Intertemporal Substitution, Precautionary Saving, and Currency Risk Premium

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD

AEA, 2019

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

- exchange rate S_t, home currency price per unit of foreign currency
- home short rate r_t and foreign short rate r_t^*
- log exchange rate, $s_t \equiv \ln S_t$
- currency excess return is: $\rho_{t+1} = s_{t+1} s_t + r_t^* r_t$
- currency risk premium is: $E_t(\rho_{t+1}) = E_t(s_{t+1} s_t) + r_t^* r_t$

Engel's paradox (AER, 2016), two empirical regularities

- Forward Premium Puzzle (Short Premium Puzzle) $cov(E_t[\rho_{t+1}], r_t^* - r_t) > 0$
- Excess Co-movement Puzzle or Level Puzzle $cov(\sum_{j=0}^{\infty} E_t[\rho_{t+j+1}], r_t^* - r_t) < 0$

 $\Rightarrow (\text{Long Premium Puzzle})$ $cov(E_t[\rho_{t+j+1}], r_t^* - r_t) < 0 \text{ for large } j$

• Engel: these 2 empirical regularities constitute a paradox

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

- forward premium puzzle: $\operatorname{cov}(\operatorname{E}_t(\rho_{t+1}), r_t^* r_t) > 0$
- when foreign interest rate is high, the average excess currency return is high
- this justifies the carry-trade strategy: borrowing low interest currency to invest in high interest currency
- one explanation for high average excess return is compensation for risk (Backus, Foresi and Telmer (2001), Brennan and Xia (2006))

Economics of the Level Puzzle

 The second empirical regularity is linked to level of exchange rate by telescoping: ρ_{t+j+1} = s_{t+j+1} - s_{t+j} + r^{*}_{t+j} - r_{t+j}

$$s_t - E_t[s_{t+k}] = \sum_{j=0}^{k} E_t[r_{t+j}^* - r_{t+j}] - \sum_{j=0}^{k} E_t[\rho_{t+j+1}]$$

- when s_t is mean reverting, $E_t[s_{t+k}]$ becomes a constant in the limit
- $cov(\sum_{j=0}^{\infty} E_t[\rho_{t+j+1}], r_t^* r_t) < 0$ leads to excessive covariance with s_t
- implies more excessive over-shooting than the classical Dornbusch model and Mundell-Fleming model which assumes UIP

伺 と く ヨ と く ヨ と … ヨ

We show that a fairly standard model with time varying risk premium can resolve Engel's paradox

- Intertemporal substitution plays an important role
- Mean consumption growth depends on both consumption volatility and variance
- Risk can account both forward premium puzzle and the excess co-movement puzzle
- Did not use recursive utility, long run risk, and bounded rationality

• Existing models can not account these two puzzles simultaneously

Exchange Rate

- two-agents (country) model
- each country (home and foreign) a representative agent
- Cⁱ_t, i ∈ {h, f}, could be interpreted as a quantity index of multiple goods
- Lucas (1982), Cole and Obstfeld (1991), Backus and Smith (2013), Colacito and Croce (2013)

Exchange Rate

• by no-arbitrage, Backus et. al. (JF, 2001)

$$s_{t+1} - s_t = \ln \pi^*_{t+1} - \ln \pi_{t+1}$$

where π^*_{t+1} and π_{t+1} are foreign and home country pricing kernels

- we only need to model pricing kernels for each country
- each country has a representative agent, same parameters, independent and identical consumption processes

• representative agent with expected CRRA utility

$$\sum_{t=0}^{\infty} \mathbf{E}_{0} \left[e^{-\beta t} \frac{C_{t}^{1-\gamma}}{1-\gamma} \right]$$

- β is the subjective discount coefficient
- γ is the risk-aversion coefficient
- home country pricing kernel π_{t+1}

$$\pi_{t+1} = e^{-\beta} e^{-\gamma(c_{t+1}-c_t)}$$

 \bullet foreign country π^*_{t+1}

$$\pi_{t+1}^* = e^{-\beta} e^{-\gamma(c_{t+1}^* - c_t^*)}$$

log consumption growth

$$c_{t+1} - c_t = \mu_{ct} + \sigma_{ct} \varepsilon_{t+1}$$

interest rate

$$r_t = \beta + \gamma \mu_{ct} - \frac{1}{2} \gamma^2 \sigma_{ct}^2$$

- intertemporal substitution component : $i.s. = \gamma \mu_{ct}$
- precautionary saving component: $p.s. = -\frac{1}{2}\gamma^2 \sigma_{ct}^2$

• currency premium of the simple return, $\frac{S_{t+1}}{S_t}e^{r_t^f}$, is

$$E_t\left(\frac{S_{t+1}}{S_t}e^{r_t^f-r_t^h}\right) = e^{\gamma^2\sigma_{ct}^{h^2}} ,$$

- depends on home consumption variance $\gamma^2 \sigma_{ct}^{h2}$ but not on foreign consumption variance.
- only home risk is priced.

