Learning Where to Drill

Drilling Decisions and Geological Quality in the Haynesville Shale

Mark Agerton

UC Davis
Agricultural & Resource Economics

5 January 2019 IAEE/ASSA Session

Increasing output per well in shale

- ► Learning *how* to drill better
 - Firms learn about the production process
 - Learning makes all locations produce more
 - Technology vanquishes Malthus

Increasing output per well in shale

- ► Learning *how* to drill better
 - Firms learn about the production process
 - Learning makes all locations produce more
 - Technology vanquishes Malthus
- Changing where we drill
 - Today we focus on locations with better geology...
 - ...but tomorrow we're stuck with worse locations
 - Wells can't all be above average
- ► Fracking's Secret Problem—Oil Wells Aren't Producing as Much as Forecast (WSJ: Jan 2, 2019)

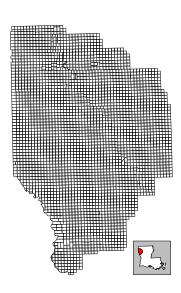
Where firms choose to drill matters

- Production data doesn't come from random wells
- Firms are more likely to drill better geology
 - 1) We can't observe what firms believe about geology
 - 2) How firms choose where to drill changes over time
 - a) Prices
 - b) Mineral lease expirations
 - c) Learning about geology
- "Selection on unobservables"
- Ignoring selection & extrapolating past productivity to future implies
 - 1) Overestimation of technology
 - 2) Overestimation of supply
- Accounting for geology in Covert (2015), Montgomery and O'Sullivan (2017), Smith (2017), and Smith and Lee (2017)

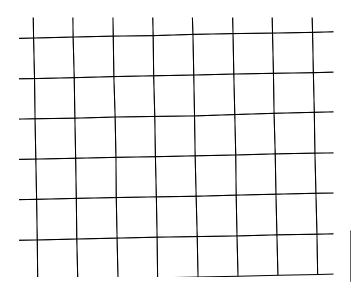
Research questions

- ▶ Are firms learning about where to drill, not just how to drill?
- Once firms hold leases by production, do they switch to better locations?
- ► In short run, do learning & lease expirations cause increases in aggregate output/well?
- ▶ In the long, run will depletion of sweet-spots cause decreases?

- ▶ Goal: recover firms' information about geological quality
- ► Challenge: it's not observable

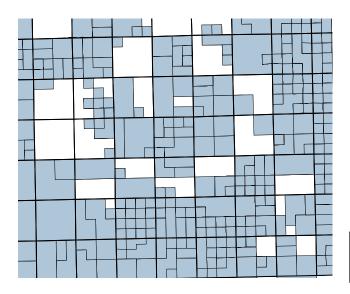

- ▶ Goal: recover firms' information about geological quality
- ► Challenge: it's not observable
- Drilling
 - Rust (1987) dynamic discrete choice: # wells to drill/quarter
 - Learning about quality
 - Structure of mineral lease

- ▶ Goal: recover firms' information about geological quality
- ► Challenge: it's not observable
- Drilling
 - Rust (1987) dynamic discrete choice: # wells to drill/quarter
 - Learning about quality
 - Structure of mineral lease
- ► Royalty rates
 - Distort drilling decision
 - Correlated with quality

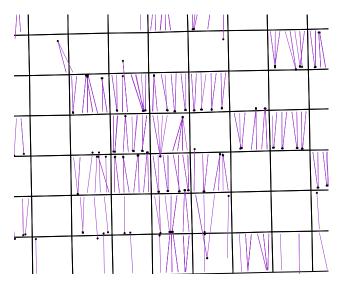

- ▶ Goal: recover firms' information about geological quality
- ► Challenge: it's not observable
- Drilling
 - Rust (1987) dynamic discrete choice: # wells to drill/quarter
 - Learning about quality
 - Structure of mineral lease
- ► Royalty rates
 - Distort drilling decision
 - Correlated with quality
- Production
 - Multiple wells measure unobserved quality

Unit of observation: 1 sq mi section

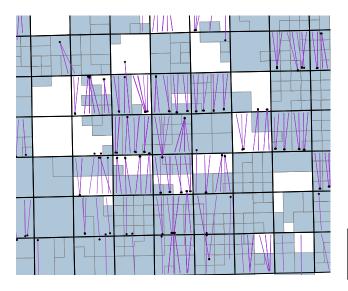
- ► Louisiana's Haynesville shale (2003–2016)
- Unit of observation: 1 sq. mile section
- All parties in a section must participate in each well
- Reveals which wells are not drilled



