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The Panel Data Dynamics of Income and Consumption

The aim of this research is to examine the transmission of income
“shocks” through to consumption:

> The ‘larger’ objective is to model the links between earnings, income,
and consumption inequality - the distributional dynamics of inequality

- early papers: Deaton and Paxson (1994), Blundell and Preston (1998),
Krueger and Perri (2005), Blundell, Pistaferri and Preston (BPP, 2008),..

> Here the focus is on nonlinear persistence and partial insurance:
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1. We consider alternative ways of modelling persistence. Explore the
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nonlinear latent/hidden quantile Markov model, with extensions for
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The Panel Data Dynamics of Income and Consumption

The aim of this research is to examine the transmission of income
“shocks” through to consumption:

> The ‘larger’ objective is to model the links between earnings, income,
and consumption inequality - the distributional dynamics of inequality

- early papers: Deaton and Paxson (1994), Blundell and Preston (1998),
Krueger and Perri (2005), Blundell, Pistaferri and Preston (BPP, 2008),..

> Here the focus is on nonlinear persistence and partial insurance:

1. We consider alternative ways of modelling persistence. Explore the
nonlinear nature of income shocks with the implications for the insurance
of income shocks for consumption,

2. We examine improved sequential computational methods for the
nonlinear latent/hidden quantile Markov model, with extensions for
heterogeneity and selection at the extensive margin.

∗ Exploiting new US Household Panel data and Norwegian Register data.
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New data on consumption, assets and income

I. Newly designed panel surveys: e.g. PSID 1999 - 2015.

Collection of consumption and assets had a major revision in 1999

Around 90% of consumption from 2005. We focus on this series.
Food at home, food away from home, gasoline, health, transportation,
utilities, clothing, leisure activities, etc - choice of purchase frequency.
Earnings and hours for all earners; Assets/debts measured in each wave.

for background see Blundell, Pistaferri & Saporta-Eksten (BPS,
2016), and Arellano, Blundell and Bonhomme (ABB, 2017).

II. Administrative linked data: e.g. Norwegian population register.

Linked registry databases with unique individual identifiers.

Containing records for every Norwegian from 1999 to 2014.
Detailed socioeconomic information (market income, cash transfers).
Recent links to financial transactions data on real estate and assets;
and to hours of work⇒ new consumption measurements.

for background see Blundell, Graber & Mogstad (BGM, 2015) and
Eika, Mogstad and Vestad (2018).
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In the prototypical “canonical” panel data model, (log) family
(earned) income yit is:

yit = ηit + εit , i = 1, ..., N, t = 1, ..., T .

where yit is net of a systematic component, ηit is a random walk with
innovation vit ,

ηit = ηit−1 + vit , i = 1, ..., N, t = 1, ..., T .

and εit is a transitory shock.
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innovation vit ,
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and εit is a transitory shock.

Consumption growth is then related to the two latent income shocks:

4cit = φtvit + ψtεit + νit , i = 1, ..., N, t = 1, ..., T .

where cit is log total consumption net of a systematic component,
> φt measures the transmission of persistence shocks vit , and
> ψt measures the transmission of transitory shocks;
- the νit are taste shocks.
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In the prototypical “canonical” panel data model, (log) family
(earned) income yit is:

yit = ηit + εit , i = 1, ..., N, t = 1, ..., T .

where yit is net of a systematic component, ηit is a random walk with
innovation vit ,

ηit = ηit−1 + vit , i = 1, ..., N, t = 1, ..., T .

and εit is a transitory shock.

Consumption growth is then related to the two latent income shocks:

4cit = φtvit + ψtεit + νit , i = 1, ..., N, t = 1, ..., T .

where cit is log total consumption net of a systematic component,
> φt measures the transmission of persistence shocks vit , and
> ψt measures the transmission of transitory shocks;
- the νit are taste shocks.

