Spatial Variation in Higher Education Financing and the Supply of College Graduates

John Kennan University of Wisconsin-Madison and NBER

December 2018

Too Good to be True?

Effects of National Tuition Reductions									
California resident levels									
	Population	at Age 36	Tax	Tuition					
	College Grad	High School	(present	values)					
California	6.9%	-1.8%	725	-128					
Florida	22.9%	-10.9%	230	-208					
Illinois	34.1%	-18.3%	299	-441					
Massachusetts	8.6%	-9.4%	-64	-237					
Michigan	50.4%	-22.7%	119	-472					
New York	27.3%	-18.9%	297	-935					
Pennsylvania	71.5%	-26.8%	178	-405					
Texas	3.2%	2.2%	354	-37					
Wisconsin	30.5% -13.9% 99 -								
U.S.	25.4%	-13.5%	6701	-6666					

Motivation

To what extent is human capital sorted over geographical locations? How is this affected by local subsidies? In the U.S., States spend a lot of money on higher education When a State spends more money, does it get more human capital? (or does the additional human capital just move to high-wage States?)

Aims:

- Analyze sequences of migration decisions, to maximize net income (Kennan-Walker)
- Include choice of whether and where to go to college
 - and which college type
 - o and where to work

Higher Education Expenditures

A Life-Cycle Model of Expected Income Maximization

 w_{ij} individual i's earnings in location j – local price of individual's skill bundle Wage in current location is known Wages in other locations can be learned only by moving there In each period, choose

- 1. whether to move [interstate]
- 2. whether to enroll in one of 4 types of colleges

Schooling outcomes are uncertain:

• Each enrollment choice associated with a probability of moving up to the next level

Colleges and Schooling Levels

4 College Types:

- 1. Lower-Tier Public (community colleges)
- 2. Upper-Tier Public (State universities and colleges)
- 3. Lower-Tier Private (Baccalaureate except Liberal Arts; Business; 2-year)
- 4. Upper-Tier Private (Other Private)

3 Schooling Levels:

- 1. High School plus (12 or 13 years completed)
- 2. Some College (14 or 15 years completed)
- 3. College Graduate (at least 16 years completed)

Choice Probabilities: basic model

$$V(x,\zeta) = \max_{j,\xi} \left(v(x,j,\xi) + \zeta_{j,\xi} \right)$$

x: state vector (schooling, home location, current and previous location, age, ability) ζ : payoff shock ((preferences or switching costs, Type I Extreme Value))

Continuation value

$$v(x, j, \xi) = u(x, j, \xi) + \beta \sum_{x'} p(x'|x, j, \xi) \bar{v}(x')$$

Expected continuation value

$$\bar{v}(x) = E_{\zeta} V(x,\zeta)$$

$$\exp\left(\bar{v}(x) - \bar{\gamma}\right) = \sum_{k=1}^{J} \sum_{s=1}^{N_{\xi}} \exp\left(v(x,k,s)\right)$$

 $\bar{\gamma}$: the Euler constant

Choice Probabilities

$$\rho(x, j, \xi) = \exp\left(v\left(x, j, \xi\right) - (\bar{v}(x) - \bar{\gamma})\right)$$

 $\rho(x, j, \xi)$: probability of choosing location j, and enrollment ξ , when the state is x

State Variables and Flow Payoffs

 $\tilde{u}_h(x,j,\xi) = u_h(x,j,\xi) + \zeta_{j,\xi}$

 $u_h(x, j, \xi)$: payoffs associated with observable states

 $u_{h}(x, j, \xi) = \alpha_{0}(e) + \alpha_{1}w(g, e, b, \ell^{0}, \omega, \xi) + \alpha_{2}Y(\ell^{0}) + \alpha^{H}\chi(\ell^{0} = h) - C_{h}(x, \xi) - \Delta(x, j)$

 ω : location match component of wages α^{H} : attachment to home location $C_{h}(x,\xi)$: College costs $\Delta(x,j)$: Moving costs

Wages

$$w_{ij} = \mu_j \left(e_i \right) + v_{ij} \left(e_i \right) + G(e_i, b_i, g_i) + \varepsilon_{ij}(e_i) + \eta_i$$

- w_{ij} : Wage of individual i in location j at age g_i
- e_i : Current schooling Level
- $\mu_{j}(e_{i})$: Mean wages (for each schooling level) in location j (known)
- $v_{ij}\left(e_{i}
 ight)$: location match effect (permanent)
- G : age-earnings profile, depending on ability b_i
- η_i : (random) individual effect, fixed across locations (known to the individual) drawn from a symmetric 3-point distribution (zero mean, one parameter)
- $arepsilon_{i}\left(e_{i}
 ight)$: transient effect, mixture of normals, iid over time

