Advertising Exposure and Portfolio Choice: Estimates Based on Sports Sponsorships

Ioannis Branikas

University of Oregon

AFA: Households and Portfolio Choice January 4th 2019

・ 同 ト ・ ヨ ト ・ ヨ

Motivation This Paper

Motivation

\$200 billion spent annually on advertising by US-listed companies

 Main Interpretation: Firms advertise to signal product quality and convey the message that their type is high [Milgrom and Roberts (1986)]

Can advertising increase the demand for a company's stock?

- Positive correlations between the advertising expenditure of firms in Compustat and aggregate retail stock investment [Grullon et al. (2004), Lou (2014)]
- No micro-evidence, no causality

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Motivation This Paper

Identification Challenges for Advertising

- Need for data on the exposure of investors to commercials
 - COMPUSTAT firm advertising expenditure is too crude
 - Advertising vs. Local Bias: Household portfolios are heavily loaded on stocks with headquarters near where they live
- Need for an instrument: Firms optimally decide in which geographical regions to increase their marketing activities [Shapiro (2017), Sinkinson and Stark (2017)]

< ロ > < 同 > < 回 > < 回 >

Motivation This Paper

Importance of Advertising

- 1. A costly signal for stock valuation under adverse selection
 - Corporate Financing: IPOs, M&A's [Rock (1986)]
- 2. Familiarity heuristic [Heath and Tversky (1991), Huberman (2001)]
 - Product familiarity breeds investment
 - Yet, an outcome of latent exposure to advertising
- 3. Firm recognition [Merton (1987)]

Motivation This Paper

This Paper: Identification Based on Sports Sponsorships

Sponsorships to major teams are a good proxy for high local AD

- 10% of Compustat's total AD is on sports every year [IEG]
- Firms engaging in sports marketing spend 30% of their total AD budget on sports sponsorships [Nielsen data from the SportsBusiness Journal]
 - That amount is typically allocated to 4-5 different cities

Construct a *new* dataset of **publicly traded sports sponsors** in the US and merge it with the **Odean retail investment data**

- Which firms sponsors which major team in which city
- Compare a household's investments in its *city's sports sponsors* vs. its investments in *other stocks*
- + NEW instrument for the firm AD expenses in local markets

< ロ > < 同 > < 三 > < 三 >

Motivation This Paper

Instrument for Firm AD Expenses in Local Markets

Firms with a **large size** or **high industry advertising expenses** are inclined to spend more advertising money in **MSAs with a major professional sports team**

- San Antonio vs. Hampton Roads (similar demo's)
 - SATX has the Spurs, HR has no major prof. team
 - Firms with a high AD propensity are expected to utilize the Spurs' platform and spend more on AD
- Show with Balance Tests [Roberts and Whited ('13)] that other MSA features are not predicted by the presence of a major prof. sports team
- Exclusion Restriction: The Spurs in SATX do *not* change subjective expectations about stocks with certain features (e.g., high advertising propensity) for any reason other than the actual higher AD

Motivation This Paper

Outline of Results

The sports sponsorships of a stock in a investor's MSA increase his portfolio weight on that stock by 46% relative to the average

- Portfolio effects are 2-times higher than local bias
- The recognizability of the stock from the brand matters
 - $\bullet\,$ When it is not taken into account, the AD effect decreases by 1/3 and local bias becomes stronger
- No higher returns for the household portfolios [like the locas bias in Seasholes and Zhu (2010)], so advertising raises households' latent subjective expectations
- *Distant stocks* that sports sponsor could be preferred to *local stocks that do not* (holds for the threshold of 250 miles)

< ロ > < 同 > < 三 > < 三 >

Sports Sponsorship Household Stock Holdings Summary Statistics

Constructing the Sports Advertisement Variable

Digitization of the Team Marketing Report's Sports Sponsorship Factbook, based on CRSP's *historic* CUSIP files

- Detailed description of sports marketing activities (Sponsorship, Advertising, In Stadium-Signage) of every sponsor in every sports team at the **brand-level**
- Focus on *Primary Sports Sponsors* ("the most significant and active sponsors") of teams in MLB, NBA, NFL, NHL
- Aggregate firm sports marketing activities at the MSA level SportsAd_{j,c} = 1 if firm j sponsors a major team in MSA c