⇒ φt and ψt are transmission or “partial insurance” parameters that
depend on age t. Note that Blundell, Low & Preston (2014) extend to
ARMA processes and to allow partial insurance to depend on assets.
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Assessing the simple partial insurance framework

• This “standard ” partial insurance framework implies a set of extended
covariance restrictions for panel data on consumption and income,

B allowing the transmission (insurance) parameters (φ and ψ), and
variances (σ2

v and σ2
ε ) to depend on age and education is key, e.g. results

for PSID US panel data and Norwegian population register, in extra slides.

⇒ can show (over-)identification and efficient estimation via GMM, see
Blundell, Preston and Pistaferri (AER, 2008).
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Assessing the simple partial insurance framework

• This “standard ” partial insurance framework implies a set of extended
covariance restrictions for panel data on consumption and income,

B allowing the transmission (insurance) parameters (φ and ψ), and
variances (σ2

v and σ2
ε ) to depend on age and education is key, e.g. results

for PSID US panel data and Norwegian population register, in extra slides.

⇒ can show (over-)identification and efficient estimation via GMM, see
Blundell, Preston and Pistaferri (AER, 2008).

B However, linearity rules out the nonlinear transmission of shocks.

• The aim in recent work, e.g. ABB (Ecta, 2017), is to develop a
framework that allows for:

⇒ “unusual” shocks to wipe out the memory of past shocks, and

⇒ “future persistence” of a current shock to depend on the future shocks

• Introduce an alternative approach to modeling persistence :
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Nonlinear persistence

• Using the permanent/transitory model, consider a cohort of households,
i = 1, ..., N, of age t. Let yit denote log-labor income, net of age dummies

yit = ηit + εit , i = 1, ..., N, t = 1, ..., T .

B ηit follows a general first-order Markov process (can be generalised).
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B ηit follows a general first-order Markov process (can be generalised).

• Denoting the τth conditional quantile of ηit given ηi ,t−1 as
Qt(ηi ,t−1, τ), we specify

ηit = Qt(ηi ,t−1, uit), where (uit |ηi ,t−1, ηi ,t−2, ...) ∼ Uniform (0, 1).

B εit zero mean, independent over time. Qt and Fεt are age (t) specific.
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ηit = Qt(ηi ,t−1, uit), where (uit |ηi ,t−1, ηi ,t−2, ...) ∼ Uniform (0, 1).

B εit zero mean, independent over time. Qt and Fεt are age (t) specific.

Consider the following measure of persistence:

ρt(ηi ,t−1, τ) =
∂Qt(ηi ,t−1, τ)

∂η
.

⇒ ρt(ηi ,t−1, τ) measures the persistence of ηi ,t−1 when, at age t, it is hit
by a shock uit that has rank τ. Measures the persistence of histories .
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Nonlinear persistence

• Using the permanent/transitory model, consider a cohort of households,
i = 1, ..., N, of age t. Let yit denote log-labor income, net of age dummies

yit = ηit + εit , i = 1, ..., N, t = 1, ..., T .

B ηit follows a general first-order Markov process (can be generalised).

• Denoting the τth conditional quantile of ηit given ηi ,t−1 as
Qt(ηi ,t−1, τ), we specify

ηit = Qt(ηi ,t−1, uit), where (uit |ηi ,t−1, ηi ,t−2, ...) ∼ Uniform (0, 1).

B εit zero mean, independent over time. Qt and Fεt are age (t) specific.

Consider the following measure of persistence:

ρt(ηi ,t−1, τ) =
∂Qt(ηi ,t−1, τ)

∂η
.

⇒ ρt(ηi ,t−1, τ) measures the persistence of ηi ,t−1 when, at age t, it is hit
by a shock uit that has rank τ. Measures the persistence of histories .