Migration decisions depend only on μ and υ

Age-Earnings Profiles

$$G(e, b, g) = \begin{cases} \theta_e b + y_e^* - c_e (g - g_e^*)^2 & g \le g_e^* \\ \theta_e b + y_e^* & g \ge g_e^* \end{cases}$$

Quadratic, then constant; Level depends on ability b (binary) y_e^* Peak wage for education level e; Age at the peak: g_e^*

Low Ability (dashed line), High Ability (solid line) High School, Some College, College

College Costs

$$C(x,\xi) = \delta_{0}(\xi) + \delta_{1}(\xi) \tau(\ell,\xi) + \delta_{2}(\xi) E(\ell,\xi) + \delta_{3}b + \delta_{4}b\chi(\xi \in \Xi) + \delta_{5}d_{m} + \delta_{6}d_{f} + \delta_{7}y + \delta_{8}(g - g_{0}) + (\delta_{9}(\xi) + \delta_{10}b + \delta_{11}d_{m} + \delta_{12}d_{f} + \delta_{13}y) s(\ell,\xi) + (\delta_{14} + \delta_{15}b)\chi(e = 1) + \delta_{16}\chi(\xi = \xi_{-1})$$

$$\tau(\ell,\xi) = \chi(\ell=h) \tau_r(\ell,\xi) + \chi(\ell\neq h) \tau_n(\ell,\xi)$$

$\delta_{0}\left(\xi ight)$	Disutility of schooling, $\xi \in \{1,2,3,4\}$
$ au_{r}\left(\ell,\xi ight), au_{n}\left(\ell,\xi ight)$	resident, nonresident T uition fees, college type ξ , location ℓ
$E\left(\ell,\xi ight)$	College Expenditures on instruction, etc
b	Ability (binary, above or below sample median AFQT)
$\chi_{\xi\in\Xi}$	indicator, upper-tier colleges
d_m, d_f	Education of mother and father (college indicator variables)
y	Family income (high or low)
g	Age
$s\left(\ell,\xi ight)$	Financial aid (s cholarships)
δ_{16}	Enrollment persistence

Moving Costs

Cost of moving to location $j \neq \ell^0$ in state x

$$\Delta\left(x, j \neq \ell^{0}\right) = \gamma_{0}\left(e\right) + \gamma_{1}D\left(\ell^{0}, j\right) - \gamma_{2}\chi\left(j \in \mathbb{A}\left(\ell^{0}\right)\right) - \gamma_{3}\chi\left(j = \ell^{1}\right) + \gamma_{4}g - \gamma_{5}n_{j}$$

 γ_0 base cost (disutility) of moving, for someone at schooling level e

 $D\left(\ell^{0},j
ight)$ distance from ℓ^{0} to j

 γ_2 cheaper to move to an adjacent location

 $\mathbb{A}\left(\ell^{0}
ight)$ the set of locations adjacent to ℓ^{0} (States that share a border)

 γ_3 cheaper to move to a previous location

 γ_4 moving cost rises with age

 γ_5 cheaper to move to a large location (n_j is the population in location j)

Data

NLSY79, 1979 – 93, white non-Hispanic males (X-section sample)
Drop observations with zero earnings and positive hours or weeks worked continuous histories, starting at labor force entry age
Wage measured as total wage and salary income, plus farm and business income adjusted for cost of living differences across States
Binary ability measure: AFQT score above or below the sample median
High School Plus: 12 or 13 years of schooling
707 men, 6,764 person-years; interstate migration 2.3% per year (age>25)
Some College: 14 or 15 years of schooling, less than a four-year degree
212 men, 1,890 person-years, (5.6% per year)
College Graduates: at least a Bachelors degree
362 men, 4,241 person-years, 267 interstate moves (7.4% per year)
Wages: Wage model estimated separately, 1979 - 2013 data

State Means

1980 and 1990 PUMS, earnings of white men (HS aged 19-20, SC 21-22, CG 23-34) Median regression with (1) age and (50) State dummies μ_j is the predicted wage from this regression

Tuition, Expenditures and Financial Aid

Tuition: enrollment-weighted averages of "sticker prices" (IPEDS, 1980,1984)
Expenditures: total spending on instruction etc over all colleges of each type, by State
Financial Aid: expenditures on scholarships per potential student in the State
Potential Students: number of high school graduates aged 22-36 in each State in 1990

