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Motivation

Many questions in economics hinge on the shape of the
market demand functions

What are the effects of a merger?

What is the pass-through of a tax?

What are the sources of firm market power?
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Example: tax pass-through

1 Estimate demand from data on quantities, prices and
covariates

2 Get firm marginal costs from data or supply & demand

3 Given costs, use supply & demand to get equilibrium after tax
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State of the art

Focus on

differentiated products

endogenous prices

The frontier is discrete choice with random coefficients (BLP)
Literature

Convenient, but arbitrary, parametric assumptions might drive
results Ilustration

Can we avoid these restrictions?
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This paper

Idea:

Minimize use of arbitrary restrictions

Impose constraints motivated by economics

To do so, I combine:

large datasets

economic theory

frontier econometric tools
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This paper

The approach is nonparametric

No distributional assumptions on unobservables

Relax most functional form restrictions

In addition, the model applies beyond discrete choice:

Complementarities

Consumer inattention

Continuous choices

Others
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Applications

Using grocery store data, estimate demand in two ways

standard mixed logit model

my approach

What is the pass-through of a tax?

For one product, I find steeper own-price elasticity function
⇒ pass-through is much lower (∼30% vs ∼90% of tax)

How much competition is internalized by multi-product firm?
“Portfolio effect” (Nevo, 2001)

Two approaches give similar results

Not with more restrictive mixed logit model ⇒ model selection
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Roadmap

1 General Demand Model

Model and identification

Nonparametric estimation

Monte Carlo simulations

2 Applications

BLP demand estimates

Nonparametric demand estimates

Counterfactual 1: Tax pass-through

Counterfactual 2: Effect of two-product retailer
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Model

J goods plus the outside option

s = (s1, ..., sJ): shares

p = (p1, ..., pJ): endogenous prices

ξ = (ξ1, ..., ξJ): product- or market-level unobservables

z = (z1, ..., zJ): excluded instruments for price

x =
(
x (1), x (2)): exogenous demand shifters, with

x (1) =
(

x (1)
1 , ..., x (1)

J

)

Nonparametric Demand Estimation in Differentiated Products Markets 9/47



Index Restriction

Consider the general demand system

s = σ (x , ξ, p)

I let δj = βjx (1)
j + ξj and require

s = σ
(
δ, p, x (2)

)
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Model subsumes discrete choice

This discrete choice model satisfies the index restriction

uij = αp,i pj + αδ,iδj + αx ,i x (2)
j + εij

δj = βjx (1)
j + ξj

No need to assume distributions for εij nor (αp,i , αδ,i , αx ,i )

uij need not be linear in pj , δj , x (2)
j
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Identification (Berry and Haile, 2014)

Assuming

Index restriction

Strict substitution under some transformation of demand

The instruments (x , z) shift (s, p) ‘enough’,

Berry and Haile (2014) show that

s = σ
(
δ, p, x (2)

)
is nonparametrically identified
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Flexibility on consumer behavior

The model is more general than discrete choice

Focus on demand vs utility

⇒ can be more agnostic about what consumers do

Can accommodate

Complements

Consumer inattention

Consumer loss aversion

Continuous choice and multiple discrete choices
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From Identification to Estimation

Berry and Haile (2014) focus on nonparametric identification

What could we learn about demand if we observed the entire
population of markets?

Leveraging the identification results, I address estimation and
inference

Can we estimate demand nonparametrically on datasets
available to economists?

Can we obtain informative confidence sets for quantities of
interest?

How can we test hypotheses on consumer behavior?

How do we choose among several parametric models?
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Nonparametric Estimation

sj = σj
(
δ, p, x (2)

)
j = 1, ..., J

Under identification assumptions,

x (1)
j + ξj = σ−1

j

(
s, p, x (2)

)
Also, we assume

E (ξj |x , z) = 0 a.s.

