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The JPMorgan Chase Institute aims to use 

administrative banking data to publish insights 

that are representative of the US population. To 

do this, we require a method to reweight our 

samples of Chase customers to reflect key 

characteristics of the nation, with income 

foremost among them. Given that we do not 

have full coverage of income information 

across our portfolio of customers, we have 

developed a proof-of-concept method for 

estimating income.  

JPMC Institute Income Estimate (JPMC IIE) 

version 1.0 uses gradient boosting machines 

(GBM) to estimate gross family income based 

on a truth set drawn from credit card and 

mortgage application data. The estimation 

relies on administrative banking data – such as 

checking account inflows – in combination 

with ZIP code-level characteristics available 

through public datasets, as well as Census data 

at the tract level. Deposit account inflows alone 

are insufficient to approximate gross family 

income. The combination of administrative 

banking data with other data sources and a 

machine learning approach yielded a 

significantly more accurate prediction of 

income.  

I. Data 

The goal of JPMC IIE is to predict gross 

family income of Chase checking account 

customers each year from 2013 to 2017. We 

aggregate data to the primary account holder 

level and restrict the prediction exercise to 

customer-months that have sufficient checking 

account activity to establish a relationship with 

the bank. In addition to administrative data 

from families’ banking activities, we also 

leverage ZIP code level attributes from 

publicly available data. 

A. Dependent Variable 

We use two sources of ground truth income 

for modeling: income obtained from mortgage 

and credit card applications. Each source has its 

strengths and weaknesses. Income obtained for 

mortgage applications undergoes a verification 

process and is therefore an accurate 

representation of a family’s gross income. 

However, the set of families applying for 
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mortgages tend to be more affluent than those 

that do not. As shown in Figure 1, our mortgage 

income data skews toward high-income 

families, with close to 50 percent of the sample 

falling into the top income quintile as defined 

by American Community Survey (ACS) 

income data, and only 6 percent in the first two 

quintiles.  

 

FIGURE 1. DENSITY PLOT OF MORTGAGE VERIFIED INCOME 

On the other hand, while credit card 

applicants cover a broader range of incomes, 

data obtained through that application process 

are self-reported and may be less accurate than 

mortgage-verified incomes. Comparing the 

two income values for customers for whom we 

had both verified income from a mortgage 

application and stated income from a credit 

card application revealed that customers tended 

to state more income on their credit card 

applications than was verified on their 

mortgage applications. The median percentage 

difference of credit card stated income minus 

mortgage verified income was positive among 

customers who applied for both products 

within the same year (Figure 2).  

Differences may represent income from 

unverifiable sources, such as cash, or real 

income changes during the year. To avoid 

losing this information, we average the two 

sources of income when both are present. 

Finally, we create our modeling truth set by 

log-transforming the dependent variable to 

address positive skew in income distribution. 

 

FIGURE 2. DISTRIBUTION OF STATED INCOME MINUS MORTGAGE 

VERIFIED INCOME 

B. Benchmark Income Measures 

To better understand the incremental value of 

a machine learning approach, we constructed 

two naïve approximations of income: (1) the 

Inflow Benchmark sums checking account 

inflows that we categorize as income, adjusted 

to approximate pre-tax income; (2) the IRS 

Benchmark uses ZIP code level average IRS-

reported income to proxy income for each 

individual based on their reported ZIP code. 

The relationship between the benchmark 

measures and our truth set is presented in 

Figure 3. Both benchmarks yield high mean 

absolute error (MAE) values: 162 percent for 



the Inflow Benchmark and 103 percent for the 

IRS Benchmark. These high error rates confirm 

the need for a more comprehensive approach to 

income estimation and will be used for 

comparison as we develop our machine 

learning approach. 

 

FIGURE 3. PERFORMANCE OF BENCHMARK INCOME MEASURES 

B. Independent Variables 

The features used to predict income originate 

from sources both internal and external to the 

bank. Internally, we include four main groups 

of features: (1) Customer information, such as 

age and location; (2) Checking account 

attributes, including inflow categorizations and 

account balances; (3) Credit card attributes, 

such as credit limit and number of cards; (4) 

Attributes of other accounts, including loan 

information and total liquid assets across 

deposit accounts. 

We also use features from ZIP code level 

characteristics available through public 

datasets, such as the Internal Revenue Service 

(IRS) Statistics of Income (SOI) dataset, and 

Zillow rental information, as well as Census 

data at the tract level. 