B Conditional heteroscedasticity, skewness & kurtosis. Condition on Xit .
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Motivating evidence from quantile autoregressions of log family earnings

∂Qyt |yt−1
(yi ,t−1,τ)

∂y

PSID data Norwegian administrative data
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Notes: ABB (2017). Household earnings, Age 25-60, 1999-2009 (US) and 2005-2006

(Norway). Estimates of average derivative of conditional quantile of y it given yi ,t−1 with

respect to yi ,t−1, on grid of 11-quantiles and 3rd degree Hermite polynomial.
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Modelling consumption and partial insurance

• Let cit and ait denote log-consumption and assets (beginning of period)
net of age dummies.

• Our empirical specification is based on

cit = gt (ait , ηit , εit , νit) t = 1, ..., T ,

where νit are independent across periods, and gt is a nonlinear,
age-dependent function, monotone in taste shifter νit . Can allow for
individual heterogeneity, advance information and habits.
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Modelling consumption and partial insurance

• Let cit and ait denote log-consumption and assets (beginning of period)
net of age dummies.

• Our empirical specification is based on

cit = gt (ait , ηit , εit , νit) t = 1, ..., T ,

where νit are independent across periods, and gt is a nonlinear,
age-dependent function, monotone in taste shifter νit . Can allow for
individual heterogeneity, advance information and habits.

• The consumption responses to η and ε are given by

φt(a, η, ε) = E

[
∂gt (a, η, ε, ν)

∂η

]

, ψt(a, η, ε) = E

[
∂gt (a, η, ε, ν)

∂ε

]

.

B φt(a, η, ε) and ψt(a, η, ε) reflect the transmission of the persistent and
transitory earnings components, respectively.

• These are the partial insurance coefficients.
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Identification:
Income:

• For T = 3, Wilhelm (2012) gives conditions for distribution of εi2. In
particular, completeness of the pdf s of (yi2|yi1) and (ηi2|yi1).

• Apply the result to each of the three-year sub-panels:
⇒ The marginal distribution of εit are identified for t ∈ {2, 3, ..., T − 1}.
⇒ By independence the distribution of (εi2, εi3, ..., εi ,T−1) is identified.
⇒ By deconvolution the distribution of (ηi2, ηi3, ..., ηi ,T−1) is identified.
• The distribution of εi1, ηi1, and εiT , ηiT are not identified in general.
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Identification:
Income:

• For T = 3, Wilhelm (2012) gives conditions for distribution of εi2. In
particular, completeness of the pdf s of (yi2|yi1) and (ηi2|yi1).

• Apply the result to each of the three-year sub-panels:
⇒ The marginal distribution of εit are identified for t ∈ {2, 3, ..., T − 1}.
⇒ By independence the distribution of (εi2, εi3, ..., εi ,T−1) is identified.
⇒ By deconvolution the distribution of (ηi2, ηi3, ..., ηi ,T−1) is identified.
• The distribution of εi1, ηi1, and εiT , ηiT are not identified in general.

Consumption:
• Assume uit and εit are independent of past earnings shocks and past
asset holding, for t ≥ 1, where ηit = Qt(ηi ,t−1, uit).

• Let ηi1 and ai1 be arbitrarily dependent;

• Denoting ηt
i = (ηit , ηi ,t−1, ..., ηi1), assume that ait is independent of

(ηt−1
i , at−2

i , εt−2
i ) given (ai ,t−1, ci ,t−1, yi ,t−1); -> consistent with the

accumulation rule in the standard life-cycle model.
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Initial Assets: Let y = (y1, ..., yT ). We have

f (a1|y ) =
∫

f (a1|η1, y )f (η1|y )dη1

=
∫

f (a1|η1)f (η1|y )dη1,

where we have used that uit and εit are independent of ai1.

• Note that f (η1|y ) is identified from the earnings process alone.

• If f (η1|y ) is complete, then f (a1|η1) is identified – structure is as in the
ill-posed NPIV problem where η1 endogenous and y is the instrument.
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Initial Assets: Let y = (y1, ..., yT ). We have

f (a1|y ) =
∫

f (a1|η1, y )f (η1|y )dη1

=
∫

f (a1|η1)f (η1|y )dη1,

where we have used that uit and εit are independent of ai1.