Ability and Schooling

Ak	Ability, Parents' Education and Schooling							
Neither Parent went to College								
	High School Some College College Total							
Low Ability	375	33	34	442				
	84.8%	7.5%	7.7%	62.3%				
High Ability	128	56	84	268				
	47.8%	20.9%	31.3%	37.7%				
Total	503	89	118	710				
	70.8%	12.5%	16.6%					
	Both Pare	nts went to Colleg	е					
	High School	Some College	College	Total				
Low Ability	41	19	19	79				
	51.9%	24.1%	24.1%	29.7%				
High Ability	24	44	119	187				
	12.8%	23.5%	63.6%	70.3%				
Total	65	63	138	266				
	24.4%	23.7%	51.9%					

High Ability: Above sample median AFQT score (63%)

Estimation

Choose parameter vector $\boldsymbol{\theta}$ to maximize likelihood

$$\Lambda\left(\theta\right) = \sum_{i=1}^{N} \log L_{i}\left(\theta\right)$$

Likelihood of an individual history

$$L_{i}\left(\theta\right) = \frac{1}{n_{\eta}\left(n_{\upsilon}\right)^{N_{i}}} \sum_{\omega^{i} \in \Omega(N_{i})} \left(\prod_{t=1}^{T_{i}} q\left(e_{it}, \xi_{it}\right) \psi_{it}\left(\omega^{i}, \theta\right) \lambda_{it}\left(\omega^{i}, \theta\right)\right)$$

 $\begin{array}{c} q\left(e_{it},\xi_{it}\right) \\ \psi_{it}\left(\omega^{i},\theta\right) \\ \lambda_{it}\left(\omega^{i},\theta\right) \end{array} \\ \\ \end{array}$

likelihood of observed college transitions

likelihood of observed wage

likelihood of observed location and enrollment choices

Parameter Estimates

			Low	AFQT	High	AFQT
	Initial Grac	le	12-13	14-15	12-13	14-15
	e		0	1	0	1
	Next Grad	е	14-15	16	14-15	16
		ξ				
Public	Lower-Tier	1	22.7%	16.5%	33.6%	10.7%
Public	Upper-Tier	2	50.7%	32.4%	57.8%	33.0%
Private	Lower-Tier	3	55.2%	22.5%	57.1%	36.2%
Private	Upper-Tier	4	42.8%	28.9%	56.2%	34.8%
				Standar	d Errors	
Public	Lower-Tier	1	3.3%	6.2%	3.9%	6.0%
Public	Upper-Tier	2	4.3%	4.6%	3.0%	3.0%
Private	Lower-Tier	3	6.3%	10.0%	4.7%	8.7%
Private	Upper-Tier	4	4.0%	6.6%	3.3%	3.8%

Table 1: Estimated College Transition Probabilities

Parameter Estimates

				Ô	<u>^</u>	ן		
	$\hat{ heta}$	$\hat{\sigma}_{ heta}$		0	σ_{θ}		$\hat{ heta}$	$\hat{\sigma}_{ heta}$
A. Consumption valu	ue of educa	ation	D. College Cos	il a a a	0.07	E. Policy Variab	les	
Some College	-0.26	0.05	Disutility: Pub lo	1.11	0.27	Tuition: lo pub	1.14	0.37
College Grad	-0.01	0.17	Disutility: Pub hi	-0.08	0.38	Tuition: hi pub	2.15	0.19
B. Flow Utility			Disutility: Pvt lo	1.80	0.45	Tuition: lo pvt	-1.60	0.56
Income	0.10	0.01	Disutility: Pvt hi	0.93	0.40	Tuition: hi pvt	-0.09	0.22
Climate	0.010	0.004	Ability effect	0.28	0.16	Expend: lo pub	17.70	2.12
Home Premium	0.16	0.01	Ability×upper	0.31	0.07	Expend: hi pub	-0.66	0.76
C. Moving Cost			Mother's ed	-0.07	0.03	Expend: lo pvt	-11.46	29.69
High School	4.61	0.25	Father's ed	0.13	0.03	Expend: hi pvt	7.16	2.90
Some College	4.09	0.27	Family Inc	0.07	0.03	Fin Aid: Pub lo	17.76	37.03
College Grad	4.12	0.28	Age effect	0.28	0.16	Fin Aid: Pub hi	-21.24	9.87
Distance	0.31	0.06	Ability×aid	41.93	7.30	Fin Aid: Pvt lo	119.04	128.45
Adjacent Location	0.89	0.08	Mother-ed×aid	41.63	6.95	Fin Aid: Pvt hi	-32.02	23.14
Previous Location	2.31	0.11	Father-ed \times aid	3.55	7.19	Ability×aid	41.93	7.30
Age effect	0.08	0.01	Family inc \times aid	-7.32	7.10	Mother-ed×aid	41.63	6.95
Population	0.86	0.06	extra, hi tier	0.87	0.26	Father-ed×aid	3.55	7.19
Enroll/migr shocks	0.50	0.03	hi ability, hi tier	-0.48	0.17	Family inc \times aid	-7.32	7.10
	0.00	0.00	enroll change	1.42	0.10			

