (\bar{B}_t - B_t) + \mu_t^S (\bar{S}_t - S_t) + \eta_t^B B_t + \eta_t^S S_t + \eta_t^N N_t + \beta \Omega_{t+1}(\bar{B}_{t+1}, \bar{S}_{t+1}, \bar{N}_{t+1}, H_{t+1}) \right]
\]
\[
\bar{B}_{t+1} = \bar{B}_t + d_t + (1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)H_t - S_t\pi(x, \theta_t)
\]
\[
\bar{S}_{t+1} = \bar{S}_t + \kappa(\bar{N}_t + N_t) + (1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)H_t - S_t\pi(x, \theta_t)
\]
\[
H_{t+1} = (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)H_t + S_t\pi(x, \theta_t)
\]
\[
\bar{N}_{t+1} = (1 - \kappa)(\bar{N}_t + N_t)
\]
\[
d_{t+1} = \rho d_t + (1 - \rho) d_0 + \varepsilon_{t+1}
\]
\[
0 \leq S_t \leq \bar{S}_t, 0 \leq B_t \leq \bar{B}_t, N_t \geq 0, \text{ and } \bar{B}_0 > 0, \bar{S}_0 > 0, \bar{N}_0 > 0, d_0 \text{ given}
\]
where $\eta_t^B, \mu_t^B, \eta_t^S, \mu_t^S, \eta_t^N \geq 0$ are the Lagrange multipliers for the restrictions $0 \leq B_t \leq \bar{B}_t$, $0 \leq S_t \leq \bar{S}_t$, and $N_t \geq 0$, correspondingly.

Envelope conditions
Let $V_t^S \equiv \frac{\partial \Omega_t}{\partial S_t}$, $V_t^B \equiv \frac{\partial \Omega_t}{\partial B_t}$, $V_t^N \equiv \frac{\partial \Omega_t}{\partial N_t}$, $\nu_t^H \equiv \frac{\partial \Omega_t}{\partial H_t}$ be the value of adding a seller, a buyer, a builder, and a homeowner, correspondingly. The value of adding a homeowner $\frac{\partial \Omega_t}{\partial H_t}$ is denoted as ν_t^H, not V_t^H, because in the social planner function the present value from living in the house is captured
instantaneously when the buyer becomes a homeowner but not the temporal value through, for example, separations. Hence, the value of additional homeowner to the stock of homeowners is \(v_t^H \) here rather than \(V_t^H \). Then the envelope conditions are

\[
V_t^B = -w + \mu_t^B + \beta V_{t+1}^B \\
V_t^S = \mu_t^S + \beta V_{t+1}^S \\
v_t^H = \beta \lambda^0 V^0 + \beta(1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)V_{t+1}^B + \beta(1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)V_{t+1}^S + \beta(1 - \lambda^0)(1 - \delta)(1 - \lambda^M)v_{t+1}^H \\
V_t^N = \beta \kappa V_{t+1}^S + \beta(1 - \kappa)V_{t+1}^N - (c^1 + c^2(\bar{N}_t + N_t))
\]

First order conditions with respect to the number of active buyers and sellers

In order to write the first order condition with the respect to the number of active buyers, define function \(m_t^B(B) \) as:

\[
m_t^B(B) \equiv \frac{\beta}{1 - \gamma} (1 - F(\bar{x}_t)(1 - \pi(\bar{x}_t, \theta_t))(\chi_t - \hat{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t))dx - c^B
\]

Then the first order condition with respect to the number of active buyers \(B_t \) is

If \(m^B(\bar{B}_t) > 0 \), then \(B_t = \bar{B}_t \) and \(\mu_t^B = m^B(\bar{B}_t) \)

If \(m^B(B_t) = 0 \), then \(B_t \in [0, \bar{B}_t] \) is found from \(\mu_t^B = m^B(B_t) = 0 \)

If \(m^B(B_t) \leq 0 \) for all \(B_t \in (0, \bar{B}_t] \) then \(B_t = 0 \) and \(\mu_t^B = 0 \)

In any of the cases above

\[
\mu_t^B = \max(m^B(B_t), 0) = m^B(B_t)^+ = \left(\frac{\beta}{1 - \gamma} (1 - F(\bar{x}_t)(1 - \pi(\bar{x}_t, \theta_t))(\chi_t - \hat{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (1 - F(x))(1 - \pi(x, \theta_t))dx - c^B \right)^+
\]

Similarly, the first order condition with respect to the number of active sellers \(S_t \) is

\[
m_t^S(S) \equiv \frac{\beta}{1 - \gamma} (\pi(\bar{x}_t, \theta_t) - \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)))(\chi_t - \hat{x}_t) + \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\text{max}}} (\pi(x, \theta_t) - \theta_t(1 - \pi(x, \theta_t))(1 - F(x)) dx - c^S
\]

60
If \(m^S(\bar{S}_t) > 0 \), then \(S_t = \bar{S}_t \) and \(\mu^S_t = m^S(\bar{S}_t) \)
If \(m^S(\bar{S}_t) = 0 \), then \(\mu^S_t = m^S(S_t) = 0 \) determines \(S_t \in [0, \bar{S}_t] \).
If \(m^S(S_t) \leq 0 \) for all \(S_t \in (0, \bar{S}_t] \), then \(S_t = 0 \) and \(\mu^S_t = 0 \).

