Estimating the Optimal Inflation Target from Micro Price Data

Klaus Adam
University of Oxford and Nuffield College

Henning Weber
Deutsche Bundesbank

January 2019

1 The opinions expressed in this presentation are those of the authors and do not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.
Introduction

- Fresh look at micro price data underlying the construction of CPI

 Normative inference: optimal inflation target (OIT)

- Construct a rich sticky price model with a product life-cycle

- OIT in the model depends on features of product life-cycle

- Bring model to U.K. micro data: Office of National Statistics (ONS)
Show how to estimate **optimal inflation target** from micro price data:

- to first-order accuracy: directly and in a parameter-free way

- fully nonlinear approach: requires additional parametric assumptions (demand elasticities, price stickiness, etc.)

- estimation works in a setting with sticky prices and historically sub-optimal monetary policy
Introduction

A. Optimal Inflation Rate, Baseline Estimate

Mean estimate and +/- 2 std. dev. error bands

Optimal Inflation

99% Conf. Bands
Optimal inflation target in the model:

Minimizes welfare consequences of relative price distortions
Optimal inflation target in the model:

Minimizes welfare consequences of relative price distortions

Abstract from other factors affecting OITs:

Higher optimal target:
- Lower bound constraints on nominal rates
 (Adam (2006), Gorodnichenko et al. (2012))
- Downward nominal wage rigidity, e.g., Benigno (2011)

Lower optimal target:
- Cash distortions, e.g., Kahn, King, Wolman (2003), Schmitt-Grohé, Uribe (2011)
- Lack of commitment, e.g., Rogoff (1985)
Structure of the Presentation

1. Key Elements of the Price Setting Model
2. Optimal Inflation Target: Theory
3. The UK Micro Price Data
4. Optimal Inflation Target: Estimation Results
Structure of the Presentation

1. Key Elements of the Price Setting Model
2. Optimal Inflation Target: Theory
3. The U.K. Micro Price Data
4. Optimal Inflation Target: Estimation Results
Price Setting Model

- Representative consumer, growth-consistent preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{[C_t V(L_t)]^{1-\sigma} - 1}{1 - \sigma} \right), \]

Expenditure items are a Dixit-Stiglitz aggregate of individual goods

\[C_{zt} = Z_t \prod_{z=1}^{\infty} (C_{zt})^{\psi_{zt}}, \] with

\[Z_t \sum_{z=1}^{\infty} \psi_{zt} = 1, \] with

\[Q_{jzt} \] quality of product \(j \) in item \(z \) at time \(t \).

\[eC_{jzt} \] physical or not quality-adjusted units.
Price Setting Model

- Representative consumer, growth-consistent preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{[C_t V(L_t)]^{1-\sigma} - 1}{1 - \sigma} \right), \]

- \(Z_t \) expenditure items with expenditure weight \(\psi_{zt} \):

\[C_t = \prod_{z=1}^{Z_t} (C_{zt})^{\psi_{zt}}, \text{ with } \sum_{z=1}^{Z_t} \psi_{zt} = 1 \]
Price Setting Model

- Representative consumer, growth-consistent preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{[C_t V(L_t)]^{1-\sigma} - 1}{1 - \sigma} \right), \]

- \(Z_t \) expenditure items with expenditure weight \(\psi_{zt} \):

\[C_t = \prod_{z=1}^{Z_t} (C_{zt})^{\psi_{zt}}, \text{ with } \sum_{z=1}^{Z_t} \psi_{zt} = 1 \]

- Expenditure items are a Dixit-Stiglitz aggregate of individual goods

\[C_{zt} = \left(\int_0^1 \left(Q_{jzt} \tilde{C}_{jzt} \right)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}}, \]

\(Q_{jzt} \): quality of product \(j \) in item \(z \) at time \(t \).
\(\tilde{C}_{jzt} \): physical or not quality-adjusted units
Price Setting Model: Turnover

Two levels at which turnover takes place in the economy

- **Item level:** items exit/new items enter/expenditure weights change
 Example: CD-players drop out, get replaced by flash-drive devices