• Note that f (η1|y ) is identified from the earnings process alone.

• If f (η1|y ) is complete, then f (a1|η1) is identified – structure is as in the
ill-posed NPIV problem where η1 endogenous and y is the instrument.

First period consumption: We have

f (c1, a1|y ) ≡
∫

f (c1, a1|η1, y )f (η1|y )dη1

and given our assumptions (and f(a1|η1) can be treated as known)

f (c1, a1|y ) =
∫

f (c1|a1, η1, y1)f (a1|η1)f (η1|y)dη1.

• If completeness in (y2, ..., yT ) of f (η1|y1, y2, ..., yT ), then
f (c1|a1, η1, y1), is identified. Subsequent periods follow similar arguments.

• Extensions: Similar techniques can be used in the presence of advance
information, e.g.

cit = gt

(
ait , ηit , ηi ,t+1, εit , νit

)
,

and consumption habits , e.g.

cit = gt (ci ,t−1, ait , ηit , εit , νit) .
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Empirical specification:

• For income, the quantile function of ηit given ηi ,t−1 is specified as

Qt(ηt−1, τ) = Q(ηt−1, aget , τ)

=
K

∑
k=0

aQ
k (τ)ϕk(ηt−1, aget),

where ϕk , k = 0, 1, ..., K , are polynomials (Hermite). Similar specification
for quantile functions of εit and ηi1. Can condition on covariates Xit .
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Empirical specification:

• For income, the quantile function of ηit given ηi ,t−1 is specified as

Qt(ηt−1, τ) = Q(ηt−1, aget , τ)

=
K

∑
k=0

aQ
k (τ)ϕk(ηt−1, aget),

where ϕk , k = 0, 1, ..., K , are polynomials (Hermite). Similar specification
for quantile functions of εit and ηi1. Can condition on covariates Xit .

• The consumption function (log) is specified as:

gt(at , ηt , εt , τ) = g(at , ηt , εt , aget , τ)

=
K

∑
k=1

bg
k ϕ̃k(at , ηt , εt , aget) + bg

0 (τ)

– additivity in the taste heterogeneity, not essential. Similar specification
for conditional quantiles of ai1 given ηi1 and age.
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Implementation and Estimation

• Model quantile coefficients aQ
k (τ) as piecewise-linear interpolating

splines (Wei and Carroll, 2009) on a grid 0 < τ1 < τ2 < ... < τL < 1,
convenient as the likelihood function is available in closed form.

• Note extend the specification of the intercept coefficient aQ
0 (τ) on

(0, τ1] and [τL, 1) using a parametric model: exponential (λ).

• In practice, for the PSID data, we take L = 11 and τ` = `/L + 1. ϕk

and ϕ̃k are low-dimensional tensor products of Hermite polynomials.
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Implementation and Estimation

• Model quantile coefficients aQ
k (τ) as piecewise-linear interpolating

splines (Wei and Carroll, 2009) on a grid 0 < τ1 < τ2 < ... < τL < 1,
convenient as the likelihood function is available in closed form.

• Note extend the specification of the intercept coefficient aQ
0 (τ) on

(0, τ1] and [τL, 1) using a parametric model: exponential (λ).

• In practice, for the PSID data, we take L = 11 and τ` = `/L + 1. ϕk

and ϕ̃k are low-dimensional tensor products of Hermite polynomials.

• Use stochastic EM algorithm in estimation: a simulated version of the
classical EM algorithm of Dempster et al (1977), where new draws from
latent Markov process η are computed in every iteration of the algorithm.

• Unlike in EM, our problem is not likelihood-based. Instead, we exploit
the computational convenience of quantile regression and replace
likelihood maximization by a sequence of quantile regressions in each
M-step of the algorithm.
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Model restrictions: income

• Let θ be the income-related parameters with true values θ.