In any of these cases,

\[
\mu^S_t = \max(m^S_t(S_t), 0) = m^S_t(S_t)^+ = \left(\frac{\beta}{1-\gamma}(\pi(\bar{x}_t, \theta_t) - \theta_t(1 - \pi(\bar{x}_t, \theta_t)))(1 - F(\bar{x}_t))) + \frac{\beta}{1-\gamma} \int_{\chi_t}^{x_{\text{max}}} (\pi(x, \theta_t) - \theta_t(1 - \pi(x, \theta_t)))(1 - F(x)) dx - c^S^+ \right)
\]

First order condition with respect to the threshold value of housing services

If \(\bar{x}_t \in (x_{\text{min}}, x_{\text{max}}) \), then \(\chi_t = \bar{x}_t \), and the first order condition with respect to the threshold value of housing services is

\[
\frac{\beta}{1-\gamma} \theta_t(1 - \pi_t)f(\bar{x}_t)[-\bar{x}_t + \hat{x}_t] = 0,
\]

so \(\bar{x}_t = \hat{x}_t \) within \((x_{\text{min}}, x_{\text{max}})\).
If \(\bar{x}_t \not\in (x_{\text{min}}, x_{\text{max}}) \), then the objective function and constraints do not depend on the choice of \(\bar{x}_t \) so any \(\bar{x}_t \) is optimal including \(\bar{x}_t = \hat{x}_t \).

First order condition with respect to the number of new builders

If \(N_t > 0 \), then the first order condition is

\[
V^N_t = \beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - (c^1 + c^2(\bar{N}_t + N_t)) = c^0
\]

If \(N_t = 0 \), then the first order condition is

\[
V^N_t = \beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - (c^1 + c^2(\bar{N}_t + N_t)) \leq c^0
\]

We can combine these as

\[
V^N_t = \min\{c^0, \beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - (c^1 + c^2(\bar{N}_t + N_t))\}
\]

\[
N_t = \max\{0, \frac{\beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - c^0 - c^1}{c^2} - \bar{N}_t\}
\]

So the total number of builders evolves according to

\[
\bar{N}_t + N_t = \max\{\bar{N}_t, \frac{\beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - c^0 - c^1}{c^2}\}
\]

\[
\bar{N}_t + N_t = \max\{(1 - \kappa)(\bar{N}_{t-1} + N_{t-1}), \frac{\beta \kappa V^S_{t+1} + \beta(1 - \kappa)V^N_{t+1} - c^0 - c^1}{c^2}\}
\]
Summary of all conditions characterizing the socially optimal allocation

\[\bar{x}_t = \hat{x}_t, \text{ where } \hat{x}_t = (1 - \gamma) (V_{t+1}^B + V_{t+1}^S - v_{t+1}^H) \]

\[\bar{B}_{t+1} = B_t + d_t + (1 - \lambda_0)(\delta + (1 - \delta)\lambda^M)H_t - q_t \]

\[\bar{S}_{t+1} = S_t + \kappa(\bar{N}_t + N_t) + (1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)H_t - q_t \]

\[H_{t+1} = (1 - \lambda^0)(1 - \delta)(1 - \lambda^M)H_t + q_t \]

\[N_t = \max \{ 0, \frac{\beta \kappa V_{t+1}^S + \beta(1 - \kappa)V_{t+1}^N - c^0 - c^1}{c^2} - \bar{N}_t \} \]

\[\bar{N}_t = (1 - \kappa)(\bar{N}_{t-1} + N_{t-1}) \]

\[V_{t+1}^N = \min \{ \beta(\kappa V_{t+1}^S + (1 - \kappa)V_{t+1}^N) - (c^1 + c^2(\bar{N}_t + N_t)), c^0 \} \]

\[v_{t+1}^H = \gamma v_{t+1}^H + \beta \lambda^0 V^0 + \beta(1 - \lambda^0)(\delta + (1 - \delta)\lambda^M)V_{t+1}^B + \]

\[+ \beta(1 - \delta)(\lambda^0 + (1 - \lambda^0)\lambda^M)V_{t+1}^S \]

\[V_t^B = \beta V_{t+1}^S + \mu_t^S, \quad V_t^B = \beta V_{t+1}^B + \mu_t^B - w \]

\[\pi_t = 1 - \exp(-\theta_t(1 - F(\bar{x}_t))), \quad q_t = S_t\pi(\bar{x}_t, \theta_t) \]

where

\[\mu_t^S = \frac{\beta}{1 - \gamma} (\pi(\bar{x}_t, \theta_t) - \theta_t(1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)))(\chi_t - \hat{x}_t) + \]

\[+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} (\pi(x, \theta_t) - \theta_t(1 - \pi(x, \theta_t))(1 - F(x))dx - c^S)^+ \]

\[\mu_t^B = \frac{\beta}{1 - \gamma} (1 - \pi(\bar{x}_t, \theta_t))(1 - F(\bar{x}_t)))(\chi_t - \hat{x}_t) + \]

\[+ \frac{\beta}{1 - \gamma} \int_{\chi_t}^{x_{\max}} (1 - \pi(x, \theta_t))(1 - F(x))dx - c^B)^+ \]
B Properties of functions φ and φ/π

