Test Design under Falsification

Eduardo Perez-Richet (Sciences Po) Vasiliki Skreta (UCL, UT Austin)
test and decisions

- **standardized tests**: teachers – testers – recruiters
- **drugs**: pharmaceuticals – FDA – (consumers)
- **emissions**: car manufacturers – regulator (EPA) – (consumers)
- **asset rating**: asset issuers – rating agencies – investors
- **stress test**: banks – Fed – (investors)

KEY: tests seek to uncover **state**: student’s ability; drugs potency/side effects; car’s pollution; bank’s systemic risk

decisions often by (several) third parties (‘the market’), non-coordinated, non-contractible

manipulations/ falsification /cheating, sadly, common
On January 11 2017: “VW agreed to pay a criminal fine of $4.3bn for selling around 500,000 cars fitted with so-called “defeat devices” that are designed to reduce emissions of nitrogen oxide (NOx) under test conditions.”

On January 12 2017: US Environmental Protection Agency (EPA) accused Fiat Chrysler Automobile of using illegal software in conjunction with the engines which, allowed thousand of vehicles to exceed legal limits of toxic emissions.

our goal: test design in the presence of cheating
baseline setup

Sender: endowed with 1 or continuum of items

Sender wants each item to be approved (payoff 1-0)
- each item is “good” or “bad” $\omega \in \{G, B\}$
- distributed i.i.d. with $\Pr(\omega = G) = \mu_0$

Receiver(s) preferences (identical for all receivers)
- reject $\rightarrow 0$
- approve G $\rightarrow g > 0$
- approve B $\rightarrow -b < 0$

Receiver approves i iff $\Pr(\omega = G) \geq \hat{\mu}$, where $\hat{\mu} \equiv \frac{b}{g+b}$
- assume: $\mu_0 < \hat{\mu}$
there is a test

Sender: chooses falsification rates $p_B; p_G$:

state(s) realized

items tested, results revealed

Receiver(s): based on results, decide whether to approve/reject each item

test—modeled as Blackwell Experiment: $H : \Omega \rightarrow \Delta(S)$

maps each state to a distribution over signals: H_B, H_G

\[\Omega = \{B, G\}; \mu_s = Pr(\omega = G|s); \] normalization: signals = beliefs; $S = [0, 1]$

falsification technology state B generates signals from H_G—vice versa

falsification costless or costly

install devices that artificially lower emission levels

teaching the students to the test

inaccurate reporting of asset characteristics
fully informative test receiver-optimal without cheating

PAYOFFS

Receiver: \emptyset $\mu_0 g$

Sender: \emptyset μ_0
sender-optimal a.k.a. Kamenica-Gentzkow test

\[\hat{\mu} = \frac{\mu_0 (1 - \hat{\mu})}{\mu (1 - \mu_0)} \]

\[\mu \rightarrow \hat{\mu} \rightarrow 1 \]

\[1 - \mu \]

\[\mu_0 \]

PAYOFFS

<table>
<thead>
<tr>
<th>Receiver:</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
</tr>
<tr>
<td>FI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sender:</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
</tr>
<tr>
<td>FL</td>
</tr>
</tbody>
</table>

E. Perez-Richet and V. Skreta

Test Design under Falsification
Falsification endogenously costly “devalues” signals

- A signal μ has literal meaning if $p_B = 0, p_G = 0$
- Otherwise, μ is “naive” and associated belief $\tilde{\mu}$ satisfies mapping:

$$\mu = \mu_0 \frac{(1 - \mu_0)\tilde{\mu} - \mu_0(1 - \tilde{\mu})p_G - (1 - \mu_0)\tilde{\mu}p_B}{\mu_0(1 - \mu_0) - \mu_0(1 - \tilde{\mu})p_G - (1 - \mu_0)\tilde{\mu}p_B}$$

 - If $p_B + p_G \leq 1$ higher μ, associated with higher actual belief $\tilde{\mu}$
 - If $p_B + p_G > 1$ higher μ, associated with lower actual belief $\tilde{\mu}$
- One can show that $p_G = 0$
- Approval threshold: $\hat{\mu}(p_B)$: signal with belief $\tilde{\mu} = \hat{\mu}$
 - Choosing $p_B = \text{choosing threshold } \hat{\mu}(p_B)$
- In eqm p_B correctly anticipated—what about deviations?

