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1 Introduction

A growing literature has established empirical links between various features of the

macroeconomic environment and the term structure of interest rates. Ang and Piazessi

(2003) and Bikbov and Chernov (2010) find that macroeconomic variables account for

a large part of the variation in bond yields. Ludvigson and Ng (2009) show that macro

factors predict holding period returns on bonds, even when also conditioning on forward

rates and yield spreads. While Ludvigson and Ng employ many macro factors, similar

results are present in Joslin, Priebsch, and Singleton (2014) who use a few key measures

of economic activity and inflation, Cooper and Priestley (2009) who use the output gap,

and Cieslak and Pavola (2015), who use a measure of long-run inflation expectations.

This evidence is important because it rejects the “spanning hypothesis”, the idea that

the yield curve spans all information relevant for forecasting future yields and returns,

and that no variables other than those embodied by the current yield curve are needed

for such forecasting (see Gürkaynak and Wright, 2012; and Duffee, 2013, for instance).

The evidence that macro factors help forecast yields also has important economic rami-

fications. Ludvigson and Ng (2009) show that using macro factors to help measure risk

premiums on bonds produces estimates of risk premiums that are counter-cyclical1, in

line with the predictions of some equilibrium models (see, e.g., Wachter, 2006).

More recently, however, this evidence has come under increased scrutiny for its sta-

tistical significance. Bauer and Hamilton (2017) show that conventional methods of

inference are unreliable in the context of the predictive regressions that are commonly

used to measure risk premiums, and they propose an alternative bootstrap methodology

with adequate size and power properties. They find the evidence against the spanning

hypothesis to be significantly weaker than is suggested by some published results and

show that those results may be mostly spurious.

In this article, we introduce a new set of macro factors to re-examine the spanning

hypothesis, and we link the new factors to the term structure of interest rates. Our

“macro risks” represent the variables that govern the time-varying variance, skewness

and higher-order moments of two distinct types of macroeconomic shocks, which we

categorize as aggregate supply (AS) or aggregate demand (AD) shocks. Specifically, we

1Piazzesi and Swanson (2008) find counter-cyclical risk premiums in excess returns on federal funds
futures, using employment growth as a predictor.
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define aggregate supply shocks as shocks that move inflation and real activity in the

opposite direction, whereas demand shocks are defined as innovations that move inflation

and real activity in the same direction. This is the textbook Keynesian definition for

which Blanchard (1989) finds empirical evidence examining the joint behavior of output,

unemployment, prices, wages, and nominal money in the United States.

Our focus on these new risk factors is useful for two main reasons. First, a fundamen-

tal implication of many asset-pricing paradigms (e.g., the habit model of Buraschi and

Jiltsov, 2007, or the long-run risk model of Bansal and Shaliastovich, 2013) is that bond

risk premiums should be a function of expected second- and higher-order moments of

macroeconomic fundamentals and explicitly not a function of first moments such as the

expected rate of inflation. However, puzzlingly, the literature referenced above has mostly

focused on explaining expected bond returns and risk premiums with the expectations

of the levels or growth rates of macroeconomic variables or, even more simply, actual

realized macroeconomic data (see, e.g., Ludvigson and Ng, 2009). Notable exceptions are

Wright (2011) and Bansal and Shaliastovich (2013). Wright (2011) links term premiums

to inflation uncertainty, whereas Bansal and Shaliastovich (2013) link bond risk premi-

ums to consumption and inflation volatility. Bekaert, Engstrom, and Xing (2009) link

the term structure to consumption growth volatility but do not explore risk premiums.

Second, we document that because the relative variances of supply versus demand

shocks varies over time, the covariance between inflation and real activity potentially

changes through time as well. Theoretically, the sign and magnitude of this covariance

are important determinants of the risk premium for nominal bonds. When supply (de-

mand) shocks dominate, real activity and inflation are negatively (positively) correlated,

and bonds are a poor (good) hedge against macroeconomic fluctuations, presumably

leading to relatively higher (lower) nominal term and risk premiums. Variations of this

economic intuition have surfaced before. Fama (1981) shows how a negative correlation

between inflation and real activity (stagflation) can induce a negative correlation between

stock returns and inflation, a well-known puzzle in asset pricing (see Fama and Schw-

ert, 1977, for a classic paper). Fama (1981) refers to the quantity theory of money to

generate the negative correlation between real activity and inflation. In contrast, Kaul

(1987) shows that if monetary authorities follow pro-cyclical monetary policies, the re-

lationship between real activity and inflation may well be positive, using the pre-World

War II period as an example. Neither Kaul (1987) nor Fama (1981) explore the rela-
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tionship between these economic correlations and the term structure of interest rates.

More recently, Campbell, Sunderam, and Viceira (2017) focus on the changes in sign in

the covariation between the real stochastic discount factor and inflation, and what they

imply for bond risk premiums, although they do not link their real stochastic discount

factor to macroeconomic variables. When this covariation is negative, they argue, bonds

are good hedges for the economic environment and vice versa.

Methodologically, we first extract aggregate supply and demand shocks for the U.S.

economy from data on inflation, real GDP growth, core inflation, and the unemployment

gap. Defining supply and demand shocks using only sign restrictions presents an identifi-

cation problem. We resolve this issue with minimal further economic assumptions using

a novel approach that exploits unconditional higher-order moments in the data, which we

show to be highly statistically significant. This identification strategy is explored in more

detail in a companion macroeconomics paper (Bekaert, Engstrom, and Ermolov, 2018).

Despite this economically agnostic approach, we show that the “structural” supply and

demand shocks that we identify exhibit dynamic properties consistent with some classic

definitions of demand and supply shocks in the macroeconomic literature.2

Our second methodological step is to model the time variation in these risk factors

that govern the conditional distributions of supply and demand shocks. For this purpose,

we use the Bad Environment-Good Environment model (“BEGE”, see Bekaert and En-

gstrom, 2017). In the BEGE model, separate macro risk factors drive “good” (positively

skewed) and “bad” (negatively skewed) variances for each shock. As the “good” variance

increases, the distribution for the shock becomes more positively skewed. Increases in

“bad” variance may pull skewness into negative territory. Because we identify good and

bad variance factors for both demand and supply shocks, we identify up to four risk

factors in total, although we use standard statistical criteria to determine how many risk

factors are necessary to fit the data parsimoniously.

After estimating the time series for the macro risks, we proceed to explore their

relationship with the term structure of interest rates. First, we quantify the importance

of our macro risk factors for explaining the variation in the shape of the yield curve,

as quantified by the standard level, slope, and curvature factors. We find, perhaps not

2In particular, our demand shocks affect output temporarily, whereas our supply disturbances have a
permanent effect on output, with neither having a long-run effect on the unemployment rate, just as in
the classic Blanchard and Quah (1989) paper.
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surprisingly, that our risk factors are not as important as more standard macroeconomic

variables, such as expected inflation and real activity, for explaining variation in the yield

curve over time.

A more novel finding is that we strongly reject the spanning hypothesis, which states,

roughly, that yield curve factors - level, slope, and curvature - span all relevant informa-

tion about risk premiums for government bonds. Specifically, we show that macro risk

factors are economically and statistically significant predictors of excess bond returns

even when also conditioning on yield curve factors. We establish our predictability re-

sults using the stringent framework of Bauer and Hamilton (2017), therefore resurrecting

the evidence against the spanning hypothesis.

We also extend the analysis of Wright (2011) and Bansal and Shaliastovich (2013)

by showing the importance of decomposing macroeconomic variation into components

due to the variance of supply and demand shocks, and into the good and bad types of

variance. We find that the time-variation in the macro risk factors for supply and demand

implies that the covariance between inflation and real activity changes through time and

sometimes switches sign. Our analysis links this time-variation to bond risk premiums

by showing that demand (supply) variance negatively (positively) predicts bond excess

returns. We also show that while overall the expected excess bond returns are counter-

cyclical, in line with other findings in the literature, an increase in demand (supply)

variance is associated with lower (higher) expected returns.

Finally, our novel macro risk factors prove to be statistically significant predictors

of future realized bond return variances and are relatively more important predictors

than are level macro factors and factors extracted from the term structure. There is a

well-established literature linking equity return variances to macro factors (e.g., Engle,

Ghysels, and Sohn, 2013)3 but less work on bond return variances.4 That yields alone can-

not capture time variation in volatility for fixed income returns has been well-established

by the literature on “unspanned volatility” (see, for instance, Collin-Dufresne and Gold-

stein, 2002; or Joslin, 2018). Our results suggest that a promising route for extending

term structure models so that they can span volatility may be to add macroeconomic risk

3There is also work on the effect of inflation disagreement embedded in surveys on the term structure
(see, e.g., Hong, Sraer, and Yu, 2017; or Ehling et al., 2018), and heteroskedasticity and disagreement
are likely positively correlated.

4Baele, Bekaert and Inghelbrecht (2010) is an exception, but their focus is on comovements between
bond and stock returns.
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factors to the set of state variables. A similar strategy was explored by Joslin and Kon-

chitchki (2018), who link uncertainty about corporate earnings performance to interest

rate volatility.

The remainder of the paper is organized as follows. In section 2, we describe how

we identify and model aggregate supply and demand shocks and define the macro risk

factors. Section 3 describes the econometric methodology that we use to extract the

structural shocks and the macro risk factors and provides empirical estimates for the

U.S. economy. In section 4, we link the macro risk factors to bond market variables. The

final section summarizes our key results and sets out an agenda for future research.

2 Modeling Macro Risks

2.1 An informal investigation of AS/AD Macro Risks

The main idea of the article is that macro uncertainty has different implications

when it is associated with supply shocks, then when it is associated with demand shocks.

Demand (supply) shocks move inflation and GDP growth in the same (opposite direction).

As we discuss below, identifying and extracting such risks from macro data is no easy task.

In this section, we construct informal proxies to AS and AD macro risks using data on US

real GDP growth and inflation. Imagine we have identified unexpected shocks (residuals)

to GDP growth and inflation (we do so formally using a standard vector autoregression,

VAR, in Section 2.2) and define them as εit for i = π (inflation), g (GDP growth). Our

proxy for the time t demand variance variable is then:∑n
i=0

αi∑n
j=0 α

j ε
g
t−iε

π
t−i1εgt−iεπt−i>0,

where εgt is the GDP growth shock, επt is the aggregate inflation shock, α is a constant

∈ (0; 1] and 1 is an indicator function. That is, the proxy is a weighted average of

past cross-products of inflation and GDP growth shocks with terms being non-zero and

positive only when the shocks have the same sign. It therefore proxies for demand shock

variation and is high when demand shocks are large. Analogously, the time t supply

variance proxy is defined as:

−
∑n

i=0
αi∑n
j=0 α

j ε
g
t−iε

π
t−i1εgt−iεπt−i<0.

Below we use the parameters α = 1 and n = 9 (that is, the equally weighted average

of the past ten quarters), but our results are robust to varying α between 0.8 and 1 and n
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between 5 and 15. For ease of interpretation, we rescale the resulting demand and supply

variances to have unit variance. Figure 1 plots the time series. The supply variance

is high in the seventies, but also around the 1990 and 2001 recessions. The demand

variance is high in the early 1980s and the Great Recession, but the supply variance

is elevated in the Great Recession as well, suggesting it was not a pure demand driven

recession. These results conform with the usual macroeconomic intuition regarding the

identification of various recessions in the US. It turns out that these variance series show

a high correlation with the conditional variance series we formally derive in Section 2.3

(0.58 for the demand and 0.65 for the supply variance).

If financial markets recognize these macro risks as we surmise, supply risks should

increase bond risk premiums, demand risks should decrease them. We run a regression,

which we discuss more formally in Section 4, of excess bond returns on 4 level macro

variables (including expected inflation and expected GDP growth as suggested by Cies-

lak and Povala, 2015, and Bauer and Rudebusch, 2017) and these demand and supply

variances. We use excess returns on bonds of maturities ranging from 1 year, to 2, 5 and

10 years. Table 1 reports partial results for this exercise, focusing on the results for the

macro risks. The coefficients can be interpreted as the percentage effects on the bond

risk premium for a one standard deviation increase in the supply/demand variances. The

signs are as expected, and the economic effects increase with horizon. While the supply

variance coefficients are not statistically significantly different from zero, higher demand

variances lower bond risk premiums in a statistically significant fashion. For 5-year ma-

turity bonds, a one standard deviation increase in the demand variance is associated with

a 1.5% lower bond risk premium (annualized).

The remainder of this article verifies whether this simple intuition holds when AS/AD

risks are more formally extracted from the data. In section 2.2, we construct the macro

shocks, and in section 2.3 we estimate the actual macro risk factors, representing the

second and higher order moments of the AS and AD shocks.

2.2 Macro Shocks

We consider a four variable macro model, with the standard real GDP growth and

inflation variables, but also core inflation and the unemployment gap. Core inflation,

which strips out components of overall inflation that are particularly volatile such as

energy and food prices, is, of course, a variable that is closely followed by monetary
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policy makers and it has been shown to be useful in forecasting future inflation. Ajello,

Benzoni and Chyhruk (2012) in fact claim that adding core inflation to a macro system

results in inflation forecasts that are as accurate as forecasts based on survey data (see

Ang, Bekaert and Wei, 2007, for more on the accuracy of survey based inflation forecasts).

This is relevant, because we use quarterly data starting in 1962 and thus cannot easily use

survey forecasts (for instance, the quarterly Survey of Professional Forecasters started in

1969). Analogously, for many practitioners, the unemployment rate gap is preferred to

GDP growth as an indicator of economic activity. Moreover, as Bauer and Rudebusch

(2016) demonstrate, the unemployment rate shows little correlation with GDP growth

and therefore contains useful alternative information about real economic activity.