< ロ > < 同 > < 三 > < 三 >

Sports Sponsorship Household Stock Holdings Summary Statistics

Publicly Traded Sports Sponsors over Time

	1992-1993	1993-1994	1994-1995	1995-1996
Total Number of Stocks	198	207	219	215
Industry				
Rtail	32	37	36	39
Food	23	30	28	24
Finan	19	19	32	31
SvcOth	27	28	31	30
Oil	18	17	17	17
Trans	15	16	16	17
MSA Sponsorships per Stock				
Average Number	4.46	4.63	4.92	4.74
Median Number	3	3	3	3
Average Distance (miles)	756.31	714.14	785.34	748.7
			< • • • • •	→ < = > < =

Ioannis Branikas (2019) Advertising Exposure and Portfolio Choice

Sports Sponsorship Household Stock Holdings Summary Statistics

Other Sources

• Household Investment Data:

- Large national discount broker [Barber and Odean (2000)]
- Unbalanced panel covering 1991-1996 at a monthly frequency
- Portfolio weights on common stocks (based on CUSIP)
- MSA Demographics:
 - Traditional Demo's from BLS, BEA and FHFA
 - Start with 82 MSAs with Population $\geq 500,000$
- Stock Financial Characteristics:
 - Fama-French factors at a monthly frequency
 - Accurate ADDZIP's from EDGAR, WOW, COMPHIST
 - Focus on stocks *ever* being in Russell 1000

On average, in every month, 5,236 households (9,757 unique) living in 82 MSAs and choosing from 1,224 (1,397 unique) stocks

• • = • • =

Sports Sponsorship Household Stock Holdings Summary Statistics

Advertising and Local Bias among Households

	Average % of	Average % of	Difference
	HH Portfolio (A)	Market Portfolio (<i>B</i>)	(A-B)
SportsAd	13.3	7.4	5.9
Local250	33	13.5	19.5
Local100	25.6	7.3	18.3
SportsAd $ imes$ Local100	5.7	1.7	4
SportsAd $ imes$ NoLocal100	7.6	5.7	1.9
SportsAd $ imes$ Local250	6.8	2.6	4.2
SportsAd $ imes$ NoLocal250	6.5	4.8	1.7

イロト イヨト イヨト

Portfolio Choice Identification

Model 1: Non-linear Factor-Based Portfolio Weights

Follow closely the work of Branikas, Hong, and Xu (2018)

• Household *i*, residing in MSA *c*, decides *how much* to invest in stock *j* according to a factor rule *censored at zero*:

$$w_{i,c,j} = (\alpha + \beta S portsAd_{c,j} + \gamma X_{i,c,j} + \epsilon_{i,c,j})^+$$

- $(\cdot)^+ \equiv \max\{0, \cdot\}$: extensive and intensive margin
- **X**_{*i*,*c*,*j*}: vector of controls including:
 - household-stock distance at the ZIP-code level
 - stock *j*'s characteristics (e.g. Fama-French factors)
 - household *i* and MSA *c*'s demographics
- $\epsilon_{i,c,j}$: household *i*'s *latent* demand for stock *j*
 - like/dislike the stock's BOD or products?
 - normal errors conditional on all observables (Tobit)

A B M A B M

Portfolio Choice Identification

Model 2: Linear Portfolio Under-diversification

Linear *excess* portfolio weights relative to the market [Goetzmann and Kumar ('08), Brandt, Santa-Clara, and Valkanov ('09)]

$$\frac{w_{i,c,j} - w_j^{VW}}{w_j^{VW}} = \alpha^{dev} + \beta^{dev} SportsAd_{c,j} + \gamma^{dev} \mathbf{X}_{i,c,j} + \epsilon_{i,c,j}^{dev}$$

 w_j^{VW} : stock j's weight in market's value-weighted portfolio

SportsAd's **endogeneity**: Companies choose *optimally* the MSAs where they will increase their AD - catering to regional investor or cumstomer bases

くロト く得ト くほト くほとう

Portfolio Choice Identification

First-Stage Regression

• Linear probability model that predicts stock *j*'s sports sponsorship in MSA *c*:

 $SportsAd_{c,j} = \kappa + \lambda Sportsteam \times LogPropAd_j + \mu X_{c,j} + \omega_{c,j}$

where $PropAd_j \equiv Size_j \times InduAd_j$

- Focus on 38 selected MSAs
 - MSAs which had a major professional sports team and population and less than 2M population
 - MSAs which did not have a major team, but their local governments attempted to negotiate with the sports franchise owners a team relocation in their area [Euchner (1993) and Danielson (1997)]

On average, in every month, 1,526 households (2,806 unique)

Portfolio Choice Identification

Balance Test of MSA Demo's Based on Sportsteam

Panel A: Split of the Original 82 MSAs							
Averages	ges $Sportsteam = 0$ $Sportsteam = 1$ Difference t-statis						
IncPerCap (thousand \$)	21.67	23.98	2.31	3.27			
HPI	98.84	98.53	-0.31	-0.28			
Unemp	6.19	5.91	-0.28	-0.61			
Pop (million)	0.85	3.21	2.36	4.83			
Average Number of MSAs	44	38					
F	Panel B: Split of the	Selected 38 MSAs					
IncPerCap (thousand \$)	22.32	22.82	0.5	0.42			
HPI	97.82	96.81	-1.01	-0.26			
Unemp	5.43	5.41	-0.02	-0.05			
Pop (million)	1.09	1.33	0.24	1.57			
Average Number of MSAs	21	17					
		-		(E) < E)			

Ioannis Branikas (2019) Advertising Exposure and Portfolio Choice

э

Introduction Data Methodology Results

Portfolio Choice Identification

Balance Test of Household Demo's Based on Sportsteam

	Original 82 MSAs		Selected 3	38 MSAs
	Independ. Va	ar. Sportsteam	Independ. Var	. Sportsteam
Depend. Var.	Coef. Est.	t-statistic	Coef. Est.	t-statistic
LogAge	0.011	0.83	-0.004	-0.21
LogFamSize	-0.005	-0.21	-0.016	-0.5
Male	-0.022	-1.98	-0.007	-0.51
Married	-0.035	-1.79	-0.008	-0.2
LogIncome	0.032	0.91	0.008	0.07
Professional	0.006	0.22	0.013	0.33
Managerial	-0.011	-0.56	-0.018	-0.72
SalesSvc	-0.011	-0.86	-0.002	-0.15
WhiteCollar	0.023	3.04	0.01	0.89
BlueCollar	-0.007	-0.72	-0.002	-0.14
			< □ >	

Ioannis Branikas (2019) Advertising Exposure and Portfolio Choice

Non-Linear Model Linear Model Directly vs. Non Directly Recognizable Stocks' Sponsorships Robustness Advertising Effect for Local & Non-Local Firms

< ロ > < 同 > < 三 > < 三 >

First-Stage Linear Probability Model of SportsAd

${\sf Sportsteam}\times{\sf LogPropAd}$	0.002	0.002
	[4.93]	[5.13]
LogPropAd	0.123	0.09
	[3.62]	[0.96]
Sportsteam	-0.015	-0.013
	[-3.46]	[-3.68]
LogDistance	YES	YES
Stock Financial Char's	YES	YES
Stock Industry FE	YES	YES
Other MSA Demo's	YES	YES
Other MSA Demo's $ imes$ LogPropAd	NO	YES

Average monthly coefficient estimates and *t*-stats based on 2-way clustered se's at the levels of the stock and the MSA

Non-Linear Model Linear Model Directly vs. Non Directly Recognizable Stocks' Sponsorships Robustness Advertising Effect for Local & Non-Local Firms

< ロ > < 同 > < 三 > < 三 >

Tobit Estimation of Portfolio Choice with Control Function

	Uncor.	Cubic Ψ's	Quartic Ψ's
SportsAd	0.125	0.082	0.078
	[5.07]	[6.08]	[7.13]
LogDistance	YES	YES	YES
Stock Financial Char's	YES	YES	YES
Stock Industry FE	YES	YES	YES
HH Demo's	YES	YES	YES
LogPropAd	YES	YES	YES
Sportsteam	YES	YES	YES
Other MSA Demo's	YES	YES	YES
Other MSA Demo's × LogPropAd	YES	YES	YES