Plan

1. Perfect/partial observability of p_B
2. Unobservable p_B
test + falsification: fully informative test

\[\begin{align*}
G & \quad \mu_0 \\
B & \quad 1 - \mu_0 \\
\hat{G} & \quad \frac{\mu_0 (1 - \hat{\mu})}{\hat{\mu} (1 - \mu_0)} \\
\hat{B} & \quad \frac{\hat{\mu} - \mu_0}{\hat{\mu} (1 - \mu_0)} \\
\hat{\mu} & \quad \mu_0 (1 - \hat{\mu}) \\
\hat{\mu} & \quad (1 - \mu_0) \\
\end{align*} \]

PAYOFFS

<table>
<thead>
<tr>
<th>Receiver:</th>
<th>Sender:</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
<td>KG</td>
</tr>
<tr>
<td>FI</td>
<td>FI</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Test Design under Falsification

E. Perez-Richet and V. Skreta
first observation: 2-signal tests

poor performance of two-signal test

any two signal test that would lead to positive probability of approval in the absence of cheating will be falsified and yield 0 to receiver

How about adding one extra noisy signal to FI test?
test + falsification: a 3-signal test

PAYOFFS

Receiver:

Sender:

\[f \circ \text{Fl} \]

\[\Phi \]

\[\text{Fl} \]

\[\text{KG} \]

\[f \circ \text{Fl} \]
test + falsification: a 3-signal test

PAYOFFS

Receiver:

Sender:

E. Perez-Richet and V. Skreta

Test Design under Falsification
second result (observation)

adding an extra (noisy) signal helps!

the 3-signal test contains a simple practical insight: introducing a “noisy” (pooling) grade that is associated with approval in the absence of falsification, can make falsification so costly that it prevents it, rendering this noisy test much better than the (manipulated) fully informative test.
second result (observation)

adding an extra (noisy) signal helps!

the 3-signal test contains a simple practical insight: introducing a “noisy” (pooling) grade that is associated with approval in the absence of falsification, can make falsification so costly that it prevents it, rendering this noisy test much better than the (manipulated) fully informative test

next

• is the three signal test optimal?
• how many signals do we need?
• is optimal test falsification-proof?
• how can we tractably find it?
receiver-optimal test with cheating

results in a nutshell

- establish **falsification proofness**—like “revelation principle”
 - intuition: test + optimal cheating = new test → offer new test
 - no incentive to cheat in new test—otherwise cheating not optimal in old test
 - argument can fail with certain costs/more than two states

- formulate tractable program derive optimum

- optimal test is rich: signals ≠ recommendations
 - one failing signal
 - a **continuum** of passing signals
 - **clustering** of signals above the approval threshold
 - good type only generates “approve” signals
 - bad type may generate both “approve” or “reject” signals
 - payoffs on Pareto Frontier
 - makes sender **indifferent across all falsification levels** (thresholds)
optimal test

(a) Pseudo CDFs

(b) Densities

PAYOFFS

Receiver:
kos

Sender:
kos

E. Perez-Richet and V. Skreta

Test Design under Falsification
trade-off and clarifications

- Receiver(s) decide after results are in (there is no ex-ante commitment to a signal contingent approval policy)

- Sender is akin to a “constrained” persuader–cannot choose test, but can costlessly falsify state

- **trade-off** falsification can yield “better” test results; more approvals
 - but it can devalue test results: Receiver interprets test results differently

summary

if cheating is fully observable (or endogenously and partially observable) receiver-optimal test enables information provision, even if cheating is cost-less
what about unobservable deviations?

suppose that deviations are unobservable/ no inferences are possible

- if cheating is costless, any test that generates higher probability of approval for G, **fully** falsified

- only possible equilibrium approve G and B equally often—but given prior best to always reject

- when falsification cost is ZERO, not possible to generate any approvals in equilibrium

- explicit costs here help!
optimal test: costly unobservable deviations

optimal test has a two signals: pass/fail, is falsification-proof

- Sender, Receiver strictly worse-off, Eq payoffs not Pareto Optimal
optimal test in convex function representation
unobservable deviations: deriving optimal test baseline