⇒ Approximate σ−1
j and project predicted residuals onto IVs
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Nonparametric Estimation

I approximate σ−1
j using the method of sieves

Basis functions: Bernstein polynomials
Bernstein polynomials

Easy to impose a number of economic constraints

I obtain standard errors based on recent results
(Chen and Pouzo, 2015; Chen and Christensen, 2018)
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Inference

Theorem 1

Let the demand system σ be identified. Let f be a scalar functional of σ−1 and
v̂T (f ) be a consistent estimator of the standard deviation of f

(
σ̂−1).

In addition, let Assumptions 1, 2, 3 and 4 hold. Then,

√
T
(
f
(
σ̂−1)− f

(
σ−1))

v̂T (f )
d−→ N (0, 1) .

Assumptions

Uses:

Confidence intervals

Hypothesis testing

Model selection
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Inference

Proofs follow Chen and Christensen (2018), but in my setting
there are multiple (J) equations and error terms

need to deal with correlation in the error terms

I provide low-level conditions for functionals of interest:

Price elasticities Assumptions

(Counterfactual) equilibrium prices Assumptions
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Curse of dimensionality

The functions σ−1
j have 2J arguments, plus extra covariates

Number of parameters grows with number of goods and
number of covariates

But

Assumptions based on economics help alleviate that

Large datasets (e.g. scanner data) are increasingly available

Several interesting markets are low-dimensional Examples
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Constraints

Exchangeability (Pakes, 1994; BLP) Exchangeability

Index restriction Index

No income effects Symmetry

Monotonicity M-Matrix

I do not impose all of them in simulations/application
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Computation

Estimation is based on minimizing a quadratic form in the
Bernstein coefficients

If constraints are convex, standard algorithms converge to
global minimizer

BLP objective is typically non-convex
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Monte Carlo Simulations

Given the same data generating process, I estimate demand
using

my approach

random coefficients logit

Then compare own- and cross-price elasticities

Show that

nonparametric approach works for reasonable sample sizes
(3,000)

approach is applicable beyond discrete choice
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Correctly-specified BLP
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Inattention

A fraction of consumers ignores good 1

The fraction of inattentive consumer increases with p1

Otherwise, same model as before
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Inattention
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Loss Aversion

uij = −αi pj−αloss(pj − pk) + xj + ξj + εij
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Loss Aversion
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Complements

Exogenous variables and prices are generated as above

Let
qj = 10 δj

p2
j pk

j = 1, 2; k 6= j

⇒ Good 1 and 2 are complements

Define

sj = qj
1 + q1 + q2

j = 1, 2

⇒ Strict substitution assumption X
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Complements
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Additional Simulations

Chi-square random coefficients Chi-Square

Smaller sample size T=500

Violation of index restriction Index Violation

Sensitivity to tuning parameter Sensitivity

J > 2 J > 2
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Roadmap

1 General Demand Model
Model and identification
Nonparametric estimation
Monte Carlo simulations

2 Applications
BLP demand estimates
Nonparametric demand estimates
Counterfactual 1: Tax pass-through
Counterfactual 2: Effect of two-product retailer
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Empirical Setting

I use scanner data from CA supermarkets

A market is a store/week

Look at sales of

non-organic strawberries (=1)

organic strawberries (=2)

other fruit (=0)

Assume retailer is a monopolist wrt strawberries
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Perishability simplifies framework
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Empirical Model

s1 = σ1
(
δstr , δorg , p0, p1, p2, x (2)

)
s2 = σ2

(
δstr , δorg , p0, p1, p2, x (2)

)
where

x (2) = Income

p0, p1, p2 = Prices

δstr , δorg = Quality indices

Estimation Details Fit Elasticities
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Exogenous Demand Shifters

δstr = β0,str − β1,str x (1)
str + ξstr

δorg = β0,org + β1,org x (1)
org + ξorg

where

x (1)
str is a proxy for richness of outside option

Captures substitution between inside and outside goods

x (1)
org is a proxy for taste for organic products

Captures substitution between the two inside goods

(ξstr , ξorg ) = Unobservables varying across markets
Microfoundation
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Endogenous Prices