• Let ρτ(u) = u(τ − 1{u ≤ 0}) denote the “check” function of quantile

regression, and let aQ
k` denote the value of aQ

k` = aQ
k (τ`) evaluated at the

true θ. The model implies

(
aQ
0`, .a

Q
K `

)
= argmin

(aQ
0`,.a

Q
K `)

E

[∫
ρτ`

(

ηit −
K

∑
k=0

aQ
k`ϕk (ηi ,t−1, ageit)

)

fi (ηT
i ; θ)dηT

i

]

with additional restrictions involving the other parameters in θ.

• Note that the objective function is smooth (due to the presence of the
integrals) and convex (because of the check function).

• fi denotes the posterior density of (ηi1, ..., ηiT ) given the income data

fi (ηT
i ; θ) = f (ηT

i |y
T
i , ageT

i ; θ).
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Overview of estimation

• A compact notation for the restrictions implied by the income model is

θ = argmin
θ

E

[∫
R(yi , η; θ)fi (η; θ)dη

]

.

• We use a “stochastic EM” algorithm (in a non-likelihood setup).

Starting with θ̂
(0)

we iterate on s=0,1,... the following two steps until
convergence of the Markov Chain:

1. Stochastic E-step: draw η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) for m = 1, ..., M from

fi (∙; θ̂
(s)

). ABB orginally used a random-walk Metropolis-Hastings
(MCMC) sampler. Here we make use of particle filter methods that can be
more numerically stable in complex models

2. M-step: update

θ̂
(s+1)

= argmin
θ

N

∑
i=1

M

∑
m=1

R(yi , η
(m)
i ; θ).
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Improved numerical methods - SMC

Consider the stochastic E step of the algorithm. We first note that the
Markovian structure of the latent earnings components allows use of SMC
methods, see Doucet and Johansen (2009)

At time t = 1, draw N ‘particles’ {ηk
1} from a suitable proposal

distribution q(η1|y1),

Re-sampling with weights {W k
1 } ∝ p(η1|y1)

q(η1|y1)
gives N particles

approximately distributed according to p(η1|y1),

At t = 2, we now aim to approximate:
p(η1, η2|y1, y2) ∝ p(η1|y1)f (η2|η1)g(y2|η2),

...but since we already have N samples approximately distributed
according to p(η1|y1), we can extend each of these using a second
proposal distribution q(η2|y2, η1),

Subsequent re-sampling of the particles {ηk
1:2} with appropriately

chosen weights yields approximate samples from p(η1, η2|y1, y2).
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Improved numerical methods - P(Particle)MCMC

SMC methods can also be used to generate highly-efficient proposals
within an MCMC algorithm, see Andrieu, Doucet and Hollenstein (2010)

Within an Metropolis-Hastings algorithm they lead to a very simple
implementation in our current latent Markov settings

Initialize by running an SMC algorithm to generate approximate

samples η
(1)
1 , ..., η

(1)
T from f (η1, ..., ηT |y1, ..., yT ) and store the

marginal likelihood estimate f̂ (1)(y1, ..., yT )

At subsequent iterations run SMC algorithms to propose new samples

η
(∗)
1 , ..., η

(∗)
T and generate new marginal likelihood estimates

f̂ ∗(y1, ..., yT ), which are accepted with probability f̂ ∗(y1,...,yT )
f̂ (i−1)(y1,...,yT )

Inferior to standard SMC in simple settings, but allows for flexibility
when used in conjunction with other MCMC transitions.

=> Particularly useful for extensions of the latent Markov framework with
selection at the extensive margin and unobserved heterogeneity.
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(A related set of ) Model restrictions for consumption

• Letting μ (true value μ) be the consumption-related parameters, the
model implies

(
α, b

g
1 , .b

g
K

)
= argmin

(α,bg
1 ,.bg

K )
E




∫ (

cit −
K

∑
k=1

bg
k ϕ̃k (ait , ηit , yit − ηit , ageit )

)2

gi (ηT
i ; θ, μ)dηT

i



 ,

and

σ2 = E




∫ (

cit −
K

∑
k=1

bg
k ϕ̃k (ait , ηit , yit − ηit , ageit)

)2

gi (ηT
i ; θ, μ)dηT

i



 ,

with additional restrictions involving the other parameters in μ.