Average monthly coefficient estimates and t-stats based on 2-way clustered se's at the levels of the household and the MSA of the household

Non-Linear Model Linear Model Directly vs. Non Directly Recognizable Stocks' Sponsorships Robustness Advertising Effect for Local & Non-Local Firms

< /₽ > < E >

Coefficient Estimates of *SportsAd* Over Time in Tobit Regressions of Household Portfolio Weights

Non-Linear Model Linear Model Directly vs. Non Directly Recognizable Stocks' Sponsorships Robustness Advertising Effect for Local & Non-Local Firms

< ロ > < 同 > < 回 > < 回 > .

IV Regressions of Excess Portfolio Weights

	OLS	IV
SportsAd	2.313	1.408
	[5.28]	[2.91]
LogDistance	YES	YES
Stock Financial Char's	YES	YES
Stock Industry FE	YES	YES
HH Demo's	YES	YES
LogPropAd	YES	YES
Sportsteam	YES	YES
Other MSA Demo's	YES	YES
Other MSA Demo's \times LogPropAd	YES	YES

Average monthly coefficient estimates and *t*-stats based on 2-way clustered se's at the levels of the household and the MSA of the household

Non-Linear Model Linear Model Directly vs. Non Directly Recognizable Stocks' Sponsorships Robustness Advertising Effect for Local & Non-Local Firms

Do the brands *display* the stock name (or logo)?

	Uncor.	Corrected	Uncor.	Corrected
SportsAdRec	0.139	0.104		
	[5.61]	[8.2]		
SportsAdUnrec			0.075	0.037
			[1.06]	[1.46]
Full Controls	YES	YES	YES	YES
	Panel B:	Linear Portfolic	Under-Diversi	fication Model
	OLS	IV	OLS	IV
SportsAdRec	3.056	1.627		
	[5.7]	[3.3]		
SportsAdUnrec			0.322	0.139
			[0.71]	[0.38]
Full Controls	YES	YES	YES	YES
			4	

Panel A: Non-linear Portfolio Choice Model

Ioannis Branikas (2019) Advertising Exposure and Portfolio Choice

Data Results Robustness

Methodology Conclusion

Portfolio Choice Regressions In Finer Subsamples of MSAs

Omit MSAs with high *political power*

- Might increase the chances for a major prof. team
- Certain stocks may contribute with donations to campaigns
- Households could respond by buing these stocks

	MSAs with Aggregate		MSAs witl	MSAs with POP<1.5M	
	Campaigr	Contributions			
Not in the Top 10					
Panel A: Non-linear Portfolio Choice					
	Uncor.	Corrected	Uncor.	Corrected	
SportsAd	0.168	0.086	0.149	0.065	
	[4.19]	[7.4]	[3.96]	[5.28]	
Full Controls	YES	YES	YES	YES	

Average monthly coefficient estimates and t-stats based on 2-way clustered se's at the levels of the household and the MSA of the household

< ロ > < 同 > < 三 > < 三 >

Introduction Non-Linear Model Data Linear Model Methodology Directly vs. Non Directly Recognizable Stocks' Sponsorships Results Robustness Conclusion Advertising Effect for Local & Non-Local Firms

Advertising and Local Bias Interaction

- Local stocks have distance less than 250 miles
- Household's location choice is taken as given (no correction for selection)
- Advertising refers to directly to sports sponsorships where the stocks can be *directly* recognized

	Panel A: No	Panel A: Non-linear Portfolio Choice		
	Uncor.	Corrected	_	
DistNAd	-	-	-	
	[-]	[-]		
LocNAd	0.199	0.145		
	[3.88]	[3.46]		
DistAd	0.265	0.182		
	[4.2]	[2.93]		
LocAd	0.597	0.392		
	[4.66]	[3.51]		
		< □)	 < □ > < □ > 	

∍⊳

Product advertising has a strong positive effect on household portfolio choice

- New dataset of publicly traded sports sponsors
- Identification from sports team presence and the advertising propensity of big firms in industries with big advertising expenses
- Larger portfolio effects than local bias

- 4 同 ト 4 ヨ ト 4 ヨ ト