Generalized Compensation Principle

Aleh Tsyvinski¹ Nicolas Werquin²

¹Yale University

²Toulouse School of Economics

August 2018

Introduction

- Economic disruption affects wage distribution \rightsquigarrow winners and losers
 - e.g., technological change, immigration inflow, trade liberalization
- Welfare compensation problem: can we design a reform of the tax system that offsets the losses by redistributing the winners' gains?
 - ... and if so, is it budget-feasible?
- Traditional PF [Kaldor 1939, Hicks 1939/40]: compensating variation
 - amount that agent i is willing to pay to be as well off as before the shocks
 - limitation 1: only distortionary income taxes are available policy tools
 - limitation 2: many disruptions of interest require general equilib. setting

Introduction

- E.g., consider an immigration inflow \rightsquigarrow no welfare impact in PE
 - in GE, higher supply of labor affects wage distribution via two channels:
 - (i) decreasing marginal product, (ii) skill complementarities in production
- Combining distortionary taxes and GE makes the compensation difficult
 - lowering taxes raises labor supply just like the immigration inflow
 - further welfare effects that need to be compensated using the tax code

→ complex fixed point problem

- Goal: design tax reform to bring each agent's utility back to initial level
 - consider (marginal) disruption of wage distribution in arbitrary direction
 - result: compensating reform and fiscal surplus in closed-form
 - application: compensating the impact of automation (robots) in the US

Introduction

- First step: partial equilibrium environment with distortionary taxes
 - key: to a first order, indirect utility moves one-for-one with total tax bill
 - because envelope theorem \rightsquigarrow marginal tax rate does not affect welfare
 - adjust average tax rate to cancel out the exogenous wage disruption
- **GE:** simultaneously solve for average and marginal tax rates (IDE)
 - key: marginal tax rate directly affects welfare, even conditional on ATR
 - because changes in labor supply (MTR) impact wages, and hence utility
 - progressive reform at rate = ratio of labor demand vs. supply elasticities
- Application: compensating the impact of robots [data: Acemoglu Restrepo 17]
 - other possible applications: immigration, international trade, etc
 - alternative strand in the literature: optimal taxation of robots Guerreiro Rebelo Teles 17, Thuemmel 18, Costinot Werning 18

Outline

1 The Welfare Compensation Problem

2 Designing the Compensating Tax Reform

3 Application: Compensating the Impact of Robots

Initial equilibrium

• Individuals $i \in [0, 1]$: wage w_i , labor supply l_i , income tax $T(w_i l_i)$

welfare:
$$U_{i} = \max_{l_{i}>0} u_{i} \left(w_{i}l_{i} - T\left(w_{i}l_{i}\right), l_{i}\right)$$

• Endogenous labor supply: first-order condition

labor supply:
$$l_i$$
 satisfies $-\frac{u'_{i,l}(c_i, l_i)}{u'_{i,c}(c_i, l_i)} = [1 - T'(w_i l_i)] w_i$

Endogenous wage: marginal product of aggregate labor input

wage: $w_i = \mathscr{F}'_i(\{L_j\}_{j \in [0,1]})$

- Government tax revenue ${\mathscr R}$ given the tax schedule T
- In the paper: endogenous participation, unequal capital ownership

Wage disruptions and tax reforms

- Disruption of wage distribution in arbitrary direction $\{\hat{w}_i^E\}_{i\in[0,1]}$
 - e.g, due to exogenous change $\hat{\mathscr{F}}$ in the production function (tech change)
 - size of the disruption $\mu > 0 \rightsquigarrow$ on impact: perturbed wage $w_i (1 + \mu \hat{w}_i^E)$
 - government implements tax reform $\hat{T} \rightsquigarrow$ perturbed tax schedule $T + \mu \hat{T}$
- Equilibrium: agents adjust labor supply which further impacts wages etc
 - $\{\hat{w}_i, \hat{l}_i\}_{i \in [0,1]}$: total endogenous % changes in wages and labor supplies
 - $\{\hat{U}_i\}_{i\in[0,1]}$: welfare gains or losses after disruption and tax reform
- Welfare compensation problem: find \hat{T} s.t. $\hat{U}_i = 0 \ \forall i$ in new equilibrium
 - focus on marginal disruptions in the direction $\hat{m{w}}^E$: size $\mu
 ightarrow 0$
 - once we solve for \hat{T} , deriving the fiscal surplus is straightforward

Outline

1 The Welfare Compensation Problem

2 Designing the Compensating Tax Reform

3 Application: Compensating the Impact of Robots

Compensation in Partial Equilibrium

- Partial equilibrium: no further endogenous wage adjustments: $\hat{w}_i = 0 \ \forall i$
 - marginal disruption \rightsquigarrow change in the indirect utility $\hat{U}_i = 0$ of agent i is

$$0 = \left[\left(1 - T'(w_i l_i) \right) w_i l_i \right] \hat{w}_i^E - \hat{T}(w_i l_i)$$

1. exogenous wage change \hat{w}_{i}^{E} weighted by the retention rate $1 - T'(w_{i}l_{i})$

- 2. absolute tax change $\hat{T}(w_i l_i)$, which makes him poorer iff it is positive
- Envelope thm: in PE, the marginal tax rate change $\hat{T}'(w_i l_i)$ does not matter for welfare, conditional on the average tax rate change $\hat{T}(w_i l_i)$
 - key: to a first order, indirect utility moves one-for-one with total tax bill
 - immediately get compensating tax reform \hat{T} following any disruption $\hat{m{w}}^E$
 - adjust ATR by income change due to disruption $\frac{\dot{T}(y_i)}{y_i} = (1 T'(y_i)) \hat{w}_i^E$

