Mental Health, Human Capital, and the Labor Market

Christopher J. Cronin, University of Notre Dame
Matthew P. Forsstrom, Wheaton College
Nicholas W. Papageorge, Johns Hopkins University

December 28, 2018
Motivation

Economic models, drawing on the Grossman model (1972), have been widely applied to understand how patients make medical decisions.
Motivation

Economic models, drawing on the Grossman model (1972), have been widely applied to understand how patients make medical decisions.

However, such models have rarely been used to understand the tradeoffs patients face when choosing among mental health treatments.

- Lack of data
- Empirical challenges associated with selection into treatment
- Mental illness seen as fundamentally different than physical illness
 - Only 4% of US adults experience serious mental illness (NIMH, 2016)
Motivation

Mental illness and treatment is highly prevalent.

- **1 in 5 US adults** experiences mental illness each year (NIMH, 2016)
- Among individuals over 12, **13%** took an antidepressant within past month (CDC).
 - A 65% increase since 2000.
- **$16 billion** spent annually on antidepressants.
Motivation

Mental illness and treatment is highly prevalent.

- **1 in 5 US adults** experiences mental illness each year (NIMH, 2016)
- Among individuals over 12, **13%** took an antidepressant within past month (CDC).
 - A 65% increase since 2000.
- **$16 billion** spent annually on antidepressants.

The medical literature suggests therapy is highly effective in treating depression and anxiety, but very few individuals use therapy relative to medication.
Objectives

We design a dynamic, structural model of mental health treatment decisions that incorporates labor market decisions and outcomes.
Objectives

We design a dynamic, structural model of mental health treatment decisions that incorporates labor market decisions and outcomes.

The estimated model quantifies the relative importance of a number of tradeoffs that individuals face when making treatment choices.
Objectives

We design a dynamic, structural model of mental health treatment decisions that incorporates labor market decisions and outcomes.

The estimated model quantifies the relative importance of a number of tradeoffs that individuals face when making treatment choices.

We use the model to evaluate counterfactual policy proposals. E.g., suppose we want to determine the most effective way to encourage therapy use:

- Reduce out-of-pocket costs of therapy
- Increase work flexibility or reduce the time costs of therapy
- Reduce patient uncertainty with respect to therapy match
Data Overview

- Medical Care Expenditure Panel Survey (MEPS), 1996-2012
Data Overview

- Medical Care Expenditure Panel Survey (MEPS), 1996-2012

- Each year a new, nationally representative cohort of individuals is added to MEPS.
 - Each cohort is interviewed five times over two years.
Data Overview

- Medical Care Expenditure Panel Survey (MEPS), 1996-2012

- Each year a new, nationally representative cohort of individuals is added to MEPS.
 - Each cohort is interviewed five times over two years.

- Highlights
 - Treatment decisions (e.g., consumption units, prices, dates)
 - Mental health (e.g., subjective and diagnoses)
 - Employment (e.g., hours, wages, occupation)
 - Demographics (e.g., education, age, sex, race, location, etc.)
 - Observe both uninsured and unemployed individuals.
Motivating Features of the Data

The following features in the data motivate the model:

1. The incidence of mental illness and treatment patterns vary over the lifecycle and by sex.
Lifecycle Mental Health and Treatment

<table>
<thead>
<tr>
<th>Age</th>
<th>Subjective MH</th>
<th>Depression/Anxiety</th>
<th>Medication</th>
<th>Psychotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-24</td>
<td>4.207</td>
<td>0.026</td>
<td>0.024</td>
<td>0.007</td>
</tr>
<tr>
<td>25-29</td>
<td>4.153</td>
<td>0.046</td>
<td>0.034</td>
<td>0.010</td>
</tr>
<tr>
<td>30-34</td>
<td>4.081</td>
<td>0.048</td>
<td>0.039</td>
<td>0.011</td>
</tr>
<tr>
<td>35-39</td>
<td>4.029</td>
<td>0.058</td>
<td>0.047</td>
<td>0.011</td>
</tr>
<tr>
<td>40-44</td>
<td>3.941</td>
<td>0.082</td>
<td>0.066</td>
<td>0.013</td>
</tr>
<tr>
<td>45-49</td>
<td>3.881</td>
<td>0.095</td>
<td>0.082</td>
<td>0.018</td>
</tr>
<tr>
<td>50-54</td>
<td>3.844</td>
<td>0.116</td>
<td>0.099</td>
<td>0.019</td>
</tr>
<tr>
<td>55-59</td>
<td>3.831</td>
<td>0.102</td>
<td>0.087</td>
<td>0.013</td>
</tr>
<tr>
<td>60-64</td>
<td>3.798</td>
<td>0.118</td>
<td>0.102</td>
<td>0.017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Subjective MH</th>
<th>Depression/Anxiety</th>
<th>Medication</th>
<th>Psychotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>3.987</td>
<td>0.058</td>
<td>0.051</td>
<td>0.010</td>
</tr>
<tr>
<td>Female</td>
<td>3.890</td>
<td>0.117</td>
<td>0.098</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Notes: An observation is an interview period; thus, sample statistics are calculated across all 376,234 observations in the estimation sample (98,056 individuals). “Subjective MH” is the respondent's subjective assessment of own mental health and ranges from 1 (poor) to 5 (excellent). Depression and anxiety indicators are based on the ICD-9 codes associated with reported diagnoses.
Motivating Features of the Data