Lemma 2. $\varphi(z) > \pi(z)$ for all $z > 0$

Proof. Let the adjusted tightness $z = \theta(1 - F(x))$ and $\varphi(z) \equiv \int_0^z \frac{1-e^{-y}}{y} dy$. We can now express the probability of sale in auction models as $\pi(x, \theta) = \pi(z) = 1 - \exp(-z)$ and conclude that

$$\lim_{z \to 0} \frac{\varphi(z)}{\pi(z)} = \lim_{z \to 0} \frac{(1 - \exp(-z))/z}{\exp(-z)} = \lim_{z \to 0} \frac{\exp(z) - 1}{z} = \lim_{z \to 0} \frac{\exp(z)}{1} = 1$$

$\varphi(0) = \pi(0) = 0$

$$\left(\varphi(z) - \pi(z)\right)' = \frac{1 - e^{-z}}{z} - e^{-z} = \frac{1 - (1 + z)e^{-z}}{z} > 0$$

Hence, $\varphi(z)/\pi(z) > 1$.

\[\square\]

Lemma 3. $\varphi(-\log(1 - \pi))$ is an increasing convex function of π

Proof.

$$\frac{\partial \varphi(-\log(1 - \pi))}{\partial \pi} = \varphi' \times \frac{\partial -\log(1 - \pi)}{\partial \pi} = -\varphi' \frac{1}{1 - \pi} (-1) = \varphi'/1 - \pi$$

where

$$\varphi' = \frac{1 - e^{-(-\log(1 - \pi))}}{-\log(1 - \pi)} = \frac{1 - \exp(\log(1 - \pi))}{-\log(1 - \pi)} = -\frac{\pi}{\log(1 - \pi)} > 0$$

$$\frac{\partial \varphi(-\log(1 - \pi))}{\partial \pi} = \varphi'/(1 - \pi) = -\frac{\pi}{(\log(1 - \pi))(1 - \pi)}$$

so that

$$\left(\frac{\partial \varphi(-\log(1 - \pi))}{\partial \pi}\right)' = -\left[\frac{\pi}{(1 - \pi)}\right]' \log(1 - \pi) - \frac{\pi}{1 - \pi} \frac{-1}{(\log(1 - \pi))^2}$$

where the numerator is

$$\frac{(1 - \pi) - (-1)\pi}{(1 - \pi)^2} \log(1 - \pi) + \frac{\pi}{(1 - \pi)^2} = \frac{\pi + \log(1 - \pi)}{(1 - \pi)^2}$$

where $\log(1 - \pi) < -\pi$ so that the

$$\frac{\partial \varphi(-\log(1 - \pi))}{\partial \pi} = \varphi'/(1 - \pi) = -\frac{\pi}{(\log(1 - \pi))(1 - \pi)} = -\frac{\log(1 - \pi) + \pi}{(1 - \pi)^2(\log(1 - \pi))^2} > 0$$

and the curve is convex in π.

\[\square\]

Lemma 4. $\varphi(-\log(1 - \pi))/\pi$ is an increasing convex function of π.

63
Proof.

\[
\frac{\partial \varphi(-\log(1-\pi))/\pi}{\partial \pi} = \frac{\delta \varphi}{\delta \pi} \pi - \varphi
\]

Since \(\varphi(-\log(1-\pi)) \equiv \varphi(\pi) \) is convex function in \(\pi \), it is true that \(\varphi(0) \geq \varphi(\pi) + \varphi'(\pi)(0-\pi) \). Hence, \(\varphi(\pi) \leq \varphi'(\pi)\pi \), so

\[
\frac{\partial \varphi(-\log(1-\pi))/\pi}{\partial \pi} = \frac{\delta \varphi}{\delta \pi} \pi - \varphi \geq 0,
\]

which means that the function \(\varphi(\pi)/\pi \) is increasing.

The function is also convex in \(\pi \), because

\[
\frac{\partial^2 \varphi(-\log(1-\pi))/\pi}{\partial \pi^2} = \frac{\delta^2 \varphi}{\delta \pi^2} \pi - \varphi - 2\pi^2 \frac{\delta \varphi}{\delta \pi} + 2\pi \varphi = \pi \left(\frac{\delta^2 \varphi}{\delta \pi^2} - 2\pi \frac{\delta \varphi}{\delta \pi} - \varphi \right)
\]

Since \(\varphi \) is convex, \(\frac{\delta^2 \varphi}{\delta \pi^2} \leq 0 \) and \(\frac{\delta \varphi}{\delta \pi} \pi - \varphi \geq 0 \). Thus, \(\frac{\partial^2 \varphi(-\log(1-\pi))/\pi}{\partial \pi^2} < 0 \) and \(\varphi/\pi \) is convex in \(\pi \).

\(\square \)

Figure 8: The functions \(\varphi(z) \) and \(\frac{\varphi(z)}{\pi(z)} \) as functions of adjusted tightness \(z = \theta(1 - F(\bar{x})) \)
C Addition calibration tables and results for Section 4.5

Tables 4 and 6 in Appendix C show calibrated parameter values for the normal and uniform distributions, correspondingly. Figures 9 and 10 show the simulations for cases when the housing services are distributed according to Normal and uniform distributions, correspondingly. Tables 5 and 7 show the average moments for those two cases as well.