• Here gi denotes the posterior density of (ηi1, ..., ηiT ) given the earnings,
consumption, asset data, and income process parameters (θ)

gi (ηT
i ; θ, μ) = f (ηT

i |c
T
i , aT

i , yT
i , ageT

i ; θ, μ).
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Empirical results:

PSID 2005 - 2015 with full consumption items, family
earnings, after tax earnings and assets.

Using improved SMC and PMCMC methods.
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Nonlinear persistence of yit : PSID

∂Qyt |yt−1
(yi ,t−1,τ)

∂y

(a) PSID panel data (b) Nonlinear model
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Notes: PSID 2005-2015. (b) presents PMCMC estimates of the average derivative

of conditional quantile function of yit given yi ,t−1 with respect to yi ,t−1,

evaluated at τshock and yi ,t−1 corresponding to τinit percentile of dist. of yi ,t−1.
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Nonlinear persistence of ηit (new PSID):

ρt(ηi ,t−1, τ) =
∂Qηt |ηt−1

(ηi ,t−1,τ)
∂η
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Notes: Updated PSID 2005-2015: PMCMC estimates of the average derivative of

the conditional quantile function of ηit on ηi ,t−1 with respect to ηi ,t−1, evaluated

at percentile τshock and at a value of ηi ,t−1 that corresponds to the τinit

percentile of the distribution of ηi ,t−1. Evaluated at mean age in the sample.
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Nonlinear persistence of yit : Norway

∂Qyt |yt−1
(yi ,t−1,τ)

∂y

(a) Norwegian register data (b) Nonlinear model
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Note: Estimates of the average derivative of the conditional quantile function of

yit given yi ,t−1 with respect to yi ,t−1, evaluated at percentile τshock and at a

value of yi ,t−1 that corresponds to the τinit percentile of the dist. of yi ,t−1.
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Nonlinear persistence for yit , 95% confidence bands

(a) Earnings, PSID data (b) Earnings, nonlinear model
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Notes: From original estimation in ABB (2017). Pointwise 95% confidence

bands. Parametric bootstrap, 500 replications.
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Estimates of persistence with different samplers
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Figure: Stability of average persistence estimates across 200 repeated
implementations.
Notes: Perturbations in the final panel are to the initial conditions within the Stochastic
EM algorithm which add random noise ∼ N(0, 0.01) to all initial coefficient values at all
quantiles.
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Robustness of original ABB results (1999 - 2007, PSID)
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Figure: Baseline result in Arellano et al.
2017
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Figure: Replicated result with updated
SMC methods
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Consumption response to ηit by τassets and τage E
[

∂gt (a,ηit ,εit ,νit )
∂η

]
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Figure: Household labor income
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Notes: Partial Insurance ‘coefficients’, New PSID 2010-2015. PMCMC Estimates.
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Extensions: covariate specification

Consider a specification for wages as follows:

Wit = Xit β + ηit + εit , where E [εit |Xit , ηit ] = 0 (1)

ηit = Qt(X ∗
it , ηi ,t−1, Vit) (2)

εit and Vit independent at all lags and leads; normalize V to be
standard uniform; X ∗

it ⊂ Xit

Our approach allows us to easily include X ∗
it inside the whole

estimation, not in a prior step as is almost always done in the
literature, at a very small cost.