- **Product level:** constant entry and exit of products
 Example: particular flash-drive model exits, a new model enters
Item-level turnover:

- Captures slow moving change in consumption basket:

 Approx. 5% of items enter/exit per year
Item-level turnover:

- Captures slow moving change in consumption basket:

 Approx. 5% of items enter/exit per year

- We do *not* explicitly model item change:

 Theory results are for given items & weights: $Z_t = Z, \psi_{zt} = \psi_z$
Item-level turnover:

- Captures slow moving change in consumption basket:

 Approx. 5% of items enter/exit per year

- We do *not* explicitly model item change:

 Theory results are for given items & weights: $Z_t = Z, \psi_{zt} = \psi_z$

- Empirical application: uses $(Z_t, \{\psi_{zt}\}_{z=1}^{Z_t})$ from ONS
Item-level turnover:

- Captures slow moving change in consumption basket:

 Approx. 5% of items enter/exit per year

- We do *not* explicitly model item change:

 Theory results are for given items & weights: $Z_t = Z, \psi_{zt} = \psi_z$

- Empirical application: uses $(Z_t, \{\psi_{zt}\}_{z=1}^{Z_t})$ from ONS

- Model-based interpretation of item turnover:
 changing consumer tastes (other interpretations possible...)

Adam & Weber (University of Oxford Deutsche Bundesbank) - Optimal Inflation Target - January 2019
Product-level turnover:

- High rate of product entry and exit:

 Approx. 8% of products enter/exit per month
Product-level turnover:

- High rate of product entry and exit:

 Approx. 8% of products enter/exit per month

- Exogenous exit and entry probability: \(\delta_z \in (0, 1) \)
Product-level turnover:

- High rate of product entry and exit:
 - Approx. 8% of products enter/exit per month
- Exogenous exit and entry probability: $\delta_z \in (0, 1)$
- Exiting products replaced by new product:
 for simplicity assign same product index $j \in [0, 1]$
Price Setting Model: Turnover

Product-level turnover:

- High rate of product entry and exit:

 Approx. 8% of products enter/exit per month

- Exogenous exit and entry probability: \(\delta_z \in (0, 1) \)

- Exiting products replaced by new product:
 for simplicity assign same product index \(j \in [0, 1] \)

- Interpretation of product turnover: changing consumer tastes
Product-level turnover:

- High rate of product entry and exit:
 - Approx. 8% of products enter/exit per month
- Exogenous exit and entry probability: $\delta_z \in (0, 1)$
- Exiting products replaced by new product:
 for simplicity assign same product index $j \in [0, 1]$
- Interpretation of product turnover: changing consumer tastes
- Alternatively:
Product-level turnover:

- High rate of product entry and exit:

 Approx. 8% of products enter/exit per month

- Exogenous exit and entry probability: $\delta_z \in (0, 1)$

- Exiting products replaced by new product:
 for simplicity assign same product index $j \in [0, 1]$

- Interpretation of product turnover: changing consumer tastes

- Alternatively:

 - negative productivity shock to old producer
Product-level turnover:

- High rate of product entry and exit:
 - Approx. 8% of products enter/exit per month
- Exogenous exit and entry probability: $\delta_z \in (0, 1)$
- Exiting products replaced by new product:
 for simplicity assign same product index $j \in [0, 1]$
- Interpretation of product turnover: changing consumer tastes
- Alternatively:
 - negative productivity shock to old producer
 - new product in quality-adjusted terms cheaper & perf. substitute
Model features two types of flexible fundamental dynamics:

- **Quality growth dynamics**: evolution of quality of new products
- **Productivity growth dynamics**: evolution of productivity over time

Both dynamics are item specific: allowed to differ across z!
Product quality dynamics (in item z):

For product j entering in time t:

$$Q_{jzt} = Q_{zt} \cdot \varepsilon_{jzt}$$

- **common time-trend**
- **idiosyncratic**
Product quality dynamics (in item z):

- For product j entering in time t:

$$Q_{jzt} = Q_{zt} \cdot \varepsilon_{jzt}$$

 - common time-trend
 - idiosyncratic

- Following entry: product quality constant over product lifetime
 new qualities = new products
Price Setting Model: Quality Dynamics