The following features in the data motivate the model:

1. The incidence of mental illness and treatment patterns vary over the lifecycle.

2. Therapy is highly effective on average
 ... but few individuals use therapy relative to medication.
Mental Health Production Function

- Estimating health production functions is difficult because health behaviors, including medical treatment, are endogenous.
 - More pre-disposed to illness ⇒ more likely to choose treatment
 - Negative health shocks ⇒ more likely to choose treatment

- **Instruments** for therapy and medication:
 - State-level mental health parity laws
Mental Health Production Function

- Estimating health production functions is difficult because health behaviors, including medical treatment, are endogenous.
 - More pre-disposed to illness \Rightarrow more likely to choose treatment
 - Negative health shocks \Rightarrow more likely to choose treatment

- **Instruments** for therapy and medication:
 - State-level mental health parity laws
 - State-level nurse practitioner prescribing authority
Mental Health Production Function

- Estimating health production functions is difficult because health behaviors, including medical treatment, are endogenous.
 - More pre-disposed to illness ⇒ more likely to choose treatment
 - Negative health shocks ⇒ more likely to choose treatment

- **Instruments** for therapy and medication:
 - State-level mental health parity laws
 - State-level nurse practitioner prescribing authority
 - County-level psychiatrists per capita (AHRF)
Mental Health Production Function

- Estimating health production functions is difficult because health behaviors, including medical treatment, are endogenous.
 - More pre-disposed to illness ⇒ more likely to choose treatment
 - Negative health shocks ⇒ more likely to choose treatment

- **Instruments** for therapy and medication:
 - State-level mental health parity laws
 - State-level nurse practitioner prescribing authority
 - County-level psychiatrists per capita (AHRF)
 - County has Walmart post 3Q2006
Mental Health Production Function

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any RX</td>
<td>-0.36***</td>
<td>0.74**</td>
</tr>
<tr>
<td>Any Therapy</td>
<td>-0.41***</td>
<td>1.27*</td>
</tr>
<tr>
<td>Lagged Mental Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>2.06***</td>
<td>2.92***</td>
</tr>
<tr>
<td>Very good</td>
<td>1.57***</td>
<td>2.38***</td>
</tr>
<tr>
<td>Good</td>
<td>1.11***</td>
<td>1.83***</td>
</tr>
<tr>
<td>Fair</td>
<td>0.51***</td>
<td>0.89***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Rx</td>
<td>–</td>
<td>16.3***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Therapy</td>
<td>–</td>
<td>24.3***</td>
</tr>
<tr>
<td>Kleibergen-Paap rk LM Stat.</td>
<td>–</td>
<td>6.91*</td>
</tr>
<tr>
<td>(H₀: Underidentified)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen J Stat</td>
<td>–</td>
<td>2.92</td>
</tr>
<tr>
<td>(H₀: Inst. Exog.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>179,259</td>
<td></td>
</tr>
</tbody>
</table>

- Perceived MH takes values from 5 (excellent) to 1 (poor).
- **Controls**: county and time FE, age, gender, race, family structure, income, edu.
- **Sample**: MEPS 1996-2012, age ∈ {22, 64}, privately insured
- **Instruments**: Psych per cap × (Nonwhite, Prev. Married, Male), Walmart*1 Year > 2006
Mental Health Production Function

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any RX</td>
<td>-0.36***</td>
<td>0.74**</td>
</tr>
<tr>
<td>Any Therapy</td>
<td>-0.41***</td>
<td>1.27*</td>
</tr>
<tr>
<td>Lagged Mental Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>2.06***</td>
<td>2.92***</td>
</tr>
<tr>
<td>Very good</td>
<td>1.57***</td>
<td>2.38***</td>
</tr>
<tr>
<td>Good</td>
<td>1.11***</td>
<td>1.83***</td>
</tr>
<tr>
<td>Fair</td>
<td>0.51***</td>
<td>0.89***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Rx</td>
<td>–</td>
<td>16.3***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Therapy</td>
<td>–</td>
<td>24.3***</td>
</tr>
<tr>
<td>Kleibergen-Paap rk LM Stat. (H₀: Underidentified)</td>
<td>–</td>
<td>6.91*</td>
</tr>
<tr>
<td>Observations</td>
<td>179,259</td>
<td></td>
</tr>
</tbody>
</table>