I instrument for retail prices using wholesale spot prices

I also use retail prices of same products in other marketing
areas (Hausman IVs)

Valid if unobservable demand shocks are independent across
marketing areas, but retailer costs are not
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Price Patterns

1
2

3
4

5

0 10 20 30 40
Week

Retail Price Spot Price

Descriptive Stats First Stage
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BLP Model

For comparison, I also fit a logit model with a random
coefficient on price

I take a two-point distribution for the random coefficient

ui ,1 = β1 +
(
βp,i + β2x (2)

)
p1 + βp,0p0 + βpar

str x (1)
str + ξ1 + εi ,1

ui ,2 = β2 +
(
βp,i + β2x (2)

)
p2 + βp,0p0 + βpar

str x (1)
str + βpar

org x (1)
org + ξ2 + εi ,2
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BLP Estimates

Variable Type I Type II
Price −7.58

(0.07)
−89.85

(6.53)
Price×Income 0.89

(0.06)
Price other fruit 8.70

(0.23)
Other fruit −0.37

(0.01)
Taste for organic 0.08

(0.06)
Fraction of consumers 0.82

(0.00)
0.18
(0.00)
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Roadmap

1 General Demand Model
Model and identification
Nonparametric estimation
Monte Carlo simulations

2 Applications
BLP demand estimates
Nonparametric demand estimates
Counterfactual 1: Tax pass-through
Counterfactual 2: Effect of two-product retailer
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Counterfactual 1: Per-unit Tax

Per-unit tax equal to 25% of the price

Results depend on curvature of the demand function

The faster the elasticity increases with price, the lower the
pass-through
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Significant difference in pass-through for organic

NPD Mixed Logit
Non-organic 0.84

(0.17)
0.53

(5·10−3)
Organic 0.33

(0.23)
0.91

(5·10−4)

Table: Median changes in prices as a percentage of the tax
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Steeper own-price elasticity is consistent with lower
pass-through

3.8 4 4.2 4.4 4.6 4.8 5 5.2

Price

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
O

w
n 

pr
ic

e 
el

as
tic

ity
NPD estimate
NPD 95% CI
BLP estimate
BLP 95% CI

Figure: Estimated own-price elasticity function

Return Inattention
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Counterfactual 2: Portfolio Effect

In each market, one retailer sells both types of strawberries

Suppose there were two competing single-product retailers

How much lower would markups be?
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Portfolio Effect: Choice of parametric model matters

NPD MLog (I) MLog (II) MLog (III)
Non-organic 0.10

(3·10−3)
0.08

(1·10−3)
0.20

(8·10−4)
0.21

(2·10−3)
Organic 0.43

(6·10−3)
0.42

(2·10−3)
0.54

(9·10−4)
0.55

(1·10−3)

Table: Median decrease in prices as a percentage of markups
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Portfolio Effect: Choice of parametric model matters

NPD MLog (I) MLog (II) MLog (III)
Non-organic 0.10

(3·10−3)
0.08

(1·10−3)
0.20

(8·10−4)
0.21

(2·10−3)
Organic 0.43

(6·10−3)
0.42

(2·10−3)
0.54

(9·10−4)
0.55

(1·10−3)

Table: Median decrease in prices as a percentage of markups
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Conclusion

First nonparametric approach to estimate demand for
differentiated products

Approach is applicable to data available to economists

Flexibility matters for questions of interest
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Bernstein Polynomials

The k−th Bernstein polynomial of degree m is defined as

bk,m (u) ≡
(

m
k

)
uk (1− u)m−k

for u ∈ [0, 1] and k = 0, ...,m
A continuous univariate function may be approximated by

m∑
k=0

θkbk,m (u)

For continuous multivariate functions, we may take the tensor
product of the univariate Bernstein polynomials

Return
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Bernstein Polynomials

Theorem (Uniform Approximation)

Let g be a bounded real-valued function on [0, 1]N and define

Bm [g ] =
m∑

v1=0
· · ·

m∑
vN =0

g
(v1

m , · · · , vN
m

)
bv1,m (u1) · · · bvN ,m (uN)

Then,
sup

u∈[0,1]N
|Bm [g ] (u)− g (u) | → 0

as m→∞.

