A Life Cycle Model with Unemployment Traps

Fabio Bagliano ¹ Carolina Fugazza ¹ Giovanna Nicodano ²

¹University of Torino and Collegio Carlo Alberto -CeRP

²University of Torino, Collegio Carlo Alberto -CeRP and Netspar

AFA, Atlanta 2018

- Stock market disasters display life-cycle effects (Fagereng and Guiso, 2017).
- We study Personal Disaster Risk (PDR): rare but large reduction in the permanent component of individual earnings
- We calibrate the model to unemployment, rather than bankruptcy, since most workers face a small risk of falling in an unemployment trap (UT)
 - Unemployment by duration (2014)

>27 weeks	>52 weeks	>99 weeks
33.5%	22%	11%

- Only 11% of the long-term unemployed finds a job a year later; exit from labor force is likelier (Krueger et al., 2014)
- The risk is small, but uniform across education groups (Katz et al., 2016)
- Earnings losses are persistent (Jacobson et al., 2005) and increase with unemployment duration (Keane and Wolpin, 1997; Arulampalam et al., 1993)

- No unemployment risk (Cocco et al., 2005): Permanent and transitory earnings shocks
- Unemployment risk (Bremus and Kuzin, 2014): Three-state Markov chain
 - A young, employed agent either remains employed or becomes unemployed;
 - Next, if she stays unemployed, her earnings fall;
 -
- Unemployment Trap: % loss in the permanent component of earnings.
 - Deterministic: set to 0.6, including losses due to exit from the labor force.
 - Stochastic: expected loss at 0.2 delivers same results.
 - Beta distribution, with shape parameter putting most probability mass on low realizations of this loss
 - Transition matrix conservatively matches unemployment by duration

A rare personal disaster risk

- increases optimal savings and cautiousness when young: grandma's advice!
- flattens the optimal investment profile, due to higher uncertainty when young
- reduces the average skewness of consumption growth
- shrinks heterogeneity in optimal portfolios despite unequal career histories
- amplifies welfare losses of sub-optimal default investment rules (3-10 times as large), due to excess (insufficient) consumption when young (old)
- dampens sensitivity to (both inter-temporal and across assets) correlation due to skewness-inducing disaster

• Normative analysis of the economics behind negative skewness in earnings

- relevant in the data (Guvenen, Karahan, Ozkan and Song, 2015; Catherine, 2018; Galvez, 2017; Shen, 2018).
- Average implied skewness of consumption growth becomes negative, without reinforcing change in the labor income process
 - this improves asset pricing in Constantinides and Ghosh, 2014, and Schmidt, 2016
- Portfolio choice with non-Gaussian returns to human capital
 - instead of non-Gaussian financial returns (Guidolin and Timmerman, 2008)
- We add the rare personal disaster dimension to the following insights:
 - Resolution of uncertainty over working years
 - Bagliano et al., (2014); Hubener, Maurer and Mitchell (2016); Chang, Hong and Karabarbounis (2017)
 - Precautionary savings and employment insurance (Low, Meghir and Pistaferri, 2010)

• Finite horizon with uncertain lifespan

$$\frac{C_{it_0}^{1-\gamma}}{1-\gamma} + E_{t_0} \left[\sum_{j=1}^{T} \beta^j \left(\prod_{k=0}^{j-2} p_{t_0+k} \right) \left(p_{t_0+j-1} \frac{C_{it_0+j-1}^{1-\gamma}}{1-\gamma} + (1-p_{t_0+j}) b \frac{(X_{it_0+j}/b)^{1-\gamma}}{1-\gamma} \right) \right]$$

- C_{it} level of consumption at time t; X_{it} wealth the investor leaves as bequest
- $b \ge 0$ strength of the bequest motive; $\beta < 1$ discount factor; γ CRRA.