Product quality dynamics (in item z):

- For product j entering in time t:
 \[Q_{jzt} = Q_{zt} \cdot \epsilon_{jzt} \]

 - Common time-trend Q_{zt}
 - Idiosyncratic ϵ_{jzt}

- Following entry: product quality constant over product lifetime
 new qualities = new products

- Idiosyncratic quality: $\epsilon_{jzt} \sim iiQ_z$ with $E\epsilon_{jzt}^Q = 1$.
Price Setting Model: Quality Dynamics

Product quality dynamics (in item z):

- For product j entering in time t:
 \[
 Q_{jzt} = Q_{zt} \cdot \varepsilon_{jzt}
 \]
 - common time-trend
 - idiosyncratic quality:

- Following entry: product quality constant over product lifetime
 - new qualities $=$ new products

- Idiosyncratic quality: $\varepsilon_{jzt} \sim iiQ_z$ with $E \varepsilon_{jzt}^Q = 1$.

- The common time-trend evolves according to
 \[
 Q_{zt} = q_{zt} Q_{zt-1} \text{ with } q_{zt} = q_z \varepsilon_{zt}^q,
 \]
 where $E \varepsilon_{zt}^q = 1$ and
 \[
 q_z : \text{mean quality growth for products in item } z
 \]
Price Setting Model: Productivity Dynamics

Product output (in physical units):

$$\tilde{Y}_{jzt} = A_{zt} \cdot G_{jzt} \cdot (K_{zjt})^{1−\frac{1}{\phi}} (L_{zjt})^{\frac{1}{\phi}}$$

- General TFP (A_{zt})
- Product-specific TFP (G_{jzt})
Price Setting Model: Productivity Dynamics

- Product output (in physical units):

\[
\tilde{Y}_{jzt} = \underbrace{A_{zt}}_{\text{General TFP}} \cdot \underbrace{G_{jzt}}_{\text{Product-specific TFP}} \cdot (K_{zjt})^{1-\frac{1}{\phi}} (L_{zjt})^{\frac{1}{\phi}}
\]

- General TFP:

\[
A_{zt} = a_{zt} A_{zt-1}, \quad \text{with} \quad a_{zt} = a_z \epsilon_{zt}^a,
\]
Price Setting Model: Productivity Dynamics

- Product output (in physical units):

\[\tilde{Y}_{jzt} = \sqrt{A_{zt}} \cdot G_{jzt} \cdot (K_{zjt})^{1-\frac{1}{\phi}} (L_{zjt})^{\frac{1}{\phi}} \]

- General TFP:

\[A_{zt} = a_{zt} A_{zt-1}, \quad \text{with} \quad a_{zt} = a_z \epsilon_{zt}^a, \]

- Product specific TFP:

 - random draw at time of product entry \(t \) : \(G_{jzt} \sim iiG_z \)
 - experience accumulation over the product life:

\[G_{jzt} = g_{zt} G_{jzt-1} \quad \text{with} \quad g_{zt} = g_z \epsilon_{zt}^g \]

\(g_z \): mean experience product growth for products in item \(z \)
Model with Calvo-type price setting frictions at the product level

- At time of product entry: firms can freely choose product price
- Subsequently: *item-specific* stickiness $\alpha_z \in [0, 1)$
Can augment Calvo model with "temporary price" adjustments/sales (Kehoe and Midrigan (2015)):

- Calvo price is the "list price" or "regular price"
- Each period: prob. $\alpha_T \in (0, 1)$ to set a temporary price for one period
- Optimal temporary price: flex price

Largely abstract from temporary prices in presentation
Price Setting Model: Quality-Adjusted Prices

- Quality-adjusted product price

\[P_{jzt} = \frac{\tilde{P}_{jzt}}{Q_{jzt}} \]

\(\tilde{P}_{jzt} \): price per physical unit

- In line with ONS, quality-adjusted price indices

Item Price Index

\[P_{zt} = \left(\int_0^1 \left(\frac{\tilde{P}_{jzt}}{Q_{jzt}} \right)^{1-\theta} \, dj \right)^{\frac{1}{1-\theta}} \]