Note we would like X ∗
it = Xit , but the curse of dimensionality presents

an issue - we want to estimate Qt(.) as flexibly as possible but X is
usually large. An attractive as an alternative we may set X ∗

it = X ′
it β

alternative is to include index functions directly, e.g. a linear index we
would simply include (functions of) X ′

it β directly as controls in
equation (2).
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Extensions: Selection at Extensive Margin
The idea is that adverse persistent shocks increase probability of
selection out of the labor market, i.e. non-random selection on ηit .
Consider the specification for wages:

W ∗
it = Xit β + ηit + εit , where E [εit |Xit ] = 0 (3)

ηit = Qt(X ∗
it , ηi ,t−1, Vit) (4)

Dit = 1{Uit ≤ qt(Xit , ηit , ηi ,t−1, Zit)} (5)

Wages are observed at W ∗
it when Dit = 1; εit , Vit and Uit independent

at all lags and leads; normalize U and V to be standard uniform.
Nonparametric identification shown under large support of the
propensity score (e.g. large support of for Z ), examples include
simulated tax instruments, other income, etc.
The integrated moment condition corresponding to the τth
conditional quantile in (4)

T

∑
t=1

E

[∫
ρτl

(ηit −Qt(Xit , ηi ,t−1, τ)fi (ηT
i |X

T
i , W T

i )dηT
i

]

continues to hold, although the posterior density takes a different form
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Extensive margin selection and stochastic EM

Estimation simply requires we change the form of the likelihood in the
stochastic E-step, whilst estimates of (4) now include both
participants and non-participants.

Posterior density in the stochastic E-step takes the from:

fi (ηT
i |W

T
i , DT

i , ZT
i ) ∝ fi (ηT

i , W T
i , DT

i |ZT
i ) (6)

=
T

∏
t=1

f (Wit |ηit , Dit , Xit)Dit f (Dit |ηit , Zit) (7)

T

∏
t=2

f (ηit |ηi ,t−1, Xit)f (ηi1|Xit) (8)
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Summary

Use the framework developed in Arellano, Blundell and Bonhomme
(2017) to shed new light on the nonlinear transmission of income
shocks to consumption and the nature of insurance to income shocks.

Use new data on consumption, assets, earnings and family income
from the the new PSID and from the Norwegian population register.

The new framework involves a Markovian permanent-transitory model
of income, that reveals significant asymmetric persistence of shocks.

We develop a flexible age-dependent nonlinear consumption rule that
is a function of assets, permanent income and transitory income.

We provide conditions for nonparametric identification and show how
a simulation-based sequential Quantile Regression method is feasible .

The Markovian structure for latent earnings components allows us to
make use of particle SMC methods to improve the MCMC algorithm.

The new framework provides robust measures of nonlinear persistence
for family earnings and income, and new estimates of the degree of
partial insurance of income shocks for consumption.
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Extra Slides

1. Consumption in the PSID and Norwegian Register

2. Income components in the Norwegian Register Data

3. The Metropolis-Hastings method.

4. Identification and extensions in consumption model.

5. Summary statistical properties.
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Consumption in the (New) PSID Data

• PSID From 1999.

• Cit : Information on food expenditures, rents, health expenditures,
utilities, car-related expenditures, .....

• Ait : Assets holdings are the sum of financial assets, real estate value,
pension funds, and car value, net of mortgages and other debt. (Net
worth).

• yit are residuals of log total pre-tax household labor earnings on a set of
demographics. Note, cit and ait are residuals, using the same set of
demographics as for earnings.

B cohort and calendar time dummies, family size and composition,
education, race, and state dummies.

• As in BPS, we select married male heads aged between 25 and 59.
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Consumption in the Norwegian Register Data

The analysis combines several data sources for the period 1994-2014

Tax records on income and wealth

Real estate transactions from Norwegian Land Register

Transactions in listed and unlisted stocks from Norwegian Registry of
Securities.

The initial sample covers all households where the household’s oldest is at
least 18 years old, everyone above 17 years has filed a tax return

The number of household-year observations in the initial panel is
44,302,000.

In each year, we keep only households with a male head, age 30 - 60,
cohort 1945 - 1975, with non-missing information on schooling and
location.