We aggregate account features at the annual 

level, capturing the maximum, minimum, 

average, range, and total of each feature within 

the calendar year. In total this yields 400 raw 

candidate features for model training per year, 

which we then treat to remove missing values, 

handle skewed distributions, and standardize 

ranges. 

C. Sample Construction 

Our modeling sample includes customers for 

whom we have information on either mortgage 

income or credit card income at some point 

during 2013 through 2017.  

We perform three steps to improve upon the 

accuracy and representativeness of our final 

income truth set. Because checking account 

inflows represent take-home income after taxes 

and other deductions and may not represent the 

customer’s overall income, we expect true 

income to always be greater than income 

inflows. To address accuracy, we remove from 

our sample customers whose truth set income 

is less than income inflows into their checking 

account. In our remaining sample, we remove 

customers with income in the top or bottom 

percentile of the truth set in order to train the 

model without undue influence of extreme 

observations. Finally, to address sample 

representativeness, we stratify the sample by 

ACS quintiles, selecting 50,000 customers 



 

from each. This yields a final modeling sample 

of 250,000 customers each year. 

II. Modeling Approach 

We embarked on this proof-of-concept effort 

to assess the feasibility and use of a gross 

income estimate derived via machine learning. 

We initially considered several modeling 

techniques in order to identify which is best 

aligned with our goals. Most weight was given 

to finding a method that is performant in quick 

iterations as we build toward a minimum viable 

product (MVP) estimate. 

Our set of candidate techniques included 

gradient boosting machines, random forests, 

elastic net linear regression, and support vector 

regressors. After initial runs, we selected 

gradient boosting machines (GBM) as the 

approach best suited to our MVP project goals. 

A. Gradient Boosting Machines (GBM) 

GBM is a machine learning algorithm based 

on ensembles of decision trees. The GBM 

algorithm generates a sequential series of weak 

learners (shallow trees), iteratively improving 

the estimate with each new tree.  

GBM, like other tree-based methods, is 

capable of fitting relationships with no 

requirements around the underlying functional 

forms. This frees the modeler from detecting 

and specifying nonlinearities in variable 

relationships, as the algorithm seamlessly 

captures complex curvatures and interactions. 

However, the flexibility that makes GBM so 

appealing also makes it prone to over-

specification, wherein the model is fit so well 

to the particular idiosyncrasies of the training 

data that it fails to generalize out of sample. In 

other words, GBM may generate a model that 

yields impressive performance metrics during 

development, but very poor metrics when 

applying the model to new data – the very goal 

of developing an estimate. 

We prevent over-fitting through hyper-

parameter tuning, selecting the preferred level 

of model complexity to ensure model 

generalizability. Our GBM tuning focused on 

four hyperparameters: number of estimators 

(trees) generated; maximum depth of each tree; 

maximum features to consider for each split 

within a tree; and minimum sample size needed 

to allow a further split.  

B. GBM vs. Regression-Based Methods 

There are two primary critiques of GBM 

relative to traditional parametric techniques, 

such as linear regression. The first is that tree-

based methods come with a high risk of over-

specification. While true, that risk can be 

reliably managed with standard approaches, 

including hyperparameter tuning and deliberate 

separation of development data. We describe 



our management of these processes in sections 

IIA and IIIA, respectively. 

The second common critique is that modeled 

relationships are less interpretable with GBM 

than regression-based approaches. Without an 

easily readable scoring equation, it is difficult 

to understand the contribution of individual 

inputs to the final estimate. However, there are 

other techniques available for understanding 

the relationships captured by the model. For 

example, partial dependence plots (PDPs) can 

be used to graphically represent the marginal 

effect of each input on the predicted outcome. 

III. Performance Assessments 

The purpose of JPMC IIE is to provide an 

estimate of gross family income that we can use 

to segment and reweight populations by 

income quintile. Thus, in optimizing the 

performance of JPMC IIE, we aim to minimize 

MAE of the point estimates and also to predict 

the correct income quintile accurately. Here we 

present results for version 1.0 of JPMC IIE. 

A. Data Approach 

In order to train a model that is generalizable 

to different populations of our research 

universe, we separated our modeling data into 

three groups: 

1. Training Set (60 percent of sample): Used 

to fit the models in order to determine the form 

of the relationship between income and the 

feature set. 

2. Validation Set (20 percent of sample): 

Used in parallel with the training set, to tune 

hyperparameters and guard against overfit. 