C.1 Normal distribution

Table 4: Moments-matching calibration for Normal distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>RA</th>
<th>DA</th>
<th>NB</th>
<th>Targeted moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor, annual</td>
<td>(\beta)</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>annual return 6%</td>
</tr>
<tr>
<td>rent, monthly, $1,000</td>
<td>(w)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mean real rent</td>
</tr>
<tr>
<td>inflow of buyers, monthly, 1,000</td>
<td>(d_0)</td>
<td>4.76</td>
<td>4.76</td>
<td>4.76</td>
<td>mean sales</td>
</tr>
<tr>
<td>bargaining power of seller</td>
<td>(\alpha)</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>equal bargaining power</td>
</tr>
<tr>
<td>prob internal move, annual</td>
<td>(\lambda^M)</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>Piazzesi, Schneider, Stroebel (2019)</td>
</tr>
<tr>
<td>prob leave city, annual</td>
<td>(\lambda^L)</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>turnover rate 8%</td>
</tr>
<tr>
<td>prob depreciate, annual</td>
<td>(\delta)</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>annual depreciation 0.6%</td>
</tr>
<tr>
<td>prob deliver, monthly</td>
<td>(\kappa)</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>6 month construction</td>
</tr>
<tr>
<td>fixed land cost, $1,000</td>
<td>(c^0)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>land development costs</td>
</tr>
<tr>
<td>buyers’s search costs, monthly, $</td>
<td>(c^B)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fit (\hat{\sigma}_{\text{disp}})</td>
</tr>
<tr>
<td>standard deviation of (d_t)</td>
<td>(\sigma_d)</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>fit (\hat{\sigma}_{\text{disp}})</td>
</tr>
<tr>
<td>autocorrelation of (d_t), annual</td>
<td>(\rho)</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>costless search</td>
</tr>
<tr>
<td>std (x), $1,000</td>
<td>(\sigma_x)</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>jointly calibrated</td>
</tr>
<tr>
<td>seller’s search costs, monthly,</td>
<td>(c^S)</td>
<td>33.78</td>
<td>3.67</td>
<td>10.00</td>
<td>to match</td>
</tr>
<tr>
<td>$1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level of marginal costs, $1,000</td>
<td>(c^1)</td>
<td>-61.32</td>
<td>-53.85</td>
<td>-55.42</td>
<td>(\tau_p^{H^S} = 0.63),</td>
</tr>
<tr>
<td>angle of marginal costs, $1,000</td>
<td>(c^2)</td>
<td>36.74</td>
<td>36.74</td>
<td>36.74</td>
<td>(V^o = V^B, p = 450K),</td>
</tr>
<tr>
<td>mean services (x, Ex, $1,000)</td>
<td>(Ex)</td>
<td>9.05</td>
<td>8.74</td>
<td>6.85</td>
<td>(T^B = 3, T^S = 1.5),</td>
</tr>
<tr>
<td>utility leave city, $1,000</td>
<td>(U^0)</td>
<td>1205</td>
<td>1205</td>
<td>799</td>
<td>in LA MSA, Zillow.</td>
</tr>
</tbody>
</table>

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns RA/DA and Nash bargaining model in column NB. Each model is individually calibrated to match the same moments, observed in the data. The distribution of housing service flow \(x \) is Normal. See section 4.4 for details.
Figure 9: The volatility of the simulated prices in the auction models is higher than in the Nash bargaining model, example of normal distribution

Notes: This graph shows an example of simulated monthly series of the house price growth in percent from the auction model with random search in dashed red line, from the auction model with directed search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line. In each model the housing market is subject to the same series of shocks, fixed with the seed, and the same exponential distribution of the values, $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$, $f(x) = \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}}$, where μ_x, σ_x are calibrated to fit the data moments, see text.
Table 5: The auction house prices are more volatile in the auction models as compared to the benchmark Nash bargaining model, example of normal distribution

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>RA</th>
<th>DA/SP</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\Delta \log p}$ monthly</td>
<td>0.0160</td>
<td>0.0160</td>
<td>0.0133</td>
<td>0.0109</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ monthly</td>
<td>0.5814</td>
<td>0.8376</td>
<td>0.7960</td>
<td>0.8394</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, last</td>
<td>0.0388</td>
<td>0.0441</td>
<td>0.0367</td>
<td>0.0304</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, last</td>
<td>0.3830</td>
<td>0.5662</td>
<td>0.5185</td>
<td>0.5876</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, average</td>
<td>0.0370</td>
<td>0.0422</td>
<td>0.0351</td>
<td>0.0291</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, average</td>
<td>0.4221</td>
<td>0.6452</td>
<td>0.6082</td>
<td>0.6640</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, last</td>
<td>0.1026</td>
<td>0.1344</td>
<td>0.1153</td>
<td>0.0958</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ annual, last</td>
<td>0.6662</td>
<td>0.1535</td>
<td>0.1700</td>
<td>0.2126</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, average</td>
<td>0.1016</td>
<td>0.1195</td>
<td>0.1033</td>
<td>0.0861</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ annual, average</td>
<td>0.7225</td>
<td>0.2788</td>
<td>0.2879</td>
<td>0.3248</td>
</tr>
</tbody>
</table>