Detailed description of the dataset and consumption measurement in Eika,
Mogstad and Vestad (2018).
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Measuring Consumption

Let Wikt = pktAikt , total household consumption expenditure:

Cit =

(

Eit − τit + ∑
k

rktAikt−1

)

︸ ︷︷ ︸
disposable income

- ∑
k

(Wikt −Wikt−1)+

︸ ︷︷ ︸
changes in wealth

∑
k

(pkt − pkt−1)Aikt−1

︸ ︷︷ ︸
capital gains

︸ ︷︷ ︸
−net savings

where

Yit : labour income and cash transfers

τit : taxes

Ait−1 : assets held at the end of period t − 1.

Combining the last two terms using financial and real estate transactions data has been

a key insight.
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The Income Process in the Norwegian population register

Variance of permanent shocks to income
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Source: Blundell, Graber and Mogstad (2015).
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Norwegian population register data

Variance of permanent shocks to income
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Norwegian population register data

Variance of permanent shocks to income
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Norwegian population register data

Variance of permanent shocks to income (low skilled)
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Metropolis-Hastings method

The stochastic EM algorithm requires samples from the posterior density
f (η1, ..., ηT |y1, ..., yT )

Metropolis-Hastings: the ‘standard’MCMC technique used in ABB.
Letting q(.) denote proposal distributions and π(.) the full joint density,
the basic algorithm is outlined as,

Initialize η
(0)
1 , ..., η

(0)
T ∼ q(η1, ..., ηT |y1, ..., yT )

For subsequent iterations propose updates to each element of

η1, ..., ηT sequentially through time as η∗
t ∼ q(η

(i)
t |η(i−1)

t )

Accept each subsequent proposal with probability

min{1,
q(η

(i−1)
t |η∗

t )π(η∗
t ,.)

q(η∗
t |η

(i−1)
t )π(η

(i−1)
t ,.)

}

If a proposal is accepted, set η
(i)
t = η∗

t , otherwise set η
(i)
t = η

(i−1)
t

Resulting Markov chain yields correlated samples.
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Consumption: identification in subsequent periods

• We have

f (a2|c1, a1, y ) =
∫

f (a2|c1, a1, η1, y1)f (η1|c1, a1, y )dη1

f (c2|a2, c1, a1, y ) =
∫

f (c2|a2, η2, y2)f (η2|a2, c1, a1, y )dη2.

• By induction it can be shown that the joint density of η’s, consumption,
assets, and earnings is identified provided, for all t ≥ 1, the distributions of
(ηit |c

t
i , a

t
i , yi ) and (ηit |c

t−1
i , at

i , yi ) are complete in
(c t−1

i , at−1
i , y t−1

i , yi ,t+1, ..., yiT ).

• Intuition: lagged consumption and assets, as well as lags and leads of
earnings, are used as instruments for ηit .
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Extensions to the Consumption Model

• Consumption rule with unobserved heterogeneity:

cit = gt (ait , ηit , εit , ξ i , νit) .

• We assume that uit and εit , for t ≥ 1, are independent of (ai1, ξ i ).

• The distribution of (ai1, ξ i , ηi1) is unrestricted.

• A combination of the above identification arguments and the main result
of Hu and Schennach (08) identifies:

– the period-t consumption distribution f (ct |at , ηt , yt , ξ), and

– the distribution of initial conditions f (η1, ξ, a1).
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Statistical properties, notes.

• Nielsen (2000) studies the properties of this algorithm in a likelihood

case. He provides conditions for the Markov Chain θ̂
(s)

to be ergodic (for
a fixed sample size).

• He also shows that
√

N

(

θ̂
(s)

− θ

)

converges to a Gaussian

autoregressive process as N tends to infinity.

• Arellano and Bonhomme [AB] (2015) adapt Nielsen’s arguments to
derive the form of the asymptotic variance in a non-likelihood case.

• AB also study consistency as K (number of polynomial terms) and L
(number of knots) tend to infinity with N.

Arellano, Blundell, Bonhomme & Light Nonlinear Persistence and Partial Insurance ASSA, January 4, 2019 41 / 41


	Slides