Investment opportunities, with short-sales and borrowing constraints: Portfolio return:

$$R_{it}^{P} = \alpha_{it}^{s} R_{t}^{s} + (1 - \alpha_{it}^{s}) R^{f}$$

$$\tag{1}$$

• R_t^f one-period risk-free return; α_{it}^s share invested in stocks; stock return:

$$\tilde{R}_{t}^{s} = R^{f} + \mu^{s} + \nu_{t}^{s}; \nu_{t}^{s} \sim N\left(0, \sigma_{s}^{2}\right)$$

Cash on hand

$$X_{it+1} = (X_{it} - C_{it})R_{it}^{P} + Y_{it+1}$$
(2)

Labor and Retirement Income

Labor income process

$$Y_{it} = H_{it}N_{it} \qquad t_0 \le t \le t_0 + K \tag{3}$$

- $H_{it} = F(t, \mathbf{Z}_{it}) P_{it}$ permanent income component
- $F(t, \mathbf{Z}_{it}) \equiv F_{it}$ deterministic trend component
- $\log(N_{it})$ is $N(0, \sigma_{\varepsilon}^2)$
- Stochastic permanent component:

$$\log P_{it} = \log P_{it-1} + \omega_{it} \tag{4}$$

- ω_{it} is $N(0, \sigma_{\omega}^2)$
- Retirement income

$$Y_{it} = \lambda F\left(t, \mathbf{Z}_{it_{0+l}}\right) P_{it_{0+l}} \qquad t_0 + K < t \le T \qquad (5)$$

- $t_0 + I$ last working period ; $t_0 + K$ retirement age
- λ of the permanent component of labor income in the last working year

Labor Market Dynamics and Income

• Transition matrix

$$\begin{bmatrix} \pi_{e,e} & 1 - \pi_{e,e} & 0 \\ \pi_{u_1,e} & 0 & 1 - \pi_{u_1,e} \\ \pi_{u_2,e} & 0 & 1 - \pi_{u_2,e} \end{bmatrix}$$

• Labor income depends on past working history, $0 \le \Psi_j \le 1$:

$$H_{it} = \begin{cases} H_{it} & \text{if } s_t = e \text{ and } s_{t-1} = e \\ (1 - \Psi_1)H_{it-1} & \text{if } s_t = e \text{ and } s_{t-1} = u_1 \\ (1 - \Psi_2)H_{it-1} & \text{if } s_t = e \text{ and } s_{t-1} = u_2 \end{cases} \qquad t = t_0, \dots, t_0 + K \quad (6)$$

- Cocco et al: $\pi_{e,e}=1$; Bremus et al: $\Psi_j=0$
- Unemployment benefit

$$Y_{it} = \begin{cases} \xi_1 H_{it-1} & \text{if } s_t = u_1 \text{ and } s_{t-1} = e \\ 0 & \text{if } s_t = u_2 \text{ and } s_{t-1} = u_1 \text{ and } s_{t-2} = e \end{cases} \qquad t = t_0, \dots, t_0 + \mathcal{K} \ (7)$$

Maximization problem

individual problem value function

Value function in each possible labor market state

maximization problem

Calibration: U.S. Unemployment and Benefits

• Transition matrix between labor market states implies conservative short (4.7%) and long-term (0.8%) unconditional probability of being unemployed:

$$\begin{bmatrix} \pi_{e,e} & 1 - \pi_{e,e} & 0 \\ \pi_{u_1,e} & 0 & 1 - \pi_{u_1,e} \\ \pi_{u_2,e} & 0 & 1 - \pi_{u_2,e} \end{bmatrix} = \begin{bmatrix} 0.96 & 0.04 & 0 \\ 0.85 & 0 & 0.15 \\ 0.85 & 0 & 0.15 \end{bmatrix}$$

- \bullet Unemployment benefits: $\xi_1=0.3$ Average before 26 weeks. After: $\xi_2=0$
- $\psi_1 = 0$; $\psi_2 = 60\%$
 - Persistent earning losses: 43-66% (Jacboson et al., 2005)
 - After 24 months: 40 % probability of finding a job; and 88%of exiting the labor force (Katz et al., 2016)
- Stochastic earnings loss (expected value 10%-20%, st.dev 20%-30%)

Calibration

Table 1. Calibration parameters

Working life (max)	20 -65
Retirement (max)	65 -100
Discount factor (β)	0.96
Risk aversion (γ)	5
Replacement ratio (λ)	0.68
Variance of permanent shocks to labour income (σ^2_{ϵ})	0.0106
Variance of transitory shocks to labour income (σ^2_n)	0.0738
Riskless rate	2%
Excess returns on stocks (μ^{ϵ})	4%
Variance of stock returns innovations (σ_s^2)	0.025
Stock ret./permanent lab. Income shock correlation (ρ_{sy})	0