- CBT more efficacious than ADs for patients with moderate depression (Gloaguen et al., 1998, Hollon et al., 2005).
- ADs no more effective in treating moderate depression than a placebo, while somewhat effective for seriously depressed patients (Kirsch et al., 2008; Cipriani et al., 2018).
- Baranov et al. (2017) use RCT to show that CBT has large, positive short- and long-run effects on depressed mothers in rural Pakistan.
Mental Health Production Function

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any RX</td>
<td>-0.36***</td>
<td>0.74**</td>
</tr>
<tr>
<td>Any Therapy</td>
<td>-0.41***</td>
<td>1.27*</td>
</tr>
<tr>
<td>Lagged Mental Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>2.06***</td>
<td>2.92***</td>
</tr>
<tr>
<td>Very good</td>
<td>1.57***</td>
<td>2.38***</td>
</tr>
<tr>
<td>Good</td>
<td>1.11***</td>
<td>1.83***</td>
</tr>
<tr>
<td>Fair</td>
<td>0.51***</td>
<td>0.89***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Rx</td>
<td></td>
<td>16.3***</td>
</tr>
<tr>
<td>FS Sanderson-Windmeijer F-stat, Therapy</td>
<td></td>
<td>24.3***</td>
</tr>
<tr>
<td>Kleibergen-Paap rk LM Stat.</td>
<td></td>
<td>6.91*</td>
</tr>
<tr>
<td>(H₀: Underidentified)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen J Stat</td>
<td>–</td>
<td>2.92</td>
</tr>
<tr>
<td>(H₀: Inst. Exog.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>179,259</td>
<td></td>
</tr>
</tbody>
</table>

Average individual is roughly 4 times more likely to use pills than therapy.
Motivating Features of the Data

The following features in the data motivate the model:

1. The incidence of mental illness and treatment patterns vary over the lifecycle.

2. Therapy is highly effective on average
 ... but few individuals use therapy relative to medication.

3. Many individuals attend therapy once or twice and then quit
 ... these sessions appear to be unproductive and make-up about 40% of treatment episodes.
Motivating Features of the Data

The following features in the data motivate the model:

1. The incidence of mental illness and treatment patterns vary over the lifecycle.

2. Therapy is highly effective on average
 ... but few individuals use therapy relative to medication.

3. Many individuals attend therapy once or twice and then quit
 ... these sessions appear to be unproductive and make-up about 40% of treatment episodes.

4. Mental health is positively associated with wages and employment.
 ... and conditional on mental health, therapy use is negatively associated with hours/employment.
Model Overview

A forward-looking individual makes sequential decisions with respect to employment and mental health treatment.
Model Overview

- A forward-looking individual makes sequential decisions with respect to employment and mental health treatment.

- A decision-period is defined as 6 months.

- Each period the individual receives flow utility that is a function of the choice, the individual's state vector, and consumption.

- Choices in each period impact the distribution of the state vector in the next period, and the individual solves the dynamic problem to maximize expected lifetime utility.
Model Timing

\[t \quad | \quad t + 1 \]

\[\text{Choices} \]
\[\{ Y, N \} \]
\[\text{Couch, } c = \{ Y, N \} \]
\[\text{Employment, } e = \begin{cases} \text{Full} \\ \text{Part} \\ \text{None} \end{cases} \]
\[\text{Mismatch, } m = \{ \text{Good, Bad} \} \]

\[\text{State Variables} \]
\[\text{Mental Health, } m_h \]
\[\text{Experience, } e_x \]

\[\text{Price Variables} \]
\[\text{Wages, } w_t \]
\[\text{Treatment Prices, } p_{t+1} \]
Model Timing

\[t \quad \quad t + 1 \]

Choices

\[Rx, r_t = \begin{cases} Y \\
N \end{cases} \]

\[Couch, c_t = \begin{cases} Y \\
N \end{cases} \]

\[Employment, e_t = \begin{cases} Full \\
Part \\
None \end{cases} \]
Model Timing

\[
\begin{align*}
\text{Choices} & \\
\text{Rx, } r_t &= \begin{cases}
Y & \text{Mismatch, } mm_t \\
N & \text{Good}
\end{cases} \\
\text{Couch, } c_t &= \begin{cases}
Y & \text{Bad} \\
N & \text{Good}
\end{cases} \\
\text{Employment, } e_t &= \begin{cases}
\text{Full} \\
\text{Part} \\
\text{None}
\end{cases}
\end{align*}
\]
Model Timing

\[t \]

