Reference Pricing as a Deterrent to Entry
Evidence from the European Pharmaceutical Market

Luca Maini1, Fabio Pammolli2

1University of North Carolina at Chapel Hill, 2Politecnico di Milano
Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- UK: prices tied to therapeutic value
- EU: gov’t negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference
Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- UK: prices tied to therapeutic value
- EU: gov’t negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference

ERP affects access in potentially unexpected ways

- Linking prices across countries limits price-discrimination
- Firm may respond by delaying entry in low-income countries
Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- UK: prices tied to therapeutic value
- EU: gov’t negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference

ERP affects access in potentially unexpected ways

- Linking prices across countries limits price-discrimination
- Firm may respond by delaying entry in low-income countries

How does ERP affect access to newly approved drugs?
This paper quantifies the impact of ERP in Europe

Overview of today’s presentation

1. Launch delays in Europe: what models (don’t) justify them?

2. ERP as a deterrent to entry: theory

3. Estimation of the impact of ERP in three parts:
 - Do countries actually follow ERP guidelines?
 - Are firms better off with delays?
 - How much would delays fall if ERP were removed?
Launch delays in Europe: what models (don’t) justify them?
Drug diffusion across Europe: 1 year after approval
Drug diffusion across Europe: 2 years after approval

- **85 - 100%**
- **75 - 85%**
- **65 - 75%**
- **50 - 65%**
- **0 - 50%**
Drug diffusion across Europe: 3 years after approval
Drug diffusion across Europe: 4 years after approval
Drug diffusion across Europe: 5 years after approval
Many models predict delays...

1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
 - Price inversely correlated with delays, controlling for revenue

2. Fixed costs of entry

3. Capacity constraints
Many models predict delays...

1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price

2. Fixed costs of entry

3. Capacity constraints
...but data patterns don’t quite fit any of them

1. Limited number of entry applications at the same time
 ▶ Prioritize highest revenue, not highest price
 ▶ Price inversely correlated with delays, controlling for revenue

2. Fixed costs of entry
 ▶ Probability of entry should decline over time

3. Capacity constraints
...but data patterns don’t quite fit any of them

1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
 - Price inversely correlated with delays, controlling for revenue

2. Fixed costs of entry
 - Probability of entry should decline over time
 - Probability of entry is flat and increases closer to LOE

3. Capacity constraints
 - No more entry once firm hits full capacity
...but data patterns don’t quite fit any of them

1. Limited number of entry applications at the same time
 ▶ Prioritize highest revenue, not highest price
 ▶ Price inversely correlated with delays, controlling for revenue

2. Fixed costs of entry
 ▶ Probability of entry should decline over time
 ▶ Probability of entry is flat and increases closer to LOE

3. Capacity constraints
 ▶ No more entry once firm hits full capacity
 ▶ > 10% of launches occur after the firm has reached peak output
ERP as a deterrent to entry: theory
ERP generates delays by limiting price discrimination

Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

Period 1: price p_j
quantity q_j

Period 2: price $\min_{k \in \{1,2\}} (p_k)$
quantity q_j
ERP generates delays by limiting price discrimination

Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

Period 1: price p_1
 quantity q_1

Period 2:

Two possible strategies:

1. Wait until period 2 to launch in country 2
ERP generates delays by limiting price discrimination

Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

Period 1: price p_1
- quantity q_1

Period 2: prices (p_1, p_2)
- quantities (q_1, q_2)

Two possible strategies:

1. Wait until period 2 to launch in country 2
ERP generates delays by limiting price discrimination

Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

Period 1: prices \((p_1, p_2)\)
quantities \((q_1, q_2)\)

Period 2:

Two possible strategies:

1. Wait until period 2 to launch in country 2
2. Launch everywhere right away
ERP generates delays by limiting price discrimination
Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

- **Period 1**: prices (p_1, p_2)
 - quantities (q_1, q_2)
- **Period 2**: prices (p_2, p_2)
 - quantities (q_1, q_2)

Two possible strategies:

1. Wait until period 2 to launch in country 2
2. Launch everywhere right away
ERP generates delays by limiting price discrimination
Toy model: 1 firm, 2 countries, 2 periods

At the end of each period countries adjust prices to match minimum available price.

Period 1: prices \((p_1, p_2)\)
quantities \((q_1, q_2)\)

Period 2: prices \((p_2, p_2)\)
quantities \((q_1, q_2)\)

Optimal solution: delay if

\[(p_1 - p_2) \times q_1 > p_2 \times q_2\]
We estimate an extended version of this toy model

Model components

1. Demand
 - Data: *quantity* sold for each drug \(i \), year \(t \), country \(j \)
 - Goal: predict *quantity* in years prior to entry

2. Price
 - Data: average yearly drug *prices, reference pricing functions*
 - Goal: predict *prices* under alternative entry sequences
 - Parameter \(\mu_j \in [0, 1] \) allows partial adherence to ERP
We estimate an extended version of this toy model

Model components

1. Demand
 - Data: quantity sold for each drug i, year t, country j
 - Goal: predict quantity in years prior to entry

2. Price
 - Data: average yearly drug prices, reference pricing functions
 - Goal: predict prices under alternative entry sequences
 - Parameter $\mu_j \in [0, 1]$ allows partial adherence to ERP

3. Firm dynamic entry decision model
 - Firms apply for entry, but may experience stochastic delays
 - Goal: link 1. & 2. to compute revenue of any entry sequence
Stage I: Firm choose where to send entry applications

Strategic delays:
firm only sends applications to some countries
Stage II: delay shocks are realized

Idiosyncratic delays: some applications are randomly delayed
Stage III: prices are set

FIRM

\[P_{FR}, P_{DE} \]
Stage IV: products are sold and profits realized

P_{FR}

P_{DE}
Estimation of the impact of ERP in three parts
What we need to estimate

1. Do countries actually follow ERP guidelines?
 - μ_j needs to be close to 1 for at least some countries
Do countries actually follow ERP guidelines?