General Price Index

\[P_t = \prod_{z=1}^{Z_t} (P_{zt})^{\psi_{zt}} \]

- Optimal inflation target is for the quality-adjusted price index!
Optimal (quality-adjusted) reset price P^{*}_{jzt}:

$$\frac{P^{*}_{jzt}}{P_{zt}} \left(\frac{Q_{jzt-sjt} G_{jzt}}{Q_{zt}} \right) = \left(\frac{\theta}{\theta - 1} \frac{1}{1 + \tau} \right) \frac{N_{zt}}{D_{zt}} \frac{P_{t}}{P_{zt}},$$

N_{zt}, D_{zt} are discounted expected marginal revenues and costs.
We have

\[N_{zt} = \frac{MC_t}{P_t A_{zt} Q_{zt}} + E_t \alpha_t (1 - \delta_t) \Omega_{t,t+1} Y_{zt+1} \left(\frac{P_{zt+1}}{P_{zt}} \right)^\theta q_{zt+1} g_{zt+1} N_{zt+1} \]

\[D_{zt} = 1 + \alpha_t (1 - \delta_t) E_t \Omega_{t,t+1} Y_{zt+1} P_t \left(\frac{P_{zt+1}}{P_{zt}} \right)^\theta D_{zt+1}. \]

\(MC_t \): nominal marginal costs of production
\(\Omega_{t,t+1} \): stochastic discount factor
\(Y_{zt} \): item-level output (in constant quality units), defined as:

\[Y_{zt} = \left(\int_0^1 \left(Q_{jzt} \tilde{Y}_{jzt} \right)^{\frac{\theta-1}{\theta}} \, dj \right)^{\frac{\theta}{\theta-1}} \]
Structure of the Presentation

1. Key Elements of the Price Setting Model
2. Optimal Inflation Target: Theory
3. The U.K. Micro Price Data
4. Optimal Inflation Target: Estimation Results
Derive closed-form results for the optimal steady-state inflation rate.

Interpret optimal steady-state inflation = optimal inflation target

Aggregate shocks:
cause only temporary deviation of opt. inflation from OIT

Changing item structure \implies changes in OIT over time
A steady state is a situation with a fixed set of items \(Z_t = Z \), constant item-weights \(\psi_{zt} = \psi_z \), no item-level disturbances \((g_{zt} = g_z, q_{zt} = q_z, a_{zt} = a_z) \), and a constant (potentially suboptimal) inflation rate \(\Pi \).

The following idiosyncratic shocks continue to operate in a steady state:

- product entry and exit shocks
- shocks to price adjustment opportunities, and
- initial shocks to product quality & productivity, as implied by \(Q_z \) and \(G_z \).
Theorem

Assume an efficient output subsidy \(\theta / ((1 - \tau)(\theta - 1)) = 1 \) and consider the limit \(\beta(\gamma)^{1-\sigma} \to 1 \), where \(\gamma \) is the growth trend of the aggregate economy. The inflation rate \(\Pi^* \) that maximizes steady state utility is

\[
\Pi^* = \sum_{z=1}^{Z} \omega_z \left(\frac{g_z \gamma_z}{q_z \gamma} \right),
\]

where \(\gamma_z / \gamma = a_z q_z / \prod_{z=1}^{Z} (a_z q_z)^{\psi_z} \) and the weights \(\omega_z \geq 0 \) are given by

\[
\omega_z = \frac{\tilde{\omega}_z}{\sum_{z=1}^{Z} \tilde{\omega}_z}, \quad \text{where}
\]

\[
\tilde{\omega}_z = \frac{\psi_z \theta \alpha_z (1 - \delta_z) (\gamma / \gamma_z \Pi^*)^{\theta} (q_z / g_z)}{\left[1 - \alpha_z (1 - \delta_z) (\gamma / \gamma_z \Pi^*)^{\theta} q_z / g_z \right]} \left[1 - \alpha_z (1 - \delta_z) (\gamma / \gamma_z \Pi^*)^{\theta-1} \right].
\]
Generalizes Adam and Weber (AER, forthcoming) to a setting with item and product-level heterogeneity.