3. Testing Set (20 percent of sample): Used 

to assess the predictive power of the final 

model, on observations not used for training or 

hyperparameter tuning. 

B. Results 

We focus our attention on MAE and quintile 

prediction accuracy: the proportion of each 

predicted income quintile classified correctly 

(e.g., belonging to the same truth set income 

quintile), based on ACS quintile boundaries. 

By all metrics, results are fairly consistent 

across years in our testing set, yielding an 

average MAE of 41 percent and an accurate 

quintile prediction 55 percent of the time. We 

also observe small differences between the 

MAE on the training and testing sets (38 

percent and 41 percent, respectively) indicating 

that the estimates are not overfitting to the 

training sample. 

As most of JPMCI’s research uses income on 

the ACS quintile basis, we prioritized 

consistent accuracy across those quintiles. 

Figure 4 shows classification across truth set 

income quintiles, within each predicted income 

quintile. We observe that the accuracy rate is 



 

consistent across predicted quintiles, and 

misclassifications tend to be concentrated in 

the adjacent quintiles: 90 percent or more of the 

observations were classified in the correct or an 

adjacent income quintile. 

 

FIGURE 4. ACS QUINTILE ACCURACY BY PREDICTED QUINTILES 

The consistent accuracy across quintiles is 

the result of stratifying our modeling data by 

ACS income quintile (described in section IC). 

In contrast, a model trained on a random, un-

stratified sample underperforms for lower 

income quintiles while performing better for 

middle and high income quintiles (Figure 5). 

This is because our un-stratified training set 

naturally over-represents families in the third 

and fourth income quintiles. 

Although accuracy rates within a predicted 

quintile are consistent across quintiles, the 

model exhibits asymmetric errors when 

assessed at a more granular level. Figure 6 

shows that low predicted income values are 

skewed slightly toward underpredicting their 

corresponding truth set income. 

 

FIGURE 5. ACS QUINTILE ACCURACY BY STRATIFICATION OPTIONS 

 

FIGURE 6. ESTIMATED INCOME VS. TRUTH SET INCOME, AND 

CORRESPONDING RESIDUALS 

C. Case Study: IIE version 1.0 Research Use 

We test the estimate’s ability to reweight the 

sample for the JPMCI Healthcare Out-of-

pocket Spending Panel (HOSP). Figure 7 

compares out-of-pocket health spending levels, 

reweighting our HOSP sample to match each 



state’s joint age and income distribution using 

age and truth set income (orange line). 

Applying JPMC IIE and age (black line) yields 

estimated spend levels much closer to this true 

weighting than either an unweighted sample 

(blue line) or a sample weighted exclusively by 

age (green line). We conclude that the use of 

JPMC IIE is valuable in weighting the HOSP 

sample to more closely represent each state 

population by age and income. 

 

FIGURE 7. OUT-OF-POCKET HEALTH SPENDING ACROSS YEARS, BY 

DIFFERENT WEIGHTING SCHEMES 

IV. Directions for Future Improvement 

With a validated version 1.0 of JPMC IIE in 

place, there is room for enhancement and 

expansion of scope. Due to the proof-of-

concept nature of version 1.0, certain avenues 

of exploration were put on hold for future 

iterations, including: data expansion, feature 

refinement, and insight exploration. 

Data Expansion: Version 1.0 of JPMC IIE 

relies on the de-identified Chase checking 

account universe as its base population. It 

cannot be applied to credit-only customers who 

do not have a Chase checking account, limiting 

the research projects where it can be of use. 

JPMC IIE could be expanded to enable 

estimation of credit-only customers. 

Feature Refinement: We spent minimal time 

on feature engineering for version 1.0, but 

thorough data exploration and treatment is 

critical for establishing a well-performing 

model. Thoughtful assessment of feature 

aggregation may yield powerful predictors that 

the gradient boosting algorithm cannot easily 

approximate, such as ratios, trends over time, 

or other functions of multiple features. 

Insight Exploration: Future assessments 

could yield a deeper understanding of the 

relationships captured by the model, and how 

individual features impact income predictions. 

Beyond understanding feature relationships, 

the model could be explored holistically to gain 

perspective on areas of caution through two 

approaches: demographic monitoring to assess 

whether modeled income exacerbates 

demographic biases; and residual monitoring, 

to assess the model for systematic weaknesses. 

We look forward to continued exploration in 

this space, iterating toward additional insights 

of value to the broader academic, policy, and 

data science communities. 
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