Notes: This table shows the moments based on Zillow house price growth data in column “Data”, average moments from 1,000 simulations of the auction model with random and directed search in column “RA” and “DA/SP”, correspondingly, and random Nash bargaining model in column NB’. The “SP” name of the column refers to the social planner solution that can be decentralized by the auction model with directed search. $\sigma_{\Delta \log p}$ and $\rho_{\Delta \log p}$ stand for standard deviation and autocorrelation of the change in log prices. The distribution of values x is normal $\mathcal{N}(\mu_x, \sigma_x^2)$, $f(x) = \frac{1}{\sqrt{2\pi}\sigma_x}e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}}$. I have applied the Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly and annual series from the monthly data. The quarterly series that are computed as the prices at the last month in the quarter referred to as “last”, or the average monthly prices referred to as “average”. Similarly, for the annual series.
C.2 Uniform distribution

Table 6: Moments-matching calibration for uniform distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>RA</th>
<th>DA</th>
<th>NB</th>
<th>Targeted moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor, annual</td>
<td>β</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>annual return 6%</td>
</tr>
<tr>
<td>rent, monthly, $1,000</td>
<td>w</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mean real rent</td>
</tr>
<tr>
<td>inflow of buyers, monthly, 1,000</td>
<td>d_0</td>
<td>4.76</td>
<td>4.76</td>
<td>4.76</td>
<td>mean sales</td>
</tr>
<tr>
<td>bargaining power of seller</td>
<td>α</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>equal bargaining power</td>
</tr>
<tr>
<td>prob internal move, annual</td>
<td>λ^M</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>Piazzesi, Schneider, Stroebel (2019)</td>
</tr>
<tr>
<td>prob leave city, annual</td>
<td>λ^D</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>turnover rate 8%</td>
</tr>
<tr>
<td>prob depreciate, annual</td>
<td>δ</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>annual depreciation 0.6%</td>
</tr>
<tr>
<td>prob deliver, monthly</td>
<td>κ</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>6 month construction</td>
</tr>
<tr>
<td>fixed land cost, $1,000</td>
<td>c^0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>land development costs</td>
</tr>
<tr>
<td>buyers’ search costs, monthly; $</td>
<td>c^B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fit σ_{data}^B</td>
</tr>
<tr>
<td>standard deviation of d_t</td>
<td>σ_d</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>fit σ_{data}^P</td>
</tr>
<tr>
<td>autocorrelation of d_t, annual</td>
<td>ρ</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>costless search</td>
</tr>
<tr>
<td>std x, $1,000</td>
<td>σ_x</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>jointly calibrated</td>
</tr>
<tr>
<td>seller’s search costs, monthly, $</td>
<td>c^S</td>
<td>39.08</td>
<td>3.99</td>
<td>10.00</td>
<td>to match</td>
</tr>
<tr>
<td>$1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level of marginal costs, $1,000</td>
<td>c^1</td>
<td>-62.64</td>
<td>-53.93</td>
<td>-55.42</td>
<td>$\varepsilon^{RS}_p = 0.63$,</td>
</tr>
<tr>
<td>angle of marginal costs, $1,000</td>
<td>c^2</td>
<td>36.74</td>
<td>36.74</td>
<td>36.74</td>
<td>$V^0 = V^B$, $p = 450K$</td>
</tr>
<tr>
<td>mean services x, Ex, $1,000$</td>
<td>Ex</td>
<td>8.05</td>
<td>7.69</td>
<td>6.87</td>
<td>$T^B = 3$, $T^S = 1.5$</td>
</tr>
<tr>
<td>utility leave city, $1,000$</td>
<td>V^0</td>
<td>1000</td>
<td>1000</td>
<td>799</td>
<td>in LA MSA, Zillow.</td>
</tr>
</tbody>
</table>

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns RA/DA and Nash bargaining model in column NB. Each model is individually calibrated to match the same moments, observed in the data. The distribution of housing service flow x is uniform. See section 4.4 for details.
Figure 10: The volatility of the simulated prices in the auction models is higher than in the Nash bargaining model, example of uniform distribution

Notes: This graph shows an example of simulated monthly series of the house price growth in percent from the auction model with random search in dashed red line, from the auction model with directed search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line. In each model the housing market is subject to the same series of shocks, fixed with the seed, and the same exponential distribution of the values, \(x \sim U[x_{\text{min}}, x_{\text{max}}] \), where \(x_{\text{min}}, x_{\text{max}} \) are calibrated to fit the data moments, see text.
Table 7: The auction house prices are more volatile in the auction models as compared to the benchmark Nash bargaining model, example of uniform distribution