Because we want to identify shocks to these four variables, it is important that we

estimate their conditional means carefully. Following a long tradition in macroeconomics,

we work within the vector autoregression moving average (VARMA) class of models so

that our primary instruments for forecasting conditional means of the macro variables are

lagged realizations and lagged shocks for our endogenous variables. In addition, because

bond yields have well-established predictive power for economic variables (see Harvey,

1988, and many others, for the predictive ability of the term spread for real activity, for

example), we add yields to our set of conditioning variables. Specifically, let the vector

Xt consist of the 4 macro variables, and the one quarter and 10-year Treasury yields. We

use a VARMA model to extract macroeconomic shocks from Xt:

Xt = B(L)Xt−1 + C(L)ut. (1)

Next, we model the shocks to the macro variables, ut, as functions of two structural

shocks, ust and udt . The first fundamental economic shock, ust , is an aggregate supply

shock, defined so that it moves GDP growth and inflation in opposite directions, as

happens, for instance, in episodes of stagflation. The second fundamental shock, udt , is

an aggregate demand shock, defined so that it moves GDP growth and inflation in the

same direction as would be the case in a typical economic boom or recession. While we

do not impose further sign restrictions, we expect core inflation to load on structural

shocks with the same signs as aggregate inflation and we expect the unemployment gap

to load negatively on both demand and supply shocks.

More concretely, we assume that the residuals in (1) depend on structural shocks and
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measurement errors:

ut = Σumt + Ωet (2)

where umt = [ust , u
d
t ]
′ are structural AS/AD shocks and Σ is a 6x2 matrix containing the

exposures of macroeconomic and yield shocks to structural shocks. In particular, we also

impose the sign restrictions discussed earlier on Σ where the upper 4x2 block is:
−σπs σπd

σgs σgd

−σπcs σπcd

−σues −σued

 ,

where only the σi,j parameters in the top two rows are constrained to be positive; πc

represents core inflation and ue the unemployment gap. Supply and demand shocks

are assumed to be uncorrelated and normalized to have unit variance. Specifically,

Cov(udt , u
s
t) = 0 and V ar(udt ) = V ar(ust) = 1.

The vector et in (2) represent “measurement error” shocks uncorrelated with ut, with

mean zero, unit variance and zero skewness and excess kurtosis and Ω is diagonal except

for the interest rate block.5 It is necessary to add these uncorrelated innovations to

the macro series to avoid having a singularity in their covariance matrix as it would be

impossible to invert two structural shocks from four macroeconomic shocks. Note that

the orthogonal shocks may not just represent measurement error (as, e.g., in Wilcox,

1992). They may also represent important variation, not modeled in our framework,

such as that arising from monetary policy shocks, stressed, e.g., in Campbell, Pflueger

and Viceira (2015). Importantly, our model implies that any time-variation in higher

order macro moments and all covariance dynamics are generated by the structural shocks

ut, not by et.

Finally, because macroeconomic data exhibit substantial non-Gaussian features (see,

e.g., Evans and Wachtel (1993) for inflation, and Hamilton (1989) for GDP growth), we

assume that demand and supply shocks are potentially non-Gaussian in that they may

5This interest rate block will only be relevant in the impulse response analysis described below.
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have non-zero univariate skewness and excess kurtosis.6 While there are several third

and fourth-order cross-moments between supply and demand shocks, we also assume

that these are zero. In particular, E[(ust)
i(udt )

j] = E[(ust)
i]E[(udt )

j] for i, j = 1, 2, 3 and

i+ j ≤ 4. We make these assumptions mostly for parsimony, but find that relaxing these

additional restrictions does not affect the fit of the model.

The system in equation (2) that focuses on the first 4 macro variables is clearly

under-identified if we employ only second order moments of the macro data: we have 8

“structural” exposures to the AS/AD shocks; there are 4 elements of Ω, and the structural

shocks are assumed non-Gaussian, so we must also estimate their skewness and kurtosis

(another 4 parameters). However, the covariance matrix of residuals would deliver only

10 moments. To achieve identification, we use unconditional higher order moments of

the macro variables. For example, there are 8 available unconditional skewness and co-

skewness moments. These moments, in conjunction with 10 available second moments,

could in principle be used to identify the parameters of the system. Higher-order cross

moments offer yet more moment restrictions to help identify the parameters.

While econometrically it is clear that non-Gaussianity achieves identification (see

Lanne, Meitz, and Saikkonen, 2017, for a theoretical paper on obtaining identification

through higher-order moments in a VAR), it is useful to clarify the economic sources of

identification.7 Co-skewness and co-kurtosis moments, for example, reveal information

about the relative sensitivity of inflation and GDP growth to the structural shocks, de-

pending on whether the latter are skewed or not. A particularly intuitive case would

be one where the supply shocks are relatively Gaussian (zero skewness) and the demand

shock relatively non-Gaussian (and negatively skewed). Suppose for ease of exposition

that the skewness of supply shocks is literally zero (which, as we will see, is not far from

the truth). Then, given the value of demand skewness, two co-skewness moments would

aid identification of σπd and σgd. If E[ugt (u
π
t )2], the “inflation squared” moment, is much

more negative than E[(ugt )
2uπt ], the “GDP growth squared” moment, inflation must be

more sensitive to demand shocks than are GDP growth shocks and vice versa. Impor-

6We assume that orthogonal “measurement error” shocks et in (2) have zero skewness and excess
kurtosis mostly for convenience, but this assumption also aids in the identification of the supply and
demand shocks. That is, all the excess skewness and kurtosis among the macro variables must solely
arise from the structural shocks.

7In a companion macro-oriented paper (Bekaert, Engstrom, and Ermolov, 2018), we expand on the
economics behind the identification scheme.
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tantly, our identification relies on unconditional non-Gaussianities and is valid whether

the conditional moments vary through time or not.

2.3 Macro Risks

Finally, we formulate a dynamic model for the demand and supply shocks. To deliver

the economic intuition described before, the variance of demand and supply shocks should

vary through time. In this case, the model also implies that the conditional variance

between inflation and GDP growth shocks is time-varying:

Covt−1[ugt , u
π
t ] = −σπsσgsV art−1u

s
t + σπdσgdV art−1u

d
t , (3)

where the subscripts on the Cov and V ar operators denote that they may vary over time.

Thus, when demand shocks dominate the covariance is relatively high but when supply

shocks dominate it is low.

We define macro risks as the time-varying determinants of the second and higher-order

moments of supply and demand shocks. We parameterize the distribution of supply and

demand shocks using a model that accommodates conditionally non-Gaussian distribu-

tions, the Bad Environment-Good Environment (BEGE) model (Bekaert and Engstrom,

2017).

Following a BEGE structure, demand and supply shocks are component models of

two independent distributions:

ust = σspω
s
p,t − σsnωsn,t,

udt = σdpω
d
p,t − σdnωdn,t,

(4)

where t is a time index, and σsp, σ
s
n, σdp , and σdn are positive constants. We use the

notation:

ωdp,t+1 ∼ Γ̃(pdt , 1),

ωdn,t+1 ∼ Γ̃(ndt , 1),

ωsp,t+1 ∼ Γ̃(pst , 1),

ωsn,t+1 ∼ Γ̃(nst , 1),

(5)

to denote that ωdp,t follows a centered gamma distribution with shape parameter pdt and
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a unit scale parameter. The corresponding probability density function, φ(ωdp,t), is given

by:

φ(ωdp,t+1) =
1

Γ(pdt )
(ωdp,t+1 + pdt )

pdt−1exp(−ωdp,t+1 − pdt ),

for ωdp,t+1 > −pdt ; with Γ(·) representing the gamma function. Similar definitions apply to

ωdn,t+1, ωsp,t+1, and ωsn,t+1. Unlike the standard gamma distribution, the centered gamma

distribution has mean zero. For such a distribution, the shape parameter equals the

variance of the random variable.

The top of panel A in Figure 2 illustrates that the probability density function of

σdpω
d
p,t (the “good” component of the demand shock) is bounded from the left and has a

right tail. Similarly, the middle of panel A in Figure 2 shows that the probability density

function of −σdnωdn,t (the “bad” component) is bounded from the right and has a left

tail. Finally, the bottom of panel A in Figure 2 plots the component model of these two

components which has both tails. The components of ust have the same distributional

properties. Hence, we define a “good” (“bad”) shape parameter as one associated with

a ωp (ωn)-shock.

The good (pdt , p
s
t) and bad (ndt , n

s
t) shape parameters of our macro shocks are assumed

to vary through time in an autoregressive fashion as in Gourieroux and Jasiak (2006):

pdt = p̄d(1− φdp) + φdpp
d
t−1 + σdpω

d
p,t,

pst = p̄d(1− φsp) + φspp
s
t−1 + σspω

s
p,t,

ndt = n̄d(1− φdn) + φdnn
d
t−1 + σdnω

d
n,t,

nst = n̄s(1− φsn) + φsnp
s
t−1 + σsnω

s
n,t,

(6)

where σji , i = p/n, j = d/s are assumed to be positive. Note that positive ωdp,t

shocks drive up GDP growth, as do the ωsp,t shocks, and those shocks are associated

with an increase in both pdt and pst . We call this “good volatility” because it induces more

positive skewness in GDP growth. Conversely, positive realizations of ωdn,t and ωsn,t shocks

drive down GDP growth and they are associated with an increase in “bad” volatility and

more negative skewness. This explains the “BEGE” moniker.

Using the demand shock as an example, Panel B of Figure 2 illustrates possible
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conditional distributions of demand shocks which could arise as a result of the time

variation in shape parameters in equation (6). In particular, the probability density

function in the top of Panel B characterizes the situation where good volatility is relatively

large and the component distribution has a pronounced right tail, while the probability

density function in the bottom of Panel B corresponds to the case where bad volatility

is relatively large and the component distribution exhibits a pronounced left tail.

At this point, we have set out an economy with four structural shocks (ωdp,t, ω
d
n,t, ω

s
p,t,

and ωsn,t) and four state variables that govern higher-order moments, which we collect

in Xmr
t = [pst , n

s
t , p

d
t , n

d
t ]
′. These four state variables summarize the macroeconomic risks

in the economy. Using the properties of the centered gamma distribution, we have, for

example:

Et−1[ust ] = 0,

Et−1[(ust)
2] = (σsp)

2pst + (σsn)2nst ,

Et−1[(ust)
3] = 2(σsp)

3pst − 2(σsn)3nst ,

Et−1[(ust)
4]− 3(Et−1[(ust)

2])2 = 6(σsp)
4pst + 6(σsn)4nst ,

(7)

and analogously for udt .

Thus, the BEGE structure implies that the conditional variances of the macro vari-

ables vary through time, with the time-variation potentially coming from either demand

or supply shocks, and either bad or good volatility. In addition, the distribution of

the macro shocks is conditionally non-Gaussian, with time variation in the higher order

moments driven by variation in Xmr
t .

3 Identifying Macro Risks in the US economy

While there are multiple ways to estimate the system in equations (1)-(2) and (4)-(6),

the presence of the gamma distributed shocks makes the exercise nontrivial. We therefore

split the problem into three manageable steps. First, we use standard techniques to

estimate the VAR model and determine its order. Second, we filter the demand and supply

shocks from the system in equation (2) by estimating a GMM system that includes higher-

order unconditional moments of the macroeconomic variables. Third, once the demand

and supply shocks are filtered, we can estimate the BEGE model on supply and demand
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shocks separately (exploiting our identifying assumptions) using approximate maximum

likelihood as in Bates (2006). Importantly, the three steps are internally consistent.

A disadvantage of using a multi-step estimation process is that statistical inference

is complicated by the fact that all steps after the first one use pre-estimated coefficients

or filtered variables that are subject to sampling error. To account for these errors, we

also execute the entire multi-step estimation process using data bootstrapped under the

estimated parameters. The bootstrap procedure is described in Appendix A. Moreover,

we conduct additional Monte Carlo analysis (see Section 3.4.4) to assess the finite sam-

ple performance of the estimators in steps 1 and 2. Theoretically, our model could be

estimated in one step using Bayesian methods. However, given the high dimensionality

of the parameter space, Bayesian estimation is difficult without tight priors. We begin

by describing the data we use.

3.1 Data

The data are quarterly from 1962:Q2 to 2016:Q4 (219 quarters). Potentially, we could

have included data back to 1947:Q1 (the starting date for GDP data). The later start

date is chosen to exclude a period when there was higher measurement error in the GDP

data (Bureau of Economic Analysis, 1993). Moreover, US long-term rates were pegged

by the Federal Reserve prior to the Treasury Accord of 1951. For inflation (core inflation)

we use 100 times log changes in the headline CPI index (CPI excluding food and energy)

measured for the last month of each quarter, from the Bureau of Labor Statistics (BLS).

Real GDP growth is 100 times the log difference in real GDP (in chained 2009 dollars)

from the Bureau of Economic Analysis. The unemployment rate gap is the difference

between the unemployment rate (in percent) from the last month of each quarter from

the BLS, and the estimated level of the natural rate of unemployment published by the

Congressional Budget Office.

Interest rate data consists of yields, prices and returns for nominal U.S. Treasury

securities. For maturities of length 1 quarter and 1, 2, 3, 4 and 5 years, estimated yields

for zero-coupon securities are taken from the Fama-Bliss (1987) data set (part of the

CRSP database). For yields of maturity 10 years, data from 1962:Q2 through 1971:Q1

are from the McCullouch-Kwon (1993) data set. From 1971:Q1-2016:Q4, data for 10-

year yields are from Gürkaynak, Sack, and Wright (2010). Yields at maturities other

than those discussed above are estimated by linear interpolation. We use continuously
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compounded yields, expressed as annualized percentages.

3.2 Estimating VAR(p) and VARMA (p, q) models

To estimate the time series model for Xt, including inflation, real GDP growth, core

inflation, the unemployment rate gap and short- and long-term interest rates, we first

de-mean the variables. We then choose from a set of time series models, in particular,

VARMA(i,j) for i = 1, 2, 3 and j = 0, 1, 2, 3, using standard information criteria. We only

consider diagonal (“own lag”) specifications for the MA components. As emphasized, for

instance, by Dufour and Pelletier (2014), any identified VARMA model can be repre-

sented by using full (unrestricted) VAR specifications together with a sufficient number

of diagonal MA terms.

Because some of these models are heavily parameterized (the highest-order ones have

over 100 parameters), our estimation relies on a two-step projection-based procedure

that was proposed by Hannan and Rissanen (1982) rather than maximum likelihood.