Return
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Assumptions for Theorem 1

Assumption 1

For all j , k ∈ J , j 6= k:
1 supw∈W E

(
ξ2

j |w
)
≤ σ2 <∞;

2 infw∈W E
(
ξ2

j |w
)
≥ σ2 > 0;

3 supw∈W E (|ξjξk ||w) ≤ σcov <∞ ;
4 supw∈W E

[
ξ2

j I
{∑J

i=1 |ξi | > ` (T )
}
|w
]

= o (1) for any
positive sequence ` (T )↗∞;

5 E
(
|ξj |2+γ(1)

)
<∞ for some γ(1) > 0;

6 E
(
|ξjξk |1+γ(2)

)
<∞ for some γ(2) > 0.

Return
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Assumptions for Theorem 1

Assumption 2

1 τMζ
√

M(log M)/T = o (1);
2 ζ(2+γ(1))/γ(1)√(log K)/T = o (1) and
ζ(1+γ(2))/γ(2)√(log K)/T = o (1), where γ(1), γ(2) > 0 are defined
in Assumption 1;

3 K � M.

Assumption 3

The basis used for the instrument spaces is the same across all
goods, i.e. Kj = Kk and a(j)

Kj
(·) = a(k)

Kk
(·) for all j , k ∈ J .

Return
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Assumptions for Theorem 1

Assumption 4
Let HT ⊂ H be a sequence of neighborhoods of h0 with ĥ, h̃ ∈ HT wpa1 and assume
vT (f ) > 0 for every T . Further, assume that:

1 v 7→ Df (h0) [v ] is a linear functional and there exists α with |α| ≥ 0 s.t.
|Df (h0) [h − h0]| . ||∂αh − ∂αh0||∞ for all h ∈ HT ;

2 There are α1, α2 with |α1|, |α2| ≥ 0 s.t.

1

∣∣∣∣∣f (
ĥ
)
− f (h0)−Df (h0) [ĥ−h0]

∣∣∣∣∣ . ||∂α1 ĥ−∂α1 h0||∞||∂α2 ĥ−∂α2 h0||∞;

2
√

T
σT (f )

(
||∂α1 ĥ − ∂α1 h0||∞||∂α2 ĥ − ∂α2 h0||∞ + ||∂αh̃ − ∂αh0||∞

)
=

Op (ηT ) for a nonnegative sequence ηT such that ηT = o (1);

3 1
vT (f )

∣∣∣∣∣∣ (Df
(

ĥ
)

[ψM ]′ − Df (h0) [ψM ]′
)(

G−1/2
A S

)−
l

∣∣∣∣∣∣ = op (1).

Return
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Elasticity Functional

Assumption 5
1 P has bounded support and (P, S) have densities bounded away from 0

and ∞;
2 The basis used for both the sieve space and the instrument space is

tensor-product Bernstein polynomials. Further, for the sieve space, the
univariate Bernstein polynomials all have the same degree M1/4;

3 h0 = [h0,1, h0,2] where h0,1 and h0,2 belong to the Hölder ball of
smoothness r ≥ 4 and finite radius L, and the order of the tensor-product
Bernstein polynomials used for the sieve space is greater than r ;

4 M
2+γ(1)

2γ(1)
√

log T
T = o (1) and M

1+γ(2)

2γ(2)
√

log T
T = o (1);

5
√

T
vT (fε) ×

(
M

3−r
4 + τ 2

MM9/4 log M
T

)
= o (1).