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>RA</th>
<th>DA/SP</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\Delta \log p}$ monthly</td>
<td>0.0160</td>
<td>0.0160</td>
<td>0.0133</td>
<td>0.0105</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ monthly</td>
<td>0.5814</td>
<td>0.8473</td>
<td>0.8118</td>
<td>0.8411</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, last</td>
<td>0.0388</td>
<td>0.0444</td>
<td>0.0369</td>
<td>0.0293</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, last</td>
<td>0.3830</td>
<td>0.5808</td>
<td>0.5459</td>
<td>0.5916</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ quarterly, average</td>
<td>0.0370</td>
<td>0.0426</td>
<td>0.0354</td>
<td>0.0282</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ quarterly, average</td>
<td>0.4221</td>
<td>0.6558</td>
<td>0.6295</td>
<td>0.6672</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, last</td>
<td>0.1026</td>
<td>0.1363</td>
<td>0.1175</td>
<td>0.0930</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ annual, last</td>
<td>0.6662</td>
<td>0.1571</td>
<td>0.1809</td>
<td>0.2194</td>
</tr>
<tr>
<td>$\sigma_{\Delta \log p}$ annual, average</td>
<td>0.1016</td>
<td>0.1210</td>
<td>0.1054</td>
<td>0.0835</td>
</tr>
<tr>
<td>$\rho_{\Delta \log p}$ annual, average</td>
<td>0.7225</td>
<td>0.2827</td>
<td>0.2994</td>
<td>0.3315</td>
</tr>
</tbody>
</table>

Notes: This table shows the moments based on Zillow house price growth data in column “Data”, average moments from 1,000 simulations of the auction model with random and directed search in column “RA” and “DA/SP”, correspondingly, and random Nash bargaining model in column NB’. The “SP” name of the column refers to the social planner solution that can be decentralized by the auction model with directed search. $\sigma_{\Delta \log p}$ and $\rho_{\Delta \log p}$ stand for standard deviation and autocorrelation of the change in log prices. The distribution of values x is uniform $x \sim U[x_{\min}, x_{\max}]$. I have applied the Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly and annual series from the monthly data. The quarterly series that are computed as the prices at the last month in the quarter referred to as “last”, or the average monthly prices referred to as “average”. Similarly, for the annual series.
D Results with $c^0 = 25,000$ and $c^0 = 75,000$

D.1 Results with $c^0 = 25,000$

Table 8: Moments-matching calibration for exponential distribution, $c^0 = 25,000$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>RA</th>
<th>DA</th>
<th>NB</th>
<th>Targeted moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor, annual</td>
<td>β</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>annual return 6%</td>
</tr>
<tr>
<td>rent, monthly, $$1,000</td>
<td>w</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mean real rent</td>
</tr>
<tr>
<td>inflow of buyers, monthly, 1,000</td>
<td>d_o</td>
<td>4.76</td>
<td>4.76</td>
<td>4.76</td>
<td>mean sales</td>
</tr>
<tr>
<td>bargaining power of seller</td>
<td>α</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>equal bargaining power</td>
</tr>
<tr>
<td>prob internal move, annual</td>
<td>λ^M</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>Piazzesi, Schneider, Stroebel (2019)</td>
</tr>
<tr>
<td>prob leave city, annual</td>
<td>λ^0</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>turnover rate 8%</td>
</tr>
<tr>
<td>prob depreciate, annual</td>
<td>δ</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>annual depreciation 0.6%</td>
</tr>
<tr>
<td>prob deliver, monthly</td>
<td>κ</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>6 month construction</td>
</tr>
<tr>
<td>fixed land cost, $$1,000</td>
<td>c^0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>land development costs</td>
</tr>
<tr>
<td>buyers’s search costs, monthly, $$</td>
<td>c^B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fit $\hat{\sigma}_{data}$</td>
</tr>
<tr>
<td>standard deviation of d_t</td>
<td>σ_d</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>fit $\hat{\sigma}_{data}$</td>
</tr>
<tr>
<td>autocorrelation of d_t, annual</td>
<td>ρ</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>costless search</td>
</tr>
<tr>
<td>std x, $$1,000</td>
<td>σ_x</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>jointly calibrated</td>
</tr>
<tr>
<td>seller’s search costs, monthly, $$1,000</td>
<td>c^S</td>
<td>29.38</td>
<td>4.75</td>
<td>10.00</td>
<td>to match</td>
</tr>
<tr>
<td>level of marginal costs, $$1,000</td>
<td>c^1</td>
<td>-55.96</td>
<td>-49.85</td>
<td>-51.15</td>
<td>$\varphi_{hit} = 0.63$, $V^0 = V^B$, $p = 450K$,</td>
</tr>
<tr>
<td>angle of marginal costs, $$1,000</td>
<td>c^2</td>
<td>36.74</td>
<td>36.74</td>
<td>36.74</td>
<td>$V^0 = V^B$, $p = 450K$, $V^0 = V^B$, $p = 450K$,</td>
</tr>
<tr>
<td>mean services x, Ex, $$1,000</td>
<td>Ex</td>
<td>13.15</td>
<td>12.89</td>
<td>6.89</td>
<td>$T^B = 3$, $T^S = 1.5$</td>
</tr>
<tr>
<td>utility leave city, $$1,000</td>
<td>V^0</td>
<td>1988</td>
<td>1988</td>
<td>799</td>
<td>in LA MSA, Zillow.</td>
</tr>
</tbody>
</table>

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns RA/DA and Nash bargaining model in column NB. Each model is individually calibrated to match the same moments, observed in the data. The distribution of housing service flow x is exponential. See section 4.4 for details.
Figure 11: The volatility of the simulated prices in the auction models is higher than in the Nash bargaining model, $c^0 = 25,000$

