The Brexit Vote, Inflation and UK Living Standards

Holger Breinlich Nottingham & CEP Elsa Leromain CEP

Dennis Novy Warwick & CEP Thomas Sampson LSE & CEP

January 2019

- UK voted to leave the EU in June 2016
- Brexit is currently scheduled for March 2019
- Ex-ante economic analysis predicts Brexit will reduce UK living standards (Dhingra et al. 2017, Sampson 2017)
 - Plausible estimates put costs at between 1% and 10% of income per capita
 - To minimise economic costs UK should remain in the Single Market and the Customs Union

- Referendum was unanticipated shock to the UK economy
 - Increased uncertainty over future economic policy
 - Decreased expected future openness of UK to trade, investment and immigration with the EU
- How has the Brexit vote affected the UK economy so far?

Sterling depreciation

Inflation and real wages

- Study effect of Brexit vote on UK living standards
- Estimate impact on inflation and real wage growth

- Is the Brexit vote responsible for the rise in UK inflation after June 2016?
- Other possible factors: oil price movements, global inflationary pressures
- Isolate referendum effect by comparing changes in inflation for product groups with differential exposure to import costs
- Goal is to understand consequences of Brexit vote not a generic exchange rate depreciation ... source of exchange rate shock matters

International inflation comparison

Motivating theory

- Suppose households consume G product groups indexed by $g = 1, \ldots, G$
- Consumption C_g of product group g is composite of imported good M_g and domestic good D_g

$$C_g = M_g^{\gamma_g} D_g^{1-\gamma_g}$$

Motivating theory

- Suppose households consume G product groups indexed by $g = 1, \ldots, G$
- Consumption C_g of product group g is composite of imported good M_g and domestic good D_g

$$C_g = M_g^{\gamma_g} D_g^{1-\gamma_g}$$

• Price growth can be expressed in terms of price indices P as

$$\ln\left(\frac{P_{g,t}}{P_{g,t-1}}\right) = \gamma_g \ln\left(\frac{P_{gM,t}}{P_{gM,t-1}}\right) + (1-\gamma_g) \ln\left(\frac{P_{gD,t}}{P_{gD,t-1}}\right)$$

Motivating theory

- Suppose households consume G product groups indexed by $g = 1, \ldots, G$
- Consumption C_g of product group g is composite of imported good M_g and domestic good D_g

$$C_g = M_g^{\gamma_g} D_g^{1-\gamma_g}$$

• Price growth can be expressed in terms of price indices P as

$$\ln\left(\frac{P_{g,t}}{P_{g,t-1}}\right) = \gamma_g \ln\left(\frac{P_{gM,t}}{P_{gM,t-1}}\right) + (1-\gamma_g) \ln\left(\frac{P_{gD,t}}{P_{gD,t-1}}\right)$$

- Direct import share γ_g measures share of consumer expenditure on imports
- Indirect import share defined as share of consumer expenditure on imported intermediate inputs used in domestic production

Breinlich, Leromain, Novy & Sampson

Brexit Vote & Inflation

• Suppose domestic good g produced using labour *I*, domestic input i_{Dg} and imported input i_{Mg} according to

$$y_g = \phi_g l^{1-\alpha_g} \left(i_{Dg}^{1-\varepsilon_g} i_{Mg}^{\varepsilon_g} \right)^{\alpha_g}$$

• Suppose domestic good g produced using labour *I*, domestic input i_{Dg} and imported input i_{Mg} according to

$$y_g = \phi_g l^{1-\alpha_g} \left(i_{Dg}^{1-\varepsilon_g} i_{Mg}^{\varepsilon_g} \right)^{\alpha_g}$$

Complete pass-through from costs to output prices implies

$$\frac{P_{gD,t}}{P_{gD,t-1}} = \left(\frac{\phi_{g,t}}{\phi_{g,t-1}}\right)^{-1} \left(\frac{w_t}{w_{t-1}}\right)^{1-\alpha_g} \left(\left(\frac{P_{gID,t}}{P_{gID,t-1}}\right)^{1-\varepsilon_g} \left(\frac{P_{gIM,t}}{P_{gIM,t-1}}\right)^{\varepsilon_g}\right)^{\alpha_g}$$