Return
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Equilibrium Price Functional

Assumption 6
1 P has bounded support and (P, S) have densities bounded away from 0

and ∞;
2 The basis used for both the sieve space and the instrument space is

tensor-product Bernstein polynomials. Further, for the sieve space, the
univariate Bernstein polynomials all have the same degree M1/4;

3 h0 = [h0,1, h0,2] where h0,1 and h0,2 belong to the Hölder ball of
smoothness r ≥ 5 and finite radius L, and the order of the tensor-product
Bernstein polynomials used for the sieve space is greater than r ;

4 M
2+γ(1)

2γ(1)
√

log T
T = o (1) and M

1+γ(2)

2γ(2)
√

log T
T = o (1);

5
√

T
vT (fp1 ) ×

(
M

4−r
4 + τ 2

MM9/4 log M
T

)
= o (1).

Return
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Low-dimensional Settings

International economics (Adao, Costinot and Donaldson, 2017)

Market for news (Gentzkow, 2007)

US presidential elections

Return
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Exchangeability

Given a permutation π : {1, ..., J} → {1, ..., J}, assume that ∀j

σj
(
δ, p, x (2)

)
= σπ(j)

(
δπ(1), ..., δπ(J), pπ(1), ..., pπ(J), x

(2)
π(1), ..., x

(2)
π(J)

)

In words, only the products’ attributes—not their
names—matter
E.g. for J = 3 and no x (2),

σ1
(
δ1, δ, δ, p1, p, p

)
= σ1

(
δ1, δ, δ, p1, p, p

)
Implicit in most IO demand models
Systematic differences between goods can be captured by
product fixed effects

Return
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Exchangeability

This assumption greatly reduces the number of parameters to
be estimated. E.g. for univariate polynomials of degree 2 (and
no x (2)):

J exchangeability no exchangeability
3 324 729
4 900 6,561
5 2,025 59,049

10 27,225 3.4bn

It can be shown that exchangeability of σ implies
exchangeability of σ−1

Exchangeability of σ−1 can be imposed through linear
restrictions on the Bernstein coefficients

Return
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Index Restriction

x (2) enters demand flexibly

s = σ
(
δ, p, x (2)

)
δj = βjx (1)

j + ξj

x (2) enters demand through δ ⇒ number of parameters drops

s = σ (δ, p)
δj = β

(1)
j x (1)

j + β
(2)
j x (2)

j + ξj

Same logic applies to p

Return
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M−Matrix Properties

Berry, Gandhi and Haile (2013) show that the Jacobian of the
demand function, Jδσ is an M−matrix
This encapsulates restrictions from economic theory

e.g. shares increase (decrease) in own (competitors’) δ
By the implicit function theorem,

Js
σ−1 =

[
Jδσ
]−1

i.e. Js
σ−1 is an inverse M−matrix

There is a large literature in linear algebra on properties of
inverse M−matrices
A number of them can be imposed through linear restrictions

Return
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No Income Effects

With no income effects, then Hicksian and Walrasian demands
coincide
⇒ Jp

σ is symmetric

By the implicit function theorem,

Jp
σ = −

[
Js
σ−1
]−1 Jp

σ−1

These are nonlinear constraints ⇒ Use KNITRO
Return
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Correctly-specified BLP

Two goods with utility

uij = −αi pj + xj + ξj + εij

Plus an outside option with utility ui0 = εi0

αi ∼ N
(
1, 0.152)

εij is extreme value
xj ∼ U [0, 2] independently across j
ξj ∼ N

(
1, 0.152)

zj ∼ U [0, 1]
pj = 2 (zj + ηj) + ξj , where ηj ∼ U [0, 0.1]
Constraints: symmetry, M−matrix properties and
exchangeability

Return
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Chi-Square Random Coefficients
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Complements: T=500
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Violation of index restriction: st.dev . = 0.10
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Violation of index restriction: st.dev . = 0.50
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Violation of index restriction: st.dev . = 1.50
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Sensitivity: complements, degree=20
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Sensitivity: complements, degree=16
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Sensitivity: complements, degree=12
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Sensitivity: complements, degree=8
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Sensitivity: complements, degree=6
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Sensitivity: complements, degree=4
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Mixed Logit: J = 3
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Mixed Logit: J = 5
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Mixed Logit: J = 7