Specifically, we first estimate by OLS a vector-autoregression with a large number of

lags. We use 6 lags, but that choice does not appear material for the results. We then

recover the estimated residuals from this step, ût. These residuals serve as a “plug-in”

estimator of lagged shocks for the VARMA model, and then we estimate the VARMA

model by OLS. We again recover the residuals from this step, providing new estimates of

ût. This procedure is repeated until all of the estimated parameters of the VARMA and

all of the estimated residuals converge, which we define as changing by less than 1e-6.

Model selection criteria are reported in Table 2. We use the standard Bayesian infor-

mation criterion (BIC), but the Akaike information criterion (AIC) is modified to correct

for small sample biases (Sugiura, 1978; Burnham and Anderson, 2004). The AIC model

identifies the VAR(2) model as optimal. The BIC criterion identifies the VAR(1) model

as optimal, but the VAR(2) comes in second place. We proceed by using the VAR(2)

specification to identify shocks to the macro variables.8

8In a previous version of the paper, we used a VARMA(1,1) model to identify shocks to the macro
variables and found similar results.
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3.3 Identifying supply and demand shocks

3.3.1 Methodology

The VAR(2) model delivers time series observations on ut, with their distributional

properties driven by 4 unobserved state variables (the Xmr
t vector) which have non-

Gaussian innovations. However, note that identification of the coefficients in Σ in equation

(2), enables us to filter the supply and demand shocks from the original macro shocks ut.

With these structural shocks in hand, univariate BEGE systems on each of the demand

and supply shocks can be estimated separately.

We use information in 2nd, 3rd and 4th order unconditional moments of the reduced-

form macroeconomic shocks to identify their loadings onto supply and demand shocks

in a classical minimum distance (CMD) estimation framework (see, e.g., Wooldridge,

2002, pp. 445-446). Specifically, we calculate 48 statistics using the four macroeconomic

shocks. These are the unconditional standard deviations (4), correlations (6), univariate

(scaled) skewness and excess kurtosis (8), selected co-skewness (12), and selected co-

excess kurtosis measures (18). In particular, we exclude third and fourth order moments

that involve more than two different shocks such as E(x1 × x2 × x3).

With 48 moments to match and many fewer parameters in the structural model of

equation (2), our system is substantially overidentified, thus requiring a weighting matrix.

To generate a weighting matrix, we estimate the covariance matrix of the statistics,

using a block bootstrapping routine. Specifically, we sample, with replacement, blocks

of length 20 quarters of the 4 variable - vector of macroeconomic shocks, to build up a

synthetic sample of length equal to that of our data. We calculate the same set of 2nd,

3rd, and 4th order statistics for each of 10,000 synthetic samples. We then calculate the

covariance matrix of these statistics across bootstrap samples. In principle, the inverse

of this covariance matrix should be a good candidate as a weighting matrix for our CMD

system. However, inspecting the bootstrapped covariance matrix, we found that the

sampling errors for some statistics are highly correlated, leading to ill-conditioning of the

covariance matrix. We therefore use a diagonal weighting matrix with the inverses of the

bootstrapped variances of the statistics on the diagonal and zero elsewhere.9

9This weighting matrix is not asymptotically efficient and it also does not reflect sampling error
associated with the VAR(2) parameters that were used to identify the macroeconomic shocks, but it
ensures that all moments receive an easily interpretable positive weight in the objective function.
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Table 3 reports the higher-order moments we use in the estimation. Not surprisingly,

all volatility statistics are statistically significantly different from zero, but so are the

coefficients of excess kurtosis. However, among the skewness coefficients, only the positive

skewness of shocks to the unemployment gap is statistically significant while 4 of 12 co-

skewness coefficients are significant. Over half of the co-kurtosis measures are statistically

significant. The p-value for the joint significance of all the 3rd and 4th order moments is

< 0.0001, which we interpret as a strong rejection of the hypothesis that the data are

distributed unconditionally according to a multivariate Gaussian distribution.

We next use the information in these higher order moments to identify the loadings

on our supply and demand shocks. We estimate a total of 13 parameters using our 48

estimated statistics. These can be grouped into three sets:

• The loadings of four macro shocks onto supply and demand shocks (8 parameters)

in the matrix Σ in (2), imposing the sign restrictions described above.

• The share of variation of the macro shocks that comes from idiosyncratic variation

or measurement error, that is the matrix Ω in (2)). We assume this share is constant

across the four variables (1 parameter). We do this to impose a prior that all 4

series contribute (jointly) to demand and supply shocks. If we do not impose this

restriction, the system tends to drive the variance of idiosyncratic factors to zero

for the less noisy macro series, in which case the noisier macro series (such as real

GDP growth) do not contribute much to the identification of supply and demand

shocks.

• The skewness and kurtosis of the supply and demand shocks (4 parameters). Note

that we do not assume a parametric model for the distribution of supply and demand

shocks at this stage: we simply estimate their skewness/kurtosis coefficients as free

parameters.

3.3.2 Empirical results

Table 3 shows that our CMD estimation misses only one moment by more than 1.96

standard errors (the fitted value for real GDP growth skewness is negative, whereas the

sample value is positive, though not significantly so, a miss of 2.03 standard errors).

Nevertheless, the test of the overidentifying restrictions does reject at the 10 percent
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level (p-value of 8.63 percent), showing that higher order moments indeed have statistical

“bite”.

In Table 4, Panel A, we report the supply and demand loadings for the various macro

variables. These are generally quite precisely estimated. Our estimates suggest that

demand shocks contribute more to the unconditional variance of inflation shocks than

supply shocks. Real GDP growth, core inflation, and the unemployment gap all load

roughly evenly on supply and demand shocks. We estimate the share of idiosyncratic

variation for the four series to be relatively high at 44 percent.

Based on these loadings, we invert the supply and demand shocks from the macro

shocks using a constant linear filter:

umt = Kut,

K = Σ′4×2(Σ4×2Σ′4×2 + Ω4×4Ω′4×4)−1,
(8)

where ut and umt are the vectors of macro and structural shocks, respectively, as in (2), Σ

is the 4×2 loading of the macro shocks onto the supply and demand factors, and Ω is a

diagonal 4×4 matrix of loadings onto the idiosyncratic shocks (corresponding to the 4 top

rows of the matrices Σ and Ω in equation (2)). These loadings are implied by the usual

projection formula under multivariate normality or the Kalman filter, which generates

minimum root mean squared error (RMSE) estimates among linear filters with constant

gain. Table 4, Panel B, reports the K-coefficients, which are all of the intuitive sign.

Finally, in Panel C of Table 4, we report the skewness and kurtosis of the filtered sup-

ply and demand shocks. Both shocks are leptokurtic but the demand shock is negatively

skewed whereas the supply shock has essentially zero skewness. The departure from the

Gaussian distribution of the demand shocks is clearly more pronounced than that of the

supply shock. Yet, a standard (small sample corrected) Jarque-Bera test rejects the null

of normality with p-values 0.015 and < 0.001, respectively for supply and demand shocks.

While we continue to refer to these shocks as AD/AS shocks, recall that for our

purposes the sign restrictions have economic content, whatever label you may want to

attach to the shocks. For example, our shock definitions are not consistent with recent

micro-founded New Keynesian models (see Woodford, 2003). However, our sign restric-

tions are present in other classic papers as well, such as Shapiro and Watson (1988) or

Gali (1992) but are typically accompanied by a set of additional economic restrictions
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(e.g., that demand shocks have no long run effect on the level of GDP as in the classic

Blanchard and Quah (1989) paper) which we do not need. In Appendix A, we show

that our macro shocks indeed have these standard Keynesian short and long-term effects

despite our methodology inferring the shocks using only sign restrictions and higher or-

der moments of macro shocks. We can also verify whether NBER recessions are demand

or supply driven by inspecting the time series of supply and demand shocks, presented

in Figure 3 (NBER defined recessions are shaded). On a relative basis, the first three

recessions (1969-1970, 1973-1975, 1980) were predominantly supply driven whereas three

of last four were more demand driven (the exception being the 1990-91 recession). For

the first five recessions, these results are broadly consistent with Gali’s (1992) results.

Our results for the Great Recession suggest that AD shocks were slightly larger than AS

shocks. A surprisingly large role of supply shocks is not inconsistent with the results in

Ireland (2011) or Mulligan (2012), for example. At the same time, recent work by Bils,

Klenow and Malin (2012) and Mian and Sufi (2014) stresses lower aggregate demand as

the main cause of the steep drop in employment during the Great Recession.

3.4 Estimating Macro Risk Factors

Note that the identification scheme for structural shocks described above is completely

model-free, making our methodology applicable with any statistical model which can

accommodate non-Gaussian unconditional moments in the data. Given the structural

shocks, we are left to identify the BEGE model parameters. We use an estimation and

filtering apparatus due to Bates (2006). The methodology is similar in spirit to that of

the Kalman filter, but the Bates routine is able to accommodate non-Gaussian shocks.

The details of the estimation are in Appendix B.

3.4.1 Parameter Estimates

The parameter estimates for the BEGE model are reported in Table 5. For the demand

shock, the parameters governing the “good environment” state variable, pt, generate

behavior similar to that of a Gaussian stochastic volatility model. The unconditional

mean of the process, p̄, hits an upper bound fixed at 20. Recall that pt is the shape

parameter for one of the two component gamma distributions for demand shocks. With

the shape parameter of over 10, the gamma distribution appears nearly Gaussian and

further increases in the shape parameter do not substantially change the shape of the
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distribution.10 That said, there is substantial variation in the level of the process over time

and strong autocorrelation, with a persistence parameter of nearly 0.94. The properties

of the bad environment state variable for demand shocks, nt, contrasts sharply with those

of pt. The unconditional mean of nt is just 0.34. This implies that the bad environment

variable is very non-Gaussian. In particular, its unconditional skewness is 2√
n̄d

, or 3.45

and its kurtosis is 6
n̄d

or 17.86. Recall that because demand shocks load negatively onto

the bad-environment shocks by construction, this generates substantial negative skewness

for demand shocks. The bad environment shape parameter is also less persistent than

the good environment variable, therefore capturing rather short-lived recessionary bursts

(0.72 versus 0.94 autocorrelation).

The BEGE parameter estimates for supply shocks are broadly similar to those for

demand shocks. The mean of pt hits the upper bound of 20, suggesting nearly Gaussian

innovations, albeit with substantial variation in volatility. Good supply variances are very

persistent with an autoregressive coefficient of nearly 0.99. The supply bad-environment

distribution is substantially non-Gaussian with the unconditional mean of the shape

parameter equal to 4.00. This implies unconditional skewness of 1.00. The shock has

similar persistence to the bad environment demand shock, suggesting that supply driven

recessions may have similar duration to demand driven recessions.11

The bootstrap procedure in Appendix A allows us to verify the small sample properties

of our estimation approach. In unreported results, we find that average estimates over

the bootstrap samples are essentially unbiased. Bootstrap standard errors in Table 5

confirm that the parameter variation across the samples is reasonable.

3.4.2 Macro Risks

The Bates (2006) procedure also delivers filtered estimates of Xmr
t , our 4 macro risk

factors. Our model implies that the total conditional variances of demand and supply

shocks are the sum of the good and bad components. These are plotted in Figure 4

10We also conduct an estimation using an upper bound for p̄ of 200. The likelihood values barely
change and the macro risks (shape parameters) correlate very highly (usually ≥ 0.99) with the ones
obtained from the current estimation.

11The astute reader will notice that seven parameters are reported for the supply and demand processes,
but there are only six independent parameters required for the estimation, because the unconditional
variance of demand and supply shocks is restricted to equal 1. However, the n̄-parameters can be
expressed as functions of the other model parameters. Their standard errors are calculated using the
delta method.
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(NBER recessions are shaded). Using the properties of the centered gamma distribution

in (7), we define good demand variance as the constant (σdp)
2 multiplied by the good

demand macro risk factor pdt and bad demand variance as the constant (σdn)2 multiplied

by the bad demand macro risk factor ndt . The good demand variance (see Panel A) was

relatively high in the 70s and the early 80s, and then decreased to low levels consistent

with the Great Moderation. The bad demand variance shows much less pronounced low

frequency variation but increases in most recessions with notable peaks in the 1981-82,

2001, and the recent Great Recession. It also shows short-lived peaks twice in the decade

between 2000 and the beginning of the Great Recession.

Panel B of Figure 4 performs the same exercise for supply variances. Analogously to

demand variances, we define the good supply variance as the constant (σsp)
2 multiplied

by the good supply macro risk factor pst and bad supply variance as the constant (σsn)2

multiplied by the bad supply macro risk factor nst . The level of good variance does not

show much time-variation but is more elevated up until mid-1980s after which it appears

to trend down. The bad supply variance appears higher in the stagflationary episodes

of the 1970s, but it peaks in most recessions. Its increase in the Great Recession is

extreme, starting towards the end of the period and exceeding its unconditional average

level of 0.46 until 2012Q1.12 The secular decline that one might associate with the Great

Moderation appears to come from the good variances of both supply and demand shocks.

Panel C of Figure 4 plots together the conditional variances of demand and supply

shocks. Given that both supply and demand shocks have unit variance, the graph im-

mediately gives a sense of which variance dominates. In terms of “variance” peaks, the

1981-82, and Great Recession are dominated by demand variances, the other recessions

by supply variance peaks.

3.4.3 Conditional Covariances between Macroeconomic Time Series

From the perspective of theoretical asset pricing, an important implication of our

structural framework regards the covariance between inflation and real activity. From

Equation 3, it is evident that in an environment where demand (supply) variances domi-

nate, the conditional covariance between inflation and real activity is positive (negative).

To the extent that variances are persistent, changes in this covariance may have impor-

12Campbell, Pflueger, and Viceira (2015) suggest that supply shock volatility decreases after 1980 but
its decrease may have been masked by changes in monetary policy, at least until 2000.
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tant ramifications for term and bond return premiums, which we examine in Section 5.

Surprisingly, to our knowledge, sign-switching macro-correlations have so far only been

documented for consumption growth and aggregate inflation (Hasseltoft and Burkhardt,

2012, Ermolov, 2015, Boons, Duarte, de Roon, and Szymanowska, 2017, and Song, 2017).