Unlike in earlier work: optimal inflation rate ceases to implement efficient relative prices.

Each item \(z \in Z \) has its own optimal inflation rate \(\Pi^*_z = g_z / q_z \).

Weights \(\omega_z \) and relative growth rates \(\gamma_z / \gamma \) determine how to optimally trade off between items.

Optimal weights \(\omega_z \) not easy to interpret....
Corollary

To a first-order approximation, the optimal steady-state inflation rate is

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left(\frac{g_z \gamma_z}{q_z \gamma} \right),$$

(3)

where the approximation has been taken around a point, in which $\frac{g_z \gamma_z}{q_z \gamma}$ and $\alpha_z (1 - \delta_z) (\gamma / \gamma_z)^{\theta-1}$ are constant across sectors $z = 1, \ldots, Z$.

- To first order: weights are simply ONS expenditure weights ψ_z!
- Inflation rates identify $\gamma_z / \gamma = \frac{P / P_{-1}}{P_z / P_{z,-1}}$
- Remains to identify g_z / q_z: can estimate from micro data
Proposition

Consider a steady state with (possibly suboptimal) inflation. In price adjustment periods, the optimal reset price P^*_{jzt} satisfies

$$\ln \frac{P^*_{jzt}}{P_{zt}} = c_{jz} - \ln \left(\frac{g_z}{q_z} \right) \cdot s_{jzt}.$$

s_{jzt} : age of product j in item z

c_{jz} : product-item-specific intercept

- $g_z > 1$: experience accumulation in productivity \Rightarrow optimal relative price falls over product lifetime

- $q_z > 1$: newer products higher quality, in constant-quality terms their prices are lower \Rightarrow optimal relative price rises
Economic insight:

- trend in relative reset prices \(\frac{g_z}{q_z} \) is the trend under flexible prices!

- sticky prices lead only to \textit{temporary deviations} from the relative price trend under flexible prices

- Not special to the Calvo setup & equally true for menu-cost models: sS-bands limit price deviation from flex-price trend
Optimal Inflation Rate

- Can estimate the relative price trend using

\[\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \epsilon_{jzt} \]

\(\epsilon_{jzt} \): idiosyncratic price deviations due to price stickiness

(with aggregate shocks may also capture these)
Can estimate the relative price trend using

\[\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt} \]

\(\varepsilon_{jzt} \): idiosyncratic price deviations due to price stickiness

(with aggregate shocks may also capture these)

Estimate one trend \(\frac{g_z}{q_z} \) for each item \(z \), then aggregate according to

\[\Pi^* = \sum_{z=1}^{Z} \psi_z \left(\frac{g_z \gamma_z}{q_z \gamma} \right) \]
Can estimate the relative price trend using

\[\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt} \]

\(\varepsilon_{jzt} \): idiosyncratic price deviations due to price stickiness

(with aggregate shocks may also capture these)

Estimate one trend \(\frac{g_z}{q_z} \) for each item \(z \), then aggregate according to

\[\Pi^* = \sum_{z=1}^{Z} \psi_z \left(\frac{g_z}{q_z} \gamma_z \right) \]

Use ONS item composition & weights at any time \(t \)
Can estimate the relative price trend using

$$\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt}$$

ε_{jzt}: idiosyncratic price deviations due to price stickiness

(with aggregate shocks may also capture these)

Estimate one trend $\frac{g_z}{q_z}$ for each item z, then aggregate according to

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left(\frac{g_z \gamma_z}{q_z \gamma} \right)$$

Use ONS item composition & weights at any time t

Get (slowly) time-varying inflation target Π^* as items (slowly) change
Structure of the Presentation

1. Key Elements of the Price Setting Model
2. Optimal Inflation Target: Theory
3. The U.K. Micro Price Data
4. Optimal Inflation Target: Estimation Results
U.K. Micro Price Data