1 1.5 2 2.5 3

Price

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

O
w

n
 E

la
s
ti
c
it
y

True
NPD 95% CI

Figure: Own-price

1 1.5 2 2.5 3

Price

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
ro

s
s
 E

la
s
ti
c
it
y

True
NPD 95% CI

Figure: Cross-price

Return

Nonparametric Demand Estimation in Differentiated Products Markets 32/40



Nonparametric Estimation

Each of the functions to be estimated has six arguments ⇒ a
lot of parameters

I impose M−matrix restrictions on the Jacobian

Overall, I have 648 parameters

The number of parameters could be reduced by including
income and/or prices in the linear indices δ

Fit

Return
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Fit

NPD Mixed Logit
MSE 0.93 2.38

Table: Two-Fold Cross-Validation Results
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Median Nonparametric Elasticities

Non-organic Organic
Own-price elasticity −1.402

(0.032)
−5.503
(0.672)

Cross-price elasticity 0.699
(0.044)

1.097
(0.177)
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Micro-foundation 1: discrete choice

ui1 = θstrδ
∗
str + αi p1 + εi1

ui2 = θstrδ
∗
str + θorgδ

∗
org + αi p2 + εi2

ui0 = θ0,str x (1)
str + θ0,orgδ

∗
org + αi p0 + εi0

where

δ∗str = ξstr

δ∗org = θ1,org x (1)
org + ξorg
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Micro-foundation 2: continuous choice

max
q0,q1,q2

qd0εi,0
0 qd1εi,1

1 qd2εi,2
2

s.t. p0q0 + p1q1 + p2q2 ≤ y inc
i

where

d0 = exp
{
θ0,orgδ

∗
org + θ0,str x (1)

str

}
d1 = exp {θstrδ

∗
str}

d2 = exp
{
θstrδ

∗
str + θorgδ

∗
org
}
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Descriptive Statistics

Mean Median Min Max
Quantity non-organic 735.33 581.00 6.00 5,729.00
Quantity organic 128.91 78.00 1.00 2,647.00
Price non-organic 2.97 2.89 0.93 4.99
Price organic 4.26 3.99 1.24 6.99
Price other fruit 3.95 3.80 1.30 13.88
Hausman non-organic 3.00 2.98 2.09 4.05
Hausman organic 4.28 4.07 2.95 5.50
Hausman other fruit 4.50 3.79 1.19 13.33
Spot non-organic 1.46 1.35 0.99 2.32
Spot organic 2.38 2.17 1.25 4.88
Quantity other fruit (per capita) 0.83 0.82 0.60 1.08
Share organic lettuce 0.08 0.06 0.00 0.41
Income 82.54 72.61 33.44 405.09
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First-Stage Regressions

Non-organic Organic
Price Share Price Share

Spot price (own) 0.12∗∗ −0.68∗∗ 0.35∗∗ −0.26∗∗
Spot price (other) 0.04∗∗ 0.10∗∗ −0.21∗∗ 0.22∗∗
Hausman (own) 0.70∗∗ −1.30∗∗ 0.46∗∗ −0.19∗∗
Hausman (other) −0.01 0.25∗∗ 0.13∗∗ 0.22∗∗
Hausman (out) −0.01∗∗ 0.11∗∗ −0.10∗∗ 0.04∗∗
Availability other fruit −0.01∗∗ −0.07∗∗ −0.02∗∗ −0.01∗∗
Share organic lettuce 0.08∗∗ −0.20∗∗ −0.01∗∗ 0.10∗∗
Income −0.02∗∗ 0.00∗∗ 0.01∗∗ 0.04∗∗
R2 0.46 0.27 0.52 0.16
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Inattention
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