Choices

\[\text{Rx, } r_t = \begin{cases}
Y \\
N
\end{cases} \quad \text{Mismatch, } m_{mt} \]

\[\text{Couch, } c_t = \begin{cases}
Y \\
N
\end{cases} \quad \text{Good} \]

\[\text{Employment, } e_t = \begin{cases}
\text{Full} \\
\text{Part} \\
\text{None}
\end{cases} \]

State Variables

- Mental Health, \(m_{ht+1} \)
- Experience, \(e_{pt+1} \)

Price Variables

- Wages, \(w_{t+1} \)
- Treatment Prices, \(p_{t+1} \)
Estimation

- The utility function, price equations, mismatch probability, and state transition functions are parameterized and the parameters are estimated via a nested maximum likelihood.
 - An inner algorithm solves the model via backwards recursion to calculate choice probabilities given a set of parameters.
 - An outer algorithm uses the solution to calculate the likelihood function and updates the parameter vector.
Estimation

- The utility function, price equations, mismatch probability, and state transition functions are parameterized and the parameters are estimated via a nested maximum likelihood.
 - An inner algorithm solves the model via backwards recursion to calculate choice probabilities given a set of parameters.
 - An outer algorithm uses the solution to calculate the likelihood function and updates the parameter vector.

- Allow for permanent unobserved heterogeneity via discrete factor method
 - Assume K types in population
 \[\epsilon_{a,it} = \mu_{a,i} + \eta_{a,it} \quad k = 1, \ldots, K \]
Estimation

- The utility function, price equations, mismatch probability, and state transition functions are parameterized and the parameters are estimated via a nested maximum likelihood.
 - An inner algorithm solves the model via backwards recursion to calculate choice probabilities given a set of parameters.
 - An outer algorithm uses the solution to calculate the likelihood function and updates the parameter vector.

- Allow for permanent unobserved heterogeneity via discrete factor method
 - Assume K types in population
 \[
 \epsilon_{a,it} = \mu_{a,i}^k + \eta_{a,it} \quad k = 1, \ldots, K
 \]
 - For fixed K, can estimate $\{\theta^k, \mu^k\}_{k=2}^K$ (Heckman and Singer, 1984), where
 - $\sum_{k=1}^K \theta^k = 1$ (i.e., θ^k is the probability of being type k)
 - $\mu^k = \{\mu^k_1, \mu^k_2, \ldots, \mu^k_{10}\}$
Model Fit

<table>
<thead>
<tr>
<th>Age</th>
<th>Subj.</th>
<th>MH</th>
<th>Rx</th>
<th>Therapy</th>
<th>Part Time</th>
<th>Full Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obs.</td>
<td>sim</td>
<td>obs.</td>
<td>sim</td>
<td>obs.</td>
<td>sim</td>
</tr>
<tr>
<td>25-29</td>
<td>4.150</td>
<td>4.134</td>
<td>0.037</td>
<td>0.045</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>30-34</td>
<td>4.073</td>
<td>4.070</td>
<td>0.054</td>
<td>0.056</td>
<td>0.015</td>
<td>0.021</td>
</tr>
<tr>
<td>35-39</td>
<td>4.035</td>
<td>4.026</td>
<td>0.061</td>
<td>0.062</td>
<td>0.019</td>
<td>0.022</td>
</tr>
<tr>
<td>40-44</td>
<td>3.946</td>
<td>3.946</td>
<td>0.080</td>
<td>0.082</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>45-49</td>
<td>3.889</td>
<td>3.883</td>
<td>0.090</td>
<td>0.097</td>
<td>0.026</td>
<td>0.027</td>
</tr>
<tr>
<td>50-54</td>
<td>3.806</td>
<td>3.836</td>
<td>0.110</td>
<td>0.113</td>
<td>0.025</td>
<td>0.027</td>
</tr>
</tbody>
</table>
Key Treatment Decision Tradeoffs

- Direct Benefits of Treatment

\[
\frac{\partial MH_{t+1}}{\partial c_t} > \frac{\partial MH_{t+1}}{\partial r_t} > 0
\]
Key Treatment Decision Tradeoffs

- Direct Benefits of Treatment

\[
\frac{\partial MH_{t+1}}{\partial c_t} > \frac{\partial MH_{t+1}}{\partial r_t} > 0
\]