- Monthly data with approx. 29m price observations
- Not all products uniquely identified: ONS does not disclose complete location information
- Eliminate not uniquely identified price quotes: leaves 24.5m prices
- Some price quotes considered "invalid" by ONS for other reasons: leaves 22.8 million observations
- Split product price series at ONS substitutions flags or at observation gaps to insure we follow the same product over time
Table: Basic Data Statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td># price quotes in raw data</td>
<td>28,995,064</td>
</tr>
<tr>
<td># items</td>
<td>1,233</td>
</tr>
<tr>
<td># regions</td>
<td>13</td>
</tr>
<tr>
<td># shop codes</td>
<td>2,770</td>
</tr>
<tr>
<td># product identifiers</td>
<td>7,360,786</td>
</tr>
<tr>
<td># price quotes excluding duplicate quotes</td>
<td>24,525,632</td>
</tr>
<tr>
<td># product identifiers</td>
<td>6,872,122</td>
</tr>
<tr>
<td># price quotes excluding invalid quotes</td>
<td>22,825,052</td>
</tr>
<tr>
<td># product identifiers</td>
<td>6,827,477</td>
</tr>
<tr>
<td># price quotes in replicated items</td>
<td>21,215,430</td>
</tr>
<tr>
<td># product identifiers</td>
<td>6,130,311</td>
</tr>
</tbody>
</table>
U.K. Micro Price Data

- **Replication check:**
 - aggregate individual prices to item indices using ONS methodology
 - compare our item indices to ONS indices

- Correlations with ONS index generally high:
 \(>0.95 \) for vast majority of items

- Omission of "duplicate prices" sometimes drives a wedge

- Use only items for which RMSE between our index and ONS index is below 0.02: \(\approx 93\% \) of valid price quotes

- Work with 21.2m price observations as our base sample
U.K. Micro Price Data

A. Distribution of RMSEs

B. Distribution of Correlations

C. RMSE and Correlation

- RMSE (left scale)
- Correlation (right scale)
Table: Descriptive Statistics For Replicated Items

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of items</td>
<td>1093</td>
</tr>
<tr>
<td>Number of Price Quotes</td>
<td></td>
</tr>
<tr>
<td>Minimum across items</td>
<td>253</td>
</tr>
<tr>
<td>Median across items</td>
<td>15458</td>
</tr>
<tr>
<td>Mean across item</td>
<td>19410.3</td>
</tr>
<tr>
<td>Maximum across items</td>
<td>81840</td>
</tr>
<tr>
<td>Number of Products</td>
<td></td>
</tr>
<tr>
<td>Minimum across items</td>
<td>32</td>
</tr>
<tr>
<td>Median across items</td>
<td>470</td>
</tr>
<tr>
<td>Mean across item</td>
<td>560.9</td>
</tr>
<tr>
<td>Maximum across items</td>
<td>2080</td>
</tr>
</tbody>
</table>
U.K. Micro Price Data

A. Number of Items

- Replicated Items
- ONS Items

B. Share of Replicated Items

- Expenditure Share
- Relative Number
Structure of the Presentation

1. Key Elements of the Price Setting Model
2. Optimal Inflation Target: Theory
3. The U.K. Micro Price Data
4. Optimal Inflation Target: Estimation Results
Benchmark Results - All Prices in Estimation

A. Optimal Inflation Rate, Baseline Estimate

B. Item-Level Optimal Inflation Rates

Prob

\(II_\zeta \) in % per year (truncated)
All Prices vs. Only Reset Prices in Estimation

Optimal Inflation Rate, Reset-Price vs Baseline Estimate

- Baseline Estimate
- Reset-Price Estimate
- 99% Conf. Bands

% per year

Source of the Upward Trend (All Prices)

Beginning versus end of sample distributions:

A. Weighted Item-Level Optimal Inflation Rates

![Graph showing weighted item-level optimal inflation rates for 1996 and 2016.](image)

- Π^*_z in % per year (truncated)
- Prob

Adam & Weber Optimal Inflation Target January 2019
Source of the Upward Trend

A. Dynamic Olley-Pakes Decomposition

B. Number of Items

Dynamic Olley-Pakes Decomp. according to Melitz and Polanec (RAND, 2015)
PG: Baseline - no filter; SFD: Prices with ONS sales flag deleted; NSA/NSB: Nakamura-Steinsson (2008) sales filter version
A/B; REG: Kehoe and Midrigan (2015) regular prices; RGF: regular prices with only sales prices filtered, following Kryvstov
and Vincent (2017).
Theory:

Deviation of actual inflation Π_z from optimal inflation Π_z^*

\Rightarrow excess price dispersion

Question: can we find this relationship in the U.K. price data?