Figure 5 graphs the conditional covariance between, respectively, inflation and real

GDP growth and also between core inflation and the unemployment gap (where the afore-

mentioned signs are reversed). Overall, the covariance is mostly positive (over 90 percent

of the time), which is driven by the important contribution of (good) demand variances

to all macro variables. For the inflation-GDP growth covariance, there is substantial

time variation, but the covariance rarely becomes negative. Early in the Great Reces-

sion, demand shocks generate a local peak in the covariance but subsequent large supply

shocks then bring the covariance down. A mirror image of this happens for the core

inflation-unemployment gap covariance. There, we see more frequent sign switches and

the covariance remains positive until 1975, in a supply shocks driven macro-environment.

Appendix C confirms that similar covariance patterns also emerge in other conditional

covariance models.

An overall covariance of near zero can in fact hide some strong structural non-zero

sources of comovement from structural risk factors. To see this more clearly, we also show

the good and bad supply and demand covariance components of the total covariance. For

example, the near-zero correlation between real GDP and inflation from 2000 up to the

onset of the Great Recession (with occasional peaks) is the sum of a sizable positive co-

variance driven by good and bad demand shocks and a sizable negative covariance driven

by supply shocks. In the Great Recession, the conditional bad variance of both kinds of

shocks shoots up, with the bad demand shock first ratcheting the covariance upwards,

and bad supply variance later bringing it down substantially. Similar movements happen

for the core inflation-unemployment covariance with the covariance actually switching

signs.

3.4.4 Econometric Concerns

Our empirical methodology consists of several steps and may therefore raise concerns

about its ability to deliver trustworthy parameter estimates. While the two first steps in

the estimation methodology, the VAR, which delivers the reduced-form shocks, and the

GMM procedure, which delivers the identification often supply and demand shocks, do not
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assume constant conditional moments, they are inefficient, in that they do not exploit the

true stochastic nature of the shocks. A one step estimation is computationally infeasible

in this context however; and, as is well known, the finite sample properties of “efficient”

estimators are not always stellar. Both of our estimators deliver consistent estimates of

the true parameters, under the usual stationarity and ergodicity assumptions. However,

our macro data are characterized by strong non-Gaussianities, time-variation in second

and higher order moments, and high persistence. With such data, standard econometric

methodologies may suffer from severe finite sample biases and poorly estimated standard

errors. To examine whether our methodology works well in finite samples, we supplement

our bootstrap with an additional Monte Carlo exercise. Given the final estimation results,

we have a data generating process (DGP) under the null, with time-varying volatility,

skewness and kurtosis, following the highly non-linear BEGE dynamics. We draw the

BEGE demand and supply shocks from the model and normally distributed measurement

errors. Thus, we simulate shocks that constitute residuals for the VAR system and can

generate artificial macro data. With these data in hand, we then repeat steps 1 and

2 from the estimation methodology, under the null of the estimated model, and with

samples of the size that we use in the original estimation. We conduct 10000 Monte

Carlo replications. As a useful comparison, we also generate data using fully normally

distributed shocks, to verify whether the non Gaussianities in our DGP worsen the small

sample performance of our estimation methodology.

We relegate full tables to the Online Appendix and provide a short summary of the

results here. First, there are a grand total of 72 VAR parameters (since it is a second

order VAR for 6 variables). The coefficients show, as expected, some biases, but they

are not terribly large and not universally worse for the BEGE system as opposed to

the Gaussian system. More important in terms of inference, is whether the small sample

estimation delivers accurate confidence intervals for the parameters. To examine coverage

ratios, we simply calculate how many OLS coefficients fall outside the 90% confidence

intervals in the data. If the estimation is well behaved, they should be close to 10%, the

nominal level. For Gaussian shocks, the error rate varies between 10.47% and 12.26%

(there is only one coefficient for which the error rate is higher than 12%). For the BEGE

Monte Carlo, the error rate varies between 10.23% and 12.51%. Clearly, the finite sample

performance of the VAR is quite good, and not noticeably worse under BEGE distributed

shocks than under Gaussian shocks.
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We also examine the performance of Step 2 in the econometric methodology, the

GMM step, that identifies the critical loading parameters on the structural shocks (see

equation 2). In Table 6, the first column repeats the data estimate; in the second column

we show the average estimates across the Monte Carlo replications (with BEGE shocks),

and the third column shows the median across the 10000 replications. Compared to the

standard errors reported in Table 4, the biases are very small, giving us confidence that

the estimation methodology is accurate.

4 Macro Risks and the Term Structure

In this section, we explore the relation of macro factors with the term structure of

interest rates. In the preceding sections, we have identified four novel macro-risk factors

(pdt , ndt , p
s
t and nst). These variables can be interpreted as “good” or “bad” conditional

volatilities of demand and supply shocks, but their time variation also changes the entire

conditional distribution of these shocks. For comparison with the existing literature on

explaining bond yields and returns using macro data, we also examine the performance

of “level” macro factors, which include expected inflation, expected core inflation and

expected real GDP growth (we use the previously described VAR(2) system to compute

these expectations). We also use the unemployment gap as a macro level factor. Thus,

there are a total of 8 macro-factors we consider.

We address four questions. First, we ask whether macroeconomic factors help explain

the yield curve. Second, we investigate the predictive power of our new macro risk factors

for bond excess returns. Third, we also explore how the macro risk factors affect term

premiums. Finally, we examine the predictive power of the macro factors for realized

bond variances.

4.1 Macro Risks and the Yield Curve

We start by computing the classic yield curve financial factors. The “level” factor is

the equally weighted average of all yields (from the one year to the 10 year maturity); the

“slope” factor is the difference between the 10 year yield and one quarter yield; and finally,

the “curvature” factor subtracts twice the two-year rate from the sum of the one quarter

rate and the 10 year yield. Taken together, these three factors span the overwhelming

majority of variation in yields at all maturities. Thus, to operationalize our test of whether

macro factors explain yields, we test whether the macro factors explain variation in these
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three factors. Table 7 reports R2 statistics from regressions of the financial factors onto

the macro factors. We report the parameter coefficients in the Online Appendix, because

the coefficients are difficult to interpret for yields. For example, bad supply volatility

should increase the term premium and thus increase yields, but may also decrease yields

through a precautionary savings mechanism.

Table 7 reports results regarding the macro level factors and the macro risk factors.

First, the explanatory power of the macro level factors alone for the financial factors

is substantial, with the adjusted R2’s about 70, 60, and 30 percent respectively for the

level, slope, and curvature factors.13 Second, we proceed to determine the increment

in the adjusted R2 statistics resulting from the addition of the macro risk factors and

its statistical significance using the bootstrap test of Bauer and Hamilton (2017). The

null hypothesis is that macro risks are unrelated to financial factors. Following Bauer

and Hamilton (2017), we simulate 5,000 samples of historical length under the null and

compute the p-value as the proportion of samples where the adjusted R2 increases by at

least as much as in the data after the inclusion of macro risks that are, by construction

in the bootstrapped samples, unrelated to the yield curve. We find that the macro

risks contribute in a statistically significant fashion to all factors, but the statistical and

economic significance is much larger for the level (an adjusted R2 increase of 7.5%) and

curvature (an adjusted R2 increase of 12.5%) factors.

Appendix D reports some additional results, showing that the boost in explanatory

power due to the macro risk factors survives the inclusion of the contemporaneous macro

level factors constructed by Ang and Piazzesi (2003)14 as control variables, but becomes

statistically insignificant for the slope factors. It also survives the inclusion of realizations

(instead of expectations) of macro level factors (in that case, the relative contribution of

the macro risk factors is even more substantive).

4.2 Macro Risks and Bond Return Predictability

The literature on bond return predictability is voluminous, but mostly focuses on using

information extracted from the yield curve to predict future holding period returns (e.g.

Cochrane and Piazzesi, 2005). Ludvigson and Ng (2009) find that “real” and “inflation”

13The ability of the factors to explain the variation in the first three principal components is slightly
lower (with the decline in R2 most prominent for the third principal component, relative to curvature).

14The factors in Ang and Piazzesi (2003) are 12 lags of a measure of inflation and a measure of real
activity (they are the first principal components of a number of empirical measures).
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factors, extracted from a large number of macroeconomic time series, have significant

forecasting power for future excess returns on nominal bonds and that this predictability

is above and beyond the predictive power contained in forward rates and yield spreads.

Also, the bond risk premia implied by these regressions have a marked countercyclical

component. Bansal and Shaliastovich (2013) show that consumption growth and infla-

tion volatility predict excess bond returns. Cieslak and Pavola (2015) uncover short-lived

predictability in bond returns by controlling for a persistent component in inflation ex-

pectations. Barillas (2011) shows that the predictability due to macro factors for excess

bond returns is economically significant. However, Bauer and Hamilton (2017) have cast

a pall over the literature that uses macro factors to explain future bond returns, calling

into question the statistical significance of many of these widely-cited results.

In Tables 8 and 9, we explore the link between future bond returns and our macro

factors. We focus on excess one-quarter holding period returns relative to the one quar-

ter yield. This avoids the use of overlapping data which can spuriously increase R2’s in

predictability regressions due to the high autocorrelation (Bauer and Hamilton, 2017).

Nonetheless, all statistical inference is calculated using the small-sample bootstrap of

Bauer and Hamilton (2017). To delve into the economic mechanism by which macro

risks forecast future bond returns, Table 8 presents the coefficients from forecasting re-

gressions that include both level macro and macro risk factors.15 Individually, there are

few significant coefficients. Of the macro level factors, expected core inflation enters with

a positive sign, while expected aggregate inflation enters with a negative significant co-

efficient of similar magnitude, and is highly significant at all maturities. We find that

including expected core inflation is critical to get a significant expected aggregate infla-

tion coefficient in these regressions. This might be related to the results in Cieslak and

Pavola (2015) finding a similarly negative coefficient on expected inflation when yields

are included in the regression as core inflation is closely related to yields (Ajello, Benzoni,

and Chyhruk, 2012). Of the macro risk factors, the bad demand variance has a negative

significant coefficient and the bad supply variance a positive (albeit mostly insignificant)

coefficient. Therefore, consistent with intuition, being in a risky (that is volatile) de-

mand environment, where bonds are good hedges against general macroeconomic risks,

reduces the risk premium on bonds, and the reverse is true in the case of a supply envi-

15Including financial factors (level, slope, and curvature) in the regressions does not materially change
macro factors and macro risks signs except that the pst -signs switches from being insignificantly positive
to being insignificantly negative.
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ronment. The effect of bad demand variance is economically large: for example, for the

10 year maturity a one standard deviation increase in the bad demand factor decreases

the expected annualized excess bond return by 3.38 percentage points (the risk factors

were standardized to a unit variance). The corresponding coefficients increase with bond

maturity. The coefficients on the “good” demand risk factors are also negative and signif-

icantly different from zero, with coefficients that are even larger than for the bad demand

variance factor.16

Note from equation (7) that two demand (supply) state variables linearly span the

conditional (unscaled) skewness and variance of demand (supply) shocks. Thus, we can

conduct the analysis in Table 8 using variances and skewness of demand and supply shocks

instead of our macro risk factors. If variances are more persistent than skewness, which is

likely, we should expect variances to have relatively larger effects on risk premiums. This

is actually what we find (see the Online Appendix). Variances tend to be economically

and statistically significant predictors while skewness is statistically insignificant and

economically much less significant than variance. Importantly, our main results about

demand (supply) variances decreasing (increasing) bond risk premiums remain intact.

By construction, the R2 for the regressions are the same as the ones in Table 8.

Table 9 mimics the regression set up in Ludvigson and Ng (2009) and Bauer and

Hamilton (2017) including the financial factors (that is, the level, slope and curvature

factors) in the base regression. The adjusted R2’s produced by the financial factors

alone are significantly boosted after including both macro level factors and macro risk

factors. For maturities from 1 to 10 years, the R2’s from regressions including only

financial factors are around 7 percent. Macro level factors only increase the R2 by 2 to

3 percentage points at short horizons with the increase only significant at the 10 percent

level. Macro risks further increase the R2s by about 4-5 percentage points for short

maturities and by about 3 percentage points at the longer maturities. Macro risks alone

16To further elaborate on the risk premium intuition, we also added the contemporaneous demand
and supply shocks (udt+1 and ust+1) to the bond return regressions. In unreported results, we find that
the supply shocks carry positive but economically small and statically non-significant coefficients and
the demand shocks carry negative coefficients that are significant at the 5% (short maturities) and 1%
(long maturities) levels and become larger in magnitude with maturity. That is, realized bond excess
returns are high if a negative demand shock occurred during the holding period. In unreported results,
we also explore excess return predictability regressions which include interaction terms between macro
risks and the financial factors (the level, slope, and curvature). However, none of the interaction terms
is significant at the conventional significant levels.
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increase the adjusted R2 by 6-7 percentage points at short maturities and 3-4 percentage

points at long maturities compared to the specification where only financial factors are

included. These increases in explanatory power are statistically significant under the

Bauer and Hamilton (2017) bootstrap, for testing the null of no predictability coming

from macro risks. This is important given that Bauer and Hamilton (2017) have shown

that the additional predictive power coming from macro factors over financial factors, as,

e.g., in Ludvigson and Ng (2009) and Joslin, Priebsch, and Singleton (2014), often does

not survive when p-values are computed using bootstrap procedure. Additionally, while

macro risks significantly increase explanatory power for the specification which includes

financial and macro level factors, the increase in adjusted R2 from macro level factors for

the specification which already includes financial factors and macro risks is economically

small and statistically insignificant. Appendix D reports the return predictability of our

macro level and risk factors over Ang-Piazzesi factors, showing an increase in the adjusted

R2’s by about 4 percentage points.

Given that previous studies have considered macroeconomic “level” and “risk” factors

in isolation and that factors measuring macroeconomic risk have received scant attention

in such investigations, the relative predictive power of risk factors is of interest. Table 8

indicates that the adjusted R2 from macro level factors alone in excess return regressions

is around 4-5 percent with macro risk factors contributing additional 2 percentage points.