Assume TFP and factor prices do not change over time

Intermediates produced using output of all other sectors

$$\frac{P_{gID,t}}{P_{gID,t-1}} = \prod_{j=1}^{G} \left(\frac{P_{jD,t}}{P_{jD,t-1}}\right)^{\psi_{jg}}, \qquad \frac{P_{gIM,t}}{P_{gIM,t-1}} = \prod_{j=1}^{G} \left(\frac{P_{jM,t}}{P_{jM,t-1}}\right)^{\mu_{jg}}$$

- ψ_{jg} equals share of domestic good j in cost of producing domestic intermediate g
- μ_{jg} denotes share of imported good j in cost of producing imported intermediate g
- Solving this system of equations gives $\ln \left(\frac{P_{gD,t}}{P_{gD,t-1}}\right)$ in terms of shock to import prices

- Indirect import share is defined as share of consumer expenditure on imported intermediate inputs used in domestic production
- Under our assumptions indirect import share also equals $(1 \gamma_g)$ times elasticity of domestic good price $P_{gD,t}$ to import costs

• Suppose
$$\ln\left(\frac{P_{gM,t}}{P_{gM,t-1}}\right) = \beta \ \forall g = 1, \dots, G$$
. Then
 $\ln\left(\frac{P_{g,t}}{P_{g,t-1}}\right) = \beta \times (\text{Direct import share } + \text{Indirect import share})$

Use this expression as basis for our estimation equation

- Import shares calculated from 2013 UK input-output tables
 - Direct import share equals share of household expenditure on imports
 - Indirect import share equals share of household expenditure on intermediate inputs embedded in domestic production (using all input-output linkages)
 - Total import share equals sum of direct and indirect measures
- Price data for 84 product groups corresponding to COICOP classes
- Euro area inflation by product group from Eurostat
- Oil price exposure by product group calculated using input-output tables as consumer expenditure share on imported oil used in domestic production

	Import share in consumer expenditure		
	(1)	(2)	(3)
COICOP division	Direct	Indirect	Total
Food and non-alcoholic beverages	50%	14%	63%
Alcoholic beverages and tobacco	50%	11%	60%
Clothing and footwear	88%	2%	90%
Housing, water, electricity, gas and other			
fuels	1%	17%	18%
Furniture, household equipment and			
maintenance	66%	6%	72%
Health	42%	4%	47%
Transport	31%	20%	51%
Communication	43%	14%	57%
Recreation and culture	34%	10%	44%
Education	1%	4%	5%
Restaurants and hotels	0%	17%	17%
Miscellaneous goods and services	36%	9%	45%
Average	39%	12%	51%
Standard deviation	0.35	0.09	0.32

Table 1: Import shares in consumer expenditure by COICOP division

Import shares

Import shares and inflation

$$\ln\left(\frac{P_{g,t}}{P_{g,t-1}}\right) = \beta \textit{Post}_t \times \textit{ImportShare}_g + \alpha X_{gt} + \delta_t + \delta_g + \varepsilon_{gt}$$

- *Post_t* is a dummy for periods after June 2016
- ImportShareg is the total import share of product group g
- X_{gt} includes controls for oil price movements and Euro area inflation
- δ_t and δ_g are period and product group fixed effects
- Estimate on both annual (year ending in June) and quarterly data
- Annual sample June 2015-17. Quarterly sample ends December 2017
- Standard errors clustered by product group