- falsification-proofness (FP) holds for two-states
- formulate a constrained information design problem subject to FP; \(\lambda_{BG} \) multiplier on B not to falsify as G; analogous \(\lambda_{GB} \)
- observation \(\lambda_{GB} = 0 \); and algebra yield:

\[
\inf_{\lambda_{BG} \geq 0} \max_{H \in \Delta([0,1])} \sum_{\mu \in \text{supp}(H)} H(\mu) \left\{ (\mu - \hat{\mu})^+ - \lambda_{BG} \mathbb{1}_{\mu \geq \hat{\mu}} \frac{\mu - \mu_0}{\mu_0(1 - \mu_0)} \right\} + \lambda_{BG} c_{BG}
\]

- solution:
 - if \(c_{BG} < 1 \) then \(\lambda_{BG} = \mu_0(1 - \hat{\mu}) \); constraint binds \(H \) splits the mass between 1 and \(\mu = \frac{\mu_0 (1 - c_{BG})}{1 - \mu_0 c_{BG}} \)
 - if \(c_{BG} \geq 1 \), \(\lambda_{BG} = 0 \), constraint is not binding and full information feasible thus optimal
relative performance: payoffs

Sender

0 1

0

Receiver

0 1

KG

\(f \circ H^* \)

\(f \circ H^U \)

\(f \circ 3S \)

\(\emptyset \)
unobservable deviations: deriving optimal test

Designer-Receiver conflict

designer threshold $\tilde{\mu} \neq \hat{\mu}$ agent’s payoff function is unchanged principal’s payoff function becomes $(\mu - \hat{\mu}) \mathbb{1}_{\mu \geq \hat{\mu}}$ still get $\lambda_{GB} = 0$

$$\inf_{\lambda_{BG} \geq 0} \max_{H \in \Delta([0,1])} \sum_{\mu \in (\tau)} \tau(\mu) \left\{ (\mu - \tilde{\mu}) \mathbb{1}_{\mu \geq \hat{\mu}} - \lambda_{BG} \mathbb{1}_{\mu \geq \hat{\mu}} \frac{\mu - \mu_0}{\mu_0 (1 - \mu_0)} \right\} + \lambda_{BG} c_{BG}$$

note that:

1. $\tilde{v}(\mu, \lambda_{BG}) = 0$ on $[0, \hat{\mu})$
2. $\tilde{v}(\hat{\mu}, \lambda_{BG}) > 0 \iff \lambda_{BG} < \lambda(\hat{\mu})$
3. $\tilde{v}(1, \lambda_{BG}) > 0 \iff \lambda_{BG} < \lambda(1)$
4. $\lambda(\hat{\mu}) < \lambda(1) \iff \mu_0 < \tilde{\mu}$

where:

$$\lambda(\hat{\mu}) = \frac{(\hat{\mu} - \tilde{\mu}) \mu_0 (1 - \mu_0)}{\tilde{\mu} - \mu_0}, \quad \lambda(1) = \mu_0 (1 - \tilde{\mu})$$
solution: two cases, and assume $c_{BG} < 1$

case I: $\tilde{\mu} > \mu_0$
$\lambda_{BG} = \lambda(1)$ same solution as in the case with no misalignment

case II: $\tilde{\mu} < \mu_0$ then $\lambda(\tilde{\mu}) > \lambda(1) > \lambda^*$ where λ^* equates slope line connecting $(0,0)$ with $(\hat{\mu}, \tilde{v}(\hat{\mu} \lambda_{BG}))$ with that connecting $(0,0)$ with $(1, \tilde{v}(1, \lambda_{BG}))$

value function increasing in λ_{BG} if $c_{BG} > \frac{\hat{\mu}-\mu_0}{\hat{\mu}(1-\mu_0)}$, decreasing otherwise

1. if $c_{BG} < \frac{\hat{\mu}-\mu_0}{\hat{\mu}(1-\mu_0)}$, the solution is the same as in the case of no misalignment

2. $1 > c_{BG} > \frac{\hat{\mu}-\mu_0}{\hat{\mu}(1-\mu_0)}$, minimizing Lagrange multiplier is λ^*, and the optimal splitting (that concavifies the $\tilde{v}(\mu, \lambda_{BG})$ and satisfies constraint with eq) is a split between 0 and

$$\bar{\mu} = \frac{\mu_0}{\mu_0 + (1 - \mu_0)(1 - c_{BG})}$$

3. $1 \leq c_{BG}$ full info feasible and optimal

the value λ^* pins down the correct posterior leading to “approve”
literature

information design / Bayesian dersuasion:

costly state falsification:

- mechanism design: Lacker and Weinberg (1989), Landier and Plantin (2016)

- testing: Cunningham and Moreno de Barreda (2015)
thank you!