Nakamura, Steinsson, Sun, Villar (2018):

Price dispersion effects elusive in U.S. data....
Theory implies (second-order approximation):

\[\ln \left(\frac{\Delta z}{\Delta^e z} \right) = c_z \cdot (\Pi_z - \Pi^*_z)^2 \]

where

\[\Delta z / \Delta^e z \geq 1 : \text{ a measure of excess price dispersion} \]
\[c_z > 0 : \text{ depends on } \alpha_z, \delta_z, ... \]

Optimal inflation estimates \(\Pi^*_z \) for more than 1000 items \(z \)

Can compute average inflation in each item \(E[\Pi_{zt}] \)

Does \((\Pi^*_z - E[\Pi_{zt}])^2 \) predict excess price dispersion?
On the previous slide:

\[\frac{\Delta z}{\Delta^e_z} = \int_0^1 \left(\frac{Q_{zt}}{G_{jzt} Q_{zt-sjt}} \right) \left(\frac{P_{jzt}}{P_{zt}} \right)^{-\theta} \, dj / \left(\int_0^1 \left(\frac{Q_{zt}}{G_{jzt} Q_{zt-sjt}} \right)^{1-\theta} \, dj \right)^{\frac{1}{1-\theta}} \]

and

\[c_z = \frac{1}{2} \theta \left[\frac{\alpha^z (1 - \delta^z)(\Pi^*_z)^{\theta-1}}{(1 - \alpha^z (1 - \delta^z)(\Pi^*_z)^{\theta-1})^2 (\Pi^*_z)^2} \right] > 0 \]
Measure of excess price deviation:

- For each product j in item z:
 - compute std. dev. of deviations from estimated rel. price trend

- Take the median standard deviation σ_{zm}^m in item z & estimate

$$\sigma_{zm}^m = a + b (\Pi_z^* - E[\Pi_{zt}]) + c (\Pi_z^* - E[\Pi_{zt}])^2$$

- Theory implies

$$b = 0 \text{ and } c > 0$$

(theory also implies $a = 0$, but not robust to measurement & estimation error)
<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.0288</td>
<td>34.024</td>
</tr>
<tr>
<td>b</td>
<td>-0.0235</td>
<td>-1.3127</td>
</tr>
<tr>
<td>c</td>
<td>1.3979</td>
<td>4.7303</td>
</tr>
</tbody>
</table>

Minimum $\Pi^*_z - \Pi_z = 0.84\%$ per year $= 1.3862$

Robustly get $c > 0$ and stat. significant, for

- sales filtered data
- measuring deviations from product-specific age trends
- mean instead of median std. dev.
Deviations from Optimal Inflation: Price Dispersion?

Median of std(ξ_{i,t}) for

π_{i,t}^* - π_{i,t}

Figure 1: Scatter plot showing the relationship between the median standard deviation of inflation shocks (ξ_{i,t}) and the deviation from the optimal inflation target (π_{i,t}^* - π_{i,t}).
Conclusions

- Estimate optimal inflation target directly from micro price trends
- Relative price trends with flex prices =
 Relative price trends with sticky prices & sub-opt. inflation
- Relative price trends determine optimal inflation
- Optimal inflation:
 - minimizes relative price distortions by minimizing need for price adjustments
- Empirically, excess price dispersion moves in line with theory: increases as actual inflation deviates from opt. inflation
- Optimal U.K. inflation target slight upward trend:
 1996: 1.4%-1.8% \Rightarrow 2016: 2.6%-3.2%