Compensation in General Equilibrium

• GE: linearizing the zero-compensating-variation condition $\hat{U}_i = 0$ yields

$$0 = [(1 - T'(w_i l_i)) l_i] (\hat{w}_i^E + \hat{w}_i) - \hat{T}(w_i l_i)$$

- wage change \hat{w}_i determined by labor supply adjustments $\{\hat{l}_j\}_{j \in [0,1]}$ [decreasing MPL and skill complementarities in production]
- in turn each \hat{l}_i determined by MT and AT changes $\{\hat{T}'(y_j), \hat{T}(y_j)\}_{j \in [0,1]}$ [standard disincentive effects of distortionary taxes + cross-wage effects]
- Key: In GE, changes in labor supply, and hence in MTR, have 1st-order welfare effects despite the envelope theorem because they impact wages
 - higher marginal tax rate raises utility: hours $\downarrow \&$ wage \uparrow [cf. Stiglitz 82]

Compensation in General Equilibrium

- Compensating reform \hat{T} solution to functional (integro-differential) eqn
 - main result: solve for reform \hat{T} (and fiscal surplus) in closed-form
- Key elasticities entering the welfare compensation formula: based on the analysis of Sachs Tsyvinski Werquin 2017
 - labor supply elasticities of l_i wrt retention rate, wage: $\varepsilon_i^{S,r}, \varepsilon_i^{S,w}$ [Hicks]
 - labor supply elasticity of l_i wrt non-labor income: $\varepsilon_i^{S,n}$ [income effect]
 - cross-wage elasticity of w_j wrt L_i : γ_{ji} [skill complementarities in prod.] γ_{ji} discontinuous at $j \approx i$
 - own-wage elasticity of w_i wrt L_i : $\frac{1}{\varepsilon_i^D}$ [decreasing mg product of labor] inverse elasticity of labor demand

Compensation in General Equilibrium

• Proposition: The compensating tax reform is given in closed-form by

$$\frac{\hat{T}\left(y_{i}\right)}{y_{i}} = \left(1 - T'\left(y_{i}\right)\right) \left[\int_{i}^{1} \mathscr{E}_{ij} \,\hat{\Omega}_{j}^{E} dj + \Lambda_{i}\right]$$

where: $\hat{\Omega}_{j}^{E}$ is the modified wage disruption variable accounts for incidence of the initial shock \hat{w}_{i}^{E} (labor demand spillovers)

- where: Λ_i is the compensation-of-compensation variable series $\Lambda_i = \sum_n \Lambda_i^{(n)}$ of compensations. Λ constant with CES: uniform shift in MTR
- where: \mathscr{E}_{ij} is the progressivity variable implies a progressive compensating reform: $\mathscr{E}_{ij} \propto y_i^{\varepsilon^D/\varepsilon^{S,r}-p}$ if CES/CRP

Progressivity of the compensating tax reform

- \mathscr{E}_{ij} : assume decreasing MPL, infinite substitutability between skills
 - in PE, the compensating tax reform is $\frac{\hat{T}(y_i)}{y_i} = (1 T'(y_i)) \hat{w}_i^E$
 - in GE, ATR must compensate both the wage disruption and the welfare effects generated endogenously by the marginal tax rate changes

$$\frac{\hat{T}(y_i)}{y_i} = \left(1 - T'(y_i)\right) \hat{\Omega}_i^E + \left[1 + \frac{\varepsilon^D}{\varepsilon^{S,r}} - p\right]^{-1} \hat{T}'(y_i)$$

- Progressive reform b/c any AT hike must be compensated by MT hike
 - rate of progressivity = labor demand elasticity ÷ labor supply elasticity
 rate of progressivity of the initial tax schedule
 - key: this ratio determines how much \uparrow mg tax rate \uparrow wage and utility

Graphical representation

Calibration: QL / CELS utility, CES production, CRP tax code
 → disruption: \$100 gross income loss at levels \$20,000 and \$60,000

Outline

1 The Welfare Compensation Problem

2 Designing the Compensating Tax Reform

3 Application: Compensating the Impact of Robots

Automation in the U.S., 1990-2007

 Quantitative application based on Acemoglu and Restrepo (2017) 1990-2007: one additional robot per 1000 workers

Compensation of automation

• Compensation: tax bill changes by -112% of income loss at 10^{th} centile, +124% of income gain at 90^{th} centile, fiscal surplus ≈ 0

Conclusion

- Classic PF question: economic shock generally creates winners and losers Kaldor 39, Hicks 39/40, Kaplow 04/12, Hendren 14
 - design a compensating tax reform and evaluate its fiscal surplus
 - closed-form in general equilibrium with only distortionary taxes
- Applications: automation, job polarization, immigration, int'l trade Acemoglu Restrepo 17, Goos et al 14, Dustmann Frattini Preston 13, Antras Gortari Itshkoki 17
 - need GE framework: relative wages determined by relative supply of skills
- Advantages of compensation principle over optimal taxation

Stiglitz 82, Rothschild Scheuer 13/16, Ales Kurnaz Sleet 15

- no need to choose a particular social welfare function
- tractability (closed form) in more general environments
- policy-relevance: work with actual tax system and observable variables