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Inflation	Inflation	Inflation	Inflation Difference	Inflation
Post \times Import share	0.0760***	0.0709***	0.0709***	0.0706***	
	(0.0185)	(0.0148)	(0.0140)	(0.0141)	
$2016 \times \text{Import share}$					-0.00295
					(0.0106)
$2017 \times \text{Import share}$					0.0694***
					(0.0155)
Oil		0.846**	0.672**	0.232	0.673**
		(0.393)	(0.296)	(0.164)	(0.297)
Euro area inflation			0.282		0.283
			(0.201)		(0.200)
2015 dummy	-0.00996**	-0.00449	-0.00510	-0.00666	-0.00659
	(0.00394)	(0.00410)	(0.00399)	(0.00499)	(0.00637)
2017 dummy	-0.0123*	-0.0136**	-0.0146**	-0.0170*	-0.0153**
	(0.00735)	(0.00662)	(0.00693)	(0.00861)	(0.00720)
Observations	252	252	252	252	252
R-squared	0.337	0.459	0.491	0.256	0.491
Number of products	84	84	84	84	84
Product fixed effects	YES	YES	YES	YES	YES

Direct & indirect import shares

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Inflation	Inflation	Inflation	Inflation Difference	Inflation
Post \times Direct import share	0.0916***	0.0760***	0.0719***	0.0612***	
	(0.0209)	(0.0147)	(0.0126)	(0.0126)	
Post \times Indirect import share	0.310**	0.138**	0.0850*	-0.0520	
	(0.125)	(0.0597)	(0.0499)	(0.0669)	
$2016 \times \text{Direct import share}$					-0.00606
					(0.0122)
$2017 \times \text{Direct import share}$					0.0673***
					(0.0154)
$2016 \times \text{Indirect import share}$					-0.0479
0015 I. I					(0.0572)
$2017 \times \text{Indirect import snare}$					0.0432
0:1		0 720*	0.651*	0.447*	(0.0778)
Oli		(0.29°)	(0.228)	0.44/*	(0.202)
Euro area inflation		(0.391)	(0.328)	(0.227)	(0.393)
Euro area innation			(0.2/7		(0.204
2015 dummy	-0.0006**	-0.00524	-0.00525	-0.00527	-0.0128
2015 dulinity	(0.00395)	(0.00399)	(0.00396)	(0.0032)	(0.0120)
2017 dummy	-0.0466**	-0.0231**	-0.0166**	0.000453	-0.0182**
2017, daminy	(0.0204)	(0.00989)	(0.00736)	(0.00978)	(0.00717)
	((,,)	(,,	(,,,	(, -, ,
Observations	252	252	252	252	252
R-squared	0.409	0.462	0.491	0.268	0.492
Number of products	84	84	84	84	84
Product fixed effects	YES	YES	YES	YES	YES

Quarterly estimates

- For each 10 percentage point increase in total import share, product group inflation estimated to be 0.71 percentage points higher in year after referendum
- Both direct and indirect import exposure led to higher inflation. Cannot reject hypothesis of equal effects
- Pass-through to import prices peaked in Q1 2017, but still ongoing in Q3 2017

Aggregate inflation

- Did the referendum affect inflation through channels other than import prices?
- Estimated period fixed effect is negative and significant in year after the referendum
- To obtain a conservative estimate of the Brexit vote effect, we attribute this negative general equilibrium estimate to the referendum
- Aggregating across product groups we find that the Brexit vote increased inflation by 1.7 percentage points in year to June 2017 (inflation increased from 0.5% to 2.6% from June 2016 to June 2017)
- Equivalent to £404 per year higher expenditure for average UK household (almost one week's wages)
- For the UK in total, this corresponds to roughly $\pounds 11$ bn per year, or $\pounds 210$ m per week.

- Nominal wages grew at around 2%-2.5% throughout 2016 and 2017
- Real wage growth fell from 1.7% in June 2016 to -0.3% in December 2017
- Assuming nominal wage growth unaffected by referendum, our estimates imply Brexit vote reduced real wages in June 2017 by 1.7%
- Equivalent to loss of 4.4 working days' wages for average worker

Wage growth

[label=robustness]

- Findings robust to alternative estimation specifications
 - Inclusion of distribution costs in calculation of import shares Details
 - Interact import shares with observed exchange rate changes Details

- Share of expenditure allocated to different product groups varies by household
- Use this variation to calculate effect of referendum on inflation for different household types
- Distributional consequences are independent of general equilibrium effects