Notes: This graph shows an example of simulated monthly series of the house price growth in percent from the auction model with random search in dashed red line, from the auction model with directed search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line. In each model the housing market is subject to the same series of shocks, fixed with the seed. The housing services x are exponential distributed, $x \sim F(x) = (1 - \exp\left(-\frac{x+\sigma_x-\mu_x}{\sigma_x}\right))1_{\{x \geq \mu_x-\sigma_x\}}$, where μ_x, σ_x are calibrated to fit the data moments, see text.
Table 9: Volatilities and autocorrelations in the data and models, $c^0 = 25,000$

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>RA</th>
<th>DA/SP</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\Delta \text{logp}}$ monthly</td>
<td>0.0160</td>
<td>0.0160</td>
<td>0.0138</td>
<td>0.0090</td>
</tr>
<tr>
<td>$\rho_{\Delta \text{logp}}$ monthly</td>
<td>0.5814</td>
<td>0.8147</td>
<td>0.7712</td>
<td>0.8428</td>
</tr>
<tr>
<td>$\sigma_{\Delta \text{logp}}$ quarterly, last</td>
<td>0.0388</td>
<td>0.0438</td>
<td>0.0377</td>
<td>0.0251</td>
</tr>
<tr>
<td>$\rho_{\Delta \text{logp}}$ quarterly, last</td>
<td>0.3830</td>
<td>0.5418</td>
<td>0.4774</td>
<td>0.5951</td>
</tr>
<tr>
<td>$\sigma_{\Delta \text{logp}}$ quarterly, average</td>
<td>0.0370</td>
<td>0.0417</td>
<td>0.0358</td>
<td>0.0241</td>
</tr>
<tr>
<td>$\rho_{\Delta \text{logp}}$ quarterly, average</td>
<td>0.4221</td>
<td>0.6298</td>
<td>0.5765</td>
<td>0.6694</td>
</tr>
<tr>
<td>$\sigma_{\Delta \text{logp}}$ annual, last</td>
<td>0.1026</td>
<td>0.1330</td>
<td>0.1157</td>
<td>0.0796</td>
</tr>
<tr>
<td>$\rho_{\Delta \text{logp}}$ annual, last</td>
<td>0.6662</td>
<td>0.1491</td>
<td>0.1540</td>
<td>0.2471</td>
</tr>
<tr>
<td>$\sigma_{\Delta \text{logp}}$ annual, average</td>
<td>0.1016</td>
<td>0.1185</td>
<td>0.1037</td>
<td>0.0714</td>
</tr>
<tr>
<td>$\rho_{\Delta \text{logp}}$, annual, average</td>
<td>0.7225</td>
<td>0.2721</td>
<td>0.2728</td>
<td>0.3549</td>
</tr>
</tbody>
</table>

Notes: This table shows the moments based on Zillow house price growth data in column Data, average moments from 1,000 simulations of the auction model with random and directed search in column RA and DA/SP, correspondingly, and random Nash bargaining model in column NB. The SP name of the column refers to the social planner solution that can be decentralized by the auction model with directed search. $\sigma_{\Delta \text{logp}}$ and $\rho_{\Delta \text{logp}}$ stand for standard deviation and autocorrelation of the change in log prices. The distribution of values x is exponential $F(x) = (1 - \exp(-\frac{x + \mu - \sigma x}{\sigma}))\mathbb{1}_{\{x \geq \mu - \sigma x\}}$. I have applied the Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly and annual series from the monthly data. The quarterly series that are computed as change in the log prices at the last month in the quarter referred to as “last”, or the average change in the log prices referred to as “average”. Similarly, for the annual series.
D.2 Results with $c^0 = 75,000$

Table 10: Moments-matching calibration for exponential distribution, $c^0 = 75,000$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>RA</th>
<th>DA</th>
<th>NB</th>
<th>Targeted moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount factor, annual</td>
<td>β</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>annual return 6%</td>
</tr>
<tr>
<td>rent, monthly, $$1,000</td>
<td>w</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mean real rent</td>
</tr>
<tr>
<td>inflow of buyers, monthly, 1,000</td>
<td>d_0</td>
<td>4.76</td>
<td>4.76</td>
<td>4.76</td>
<td>mean sales</td>
</tr>
<tr>
<td>bargaining power of seller</td>
<td>α</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>equal bargaining power</td>
</tr>
<tr>
<td>prob internal move, annual</td>
<td>λ</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
<td>Piazzesi, Schneider, Stroebel (2019)</td>
</tr>
<tr>
<td>prob leave city, annual</td>
<td>λ^0</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
<td>turnover rate 8%</td>
</tr>
<tr>
<td>prob depreciate, annual</td>
<td>δ</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>annual depreciation 0.6%</td>
</tr>
<tr>
<td>prob deliver, monthly</td>
<td>κ</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>6 month construction</td>
</tr>
<tr>
<td>fixed land cost, $$1,000</td>
<td>c^0</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>land development costs</td>
</tr>
<tr>
<td>buyers’s search costs, monthly, $</td>
<td>c^B$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fit $\hat{\sigma}_{Data}^{Data}$</td>
</tr>
<tr>
<td>standard deviation of d_t</td>
<td>σ_d</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>fit $\hat{\sigma}_{Data}^{Data}$</td>
</tr>
<tr>
<td>autocorrelation of d_t, annual</td>
<td>ρ</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>costless search</td>
</tr>
<tr>
<td>std x, $$1,000</td>
<td>σ_x</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>jointly calibrated</td>
</tr>
<tr>
<td>seller’s search costs, monthly,</td>
<td>c^S</td>
<td>29.38</td>
<td>4.75</td>
<td>0.00</td>
<td>to match</td>
</tr>
<tr>
<td>$$1,000</td>
<td>c^1</td>
<td>-64.51</td>
<td>-58.40</td>
<td>-59.70</td>
<td>$e^{H^S}_{p} = 0.63$, $V^0 = V^B$, $p = 450K$,</td>
</tr>
<tr>
<td>level of marginal costs, $$1,000</td>
<td>c^2</td>
<td>36.74</td>
<td>36.74</td>
<td>36.74</td>
<td>$V^0 = V^B$, $p = 450K$,</td>
</tr>
<tr>
<td>angle of marginal costs, $$1,000</td>
<td>Ex</td>
<td>13.15</td>
<td>12.89</td>
<td>6.89</td>
<td>$T^B = 3$, $T^S = 1.5$</td>
</tr>
<tr>
<td>mean services x, Ex, $$1,000</td>
<td>V^0</td>
<td>1988</td>
<td>1988</td>
<td>799</td>
<td>in LA MSA, Zillow.</td>
</tr>
</tbody>
</table>