Empirical Results

- strong response to differences in tuition (for public colleges)
- strong response to higher education expenditures for community colleges
- no evidence that expenditures affect outcomes for other colleges

Effects of Changes in Tuition and Expenditure

Use 1970 Census to tabulate education levels of parents of NLSY79 cohorts

The model has 800 value functions classified by home location, whether each parent went to college, ability, family income (binary) Count the numbers of each type:

- Find households with children aged 5 13 in 1970 Census
- Tabulate college attendance, family income, of the parents of these children.

Tabulate choice probabilities (college and location) for each value function Population is a weighted average of the types

Policy Effects:

Iterate the state transition matrix implied by the policy variables used in estimation then do the same thing for the new values of the policy variables (e.g. tuition) and compare the population distributions

Tuition and Tax Revenue

PV of lifetime tuition and tax payments, assuming proportional taxes

Effects of Tuition Reductions

20% reduction (one State at a time)

	Population at Age 36					Reven	ue (PV)			
	Curi	rent Loca	tion	Ho	me Locat	ion	Тах	es	Tuition	
	Grad	SC	HS	Grad	SC	HS	Δ %	\$	Δ %	\$
California	3.6%	-1.0%	-3.6%	3.5%	-1.2%	-3.9%	0.19%	56.3	-12.3%	-149.2
Florida	5.9%	0.4%	-4.1%	6.9%	0.1%	-4.9%	0.27%	16.2	-10.0%	-44.8
Illinois	9.4%	1.0%	-6.1%	10.8%	0.9%	-6.5%	0.15%	26.7	-6.9%	-71.9
Massachusetts	3.2%	0.1%	-3.2%	3.4%	0.1%	-3.4%	-0.12%	-14.6	-8.8%	-45.6
Michigan	12.7%	1.7%	-6.6%	14.3%	1.6%	-6.9%	-0.08%	-13.6	-4.3%	-45.0
New York	7.6%	0.2%	-5.8%	8.1%	0.0%	-6.2%	0.05%	17.6	-8.7%	-165.4
Pennsylvania	13.4%	3.5%	-6.1%	17.9%	3.8%	-6.4%	-0.17%	-33.4	2.0%	19.9
Texas	4.2%	0.4%	-2.8%	4.4%	0.2%	-3.0%	0.33%	48.6	-13.3%	-80.5
Wisconsin	9.6%	1.1%	-5.1%	10.6%	1.0%	-5.4%	-0.13%	-11.3	-6.9%	-34.7

Effects of Expenditure Increases (Community Colleges)

Increase expenditure (per student) by 20% of national average level one State at a time

	Cur	rent Loca	tion	Ho	me Locat	tion	Reven	ue (PV)
	Grad	SC	HS	Grad	SC	HS	Taxes	Tuition
CA	1.45%	1.88%	-3.13%	1.54%	2.00%	-3.46%	-41.4	10.8
FL	1.71%	1.97%	-2.28%	2.30%	2.27%	-2.80%	-6.1	15.3
IL I	0.74%	0.98%	-0.89%	0.90%	1.07%	-0.96%	-7.5	13.8
MA	0.28%	0.66%	-0.49%	0.30%	0.71%	-0.53%	-3.0	1.2
MI	0.89%	1.23%	-0.87%	1.04%	1.32%	-0.91%	-9.8	14.5
NY	0.21%	1.40%	-0.70%	0.25%	1.49%	-0.74%	-22.9	51.9
PA	0.67%	0.94%	-0.53%	0.92%	1.02%	-0.55%	-7.4	14.1
ТХ	0.44%	0.66%	-0.61%	0.54%	0.73%	-0.67%	-2.3	4.9
WI	0.48%	0.78%	-0.51%	0.57%	0.85%	-0.54%	-4.3	4.1