Ludvigson and Ng (2009) found the bond risk premiums implied by their predictive

regressions, which included both yield variables and macro-factors, to be counter-cyclical.

It is not difficult to obtain counter-cyclical real bond risk premiums in economic mod-

els, e.g., in habit models with counter-cyclical prices of risk (see, e.g., Wachter, 2006).

Our framework suggests that not all recessions are equal in this respect. Our predic-

tive regressions indicate that risk premiums are, everything else equal, lower when the

macro-environment is primarily demand driven. To verify the cyclicality of bond risk

premiums that are implied by our regressions, we use the fitted values of the predictive

regressions17 as estimates of these risk premiums and regress them on a recession indica-

tor, the ratio of the aggregate demand variance, including the good and bad variances, to

the corresponding aggregate supply variance, and the interaction of the two. We rescale

the demand/supply ratio variable to have a standard deviation of one. While we confirm

17Including financial factors (level, slope, and curvature) to construct the expected excess bond returns
does not materially change any of the results.
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all the reported results using a NBER dummy, NBER recessions are not available in real

time. We therefore use the so-called “anxious” index from the Survey of Professional

Forecasters as a recession indicator. This index measures the probability of a decline in

real GDP from this quarter to the next. We define the recession dummy to be one if

the anxious index for the quarter in which the survey is conducted is above 50% and

zero otherwise. The results are robust for probabilities between 45% and 55%. Table 10

reports the results. First, coefficients on the recession dummy are positive and increase

with maturity. Economically, the effect is rather large: a recession increases the annual-

ized expected excess return on a 1-year bond on average by about 70 basis points. The

effect on the 5-year bond premium is much larger, but so is the standard error (which is

computed using 20 Newey-West lags). The counter-cyclicality is no longer statistically

significant for the 10-year bond premium. In Appendix E, we show that this cyclicality

result disappears if we use NBER dummies instead.18 Second, the demand/supply ratio

is indeed negatively associated with risk premiums, and especially so for the 5 and 10

year bonds. Again, these effects are economically very large for the longer maturities and

highly statistically significant. For example, for the 1 year bond, if the demand/supply

ratio were to increase by 2 standard deviations, the annualized bond risk premium would

not increase by 68 basis points in a recession, but decrease by 46 (68.44-2×53.77-2×3.65)

basis points. Of course, it is important to recall that supply variances spike up as well in

most recessions. In Appendix E, we show that, unlike the cyclicality results above, the

coefficient on the demand/supply ratio is robustly negative and statistically significant

across across different specifications for the recession dummy.

4.3 Macro Risks and Term Premiums

Most of the literature examining the link between the macroeconomy and bond risk

premiums has focused on macro level factors. One important exception is Wright (2011),

who does not examine excess holding period returns, but an important and closely related

component of bond yields, the term premium. Wright (2011) shows that term premiums

are countercyclical and strongly affected by inflation uncertainty in a panel of countries.19

We compute term premiums for the 5 year and 10 year maturity as the yield for each

18This is in line with Bauer, Rudebusch and Wu (2014) and Wright (2014), who find that the cyclicality
of bond risk premiums is dependent on the methodology.

19Bauer, Rudebusch, and Wu (2014) re-examine Wright’s empirical evidence correcting for small sam-
ple bias in the VAR he runs to compute the term premium, but his main empirical conclusions remain
robust.
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maturity minus the average of expected future short-term rates over the life of the bond.

To measure the expected short yield, we use Blue Chip survey, which is available semi-

annually from 1986Q2.20

Results from this exercise are reported in Table 11. They are somewhat similar

to the results in Table 8 on excess holding period returns. Expected core inflation,

expected inflation and expected GDP growth significantly affect term premiums with the

same signs as in the excess holding period return regressions. Whereas the bad demand

variance risk factor negatively affects the term premium, consistent with the idea that

in such an environment bonds act as a good hedge, the effect is statistically insignificant

for the 5 year bond and marginally significant for 10 year bond. Instead, increases in the

good demand variance significantly decrease term premiums. We also find that the good

supply variance affects term premiums positively. The adjusted R2 is 69 percent for the

5 and 10 year bonds. The macro risk factors’ addition to the explanatory power of the

macro level variables is marginally significant.

In Table 12, we examine the cyclicality of the term premiums. In line with Wright

(2011) and Bauer, Rudebusch, and Wu (2014), we find that the term premium increases

in recessions, by 2.54 percentage points (6.25 percentage points) for the 5-year (10-year)

bond. These numbers are economically significant but not statistically significant. The

term premium is smaller in demand environments, but the effect is also not significant.

The interaction effect with the recession dummy has a negative sign but also fails to be

significant. The demand environment effects are substantive; a one standard deviation

increase in the demand/supply variance ratio decreases the term premium in a recession

by about 2.39 percentage points for the 5 year bond and about 4.83 percentage points

for the 10-year bond. Therefore, “demand effects” of this magnitude almost completely

offset the usual counter-cyclical term premium increase in recessions. However, we find

the magnitude of this effect to vary with the the recession proxy. For instance, if NBER

recession dummies are used, we find that the term premium increases in recessions by 0.55

percentage points (0.53 percentage points) for the 5-year (10-year) bond. The impact

of the demand environment is also smaller: a one standard deviation increase in the

demand/supply variance ratio decreases the term premium in a recession by 56 basis

20Our results are similar if we employ the expected short yield computed using Bauer, Rudebusch,
and Wu (2014)’s small-sample adjusted VAR(1) including 1 quarter, 1 year, and 10 year yields as the
state variables. The correlations between the survey and statistical term premia are 0.7578 and 0.7964
for the 5 and 10 year term premia, respectively.
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points for the 5 year bond and 52 basis points for the 10-year bond.

4.4 Macro Risks and the Bond Return Variance

Consider a model of the term structure of interest rates in which macroeconomic fac-

tors help determine the levels of bond yields (e.g., habit of Wachter, 2006, or long-run risk

of Bansal and Shaliastovich, 2013). Then the conditional variance of the macroeconomic

factors, which is captured by our macroeconomic risk factors, should help to determine

the conditional variance of bond returns. In the context of a forecasting regression, the

macro risk factors should help forecast ex-post bond return variances. In Table 13, we

present empirical evidence that such a link between the variance of bond returns and the

macro risk factors is indeed present in the data. Specifically, we compute the quarterly

realized 10 year zero coupon bond return variances as the sum of squared daily returns

inside the quarter. The realized daily returns are computed under the assumption that

the 10 year-1 day zero coupon yield is equal to the 10 year zero coupon yield. We regress

the quarterly realized variance of returns for the 10-year bond on the lagged values of the

macro risk factors and/or the macro level and financial factors. In panel A, we report

the adjusted R2 statistics from such regressions. By themselves, the macro risk factors

span about 35 percent of the variation in the ex-post realized variance. In contrast, the

macro level factors span only about 19 percent, and the financial factors span less than

14 percent. Further, the macro risk factors always significantly add to the explanatory

power of regressions which already use the macro level factors or financial factors as ex-

planatory variables. In contrast, the macro level factors do not significantly add to the

explanatory power of regressions that already use the macro risk factors and financial

factors as explanatory variables, nor do the financial factors significantly add to the ex-

planatory power of regressions that already use the macro risk factors and the macro

level factors. We conclude that the macro risk factors are quite powerful predictors of

bond return variances.

Panel B shows the pattern of regression coefficients for one such regression that in-

cludes macro level factors and macro risk factors as explanatory variables. The most

statistically significant explanatory variable is the bad variance component of demand,

which positively affects bond return variance, as expected. Moreover, the coefficients for

three out of the four macro risk factors are of the expected positive sign. Among the

macro level factors, expected aggregate and core inflation are significant at the 10 and 5
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percent level, respectively.

Figure 6 shows the historical pattern of the realized bond return variances (the blue

line), and the fitted values from two of the forecasting regressions described above. The re-

gression which uses the macro level factors and macro risk factors shown by the red/circle

symbols, captures some of the most prominent features of realized variance, especially

the high levels seen in the 1980s and during the 2008-2009 financial crisis. As shown by

the line with green/triangle symbols, adding the financial factors to this regression does

not significantly alter the patterns of the fitted return variance.

We also test the additional predictive power of macro risks for realized variances

over two direct variance forecasts based on bond returns data: the lagged value of the

realized variance and the conditional variance from the GJR-GARCH model of Glosten,

Jagannathan, and Runkle (1993). We use the GJR-GARCH model, because it fits the

data better than a standard GARCH model (Bollerslev, 1987) in terms of the Akaike

information criterion. We report detailed estimation results in Appendix F.

Table 14 shows that the past realized variance (Panel A) and the GJR-GARCH model

implied conditional variance (Panel B) have strong predictive power for future realized

variances, producing adjusted R2’s of over 50%. When we put them together (Panel C),

the R2 increases to over 60% and either one contributes significantly to the predictive

power of the other, showing they contain independent predictive components. The re-

mainder of the panels shows, as before, how various combinations of the 3 yield curve

factors, the macro level factors and the macros risks add to the predictive power. The

overwhelming conclusion is that macro risks always significantly increase the adjusted

R2, whatever the included variables are. Using all variables together leads to an adjusted

R2 of about 72%. Macro level factors and yield factors never contribute significantly to

the R2, once macro risks are included. In fact, a regression with only the return based

variances and macro risks generates an adjusted R2 of almost 71%, barely one percent

lower than the regression also including macro level and yield factors.

5 Conclusion

In this article, we document empirical links between “macro risks” and the term struc-

ture of interest rates. To do so, we first decompose macroeconomic shocks into “demand”

shocks which move inflation and GDP growth in the same direction and “supply shocks”
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which move inflation and GDP growth in opposite directions. The identification relies on

unconditional non-Gaussianities in the macro data. We find aggregate demand shocks to

be distinctly negatively skewed and leptokurtic, whereas supply shocks unconditionally

show little skewness but are also leptokurtic.

We then develop a new dynamic model for real economic activity and inflation, where

the shocks are drawn from a Bad Environment - Good Environment model, which ac-

commodates time-varying non-Gaussian features with “good” and “bad” volatility. We

extract four macro-risk factors, bad and good volatilities for respectively aggregate de-

mand and supply shocks. Until about the mid-seventies conditional supply variances

appear to dominate macroeconomic volatility, while afterwards demand variances are

more important until the mid-eighties: afterward there are roughly equal contributions

of both. The “good” demand variance has decreased markedly over time, but there is no

strong evidence that either “bad” demand variances or supply variances have declined.

Importantly, recessions continue to be accompanied by temporarily high bad demand and

supply variances. We also find that the conditional correlation between inflation and real

activity varies through time with occasional sign switches, as the relative importance of

demand and supply risk factors varies over time.

We then link the macro factors extracted from the dynamic macro model, expected

GDP growth, the unemployment gap, and expected (core) inflation and the macro risk

variables represented by the conditional variances (shape parameters) of the demand and

supply shocks, to the term structure. The macro variables explain 79 percent of the vari-

ation in the levels of yields. While the contribution of the macro risk factors to this R2 is

modest, it is nonetheless statistically significant. When we run predictive regressions of

excess bond returns onto the macro variables, the R2 is around 6 percent, with the macro

risk factors contributing one third of the explanatory power. Our macro risk factors

resurrect the statistical importance of macro factors for return predictability regressions.

We find that increases in both good and bad aggregate demand variance significantly re-

duce bond risk premiums; the former also significantly decreases term premiums. Macro

risks also significantly predict realized bond return variances. They significantly add ex-

planatory power over financial factors, macro level factors, and, importantly, conditional

variance proxies computed from bond returns.

It would be useful to be elucidate how variation in risk premiums is accounted for by
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the various macro risk factors and to decompose risk premiums into real and inflation

components. To accomplish this, a term structure model is necessary. In future work,

we plan to build a non-Gaussian term structure model where the set of state variables

includes both financial factors (as in Feldhütter, Heyerdahl-Larsen, and Illeditsch, 2018)

and macro variables (level and risk factors). Despite the non-Gaussianities in their dy-

namics, the BEGE structure has the advantage that bond prices nonetheless remain affine

in the state variables. Lastly, future work should verify whether the predictive power of

our macro risk factors survives when real time data are used instead of the final revised

data (see Ghysels, Horan, and Moench, 2018).

This article’s methodology can also be fruitfully applied to other empirical regulari-

ties. For example, the correlation between stock and bond returns shows extreme time

variation, with most economic models falling to account for such variation (see Baele,

Bekaert and Inghelbrecht, 2010). However, bond and stock returns should be positively

correlated in AS environments, and negatively correlated in AD environments. Ermolov

(2018) uses a variant of our methodology and an economic model to show that AS and

AD macro risks account for 15% of the time variation in stock-bond return correlations.
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Figure 1 – Demand and Supply Variance Proxies. Data is quarterly. NBER recessions
are shaded.

38



Figure 2 – Bad Environment - Good Environment Distribution. Graphs are probability
density functions.