伺い イラト イラト

Currency Premium

• currency premium for the log return is

$$E_t[\rho_{t+1}] = E_t \left(\ln \left[\frac{S_{t+1}}{S_t} - r_t^h + r_t^f \right] \right)$$
$$= \underbrace{\gamma^2 \sigma_{ct}^{h2}}_{compensation for risk} - \underbrace{\frac{\gamma^2}{2} (\sigma_{ct}^{h2} + \sigma_{ct}^{f2})}_{Jensen's effect}$$

 can be written as the differential of home and foreign country premiums:

$$E_t[\rho_{t+1}] = rac{\gamma^2}{2} (\sigma_{ct}^{h2} - \sigma_{ct}^{f2}) \;\;.$$

- log return makes it symmetric
- from now on, we will focus on one country.

Precautionary Saving and Risk Premium

• risk premium:
$$\nu_t^h = \frac{\gamma^2}{2}\sigma_{ct}^2$$

- interest rate: $r_t = i.s. + p.s.$
 - intertemporal substitution component : i.s. = $\gamma \mu_{ct}$
 - precautionary saving component: $p.s. = -\frac{1}{2}\gamma^2 \sigma_{ct}^2$ negatively proportional to risk premium
- positive correlation between the risk premium and interest rates has to come from μ_{ct} , this channel is ignored in existing literature

• Our Model

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

<ロト <部ト < 注ト < 注ト

э

Consumption Process

log consumption growth

$$c_{t+1} - c_t = \underbrace{\lambda \sigma_{ct} + (h - 1/2)\sigma_{ct}^2}_{\mu_{ct}} + \sigma_{ct} \varepsilon_{t+1}^c$$

conditional volatility

$$\sigma_{ct} = x_t + \theta$$

$$x_{t+1} = \varphi x_t + \sigma \varepsilon_{t+1}^x$$

OU process, Stein and Stein (1991) and Constantinides (1992) • conditional mean

$$\mu_{ct} = \lambda \sigma_{ct} + (h - 1/2)\sigma_{ct}^2$$

depends on both consumption volatility and variance

 empirically documented in Bekaert and Liu (2004) (new to literature)

Expected Future Risk Premium

• the expected future risk premium $\nu_t = \frac{\gamma^2}{2} \sigma_{ct}^2$

$$\mathbf{E}_t[\sigma_{ct+j}^2] = \mathbf{E}_t[(x_{t+j}+\theta)^2] = 2\theta x_t \varphi^j + x_t^2 \varphi^{2j} + \cdots$$

- the expected future risk premium depends on both consumption variance x²_t and consumption volatility x_t
- the term with consumption volatility dominates the term with consumption variance when *j* is large
- existing (Affine) models only have consumption variance, thus only 1 decay mode

• the interest rate is

$$r_{t} = \beta + \underbrace{\gamma(\lambda(x_{t}+\theta) + (h-1/2)(x_{t}+\theta)^{2})}_{intertemporal \ substitution} \underbrace{-\frac{1}{2}\gamma^{2}(x_{t}+\theta)^{2}}_{precautionary \ saving}$$
$$= \beta + \gamma\lambda(x_{t}+\theta) - \gamma\left(\frac{1+\gamma}{2} - h\right)(x_{t}+\theta)^{2}$$

- positively depends on the consumption volatility $x_t + \theta$ through the intertemporal substitution effect
- negatively depends on the consumption variance $(x_t + \theta)^2$ through the precautionary saving effect

- when $x_t + \theta$ is large, $(x_t + \theta)^2$ dominates, precautionary effect dominates
- interest rate decreases with consumption variance
- when $x_t + \theta$ is small, $x_t + \theta$ dominates, intertemporal substitution effect dominates
- interest rate increases with consumption volatility

- the competing mechanism of these two effects makes the interest rate a nonmonotonic function of x_t + θ
- key to resolving Engel's paradox
- existing models only have conditional variance

• Resolution of Engel's Paradox

- **→** → **→**

- ∢ ⊒ →

Covariance Between Interest Rate and Risk Premium

interest rate

$$r_t = \beta + \gamma \lambda (x_t + \theta) - \gamma \Big(\frac{1 + \gamma}{2} - h \Big) (x_t + \theta)^2$$

expected future premium

$$\nu_t^h = \frac{\gamma^2}{2} \mathbf{E}_t[\sigma_{t+j}^2] = \frac{\gamma^2}{2} (2\theta x_t \varphi^j + x_t^2 \varphi^{2j} + \cdots)$$