Low National Tuition Levels with GE adjustments

Effects of National Tuition Reductions (California resident levels)							
		Population	at Age 36	6			
	Current	Location	Home l	_ocation	Tax	Tuition	
	Grad	HS	Grad	HS	(present	values)	
California	6.9%	-1.8%	2.9%	-0.1%	725	-128	
Florida	22.9%	-10.9%	15.7%	-9.5%	230	-208	
Illinois	34.1%	-18.3%	36.5%	-18.7%	299	-441	
Massachusetts	8.6%	-9.4%	11.1%	-9.1%	-64	-237	
Michigan	50.4%	-22.7%	55.8%	-23.2%	119	-472	
New York	27.3%	-18.9%	27.9%	-19.1%	297	-935	
Pennsylvania	71.5%	-26.8%	89.0%	-27.5%	178	-405	
Texas	3.2%	2.2%	-2.5%	3.9%	354	-37	
Wisconsin	30.5%	-13.9%	32.2%	-14.0%	99	-189	
U.S.	25.4%	-13.5%	25.4%	-13.5%	6701	-6666	

Fortin (2006): 10% change in relative supply (CG/HS) changes college premium by 2%Here relative supply increases by 45%,

so assume the college premium falls by 9% (cg -4.5%, hs +4.5%)

Multiplying tax rate in each State by 1.015 is enough to achieve revenue-neutrality

(e.g. tax rate increases from 10% to 10.15%)

Conclusion

Education subsidies and tuition differences might affect

- whether people go to college
- which type of college
- where (home State or elsewhere)

Empirical results

- a strong response to differences in tuition (for public colleges)
- some evidence of a response to higher education subsidies
- response is particularly strong for community colleges

Migration "leakage" is minimal

National Tuition at California Resident Levels

- huge increase in college attainment
- revenue-neutral if tax rate increased from 10% to 10.1%

Gross Flows

Wage Differentials

	Mean	Min	Max
Earnings (State medians, \$1983)			
High School (age 20)	7,856	5,824	10,196
Some College (age 22)	9,966	7,451	11,809
College Graduate (age 24)	13,984	9,345	16,174

Parents' College Attendance (1970 Census, large States)

Largest States	Neither	Father only	Mother only	Both	Population
California	57.3%	17.7%	8.0%	17.1%	9.1%
New York	63.4%	15.8%	6.1%	14.6%	8.7%
Pennsylvania	73.3%	13.3%	4.2%	9.2%	6.1%
Ohio	71.9%	12.8%	4.8%	10.5%	5.8%
Texas	68.1%	13.6%	5.2%	13.1%	5.8%
Illinois	65.8%	14.1%	6.1%	14.0%	5.5%
Michigan	69.7%	13.4%	5.6%	11.3%	4.8%
New Jersey	62.9%	17.3%	5.6%	14.2%	3.2%
Massachusetts	63.4%	15.7%	6.7%	14.1%	3.1%
Indiana	73.9%	11.9%	4.7%	9.5%	2.9%
Wisconsin	69.8%	12.3%	6.3%	11.6%	2.7%
U.S.	66.9%	13.9%	6.1%	13.0%	100.0%

Parents' College Attendance (1970 Census, highs and lows)

	Neither	Father only	Mother only	Both	Рор
Utah	50.8%	23.5%	6.4%	19.3%	0.7%
California	57.3%	17.7%	8.0%	17.1%	9.1%
Washington	58.9%	16.9%	7.5%	16.8%	1.8%
Idaho	59.6%	14.2%	8.9%	17.2%	0.4%
Montana	60.4%	13.6%	10.5%	15.5%	0.5%
Wyoming	60.6%	11.0%	12.5%	15.9%	0.2%
Nevada	60.6%	16.2%	9.3%	13.9%	0.2%
Colorado	61.4%	14.0%	7.3%	17.2%	1.1%
U.S.	66.9%	13.9%	6.1%	13.0%	100.0%
South Carolina	73.4%	9.5%	5.3%	11.8%	1.0%
Indiana	73.9%	11.9%	4.7%	9.5%	2.9%
Tennessee	74.4%	10.1%	4.5%	11.0%	1.8%
Arkansas	76.1%	10.5%	4.3%	9.1%	0.8%
West Virginia	78.9%	9.6%	4.2%	7.3%	1.1%
Kentucky	79.4%	9.2%	4.0%	7.4%	1.8%