39



Figure 3 – Filtered Quarterly Demand and Supply Shocks. Shading corresponds to NBER
Recessions.
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Figure 4 – Filtered Quarterly Demand and Supply Variances. Good demand variance
is defined as the constant (σdp)

2 multiplied by the good demand macro risk factor pdt .
Bad demand variance is defined as the constant (σdn)2 multiplied by the bad demand
macro risk factor ndt . Good supply variance is defined as the constant (σsp)

2 multiplied
by the good supply macro risk factor pst . Bad supply variance is defined as the constant
(σsn)2 multiplied by the bad demand macro risk factor nst . Shading corresponds to NBER
Recessions.
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Figure 5 – Quarterly Conditional Covariance between Macroeconomic Variables. Shading
corresponds to NBER Recessions.
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Figure 6 – Explaining Realized 10 Year Bond Return Variance with Macroeconomic and
Financial Factors. Realized variances are computed as the sums of squared daily bond
returns inside the quarter. The fit is from OLS regressions. Financial factors are the
level, slope, and curvature factors. The level factor is the average over 1-10 year yields.
The slope factor is the 10 year yield minus the 1 quarter yield. The curvature factor is
10 year yield plus 1 quarter yield minus 2 times the 2 year yield. The macroeconomic
level factors are expected inflation, expected core inflation, expected GDP growth and
unemployment gap.
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Table 1 – Explaining Quarterly Excess Bond Returns with Macro Factors: Partial Re-
sults. The sample is quarterly 1962Q4 to 2016Q4. The excess returns are annualized 1
quarter holding period returns on zero coupon US Treasuries. Etπ

core
t+1 is the expected

core inflation. Etπt+1 is the expected aggregate inflation. Etgt+1 is the expected GDP
growth. ugapt is the unemployment gap. Macro risks (demand proxyt and supply proxyt)
are scaled to have unit variance. All regressions also include a constant and expected
aggregate inflation, expected core inflation, expected GDP growth and unemployment
gap as control variables. The value in parentheses is the proportion out of 10,000 Bauer
and Hamilton (2017) bootstrap runs where the t-stat for the coefficient is smaller than
in data. The asterisks, * and **, correspond to statistical significance at the 10 and 5
percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond
Demand proxyt -0.3455* -0.8139** -1.5945** -3.5636**

(0.0378) (0.0207) (0.0114) (0.0079)
Supply proxyt 0.1580 0.1569 0.3963 0.8010

(0.5444) (0.5393) (0.6261) (0.5795)
Adjusted R2 0.0498 0.0541 0.0537 0.0598
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Table 2 – Model Selection for Expectations of Macro Variables. The sample is quarterly
from 1962Q4 to 2016Q4. Dependent variables are the log-difference of the CPI, log
real GDP growth, the log difference of core CPI, and the unemployment rate gap. The
predictive variables are the macro variables mentioned above and the 90-day T-bill and the
10-year zero-coupon Treasury yield. AIC and BIC are Akaike and Bayesian information
criteria, respectively. The models are sorted by AIC.

Model Number of parameters Log-likelihood AIC BIC
VAR(2) 93 -798.9 1801.8 2097.7
VAR(3) 129 -755.5 1802.8 2204.5
VARMA(2,2) 105 -785.9 1804.5 2136.3
VARMA(2,1) 99 -794.7 1807.6 2121.5
VARMA(3,1) 135 -752.9 1812.7 2231.4
VARMA(2,3) 111 -787.2 1821.5 2171.0
VARMA(3,2) 141 -749.9 1822.1 2257.7
VARMA(3,3) 147 -743.8 1825.5 2277.9
VARMA(1,3) 75 -856.8 1875.6 2116.8
VARMA(1,1) 63 -879.5 1893.8 2097.7
VAR(1) 57 -888.6 1898.4 2083.5
VARMA(1,2) 69 -875.7 1899.7 2122.3
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Table 3 – Higher Order Moments of Macroeconomic Shocks Used for Classical Minimum Dis-
tance Estimation. ugt , u

π
t , uπcoret , and uut are the shocks to real GDP growth, aggregate infla-

tion, core inflation and unemployment gap, respectively. The data is quarterly from 1962Q4
to 2015Q2. The covariance matrix for moments is a diagonal matrix calculated via a block-
bootstrap with a block length of 20 quarters. Asterisks, *, **, and ***, correspond to statistical
significance of individual moments at the 10, 5, and 1 percent levels, respectively.

Volatility

uπt ugt uπ
c

t uuet
data 0.5655*** 0.7078*** 0.3252*** 0.2658***
standard error (0.0867) (0.0781) (0.0531) (0.0228)
fitted 0.5655 0.7078 0.3252 0.2658

Skewness

uπt ugt uπ
c

t uuet
data -1.3570 0.4956 0.1144 0.3745**
standard error (1.0067) (0.3714) (0.3808) (0.1879)
fitted -0.4456 -0.2585 -0.2264 0.2308

Excess kurtosis

uπt ugt uπ
c

t uuet
data 11.2751** 2.5052** 2.0640** 1.0528***
standard error (5.7197) (1.0656) (0.8233) (0.4056)
fitted 1.9051 1.1046 0.9798 1.0160

Correlations

uπt u
g
t uπt u

πc

t uπt u
ue
t ugt u

πc

t ugt u
ue
t u

πcuue
t

t

data 0.1392 0.5400*** -0.2058*** 0.0626 -0.5615*** -0.1630*
standard error (0.1197) (0.0726) (0.0733) (0.1281) (0.0534) (0.0969)
fitted 0.2415 0.5274 -0.2204 0.0604 -0.5587 -0.0372

Co-skewness

(uπt )2ugt (uπt )2uπ
c

t (uπt )2uuet (ugt )2uπt (ugt )2uπ
c

t (ugt )2uuet
data -0.9790* -0.4251 0.9978* -0.2876 -0.1337 -0.1683
standard error (0.5588) (0.3519) (0.5623) (0.3977) (0.2386) (0.3941)
fitted -0.3714 -0.3544 0.3579 -0.3144 -0.2514 0.2489

(uπ
c

t )2uπt (uπ
c

t )2ugt (uπ
c

t )2uuet (uuet )2uπt (uuet )2ugt (uuet )2uπ
core

t

data -0.0814 -0.2427 0.2308 -0.4526* -0.0987 -0.2621**
standard error (0.2620) (0.1813) (0.1901) (0.2513) (0.3258) (0.1180)
fitted -0.2826 -0.2311 0.2225 -0.2926 -0.2397 -0.2342

Excess co-kurtosis

(uπt )2(ugt )2 (uπt )2(uπ
c

t )2 (uπt )2(uuet )2 (ugt )2(uπ
c

t )2 (ugt )2(uuet )2 (uπ
c

t )2(uuet )2

data 2.8288* 0.9001** 2.5459 0.8804*** 1.1683** 0.7172**
standard error (1.7353) (0.4307) (1.7067) (0.2841) (0.5452) (0.2931)
fitted 1.3899 1.2650 1.3041 1.0355 1.0571 0.9972

(uπt )3ugt (uπt )3uπ
c

t (uπt )3uuet (ugt )3uπt (ugt )3uπ
c

t (ugt )3uuet
data 5.4690* 2.3743 -5.3776* 1.6048* 0.9830 -1.6559*
standard error (3.3311) (1.6502) (3.1267) (0.9644) (0.7055) (0.6289)
fitted 1.5255 1.5383 -1.4667 0.9894 0.6839 -1.0801

(uπ
c

t )3uπt (uπ
c

t )3ugt (uπ
c

t )3uuet (uuet )3uπt (uuet )3ugt (uuet )3uπ
c

t

data 1.0483 0.5848 -0.7485** -1.1668 -0.9086* -0.3166
standard error (0.4346) (0.5241) (0.3655) (0.7724) (0.5445) (0.2325)
fitted 1.0780 0.5661 -0.5272 -0.8572 -1.0357 -0.5635
J-stat 29.6525
p-value (0.0819)
Joint signifi-
cance of 3rd

and 4th order
moments

299.43

p-value (<0.0001)
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Table 4 – Loadings of Macroeconomic Shocks on Demand and Supply Shocks. The coef-
ficients are from Classical Minimum Distance estimation matching unconditional higher
order moments of 4 macroeconomic shocks time series: real GDP growth (ugt ), aggregate
(uπt ) and core inflation (uπcoret ) and unemployment gap (uut ). Standard errors in parenthe-
ses account for sampling error in the higher-order moments and the VAR(2) parameters.

Panel A: Loadings of Macro Shocks on Supply and Demand Shocks
Shock Supply loading Demand Loading
uπt -0.1736 0.3856

(0.0555) (0.1012)
ugt 0.3414 0.4044

(0.0888) (0.0950)
uπ

c

t -0.1678 0.1760
(0.0438) (0.0678)

uuet -0.1344 -0.1464
(0.0334) (0.0264)

idiosyncratic variance share 0.4408
(0.0473)

Panel B: Kalman Gain of Macro Shocks for Supply and Demand
Shock uπt ugt uπ

c

t uuet
Supply -0.4553 0.5069 -1.2790 -1.4202

(0.1744) (0.1038) (0.3453) (0.2772)
Demand 0.6758 0.4233 0.9561 -1.0825

(0.1312) (0.1066) (0.2000) (0.2848)
Panel C: Unconditional moments of supply and demand

Shock Skewness Excess Kurtosis
Supply 0.0289 3.3186

(0.8770) (1.7417)
Demand -1.4030 8.6770

(0.9987) (4.8979)
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Table 5 – Bad Environment - Good Environment Parameter Estimates for Demand and
Supply Processes. Parameter estimates are obtained using Bates (2006) approximate
maximum likelihood methodology. Standard errors in parentheses are approximate max-
imum likelihood asymptotic standard errors. As demand and supply shocks are assumed
to have variances exactly equal to 1, n̄-parameters can be solved as functions of other
model parameters, and their standard errors are calculated using the delta method.

Supply shock Demand shock
p̄ 20.0000 20.0000

– –
n̄ 4.0030 0.3359

(7.1293) (0.2177)
σp 0.1644 0.1801

(0.0193) (0.0107)
σn 0.3389 1.0229

(0.2879) (0.3271)
ρp 0.9881 0.9392

(0.0177) (0.0279)
ρn 0.6737 0.7243

(0.2046) (0.1551)
σpp 0.5524 0.9834

(0.4162) (0.3434)
σnn 1.2502 0.5723

(1.1114) (0.3905)
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Table 6 – Monte Carlo Estimates of Macroeconomic Shocks Loadings on Demand and
Supply Shocks. The estimates use 10,000 replications of simulated samples of historical
length.

Data estimate Mean Monte Carlo estimate Median Monte Carlo estimate

Supply loading of uπt -0.17 -0.20 -0.19
Demand loading of uπt 0.39 0.35 0.36
Supply loading of ugt 0.34 0.29 0.33
Demand loading of ugt 0.40 0.40 0.41
Supply loading of uπ

c

t -0.17 -0.17 -0.18
Demand loading of uπ

c

t 0.18 0.15 0.16
Supply loading of uuet -0.13 -0.12 -0.13
Demand loading of uuet -0.15 -0.15 -0.15
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Table 7 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve Fac-
tors. The sample is quarterly from 1962Q4 to 2016Q4. Macro level factors are expected
real GDP growth, expected aggregate and core inflation, and unemployment gap. Fi-
nancial factors are the level, slope, and curvature factors. The level factor is the average
over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter yield.
The curvature factor is 10 year yield plus 1 quarter yield minus 2 times the 2 year yield.
The increase in adjusted R2 significance, which is always tested over the specification in
the previous row, is Bauer and Hamilton (2017) small-sample adjusted significance using
5000 bootstrap runs. The asterisks, *, **, and ***, correspond to statistical significance
at the 10, 5, and 1 percent levels, respectively.

Level Slope Curvature

Macro level factors 0.7146 0.5713 0.2808
Macro level factors+macro risks 0.7902*** 0.5975* 0.4072***
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Table 8 – Explaining Quarterly Excess Bond Returns with Macro Factors. The sample is
quarterly from 1962Q4 to 2016Q4. The excess returns are annualized 1 quarter holding
period returns on zero coupon US Treasuries. Macro risks (pdt , n

d
t , p

s
t and nst) are scaled

to have unit variance. The value in parentheses is the proportion out of 5,000 Bauer
and Hamilton (2017) bootstrap runs where the t-stat for the coefficient is smaller than
in data. The asterisks, * , **, and *** correspond to statistical significance at the 10, 5,
and 1 percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond
Constant 0.0533 0.7436 2.3547 5.1106

(0.0698) (0.3742) (0.5058) (0.5942)
Etπ

core
t+1 5.5115 11.6445 22.5331 38.2388

(0.6818) (0.6766) (0.7170) (0.7468)
Etπt+1 -5.1162*** -11.0131*** -21.7026*** -36.4865***

(0.0014) (0.0016) (0.0016) (0.0018)
Etgt+1 0.7092 0.9958 3.0505 7.5204

(0.6442) (0.5416) (0.5672) (0.5918)
ugapt 0.2131 0.5477 1.2754 2.1034

(0.6058) (0.6228) (0.7056) (0.6346)
pdt -0.8742*** -1.5057*** -3.1487*** -5.2105***

(0.0020) (0.0014) (0.0014) (0.0016)
ndt -0.2270*** -0.6327*** -1.6587*** -3.3794***

(0.0008) (0.0010) (0.0010) (0.0008)
pst 0.3998 0.5255 0.8686 0.7653

(0.8600) (0.6622) (0.5794) (0.3338)
nst 0.3359 0.6965 1.4538 2.9693*

(0.8668) (0.8844) (0.9296) (0.9514)
Adjusted R2 without macro risks 0.0416 0.0475 0.0471 0.0469
Adjusted R2 with macro risks 0.0604 0.0610 0.0613 0.0685
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Table 9 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly Excess
Bond Returns over Macro Level and Financial Factors. The sample is quarterly from
1962Q4 to 2016Q4. Macro level factors are expected real GDP growth, expected aggregate
and core inflation, and unemployment gap. Financial factors are the level, slope, and
curvature factors. The level factor is the average over 1-10 year yields. The slope factor
is the 10 year yield minus the 1 quarter yield. The curvature factor is the 10 year yield
plus the 1 quarter yield minus 2 times the 2 year yield. The increase in adjusted R2

significance, which is tested over the specification without the last set of factors (e.g., “3
financial factors+macro level factors+macro risks” row tests the incremental contribution
of macro risks for the specification already including 3 financial factors and macro level
factors), is Bauer and Hamilton (2017) adjusted significance using 5000 bootstrap runs.
The asterisks, *, **, and ***, correspond to statistical significance at the 10, 5, and 1
percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond
3 financial factors 0.0666 0.0657 0.0708 0.0796
3 financial factors+macro level factors 0.0962* 0.0932* 0.0774 0.0749
3 financial factors+macro risks 0.1338*** 0.1292*** 0.1101** 0.1164*
3 financial factors+macro level factors+macro risks 0.1429** 0.1370** 0.1065* 0.1051*
3 financial factors+macro risks+macro level factors 0.1429 0.1370 0.1065 0.1051
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Table 10 – Cyclicality of Expected Excess Bond Returns. The sample is quarterly 1969Q4-
2016Q4. The dependent variable is the expected annualized quarterly excess return com-
puted from the OLS regressions of realized annualized quarterly excess returns on 4
macro level factors (expected aggregate and core inflations, expected real GDP growth,
and unemployment gap) and 4 macro risks (good and bad demand and supply vari-
ances). The recession dummy is set to 1 if the anxious index for the quarter (as surveyed
during that quarter) is above 50% and 0 otherwise. Demand/supply-ratio is the ratio
of aggregate demand variance (good+bad) to aggregate supply variance (good+bad).
Demand/supply-ratio is scaled to have the standard deviation of 1. Standard errors are
Newey-West standard errors computed with 20 lags. The asterisks, ** and ***, corre-
spond to statistical significance at the 5 and 1 percent levels, respectively.