- Indirect Benefits of Treatment: \(\uparrow MH_t \implies \)

 - \(\uparrow U_t \)
 - \(\downarrow \) disutility from work \(\implies \uparrow \) employment
 - \(\uparrow \) wages \(\implies \uparrow \) employment
 - \(\uparrow \) employment \(\implies \uparrow \) future wages

- Costs of treatment

 - 50% (10%) of therapy (Rx) is free.
 - Therapy is 1.6 times as expensive as Rx when price is non-zero.
 - Average person has a \(\sim \) 40% chance of therapy mismatch.
 - Both therapy and Rx consumption result in disutility.
 - Average FT employee experiences 8.9% (16.3%) more disutility from therapy (Rx) than an unemployed individual.
Key Treatment Decision Tradeoffs

- **Direct Benefits of Treatment**
 \[\frac{\partial MH_{t+1}}{\partial c_t} > \frac{\partial MH_{t+1}}{\partial r_t} > 0 \]

- **Indirect Benefits of Treatment:** \(\uparrow MH_t \implies \)
 - \(\uparrow U_t \)
 - \(\downarrow \) disutility from work \(\implies \uparrow \) employment
 - \(\uparrow \) wages \(\implies \uparrow \) employment
 - \(\uparrow \) employment \(\implies \uparrow \) future wages

- **Costs of treatment**
 - 50% (10%) of therapy (Rx) is free.
 - Therapy is 1.6 times as expensive as Rx when price is non-zero.
 - Average person has a \(\sim 40\% \) chance of therapy mismatch.
 - Both therapy and Rx consumption result in disutility.
 - Average FT employee experiences 8.9% (16.3%) more disutility from therapy (Rx) than an unemployed individual.
WTP to avoid therapy

How many dollars would an individual be willing to pay in every future period in order to avoid the period t flow utility cost from treatment?

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Therapy Inexp.</th>
<th>Therapy Exp.</th>
<th>Rx Inexp.</th>
<th>Rx Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>part-time</td>
<td>207.47</td>
<td>27.20</td>
<td>57.19</td>
<td>-14.01</td>
</tr>
<tr>
<td>full-time</td>
<td>242.06</td>
<td>43.61</td>
<td>69.57</td>
<td>-8.71</td>
</tr>
<tr>
<td>insurance type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public</td>
<td>171.73</td>
<td>12.14</td>
<td>46.86</td>
<td>-17.28</td>
</tr>
<tr>
<td>private</td>
<td>229.24</td>
<td>35.56</td>
<td>64.93</td>
<td>-11.46</td>
</tr>
</tbody>
</table>
Simple Counterfactuals

<table>
<thead>
<tr>
<th></th>
<th>Base Level</th>
<th>Sim 1 Level</th>
<th>% Δ</th>
<th>Base Level</th>
<th>Sim 2 Level</th>
<th>% Δ</th>
<th>Base Level</th>
<th>Sim 3 Level</th>
<th>% Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapy</td>
<td>0.023</td>
<td>0.038</td>
<td>65.2</td>
<td>0.070</td>
<td>0.044</td>
<td>91.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication</td>
<td>0.078</td>
<td>0.075</td>
<td>-3.8</td>
<td>0.061</td>
<td>0.077</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. MH</td>
<td>3.895</td>
<td>3.914</td>
<td>0.5</td>
<td>4.035</td>
<td>3.921</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. MH if initial MH< 4</td>
<td>3.609</td>
<td>3.650</td>
<td>1.1</td>
<td>3.892</td>
<td>3.662</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. MH if initial MH= 1</td>
<td>3.359</td>
<td>3.468</td>
<td>3.2</td>
<td>3.906</td>
<td>3.493</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. FT</td>
<td>0.592</td>
<td>0.594</td>
<td>0.3</td>
<td>0.610</td>
<td>0.597</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. FT if initial MH< 4</td>
<td>0.546</td>
<td>0.549</td>
<td>0.5</td>
<td>0.582</td>
<td>0.554</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. FT if initial MH= 1</td>
<td>0.507</td>
<td>0.515</td>
<td>1.6</td>
<td>0.579</td>
<td>0.523</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Sim 1: Remove monetary cost of therapy
- Sim 2: Remove possibility of mismatch
- Sim 3: Remove employment cost of therapy
Conclusion

- Designing and estimating a dynamic, stochastic model of mental health treatment and labor supply decisions.

- Testing multiple policies that alter the costs associated with therapy.

Open Questions:

- Are there policies that “pay for themselves”?
- How does reduction of treatment costs at different points in the life-cycle impact outcomes?
- How do treatment cost reductions impact outcomes for men and women differently?