Data: Sections

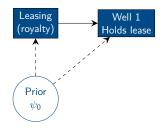


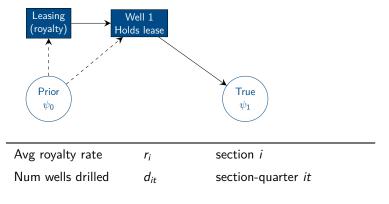
Data: Leases

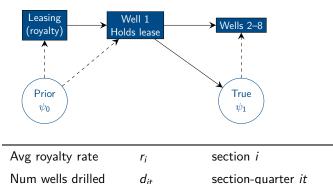


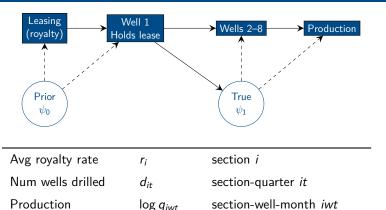
Data: Wells & Production

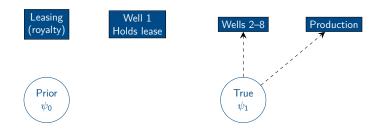
Data: Complete investment history



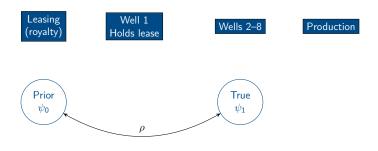

Avg royalty rate


 r_i


section i

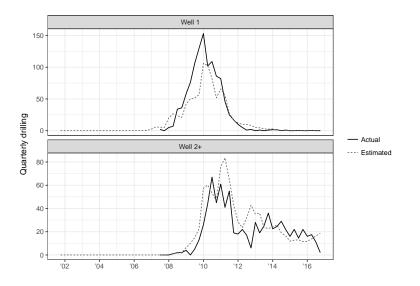


Avg royalty rate r_i section iNum wells drilled d_{it} section-quarter it

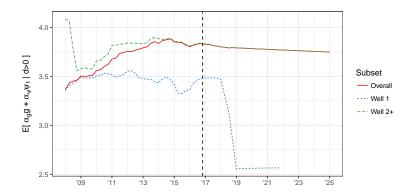




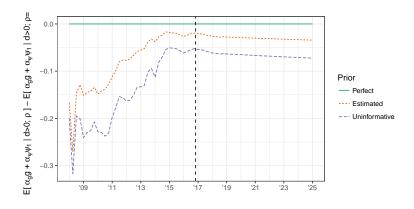
 \blacktriangleright Identification: ψ_1 affects drilling & production in same way

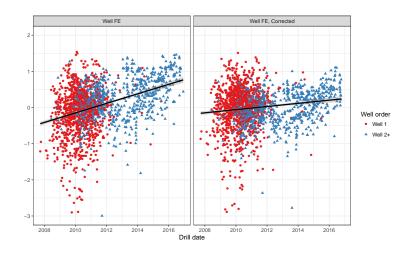


- ▶ Identification: of ρ :
 - 1) Correlation of royalty, acceleration of drilling, output
 - 2) Dispersion of Well 1 timing



- ▶ Identification: of ρ :
 - $\boldsymbol{1}$) Correlation of royalty, acceleration of drilling, output
 - 2) Dispersion of Well 1 timing
 - 3) $\hat{\rho} = 0.66$


Model fit: Quarterly drilling rate


Simulation: Well 1 vs Wells 2–8 drives productivity

Simulation: Learning drives productivity

Well FE over time: With & without controls

Conclusion

- ► What's new here
 - Dynamic model of learning over space
 - Aggregate implications of firms choosing where to drill
 - Exploit regulatory structure in model, data

Conclusion

- What's new here
 - Dynamic model of learning over space
 - Aggregate implications of firms choosing where to drill
 - Exploit regulatory structure in model, data
- Preliminary findings
 - Where firms drill matters for aggregate output/well
 - Firms are learning about where to drill, not just how to drill
 - Rising output per well can be explained by
 - Learning about geology (15–20%)
 - Lease expirations
 - Falling prices

Thank you!

Mark Agerton

mjagerton@ucdavis.edu
 markagerton.com