Estimates of μ_j
What we need to estimate

1. Do countries actually follow ERP guidelines?
 ▶ μ_j needs to be close to 1 for at least some countries
 ▶ Spain and Italy follow ERP, their prices are affected by EU10

2. Are firms better off with delays?
 ▶ Firms should earn more if entry is delayed
Are firms better off with delays?

% of drugs for which delaying entry in country X only is optimal

- more than 50%
- 20 - 50%
- 10 - 20%
- 0 - 10%
- 0%

Map showing distribution across Europe.
What we need to estimate

1. Do countries actually follow ERP guidelines?
 ▶ μ_j needs to be close to 1 for at least some countries
 ▶ Spain and Italy follow ERP, their prices are affected by EU10

2. Are firms better off with delays?
 ▶ Firms should earn more if entry is delayed
 ▶ Most firms earn more when delaying entry in EU10

3. How much would delays fall if ERP were removed?
 ▶ If we get rid of ERP, there should be faster entry
How much would delays fall if ERP were removed?

Empirical problem: find ψ_j (prob. of random delay in country j)

- Ideally: solve model, match observed entry to predicted entry
- In practice: model is too complicated to solve

Solution:

- Lower bound: lower ψ_j is better for the firm with low ψ_j, can find strategies that earn more than firm did
- Find these strategies \rightarrow reject low values of ψ_j

- Upper bound: worst case scenario: all delays are idiosyncratic

Output:

- Western Europe: assume away strategic delays
- Eastern Europe: estimate interval $\psi_{EU10} \in [0.416, 0.669]$
How much would delays fall if ERP were removed?

Empirical problem: find ψ_j (prob. of random delay in country j)

- Ideally: solve model, match observed entry to predicted entry
- In practice: model is too complicated to solve

Solution: use moment inequalities

- **Lower bound:**
 - Lower ψ_j is better for the firm
 - w/ low ψ_j, can find strategies that earn more than firm did
 - Find these strategies \rightarrow reject low values of ψ_j

- **Upper bound:**
 - Worst case scenario: all delays are idiosyncratic
How much would delays fall if ERP were removed?

Empirical problem: find ψ_j (prob. of random delay in country j)

- Ideally: solve model, match observed entry to predicted entry
- In practice: model is too complicated to solve

Solution: use moment inequalities

- **Lower bound:**
 - Lower ψ_j is better for the firm
 - $w/\text{ low } \psi_j$, can find strategies that earn more than firm did
 - Find these strategies \rightarrow reject low values of ψ_j

- **Upper bound:**
 - Worst case scenario: all delays are idiosyncratic

Output:

- Western Europe: assume away strategic delays
- Eastern Europe: estimate interval $\psi_{EU10} \in [0.416, 0.669]$
How much would delays fall if ERP were removed?

Simulated delays w/out ERP: only idiosyncratic delays remain

Upper bound ψ: all delays idiosyncratic
How much would delays fall if ERP were removed?

Simulated delays w/out ERP: only idiosyncratic delays remain

Lower bound ψ: delays reduced by 63% (14.5 mos)
What we need to estimate

1. Do countries actually follow ERP guidelines?
 - μ_j needs to be close to 1 for at least some countries
 - Spain and Italy follow ERP, their prices are affected by EU10

2. Are firms better off with delays?
 - Firms should earn more if entry is delayed
 - Most firms earn more when delaying entry in EU10

3. How much would delays fall if ERP were removed?
 - If we get rid of ERP, there should be faster entry
 - Up to 14.5 months earlier entry in EU10
Conclusion: the bigger picture

Main takeaway:

▶ A framework to formally uncover policy-driven entry delays
Conclusion: the bigger picture

Main takeaway:
- A framework to formally uncover policy-driven entry delays

General implication: price-linked regulation causes spillovers
- Medicare/Medicaid reimbursement rules affect private prices
- Medicare Part B reform would introduce ERP to US
 - US prices are well above highest prices in Europe
 - US market is roughly 3x size of entire EU market

What we still don't know
- Without ERP would prices rise in West. EU or fall in East. EU?
- Would ERP reduce US prices or raise foreign prices?
Conclusion: the bigger picture

Main takeaway:
- A framework to formally uncover policy-driven entry delays

General implication: price-linked regulation causes spillovers
- Medicare/Medicaid reimbursement rules affect private prices
- Medicare Part B reform would introduce ERP to US
 - US prices are well above highest prices in Europe
 - US market is roughly 3x size of entire EU market

What we still don’t know
- W/out ERP would prices rise in West. EU or fall in East. EU?
- Would ERP reduce US prices, or raise foreign prices?
thank you