East

College Graduates: East								
	Private Public Total							
Out of State	25	16	41					
	43.1%	28.1%	35.7%					
In State	33	41	74					
	56.9%	71.9%	64.3%					
Total	58	57	115					
	50.4%	49.6%						

College Graduates: Not East						
	Private	Public	Total			
Out of State	19	30	49			
	30.6%	13.2%	17.0%			
In State	43	197	240			
	69.4%	86.8%	83.0%			
Total	62	227	289			
	21.5%	78.5%				

Michigan Colleges

	Students	State Support	Tuition	
2009 data		per student	resident	nonresident
Michigan State University	46,510	\$7,644	\$10,880	\$27,343
University of Michigan-Ann Arbor	41,028	\$7,930	\$11,659	\$34,937
Wayne State University	31,024	\$7,102	\$8,643	\$18,412
	118,562	\$7,601		
Regional Universities (12)	292,575	\$3,584	\$8,616	\$18,366
Community Colleges (28)	230,587	\$1,138		

Migration

Exports and Expenditures

Politics and Expenditures

Politics and Tuition

Tuition Increases

Imported and Exported College Students

Geographical Labor Supply Elasticities (High School)

/Dropbox/Papers/CIC/Figures/HSgeogSupply.eps

Geographical Labor Supply Elasticities (College)

/Dropbox/Papers/CIC/Figures/CGgeogSupply.eps

Higher Education Expenditures and Human Capital Distribution

Public and Private Colleges

College Graduates						
	Private	Public	Total			
Out of State	44	46	90			
	36.7%	16.2%	22.3%			
In State	76	238	314			
	63.3%	83.8%	77.7%			
Total	120	284	404			
	29.7%	70.3%				

College Graduates: East						
	Private	Public	Total			
Out of State	25	16	41			
	43.1%	28.1%	35.7%			
In State	33	41	74			
	56.9%	71.9%	64.3%			
Total	58	57	115			
	50.4%	49.6%				

Intergenerational Relationships

Effects of Changes in Tuition and Expenditure

Policy Effects:

Iterate the state transition matrix implied by the policy variables used in estimation then do the same thing for the new values of the policy variables (e.g. tuition) and compare the population distributions

Effects of Policy Changes: Michigan									
		Population at Age 36						Revenue	
	Cur	rrent Loca	tion	Home Location			Taxes	Tuition	
Increase (20%)	Grad	SC	HS	Grad	SC	HS	\$(I	⊃V)	
Tuition	-11.2%	-2.4%	6.2%	-12.9%	-2.4%	6.5%	25.2	2.1	
Spending	0.03%	0.42%	-0.16%	0.02%	0.45%	-0.17%	-10.3	2.6	
Decrease (20%)									
Tuition	12.7%	1.7%	-6.6%	14.3%	1.6%	-6.9%	-13.6	-45.0	
Spending	0.11%	-1.36%	0.43%	0.12%	-1.47%	0.45%	9.2	-0.3	

Effects of Tuition: Resident vs. Nonresident

Bound, Groen, Kezdi and Turner (2004)

Increases in the flow of new college graduates in a State have little effect on long-term stock But this does not say much about policy effects:

If the flow increase mainly involved residents of the State, the long-term effect may be big Test by changing resident and nonresident tuition levels separately

	Population at Age 36				Revenue (present values)			
	Resident		Nonresident		Resident		Nonresident	
	Graduates	Stayers	Graduates	Stayers	Taxes	Tuition	Taxes	Tuition
California	3.23%	81.9%	0.42%	54.3%	-6.5	-169.5	62.7	20.3
Florida	4.89%	83.7%	1.02%	52.3%	-7.9	-51.2	24.0	6.4
Illinois	3.64%	77.8%	0.16%	42.2%	-8.5	-83.0	35.2	11.0
Massachusetts	1.39%	72.1%	0.05%	36.6%	-30.9	-50.0	16.3	4.4
Michigan	12.16%	73.8%	0.53%	35.1%	-39.5	-59.3	25.9	14.3
New York	2.67%	75.7%	0.11%	38.9%	-52.3	-170.3	69.9	4.9
Pennsylvania	5.72%	73.3%	0.16%	35.1%	-54.0	9.1	20.6	10.8
Texas	1.13%	84.1%	0.13%	59.3%	7.2	-78.9	41.4	-1.6
Wisconsin	3.39%	74.1%	0.18%	34.2%	-27.3	-44.4	16.0	9.7

"Stayers": proportion of the national increase found in the State where tuition changed.