Breinlich, Leromain, Novy & Sampson Brei

Regions

Scotland, Wales and Northern Ireland hit hardest – higher expenditure on food, drink, and fuel, lower expenditure on rent

- Brexit vote was an unanticipated negative shock to the UK economy
- Product groups with larger import shares have experienced higher inflation since the vote
- Estimates imply referendum increased inflation by 1.7 percentage points in the year to June 2017
- UK households are already paying a price for voting to leave the EU (see also Born, Müller, Schularick & Sedláček 2017 for GDP costs)

Distribution costs

- Baseline estimates use import shares calculated at basic prices excluding distribution costs and taxes on products
- Suppose good g produced using distribution sector R in addition to imported and domestic goods

$$C_g = \left(M_g^{\gamma_g} D_g^{1-\gamma_g}
ight)^{1-\lambda_g} R^{\lambda_g}$$

 λ_g is share of distribution sector in consumer expenditure at purchasers' prices net of product taxes

Distribution costs

- Baseline estimates use import shares calculated at basic prices excluding distribution costs and taxes on products
- Suppose good g produced using distribution sector R in addition to imported and domestic goods

$$C_g = \left(M_g^{\gamma_g} D_g^{1-\gamma_g}\right)^{1-\lambda_g} R^{\lambda_g}$$

 λ_g is share of distribution sector in consumer expenditure at purchasers' prices net of product taxes

• Price growth now given by

$$\ln\left(\frac{P_{g,t}}{P_{g,t-1}}\right) = (1-\lambda_g)\gamma_g \ln\left(\frac{P_{gM,t}}{P_{gM,t-1}}\right) + (1-\lambda_g)(1-\gamma_g)\ln\left(\frac{P_{gD,t}}{P_{gD,t-1}}\right) + \lambda_g \ln\left(\frac{P_{R,t}}{P_{R,t-1}}\right)$$

• Recalculate direct import share as $(1 - \lambda_g)\gamma_g$ and indirect import share to include expenditure on imported intermediate inputs used in distribution sector

Breinlich, Leromain, Novy & Sampson

	(1)	(2)	(3)	(4)
	Inflation	Inflation	Inflation	Inflation
VARIABLES		including distribution		including distribution
Post x Import share	0.0709***	0.123***		
	(0.0140)	(0.0277)		
Post x Direct Import Share			0.0719***	0.123***
			(0.0126)	(0.0294)
Post x Indirect Import share			0.0850*	0.101**
			(0.0499)	(0.0493)
Oil	0.672**	0.530*	0.651*	0.559*
	(0.296)	(0.289)	(0.328)	(0.314)
Euro area inflation	0.282	0.236	0.277	0.241
	(0.201)	(0.183)	(0.206)	(0.189)
2015 dummy	-0.00510	-0.00611	-0.00525	-0.00591
	(0.00399)	(0.00394)	(0.00396)	(0.00394)
2017 dummy	-0.0146**	-0.0175**	-0.0166**	-0.0169**
	(0.00693)	(0.00868)	(0.00736)	(0.00768)
Observations	252	252	252	252
R-squared	0.491	0.467	0.491	0.476
Number of products	84	84	84	84
Product fe	YES	YES	YES	YES

- For each 10 percentage point increase in total import share, inflation estimated to be 1.2 percentage points higher in year after referendum
- Sterling depreciated by $\approx 10\%$ following referendum. Estimates consistent with 100% pass-through of exchange rate depreciation to import prices and of import costs to consumer prices
- Aggregating across product groups and attributing negative 2017 fixed effect to referendum estimates imply Brexit vote increased inflation by 1.9 percentage points in year to June 2017

Back

- Alternative specification: interact import share with observed exchange rate changes (import-weighted)
 - Advantage: controls for pre-referendum exchange rate movements
 - Disadvantages: pre-referendum exchange rate changes not exogenous; assumes symmetry between Brexit vote effect and impact of pre-referendum exchange rate movements
- Quarterly estimates show positive effect of Import share-Exchange rate interaction with one and two lags
- Implied increase in aggregate inflation is 1.6-2.3 percentage points

Back