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns RA/DA and Nash bargaining model in column NB. Each model is individually calibrated to match the same moments, observed in the data. The distribution of housing service flow x is exponential. See section 4.4 for details.
Figure 12: The volatility of the simulated prices in the auction models is higher than in the Nash bargaining model, $c^0 = 75,000$

Notes: This graph shows an example of simulated monthly series of the house price growth in percent from the auction model with random search in dashed red line, from the auction model with directed search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line. In each model the housing market is subject to the same series of shocks, fixed with the seed. The housing services x are exponential distributed, $x \sim F(x) = (1 - \exp(-\frac{x+\sigma_x-\mu_x}{\sigma_x})) \mathbb{1}_{\{x \geq \mu_x - \sigma_x\}}$, where μ_x, σ_x are calibrated to fit the data moments, see text.
Table 11: Volatilities and autocorrelations in the data and models, \(c^0 = 75,000 \)

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>RA</th>
<th>DA/SP</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\Delta \log P}) monthly</td>
<td>0.0160</td>
<td>0.0160</td>
<td>0.0138</td>
<td>0.0090</td>
</tr>
<tr>
<td>(\rho_{\Delta \log P}) monthly</td>
<td>0.5814</td>
<td>0.8147</td>
<td>0.7712</td>
<td>0.8428</td>
</tr>
<tr>
<td>(\sigma_{\Delta \log P}) quarterly, last</td>
<td>0.0388</td>
<td>0.0438</td>
<td>0.0377</td>
<td>0.0251</td>
</tr>
<tr>
<td>(\rho_{\Delta \log P}) quarterly, last</td>
<td>0.3830</td>
<td>0.5418</td>
<td>0.4774</td>
<td>0.5951</td>
</tr>
<tr>
<td>(\sigma_{\Delta \log P}) quarterly, average</td>
<td>0.0370</td>
<td>0.0417</td>
<td>0.0358</td>
<td>0.0241</td>
</tr>
<tr>
<td>(\rho_{\Delta \log P}) quarterly, average</td>
<td>0.4221</td>
<td>0.6298</td>
<td>0.5765</td>
<td>0.6694</td>
</tr>
<tr>
<td>(\sigma_{\Delta \log P}) annual, last</td>
<td>0.1026</td>
<td>0.1330</td>
<td>0.1157</td>
<td>0.0796</td>
</tr>
<tr>
<td>(\rho_{\Delta \log P}) annual, last</td>
<td>0.6662</td>
<td>0.1491</td>
<td>0.1540</td>
<td>0.2471</td>
</tr>
<tr>
<td>(\sigma_{\Delta \log P}) annual, average</td>
<td>0.1016</td>
<td>0.1185</td>
<td>0.1037</td>
<td>0.0714</td>
</tr>
<tr>
<td>(\rho_{\Delta \log P}), annual, average</td>
<td>0.7225</td>
<td>0.2721</td>
<td>0.2728</td>
<td>0.3549</td>
</tr>
</tbody>
</table>

Notes: This table shows the moments based on Zillow house price growth data in column Data, average moments from 1,000 simulations of the auction model with random and directed search in column RA and DA/SP, correspondingly, and random Nash bargaining model in column NB. The SP name of the column refers to the social planner solution that can be decentralized by the auction model with directed search. \(\sigma_{\Delta \log P} \) and \(\rho_{\Delta \log P} \) stand for standard deviation and autocorrelation of the change in log prices. The distribution of values \(x \) is exponential \(F(x) = (1 - \exp(-\frac{x+\sigma-\mu}{\sigma}))1_{\{x \geq \mu - \sigma\}} \). I have applied the Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly and annual series from the monthly data. The quarterly series that are computed as change in the log prices at the last month in the quarter referred to as “last”, or the average change in the log prices referred to as “average”. Similarly, for the annual series.