	No unemployment risk	Unemployment risk with no traps	Unemployment traps
Unemployment benefit			
Short term unemployed ($\xi_{\rm l})$	-	0.3	0.3
Long term unemployed (ξ_2)	-	0	0
Human capital erosion			
Short term unemployed (Ψ_1)	2	-	0
Long term unemployed (Ψ_2)	2	-	0.6

Optimal stock shares - all models

Optimal Life Cycle Profiles

Average Skewness of Consumption Growth

Stochastic loss due to long-term unemployment

- age-dependent unemployment risk
 - $\bullet\,$ In 2015, U.S. overall unemployment rate 5.7%, LTU 1.7%
 - 20% 16-24 years old
 - 35% 25-55 years old
 - 41% over 55 years old
- Correlation between earnings and stock returns
- Epstein Zin preferences

Age-dependent long-term unemployment

Correlation between earnings and stock returns

Default Investment Rules

Optimal and suboptimal life-cycle portfolio share profiles

Welfare Analysis of Default Investment Rules

a. Distribution of welfare gains (% points)

	Age Rule	TDF rule	Unaware of Traps
mean	3.3	12.0	642,5
median	3.3	11.8	215.8
5th	1,5	8.0	-40.5
95th	5.4	17.0	573.6

b. Welfare gains conditional on income at age 64 (% points)

	Age Rule	TDF rule	Unaware of Traps
Below 5 th percentile	1.6	9.5	1024.0
Above 95 th percentile	2.4	12.3	218.2

Optimal and Default Consumption Profiles

Optimal and Default Wealth Profiles

- We show the life-cycle implications of a rare personal disaster risk during working life (uninsured bankruptcy or unemployment)
 - inducing skewness in labor income and consumption
 - robustly changings the optimal savings/ risk-taking profile
- Calibrations to US long-term unemployment show that common Default Investment Rules may generate large welfare losses.

LTU Share and Education, 2000-13

Source: Katz et al., 2016

Maximization Problem

Individual's optimal program

$$\max_{\{C_{ik}\}_{t_{0}}^{T-1},\{\alpha_{it}^{s}\}_{t_{0}}^{T-1}} \left(\frac{C_{it_{0}}^{1-\gamma}}{1-\gamma} + E_{t_{0}} \left[\sum_{j=1}^{T} \beta^{j} \left(\prod_{k=0}^{j-2} p_{t_{0}+k} \right) \left(p_{t_{0}+j-1} \frac{C_{it_{0}+j}^{1-\gamma}}{1-\gamma} + \left(1 - p_{t_{0}+j-1} \right) b \frac{(X_{it_{0}+j}/b)^{1-\gamma}}{1-\gamma} \right) \right] \right)$$
(8)

s.t.
$$X_{it+1} = (X_{it} - C_{it}) \left(\alpha_{it}^s R_t^s + (1 - \alpha_{it}^s) R^f \right) + Y_{it+1}$$
 (9)

Dynamic Programming Form

$$V_{it}(X_{it}, P_{it}, s_{it}) = \max_{\{C_{it}\}_{t_0}^{T-1}, \{\alpha_{it}^s\}_{t_0}^{T-1}} \left(\frac{C_{it}^{1-\gamma}}{1-\gamma} + \beta E_t \left[p_t V_{it+1}(X_{it+1}, P_{it+1}, s_{it+1}) + (1-p_t) b \frac{(X_{it+1}/b)^{1-\gamma}}{1-\gamma} \right] \right)$$

$$V_{it}(X_{it}, P_{it}, s_{it}) = \max_{\{C_{it}\}_{t_0}^{T-1}, \{\alpha_{it}^s\}_{t_0}^{T-1}} \left(\frac{C_{it}^{1-\gamma}}{1-\gamma} + \beta \left[p_t \sum_{s_{it+1}=e_1, u_2} \pi(s_{it+1}|s_{it})\right] \\ \widetilde{E_t V}_{it+1}(X_{it+1}, P_{it+1}, s_{it+1}) + (1-p_t) b \sum_{s_{it+1}=e_1, u_2} \pi(s_{it+1}|s_{it}) \frac{(X_{it+1}/b)^{1-\gamma}}{1-\gamma}\right]$$

value function maximization problem

Value function in each possible labor market state

Value function in each possible labor market state maximization problem