1 year bond 5 year bond 10 year bond
constant 1.2227*** 6.2253*** 13.1634***

(0.2579) (0.9967) (2.1864)
recession-dummy 0.6844** 4.4037*** 1.5002

(0.3471) (1.5038) (3.6225)
demand-supply ratio -0.5377*** -2.4920*** -5.2721***

(0.1444) (0.4925) (0.9748)
recession-dummy×demand-supply ratio -0.0365 -0.7412 0.2911

(0.1571) (0.5901) (1.3283)
Adjusted R2 0.3655 0.4086 0.3596
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Table 11 – Explanatory Power (Adjusted R2) of Macro Factors for Term Premiums. The
dependent variable is annualized term premium computed as the observed US Treasury
long yield minus the expected 1 quarter US Treasury yield over the life of the long yield.
The expectations of 1 quarter yield over the life of the long yield are from Blue Chip survey
and are available semi-annually. The sample is 1986Q2-2016Q4. The standard deviation
of each macro risk factor is scaled to 1. The value in parentheses is the proportion out
of 5,000 Bauer and Hamilton (2017) bootstrap runs where the t-stat for the coefficient is
smaller than in data. The significance of the increase in adjusted R2 is computed using
5,000 bootstrap runs of Bauer and Hamilton (2017) bootstrap. The asterisks, * , **, and
*** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

5 year bond 10 year bond
constant 0.1852 0.5254*

(0.9370) (0.9604)
Etπ

core
t+1 6.7811*** 8.0065***

(0.9978) (0.9994)
Etπt+1 -5.0956*** -6.5618***

(0.0026) (0.0008)
Etgt+1 0.8876* 1.0378*

(0.9720) (0.9608)
ugapt 0.0769 0.1164

(0.5100) (0.6018)
pdt -0.0236* -0.1107**

(0.0412) (0.0206)
ndt -0.0121 -0.0887*

(0.2678) (0.0318)
pst 0.5720*** 0.6415***

(0.9998) (0.9996)
nst -0.2629 -0.1723

(0.2614) (0.2928)
Adjusted R2 without macro risks 0.6513 0.6543
Adjusted R2 with macro risks 0.6914* 0.6941*
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Table 12 – Cyclicality of the Term Premium. The dependent variable is annualized
term premium computed as the observed US Treasury long yield minus the expected 1
quarter US Treasury yield over the life of the long yield. The expectations of 1 quarter
yield over the life of the long yield are from Blue Chip survey and are available semi-
annually. The sample is 1986Q2-2016Q4. The recession dummy is set to 1 if the anxious
index for the quarter (as surveyed during that quarter) is above 50% and 0 otherwise.
Demand/supply-ratio is the ratio of aggregate demand variance (good+bad) to aggregate
supply variance (good+bad). Demand/supply- ratio is scaled to have the standard devi-
ation of 1. Standard errors are Newey-West standard errors computed with 20 lags. The
asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1 percent
levels, respectively.

5 year 10 year
constant 0.6540 1.2404**

(0.6496) (0.6075)
recession-dummy 2.5410 6.2530

(3.1010) (3.8839)
demand-supply ratio -0.2274 -0.2677

(0.2030) (0.1839)
recession-dummy×demand-supply ratio -2.1670 -4.5687

(2.3204) (2.7858)
R2 0.0282 0.0362
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Table 13 – Explanatory Power of Macro Factors for Realized 10 Year Bond Return Vari-
ances. The sample is quarterly from 1962Q4 to 2016Q4. Realized variances are computed
as the sums of squared daily bond returns inside the quarter. The standard deviation of
each macro risk factor is scaled to 1. Financial factors are the level, slope, and curvature
factors. The level factor is the average over 1-10 year yields. The slope factor is the
10 year yield minus the 1 quarter yield. The curvature factor is 10 year yield plus 1
quarter yield minus 2 times the 2 year yield. The signs in Panel B are from the OLS
regression. The value in parentheses is the proportion out of 5,000 Bauer and Hamilton
(2017) bootstrap runs where the t-stat for the coefficient is smaller than in data. The
increase in adjusted R2 significance, which is tested over the specification without the last
set of factors (e.g., “3 financial factors+macro level factors+macro risks” row tests the
incremental contribution of macro risks for the specification already including 3 financial
factors and macro level factors), is Bauer and Hamilton (2017) small-sample adjusted
significance using 5000 bootstrap runs. The asterisks, * , **, and *** correspond to
statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Adjusted R2’s

Macro risks 0.3473
Macro level factors 0.1890
3 financial factors 0.1390
Macro level factors + macro risks 0.4200***
3 financial factors +macro risks 0.4267***
3 financial factors+macro level factors 0.2937***
3 financial factors+macro level factors+macro risks 0.4408***
3 financial factors+macro risks+macro level factors 0.4408
macro risks+macro level factors+financial factors 0.4408

Panel B: Regression coefficients

constant 0.0015*
(0.9574)

Etπ
core
t+1 0.0026**

(0.9822)
Etπt+1 -0.0016*

(0.0348)
Etgt+1 3.14E-05

(0.5970)
ugapt 1.61E-04

(0.8098)
pdt 8.48E-05

(0.6284)
ndt 4.92E-04***

(0.9998)
pst -3.50E-04*

(0.9592)
nst 3.15E-05

(0.5452)
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Table 14 – Explanatory Power of Macro Factors for Realized 10 Year Bond Return Variances over
Lagged Realized Variances and GARCH models. The sample is quarterly from 1962Q4 to 2016Q4.
Realized variances are computed as the sums of squared daily zero-coupon bond returns inside the
quarter. All predictive variables are from the previous quarter. GJR-GARCH refers to conditional
volatility from Glosten, Jagannathan, and Runkle (1993) model. GJR-GARCH outperforms GARCH in
terms of Akaike Information Criterion. Financial factors are the level, slope, and curvature factors. The
level factor is the average over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter
yield. The curvature factor is 10 year yield plus 1 quarter yield minus 2 times the 2 year yield. The
increase in adjusted R2 significance, which is tested over the specification without the last set of factors
(e.g., “3 financial factors+macro level factors+macro risks” row tests the incremental contribution of
macro risks for the specification already including 3 financial factors and macro level factors), is Bauer
and Hamilton (2017) small-sample adjusted significance using 5000 bootstrap runs. The asterisks, * ,
**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Set of predictors Adjusted R2

Panel A: Predictability over lag 1 realized variance
Lag 1 realized variance 0.5174
Lag 1 realized variance+macro risks 0.5813***
Lag 1 realized variance+macro level factors 0.5439*
Lag 1 realized variance1+3 financial factors 0.5223
Lag 1 realized variance+3 financial factors+macro risks 0.5916***
Lag 1 realized variance+macro risks+3 financial factors 0.5916
Lag 1 realized variance+macro level factors+macro risks 0.5977**
Lag 1 realized variance+macro risks+macro level factors 0.5977
Lag 1 realized variance+macro level factors+3 financial factors 0.5471
Lag 1 realized variance+3 financial factors+macro level factors 0.5471*
Lag 1 realized variance+3 financial factors+macro level factors+macro risks 0.5949**
Lag 1 realized variance+macro level factors+macro risks+3 financial factors 0.5949
Lag 1 realized variance+macro risks+3 financial factors+macro level factors 0.5949

Panel B: Predictability over GJR-GARCH variance
GJR-GARCH 0.5191
GJR-GARCH+macro risks 0.7057***
GJR-GARCH+macro level factors 0.5734***
GJR-GARCH+3 financial factors 0.6082***
GJR-GARCH+3 financial factors+macro risks 0.7055***
GJR-GARCH+macro risks+3 financial factors 0.7055
GJR-GARCH+macro level factors+macro risks 0.7109***
GJR-GARCH+macro risks+macro level factors 0.7109
GJR-GARCH+macro level factors+3 financial factors 0.6290**
GJR-GARCH+3 financial factors+macro level factors 0.6290
GJR-GARCH+3 financial factors+macro level factors+macro risks 0.7155***
GJR-GARCH+macro level factors+macro risks+3 financial factors 0.7155
GJR-GARCH+macro risks+3 financial factors+macro level factors 0.7155

Panel C: Predictability power over lag 1 realized variance and GJR-GARCH variance
Lag 1 realized variance+GJR-GARCH 0.6046***
GJR-GARCH+Lag 1 realized variance 0.6046***
Lag 1 realized variance+GJR-GARCH+macro risks 0.7086***
Lag 1 realized variance+GJR-GARCH+macro level factors 0.6134
Lag 1 realized variance+GJR-GARCH+3 financial factors 0.6375*
Lag 1 realized variance+GJR-GARCH+3 financial factors+macro risks 0.7076***
Lag 1 realized variance+GJR-GARCH+macro risks+3 financial factors 0.7076
Lag 1 realized variance+GJR-GARCH+macro level factors+macro risks 0.7148***
Lag 1 realized variance+GJR-GARCH+macro risks+macro level factors 0.7148
Lag 1 realized variance+GJR-GARCH+macro level factors+3 financial factors 0.6515**
Lag 1 realized variance+GJR-GARCH+3 financial factors+macro level factors 0.6515
Lag 1 realized variance+GJR-GARCH+3 financial factors+macro level factors+macro risks 0.7179**
Lag 1 realized variance+GJR-GARCH+macro level factors+macro risks+3 financial factors 0.7179
Lag 1 realized variance+GJR-GARCH+macro risks+3 financial factors+macro level factors 0.7179
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Appendix A - Macroeconomic Impulse Responses and

Bootstrapped Standard Errors

We characterize the long run effects of the structural shocks using standard impulse

response analysis. For the purposes of calculating impulse response functions for the

macro data, we use our estimated VAR(2) parameters. To compute the response of the

four macroeconomic series at various horizons to the supply and demand shocks, we need

the contemporaneous response of all the variables to supply and demand shocks. For

the four macroeconomic series, these responses are the row elements of the Σ matrix

corresponding to macro data in equation (2). For the two yield variables, we extract the

time series for reduced-form shocks from the VAR(2)-estimation and simply regress these

shocks onto the filtered supply and demand shocks. The responses of the six endogenous

variables to the two structural shocks, supply and demand, of unit size at horizon h, are

given by the expression:

IR(h) = (Ah1 + A
max(h−1,0)
2 )Σi,

where A1 and A2 are lag 1 and 2 AR matrices from the VAR(2)-model and i is the

impulse.

Note that the standard error for the impulse response coefficients must account not

only for the estimation of the VAR(2) parameters but also for the error incurred in

identifying supply and demand shocks, which involves the higher order moments of VAR

residuals. These sources of error affect the distribution of the sampling error of the

loadings of the endogenous variables onto supply and demand shocks, the time series

estimates of the supply and demand shocks, and the impulse response functions.

To account for all of these sources of error, we use a bootstrapping routine. We begin

by sampling, with replacement, the reduced-form shocks from the estimated VAR(2)

model. We assemble synthetic samples using 22 randomly chosen blocks with a length

of 20 quarters. This results in synthetic samples of approximately the same length as

our data (220 for bootstraps, 225 for the data). We use these shocks and the estimated

VAR(2) parameters to build up synthetic samples of the endogenous variables. Note that

we do not need any estimates of the covariance matrix of shocks to do this. Beginning

from these synthetic samples, we follow the same procedures for each bootstrap sample



that we do for the actual sample to calculate all the statistics of interest:

• Estimate VAR(2) parameters on the synthetic sample.

• Estimate higher-order moments of the reduced form shocks and their covariance

matrix

• Estimate loadings of the macro variables onto supply and demand using the GMM

procedure on the higher order moments

• Invert supply and demand shocks using the Kalman filter procedure

• Estimate the loadings of the yield variables onto the supply and demand shocks by

OLS

• Estimate the impulse responses

We use the same procedure to estimate standard errors for model parameters.

The results are as follows with standard errors in parentheses (recall that these shocks

have unit variance by construction):

Panel A: Contemporaneous (Quarter 0) Responses

Demand Shock Supply Shock

Real GDP level 0.40% 0.34%

(0.10%) (0.08%)

Price level 0.39% -0.17%

(0.10%) (0.06%)

Panel B: Cumulative (20 Quarters) Responses

Demand Shock Supply Shock

Real GDP level 0.09% 0.52%

(0.27%) (0.27%)

Price level 2.15% -0.05%

(0.66%) (0.54%)

The effects are consistent with the standard Keynesian interpretation. Demand shocks

have large short run effects on real GDP growth (with the initial shock being 0.40 percent)

but their cumulative effect on output is small (0.09 percent) and insignificantly different



from zero. Supply shocks generate smaller short run GDP growth effects but their cumu-

lative effect is 0.52 percent which is significantly different from zero. Demand and supply

shocks have very different effects on the price level, with the cumulative effects close to

+2 percent in the case of demand shocks, but the supply shock effect peters out to zero.

In sum, our identification scheme yields shocks whose long-run effects are consistent with

a well-established macroeconomic literature.

Following Jorda (2005), we also calculate the model-free impulse responses using OLS

regressions of the form:

Yt+h = β0 + β1Yt−1 + β2Yt−2 + β3û
supply
t−1 + β4û

demand
t−1 + εt+h,

where ûsupply and ûdemand are the inverted supply and demand shocks. Standard errors

are computed as above.