• the covariance

$$\begin{aligned} \operatorname{cov}[\nu_t^h, -r_t] &= \gamma^3 \Big[2 \left(2\theta^2 \left(\frac{1+\gamma}{2} - h \right) - \lambda \theta \right) \varphi^j \operatorname{Var}[x_t] \\ &+ \left(\frac{1+\gamma}{2} - h \right) \varphi^{2j} \operatorname{Var}[x_t^2] \Big] \end{aligned}$$

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

the covariance

$$\begin{aligned} \operatorname{cov}[\nu_t^h, -r_t] &= \gamma^3 \Big[2 \left(2\theta^2 \left(\frac{1+\gamma}{2} - h \right) - \lambda \theta \right) \ \varphi^j \operatorname{Var}[x_t] \\ &+ \left(\frac{1+\gamma}{2} - h \right) \ \varphi^{2j} \operatorname{Var}[x_t^2] \ \Big] \end{aligned}$$

- first term due to conditional volatility x_t and second term due to conditional variance
- when *j* is large, the first term dominates

Short Premium Puzzle

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

Short Premium Puzzle

- $r(x_t)$ and $\nu(x_t)$ are both non-monotone in x_t
- for $x_t \in (-\theta, x_r)$, $x_r = -\theta + \frac{\lambda}{\gamma + 1 2h}$, both $r(x_t)$ and $\nu(x_t)$ increase with x_t and thus increase with each other

• for
$$x_t > x_r$$
 or $x_t < -\theta$, $r(x_t)$ decrease with $\nu(x_t)$

- the unconditional covariance between the two is negative if λ is small enough (place an upper bound on λ)
- Note that the region $x_t < -\theta$ has negligible probability mass if $\theta \gg 0$

伺下 イヨト イヨト ニヨ

Long Premium Puzzle

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- long country premium is proportional to x_t
- $r(x_t)$ is non-monotone in x_t
- $r(x_t)$ increases with x_t for $x_t \le x_r$ and decrease for $x_t > x_r$, $x_r = -\theta + \frac{\lambda}{\gamma + 1 - 2h}$
- over all correlation between r(x_t) and x_t is positive if x_r > 0 (place an lower bound on λ)

伺 と く ヨ と く ヨ と … ヨ

Cumulative Premium Puzzle

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

글 🖌 🖌 글 🕨

_ ₽ ▶

Cumulative Premium Puzzle

- $r(x_t)$ and $\sum_{j=0}^{\infty} E_t[\nu_{t+j}](x_t)$ are both non-monotone in x_t
- both $r(x_t)$ and $\sum_{j=0}^{\infty} E_t[\nu_{t+j}](x_t)$ increase with x_t , and thus, increase with each other if $-\theta(1 + \varphi) < x_t < x_r$, $x_r = -\theta + \frac{\lambda}{\gamma + 1 2h}$
- for $x_t > x_r$ or $x_t < -\theta(1 + \varphi)$, $r(x_t)$ decreases with $\sum_{j=0}^{\infty} E_t[\nu_{t+j}](x_t)$
- the unconditional covariance between the two is positive if λ is large enough.

伺 と く ヨ と く ヨ と … ヨ

Resolving the Paradox

- for the short premium, the precautionary saving effect (higher consumption variance causes investors to save more) dominates on average
- places an upper bound on λ
- for the long premium, the intertemporal substitution effect (higher consumption volatility implies higher consumption growth) dominates on average
- provides a lower bound on λ
- there is a range for λ such that both bounds are satisfied, thus resolving Engel's paradox.

伺 ト イ ヨ ト イ ヨ ト

Term structure of $\operatorname{Cov}(E_t[\rho_{t+j+1}], r_t^* - r_t)$

Figure: $\theta = 0.05$, $\sigma = 0.04$, $\varphi = 0.9$, $\gamma = 15$, $\lambda = 5$ and h = -20

Rui Chen, Ke Du, and Jun Liu CUFE, SWUFE, and UCSD AE/ Intertemporal Substitution, Precautionary Saving, and Currency I

- recursive utility
- stationary currency level
- both in closed form

< ∃ →

- We provide a risk based rational model to resolve Engel's paradox
- Our model is parsimonious model with stochastic volatility and variance in mean consumption growth
- The intertemporal substitution account for excess co-movement puzzle while the precautionary saving account for the forward premium puzzle
- Our results point to new features for asset pricing models