The results are as follows with standard errors in parentheses:

Cumulative (20 Quarters)
Demand Shock Supply Shock

Real GDP level 0.37% 0.81%
(0.46%) (0.42%)

Price level 2.15% -0.05%
(0.31%) (0.30%)



Appendix B - Maximum likelihood estimation of de-

mand and supply shock dynamics

We restrict attention to the demand shock estimation, as the supply shock estimation

is identical. The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d + ρdp(p
d
t − p̄d) + σdppω

d
p,t+1,

ndt+1 = n̄d + ρdn(ndt − n̄d) + σdnnω
d
n,t+1,

where only the time series of demand shock realizations, {udt }Tt=1 is observed.

The following notation is defined:

Ud
t ≡ {ud1, ..., udt } is the sequence of observations up to time t.

F (iφ, iψ1, iψ2|Ud
t ) ≡ E(eiφu

d
t+1+iψ1pdt+1+iψ2ndt+1|Ud

t ) is the next period’s joint conditional

characteristic function of the observation and the state variables.

Gt|s(iψ
1, iψ2) ≡ E(eiψ

1pdt+iψ2ndt |Ud
s ) is the characteristic function of the time t state

variables conditioned on observing data up to time s.

The estimation procedure is an application of Bates (2006)’s algorithm for the com-

ponent model of two gamma distributed variables and consists of the time 0 initialization

and 3 steps repeated for each observation in {udt }Tt=1. At time 0, the characteristic function

of the state variables G0|0(iψ1, iψ2) is initialized. The distribution of pd0 and nd0 is approx-

imated with gamma distributions. Note that the unconditional mean and variance of pdt

are E(pdt ) = p̄d and V ar(pdt ) =
σ2
pp

1−ρd2p
p̄d, respectively. The approximation by the gamma

distribution with the shape parameter k0 and the scale parameter σp0 is done by matching

the first two unconditional moments. Using the properties of the gamma distribution,

kp0 =
E2pdt

V ar(pdt )
and θp0 =

V ar(pdt )

E(pdt )
. Thus, pd0 is assumed to follow Γ(kp0, θ

p
0) and nd0 is assumed

to follow Γ(kn0 , θ
n
0 ), where kn0 and θn0 are computed in the same way. Using the properties

of the expectations of the gamma variables, G0|0(iψ1, iψ2) = e−k
p
0 ln(1−θp0 iψ1)−kn0 ln(1−θn0 iψ2) .

Given G0|0(iψ1, iψ2), computing the likelihood of Ud
T is performed by repeating the steps

1-3 below for all subsequent values of t.



Step 1. Computing the next period’s joint conditional characteristic function of the

observation and the state variables:

F (iΦ, iψ1, iψ2|Udt ) = E(E(eiΦ(σd
pω

d
p,t+1−σ

d
nω

d
n,t+1)+iψ1(p̄d+ρdpp

d
t +σd

ppω
d
p,t+1)+iψ2(n̄d(1−ρdn)+ρdnn

d
t +σd

nnω
d
n,t+1)|Udt )

= E(eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)+(iψ1ρdp−ln(1−iΦσd

p−iψ
1σd

pp)−iΦσd
p−iψ

1σd
pp)pdt +(iψ2ρdn−ln(1+iΦσd

n−iψ
2σd

nn)+iΦσd
n−iψ

2σd
nn)nd

t |Udt )

= eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)Gt|t(iψ

1ρdp − ln(1− iΦσdp − iψ1σdpp)− iΦσdp − iψ1σdpp, iψ
2ρdn − ln(1 + iΦσdn − iψ2σdnn) + iΦσdn − iψ2σdnn).

Step 2. Evaluating the conditional likelihood of the time t+ 1 observation:

p(udt+1|Ud
t ) =

1

2π

∫ ∞
−∞

F (iΦ, 0, 0|Ud
t )e−iΦu

d
t+1)dΦ,

where the function F is defined in step 1 and the integral is evaluated numerically.

Step 3. Computing the conditional characteristic function for the next period,

Gt+1|t+1(iψ1, iψ2):

Gt+1|t+1(iψ1, iψ2) =
1

2π

∫∞
−∞ F (iΦ, iψ1, iψ2|Ud

t )e−iΦu
d
t+1dΦ

p(udt+1|Ud
t )

.

As above, the function Gt+1|t+1(iψ1, iψ2) is also approximated with the gamma distribu-

tion via matching the first two moments of the distribution. The moments are obtained

by taking the first and second partial derivatives of the joint characteristic function:

Et+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1ψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1p
d
t+1,

Et+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2ψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1n
d
t+1,

where Fψi denotes the derivative of F with respect to ψi. The expressions inside the inte-

gral are obtained in closed form by derivating the function F (iΦ, iψ1, iψ2|Ud
t ) in step

1, and integrals are evaluated numerically. Using the properties of the gamma dis-

tribution, the values of the shape and the scale parameters are kpt+1 =
E2
t+1p

d
t+1

V art+1pdt+1
and



θpt+1 =
V art+1pdt+1

Et+1pdt+1
, respectively. The expressions for knt+1 and θnt+1 are similar.

The total likelihood of the time series is the sum of individual likelihoods from step

2: L(YT ) = ln p(ud1|k
p
0, θ

p
0) +

∑T
t=2 ln p(udt+1|Ud

t ).



Appendix C - Conditional Covariances between Macroe-

conomic Time Series: Evidence from Other Models

In order to validate the BEGE patterns, we consider three alternative conditional

covariance models. Our first model is simply a rolling covariance. We report the results

using a 10 quarters rolling covariance, but the pattern is very similar for values between

4 and 20 quarters. Our second model is DCC-GJR-GARCH. Under this model, variances

follow the GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993) and the

conditional correlation follows DCC model of Engle (2002). Our third model is a bivariate

Gaussian regime-switching model in the spirit of Hamilton (1989). We use a 2 state

model, because it is the model preferred by the Akaike information criterion. Each of the

models above is estimated twice: to compute conditional covariances between VAR(2)

shocks to real GDP growth and aggregate inflation and between VAR(2) shocks to the

unemployment gap and the core inflation, respectively.

Figure 7 plots the implied conditional real GDP growth and aggregate inflation shocks

covariances. Note that economically all models deliver largely the same pattern: the

covariance spikes around 1980 and then again during the Great Recession while remaining

rather stable around 0 outside these two periods. Table 15 confirms the similarity of

patterns across models quantitatively by showing that conditional covariances across

different models are positively correlated (correlations >0.40 for the BEGE model with

the other models).

Figure 8 plots the implied conditional unemployment gap and core inflation shocks

covariances from different models. Economically, the message is similar to Figure 7: all

models imply a covariance around 0 with a prolonged drop around 1980 and a sharp but

short-lived drop during the Great Recession. Table 16 confirms the similarity of patterns

across models quantitatively by showing that conditional covariances across different

models are positively correlated. The BEGE model covariances now correlate at least

48% with the covariances produced by the other models.



Figure 7 – Conditional Covariances between VAR(2) Shocks to GDP Growth and Aggre-
gate Inflation. Data is quarterly.

Table 15 – Correlation of Conditional Covariances between GDP Growth and Aggregate
Inflation Shocks from Different Models. Data is quarterly.

Rolling window DCC-GJR-GARCH 2-state regime-switching
BEGE 0.4534 0.5163 0.4350
Rolling window 0.5301 0.2750
DCC-GJR-GARCH 0.3122



Figure 8 – Conditional Covariances between VAR(2) Shocks to Unemployment Gap and
Core Inflation. Data is quarterly.

Table 16 – Correlation of Conditional Covariances between Unemployment Gap and Core
Inflation Shocks from Different Models. Data is quarterly.

Rolling window DCC-GJR-GARCH 2-state regime-switching
BEGE 0.6454 0.4871 0.4788
Rolling window 0.7713 0.5173
DCC-GJR-GARCH 0.4312

The issue with the analysis in Figures 7-8 and Tables 15-16 is that it does not provide

standard errors. Indeed, it is not straightforward to come up with standard errors for

conditional moments. As a rough approximation, we generate bootstrap standard errors



for rolling window covariance estimates as follows. At each time point we use the same

window which we used to to compute the rolling covariance estimate for that time point

(10 quarters). Then we resample observations in that window 10,000 times and compute

the covariance for each replication. This gives us the distribution of covariances for each

point of time. We use this distribution to construct the 95% confidence interval of the

covariance values for that window.

Figure 9 plots the outcome illustrating that BEGE estimates generally fall inside

the 95% confidence interval for the 10 quarters rolling covariance estimates. For the

real GDP growth-aggregate inflation covariance the BEGE estimate is inside the 95%

confidence interval of the rolling estimate 77.24% of the time. For the unemployment

gap-core inflation covariance this number is 93.33%. While these numbers are below

95%, the difference is often economically non-significant. To see this, note from the

top panel of Figure 9 that the BEGE estimate falls outside the rolling covariance 95%

confidence interval for a long time, for example, during 1967-1971. During this period the

rolling covariance estimate is slightly negative while the BEGE estimate is essentially 0,

and although the confidence interval is statistically narrow, economically the difference

between the covariances generated by the two models is rather small. Other longer periods

where the BEGE estimate for the real GDP growth-aggregate inflation covariance falls

outside the rolling estimate 95% confidence interval are 1987-1989 and 1994-1996. Again

these are the outcomes of very narrow confidence intervals: economically, it is difficult to

see the differences between BEGE and rolling estimates from the top panel of Figure 9.



Figure 9 – Conditional BEGE Covariances and 10 Quarters Rolling Windows Covari-
ance Estimates with 95% Confidence Intervals. 10 quarters rolling windows covariance
estimates are obtained from 10,000 bootstrap runs at each time point. Data is quarterly.



Appendix D - Additional Results on Explanatory Power

of Macro Risks

Explanatory Power (Adjusted R2) of Macro Risk Factors over Ang-Piazzesi Factors for Yield Curve Factors. The sample
is quarterly from 1962Q4 to 2016Q4. Ang-Piazzesi factors are contemporaneous Ang and Piazzesi (2003) real and nominal
factors. Macro level factors are expected real GDP growth, expected aggregate and core inflation, and unemployment gap.
Financial factors are the level, slope, and curvature factors. The level factor is the average over 1-10 year yields. The slope
factor is the 10 year yield minus the 1 quarter yield. The curvature factor is 10 year yield plus 1 quarter yield minus 2 times
the 2 year yield. The increase in adjusted R2 significance, which is always tested over the specification in the previous row,
is Bauer and Hamilton (2017) small-sample adjusted significance using 5000 bootstrap runs. The asterisks, *, **, and ***,
correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Level Slope Curvature
Ang-Piazzesi (2003) factors 0.2555 0.3126 0.1229
Ang-Piazzesi (2003) factors + macro level factors 0.7122*** 0.5906*** 0.2918***
Ang-Piazzesi (2003) factors + macro level factors + macro risks 0.7974*** 0.6078 0.4086***

Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve Factors over Realizations of Macroeconomic
Time Series. The sample is quarterly from 1962Q4 to 2016Q4. Macro level factors are real GDP growth, aggregate and
core inflation, and unemployment gap. Financial factors are the level, slope, and curvature factors. The level factor is the
average over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter yield. The curvature factor is 10
year yield plus 1 quarter yield minus 2 times the 2 year yield. The increase in adjusted R2 significance, which is always
tested over the specification in the previous row, is Bauer and Hamilton (2017) adjusted significance using 5000 bootstrap
runs. The asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Realizations of Macroeconomic Level Factors and Macro Risks
Level Slope Curvature

Realization of macroeconomic level factors 0.4795 0.5277 0.2168
Realization of macroeconomic level factors + macro risks 0.7151*** 0.5675* 0.4038***

Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly Excess Bond Returns over Ang-Piazzesi (2003) and
Financial Factors. The sample is quarterly from 1962Q4 to 2016Q4. Ang-Piazzesi factors are lag 1-12 Ang and Piazzesi
(2003) real and nominal factors. Macro level factors are expected real GDP growth, expected aggregate and core inflation,
and unemployment gap. Financial factors are the level, slope, and curvature factors. The level factor is the average over
1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter yield. The curvature factor is the 10 year yield
plus the 1 quarter yield minus 2 times the 2 year yield. The increase in adjusted R2 significance, which is tested over
the specification in the previous row, is Bauer and Hamilton (2017) adjusted significance using 5000 bootstrap runs. The
asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Predictors 1 year bond 2 year bond 5 year bond 10 year bond
3 financial factors 0.0663 0.0653 0.0638 0.0795
3 financial factors+Ang-Piazzesi 0.1549** 0.1415** 0.1325* 0.1295
3 financial factors+Ang-Piazzesi+macro level factors 0.1734 0.1537 0.1432 0.1471
3 financial factors+Ang-Piazzesi+macro level factors+macro risks 0.1903 0.1870** 0.1710* 0.1622
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Appendix F - GARCH Models of Bond Returns

The GARCH model (Bollerslev, 1987) is:

rt+1 = µ+ σtεt+1,

εt+1 ∼ N (0, 1),

σ2
t = σ̄2 + ρ(σ2

t−1 − σ̄2) + φε2t .

The GJR-GARCH model (Glosten, Jagannathan, and Runkle, 1993) is:

rt+1 = µ+ σtεt+1,

εt+1 ∼ N (0, 1),

σ2
t = σ̄2 + ρ(σ2

t−1 − σ̄2) + φε2t1εt≥0 + φnε
2
t1εt<0,

where 1 is the indicator function.

Both models are estimated through maximum likelihood. Parameter standard errors

are computed as the square roots of the diagonal elements of the inverse information

matrix. Models are estimated using quarterly excess bond returns on 10 year zero-coupon

bonds from 1962Q4 to 2016Q4.

Parameter estimates are as follows (standard errors are in parentheses):

GARCH GJR-GARCH

µ 2.0397 1.6732

(1.2916) (1.3083)

σ̄2 164.9249 173.8736

(59.3819) (53.4069)

ρ 0.7241 0.7740

(0.0844) (0.1070)

φ 0.1808 0.07592

(0.0710) (0.0839)

φn 0.2217

(0.1021)

Akaike Information Criterion 1929.9761 1929.6805
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